
a

4K Mssemles

pal |l|
macro-8

digital equipment corporation

w
G

0

§
0O

0

*
O O

f
O O

f
O O

f
O O

f
O O

f
O O

f
O 0

§
0 O

f
O O

f
O O

8

of

O

m. L

DEC-O8éLAS4A-A-D

4K ASSEMBLERS

PAL III/MACRO-B

For additional copies, order No. DEC-OB—LAS4A—A-D

from Software Distribution Center, Digital Equipment
Corporation, Maynard, Mass.

digital equipment corporation - mdgnqrd. massachusetts

First Printing, July 1973

Copyright <:>1973 by Digital Equipment Corporation

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

CDP

COMPUTER LAB

COMTEX

COMSYST

DDT

DEC

DECCOMM

DECTAPE

DIBOL

DIGITAL

DNC

EDGRIN

EDUSYSTEM

FLIP CHIP

FOCAL

GLC-8

IDAC

IDACS

INDAC

KA10

LAB-8

LAB—8/e
LAB-K

OMNIBUS

OS/8
PDP

PHA

PS/8
QUICKPOINT
RAD-8

RSTS

RSX

RTM

SABR

TYPESET 8

UNIBUS

PREFACE

The "HOW TO OBTAIN SOFTWARE INFORMATION" page, located at the back of

this document, explains_ the various services available to DIGITAL

software users.

The postage prepaid "READER'S COMMENTS" form on the last page of this

document requests. the user's critical evaluation. All comments

received ans acknowledged and will be considered when subsequent
documents are prepared.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such

system, except as may otherwise be provided in writing by DIGITAL.

The material in this document is for information purposes only and is

subject to change without notice. DIGITAL assumes no responsibility
for the use or reliability of software and equipment which is not

supplied by it. DIGITAL assumes no responsibility for any errors

which may appear in this document.

fun-‘- Ens-I. H.

contents

1 Introduction to 4K Assemblers

y

............

7

l

'

PAL III Programming ..
A

.......... 1

Character Set................;
a

......
.

.......... 2.

Legal Characters 2

Illegal Characters .. 3

Numbers

’

.....

-

...................................... 3

Format Effectors 3

Form Feed .. 3

Tabulations
.
....................................... 3

Statement Terminators 4

Statements

i

... a

5

Labeis

p

...................................... 5

Instructions

‘

6

Operands

* 6

Comments
g

.........................
a
..................... 6

Coding Practices 6

Symbols *7»

Internal Symbol RepresentatiOn for PAL III

g

........... 7

Symbolic Addresses

‘

.....

‘

.....

‘

8

Symbolic Instructions ..

. 10

Symbolic Operands
y

................................... 10

Symbol Table ,

11

Direct Assignment Statements

'

....... 11

Expressions a................................... 14

Address Assignments
-

................... 17

Current Address Indicator .‘..:

‘

17

Indirect Addressing 18
'

Autoindexing

‘

.................. ~. . .

.p
..... 19‘

Instructions ..
19

Memory Reference Instructions
20

Microinstructions ..
2O

Pseudo--Operators
1
.....................

23

Program Preparation and Assembler Output 29

Operating Procedures . . .f I". . . . ; .‘.......................... 3 2

Summary of Diagnostic Messages for PAL III 34

'MACRO-8 Programming fl}. 37

Characters ..

- 37

Expressions ..
y 37

Origin Setting '...;...‘. 39

Link Generation 41

Literals .. 42

Field Pseudo—Op , ,

.

........ 46

Text Facility

1

..........

»

..... '47

Single Character

TextFacility
........ 47

Text Strings 1 .. 48

Numbers .. 49

'User Defined Macros

*

..................................... 53

7 Defining a Macro .. 53

MACRO—81Pseudo-Operators 57

Symbol Table ... 57

Symbol Table Modification .. 58

Internal Symbol Representation for MACRO—8 ----------- 5 8

Memory ReferenceInstruction Recognition .7
................

I.
61

Compatibility Between PAL III and MACRO-8 1 61

"

Programming Hints 62

Dealing With a Limited Symbol Space 62

. Summary of MACRO—8 Error Diagnostics

_

.............. 66

= Pass 3 Output——Assembly Listing,
a

....... 68

MACRO-8 Operating Procedures

,

....................... 69

AssemblerOutput 59

vi

Operating Instructions '70
MACRO—8 Switch Options

‘

.................... 71

Appendix A ...
,

..... A-l

Appendix B {Bi-1
Appendix C ... C-l

vii

4K assemblers

INTRODUCTION TO 4K ASSEMBLERS

This manual contains descriptiOns of two PDP—8 4K Assemblers,

the first and most basic of which is PAL 111. It is assumed that

the reader is already familiar with the material presented in the

first five chapters of Introduction to Programming, as the PAL III

programming language is discussed in detail in that section.
*

In addition to PAL III, the MACRO-'8 Assembler is also dis—

cussed. MACRO-8 is similar to PAL III with the following addi-

tional features: user defined macrOs, double precision integers,

floating—point constants, arithmetic and Boolean operators, lit-

erals, text facilities, and automatic off-page. linkage generation.
MACRO—8 is recommended when any of these features is desired

and when a large symbol table is not required.

Appendix C contains a list of the permanent symbols for each

of these assemblers.
’

'

Several other System Library Programs are useful in assembly

language programming. The Symbolic Tape Editor can be used to

change, correct, or create a program at the Teletype, and after

assembly, DDT or ODT are useful in debugging theprogram.
More on these and other useful programs can be found in Intro-

duction to Programming.

PAL III PROGRAMMING

PAL HI (an acronym for Program Assembly Language, version

111) is a two pass Assembler (with an optional third pass) designed
for the 4K PDP-8 family of computers. A program, written in the

l

PAL III source language, is translated by the Assembler into a

binary tape in two passes through the Assembler. The binary tape
is loaded by the Binary Loader into the computer for execution.

During the first pass of the assembly, all user symbols are de-

fined and placed in the Assembler’s symbol table. During the sec-

ond pass, the binary equivalents of the input source language are

generated and punched. The Assembler’s third pass produces a

printed assembly listing (a listing of the program’s instructions

with the location, generated binary, «and source code side by side

on each line).
The Assembler requires a basic PDP-8 family computer with a

4K core memory, and a Teletype console. The Assembler can also

use either the high-speed reader, the high-speed punch, or both.

The user can change the Assembler’s permanent symbol table to

reflect his specific machine configuration, as explained under the

section on Altering the Permanent Symbol Table.

Character Set

LEGAL CHARACTERS
‘

7

The following characters are acceptableto PAL III:

1. The alphabetic characters: Athrough Z

2. The numeric characters:
‘L

0 through 9*
3. The following special characters:

:

a. Printing characters
‘

_

+ plus
‘

‘

’

.

‘

; semicolon

-— minus
’

‘

1 ‘55 dollar sign
, comma

‘

v

. period
:: equal sign

' ”

/ slash
* asterisk

b. Nonprinting keyboard characters:

SPACE
'

~

TAB
‘

RETURN

4. Ignored characters:

FORM FEED

blank tape

RUBOUT

Leader Trailer (code 200)

LINE FEED

ILLEGAL CHARACTERS

All other characters are illegal (excepthien used in a com-

ment) and cause the illegal character message:

IC xxxx AT nnnn

during pass 1, where xxxx is the Octal value of the offending
character and nnnn is the value of the current location counter

where it occurred. Illegal characters are ignored and assembly can

proceed. The current location counterlcontains the address in

which the next word‘of object code will be assembled. If the illegal
characteroccurs in the middle of a symbol, the symbol is termi—

nated at that point.
'

Numbers

Any sequence of digits delimited by punctuation characters

forms a number. For example: ,

1.
'

35

,.

..

_ 4372.~ :

The pseudo—ops OCTAL and DECIMAL indicate to the Assem-

bler Which radix, or base, is to be .used in number interpretation.
The radix is initially set to octal (base 8) and remains octal un-

less it is changed. It can be changed to decimal (base 10) via the

DECIMAL pseudo-op, which indicates that all numbers which

follow are to be interpreted as decimal. This is then the case until

the occurrence of the OCTAL pseudo-op which converts the base

baCk to octal, and so on, (For an explanation of the internal repre-
sentation of numbers in the PDP-S, see Introduction to Pro-

gramming.)
M

Format Efiectors

FORM FEED

The form feed code, if present in a PAL 111 program, will cause

the Assembler to output 12 blank lines during the pass 3 Assembly

listing. This is useful «in creating a page—by-page listing. The

form feed is generated by typing a‘SHIFT/‘L on the Teletype.

TABULATIONS

Tabulations are used in the body of a source program to provide
a neat readable listing. Tabs separate fields into columns (for

details see Chapter 7 in Introduction to Programming). For exam-

ple, a line written:

Go,TAD TOTAL/MAIN LOOP

is much easier to read if tabs are inserted to form:

60: TAD TOTAL /MAIN LOOP

STATEMENT TERMINATORS

Either the semicolon (g) or the RETURN key may be used as .a

statement terminator. The semicolon‘is considered identical to a

carriage return/line feed except that it will not terminate a com-

ment. For example:

TAD A /THIS 15 A COMMENT; 'TAD B

The entire expression between the slash (/) and the carriage return

is considered a comment. Therefore the Assembler ignores the

TAD B.
-

If, for example, the user wishes to write a sequence of instruc-

tions to rotate the contents of the accumulator and link six places
to the right, it might look like the following:

A

RTR

RTR

RTR»

However, the programmer can alternatively place all three instruc—

tions on a single line by separating them with the special character

semicolon (;) and terminating the line with a carriage return. The

above sequence of instructions can then be written:

RTR3RTR5RTR

These multi-statement lines are particularly useful when setting
aside a section of data storage for use during processing. For ex-

ample, .a 4-word cleared block could be reserved by specifying
either of the following formats:

LIST, @3 @3 G3 G

OI

LIST; G

0

0

0

Either format may be used to input data words which may be in

the form of numbers, symbols, or expressions. (Symbols and ex-

pressions will be explained later.) Each of the following lines gener—
ate one storage word in the object program:

DATA; 7777

A+C-B

S

123+B2

Statements

PAL HI source programs are usually prepared on a Teletype,
with the aid of the Symbolic Tape Editor, as a sequence of state-

ments. Each statement is written on a single line and is terminated

by typing the RETURN key. PAL HI statements are Virtually
format free; that is, elements of a statement are not placedin

numbered columns with rigidly controlled spacing, as in punched—
card oriented, assemblers.

There are four types of elements in a PAL III statement which

are identified by the order of their appearance in the statement, and

by the separating (or delimiting) character which follows or pre-

cedes the element.
I

Statements are written in the general form:

label, instruction operand /comment

A statement must contain at least one of these elements and may

contain all four types. The Assembler interprets and processes the

statements, generating one or more binary instructions or data

words, or performing an assembly process.

LABELS

A label is the symbolic name created by the programmer to

identify the location of a statement in the program. If present, the

label is written first in a statement and is terminated by a comma.

There must be no intervening spaces between any of the characters

and the comma.

INSTRUCTIONS

An instruction may be one or more of the mnemonic machine

instructions (see Appendix C), or a pseudo-operation (pseudo-op)
which directs assembly processing. (The assembly pseudo-ops
are described later in this manual.) Instructions are terminated

with one or more spaces (or tabs if an operand follows) or with a

semicolon, slash, or carriage return.

OPERANDS

Operands are usually the octal or symbolic addresses of the data

to be accessed when an instruction is executed, but they can be any

expression, or an argument of a pseudo-op. In each case, interpre-
tation of operands in a statement depends on the statement instruc—

tion. Operands are terminated by a semicolon, slash, or carriage
return.

COMMENTS

Following a slash mark the programmer may add notes to a

statement. Such comments do not affect assembly processing or

program execution, but areuseful in the program listing for later

analysis or debugging. The Assembler ignores everything from

the slash to the next carriage return. (For an example see the

section on Statement Terminators, preceding.)
It is possible to have nothing but) a carriage return on a line,

resulting in a space in the final listing. An error message is nOt

glven.

Coding Practices

A neat printout (or program listing, as it is usually called) makes

subsequent editing, debugging, and interpretation much easier

than if the coding were laid out in a haphaZard fashion. The coding

practices listed below are in
general use, and will resultin a read-

able, orderly listing.

1. A title comment begins with a slash at the left hand margin.
2. Pseudo-ops may begin at the left margin; often, however,

they are indented one tab stopto line up with the executable

instructions.

3. Address labels begin at the left margin. They areseparated
from succeeding fields by a tabulation.

6

4. Instructions, whether or not they are preceded by a label

field are indented one tab stop.
5. A comment is separated from the preceding field by one or

two tabs (as required) and a slash; if the comment Occupies
the whole line, it usually begins with a slash at the left

margin. 1

Symbols
A symbol is a string of letters and digits beginning with a letter

and delimited by a non-alphanumeric character. Although a symbol

may be any length, only the first Six characters are considered, and

any additional characters are ignored. Consequently symbols which

are identical in their first six characters are considered identical.

Pseudo-opshave‘ fixed meanings, and cannot be redefined by
the programmer.

_

The Assembler has in its permanent symbol table definitions of

the symbols for all FDR-8 pseudo—op codes, memOry reference,

operate and IOT (Input/ Output Transfer) instructions, which may

be used without prior definition by the user. All other symbols

must be defined1n the source program. For example:

1. Permanent symbols:
HLT is a symbolic instruction whose value of 7402 is

taken by the Assembler from the permanent sym-

‘

bol table.

2. User defined symbols.
A is a user defined symbol. When used as a sym-

bolic address label, its value is the address of the

instruction it precedes. This value is assigned by
the Assembler. The user may asSign values to

symbols by using a direct assignment statement of

the form A = 1234, which will be explained later.

INTERNAL SYMBOL REPRESENTATION FOR PAL III

Each permanent and user defined symbol occupies four words

in the symbol table storage area, shown as follows:

Word 1 Cl
‘

¥

C2

Word 2 C3
’

. C4

Word 3 C5 C6

Word 4
_

Octal code or address

m

where C1, C2, . . .
,

C6 represent the first character, second

character, . . .
,

sixth character respectively. For a permanent sym—

bol, word 4 contains the octal code of the symbol, while for a user

defined symbol, word 4 contains the address of the symbol. As an

example, the permanent symbol TAD is represented as follows:

Word 1 "—2 248 X1008 + 01 =1 24018 01' TA
V

Word 2 = 048 X 1008 + 00 = 04008 or D

Word 3 = 0000
‘

,

Word 4 2:: 1000 (octal code for TAD) {I

The PAL III Assembler distinguishes between pseudo—ops,

memory reference instructions, other permanent symbols, and user

defined symbols by their relative positiOn in the symbol table.

SYMBOLIC ADDRESSES
.

A symbol Used as a label to specify a symbolic address must

appear as the first term in a statement and must be immediately
followed. by a comma. When used in this way, a symbol is assigned l

a value equal to the current location counter and is said to be

defined. Permanent symbols (instructions, special characters, and

pseudo-ops) may not be used as symbolic addresses.

A defined symbol can be used as an operand, or as a reference

to an instruction. The user sets or resets the location counter by

typing an asterisk followed by the octal absolute address value, in

which the next program word is to be stored. If the origin is not .

,

set by the user, PAL III begins assigning addresses at location 200. i

*300 /SET LOCATION COUNTER TO 300

JMP A

B; 0

A: DCA B

The symbol TAG (in the preceding example) is assigned a value

of 0300, the symbol B a value of 0302, and the symbol A a

value of 0303. .
,

If a symbol is defined more than once in this manner, the

Assembler will print the duplicate tag diagnostic:

8

DT‘ xxxx AT nnnn

where xxxx is the symbol, and nnnn is the value of the location

counter at the second occurrence of the symbol definition. The

symbol is not redefined. For example:

$300~

START, TAD A

DCA COUNTER

CONTIN: JMS LEAVE

JMP START

A, -74

COUNTER30

START, CLA CLL

The symbol START would have a Value of 0300, the symbol
CONTIN would have a value of 0302, the symbol A would have

a value of 0304, the symbolCOUNTER (considered COUNTE by
the Assembler) would have a value of 0305. When the Assembler

processed the next line itwould print (during pass 1):

DT START AT @306

Since the first pass of PAL III is usedto define all symbols in

the symbol table, the Assembler will print a diagnostic if, at the

end of pass 1, there are any symbols remaining undefined. For

example:
A

*7170 »

g

A”

gig EMA (The dollar sign mustterminate

HLT all PDP-8 4K assembly pro-

CJ (3MP
A1

grams.)

$

would produce the undefined address diagnostic: .

UA xxxx AT nnnn

where xxxx is the symbol and nnnn is the location at which it was

first seen. The user’s entire symbol table is printed in alphabetical

9

order at the end of.pass 1. In the case of the preceding example,
this would look as follows:

A * .717G/

UA A1 AT 7173
c 7174

The following are examples of legal symbolic addresses:

ADDR,

TOTAL,

SUNL

AL

The following are examples of illegal symbolic addresses:

AD)M, (contains an illegal character)
'

7ABC, 1
' ' '

(first character must be alphabetic)
LA BEL,‘

"

-

. (must not contain imbedded space) .-

. D+TAG,
.

(contains a legal but non—alphanumeric
'

,

_

. character)
‘

LABEL
, (must be terminated by a comma with no inter-

vening spaces)

SYMBOLIC INSTRUCTIONS

Symbols used as instructions must be predefined by the Assem-

bler or by the programmer. If a statement has no label the instruc-

tion may appear first in the statement and must be terminated by
a spaCe, tab, Semicolon, slash or carriage return. The following are

examples of legal operators:

TAD (a mnemonic machine instruction operator)
PAGE .(an Assembler pseudo-op)
ZIP . (legal only if defined by the user)

SYMBOLIC OPERANDS

Symbols used as operands normally have a value defined by
the user. The Assembler allows symbolic references to instructions

or data defined elsewhere in the program. Operands may be num-

bers or expressions.

TOTAL, TAD AC1+TAG

10

The values of the two symbols AC1 and TAG, already defined

.

by the user, are combined by a two’s complement add. This value

is used as the address of the operand.
A

SYMBOL TABLE
The Assembler processes user defined symbols in source pro—

gram statements by adding them to its symbol table. The symbol

table cOntains all defined symbols along with the binary value

assigned to each Symbol.
Initially, the Assembler’s symbol table contains the mnemonic

op—codes of the machine instructions and the ASsembler pseudo—op
codes, as listed in Appendix C. As the source program is processed,
user defined symb01s are 'added’to the symbol table.

If, during pass 1, PAL III detects that the symbol table is full
(in other words, there is no more memory space to store symbols
and their associated values), the symbol table full diagnostic:

ST
‘

xxxx AT nnnn

is printed; xxxx, is the symbol that caused the overflow condition

and nnnn is the current location whenithe overflow occurred.

The Assembler halts and may not be restarted.

More address arithmetic should be used to reduce the number

of symbols. It is also possible to segment a program and assemble

the segments separately, taking care to generate proper links be-

tween the segments. (See the MACRO-8 section Dealing with a

Limited Symbol Space.) PAL III’s symbol capacity when using the

high-speed reader is 558 symbols. The permanent symbol table con-

tains 80 symbols, leaving space for 478 possible user—defined sym-

bols. When using the low—speed reader, PAL III’s symbol capacity
is 656 symbols, leaving space for 576 user—defined symbols.

DIRECT ASSIGNMENT STATEMENTS
The programmer inserts new symbols with their assigned values

directly. into the symbol table by using a direct assignment state-

ment of the form:

SYMBOL: VALUE
VALUE may be a number or expression. No space(s) or tab(s)

may appear between the symbol to the left of the equal sign and

the equal sign. The following are examples of direct assignment
statements:

'

ll

A=6

EXIT=JMP 1,6
C=A+B

.

All symbols to the right of the equal sign must be already de-

fined. The symbol to the left of the equal sign is subject to the same

restrictions asa symbolic address, and its assOciated value is stored
‘

in the user’s symbol table. The use of the equal sign does not in-

crement the'location counter. It is, rather, an instruction to the

Assembler itself.
’

A direct assignment statement may also equate a new symbol
to the value assigned to a previously defined symbol. In this Case

the two symbols Share the same memory location.
I

BETA=17

GAMMA=BETA

The new symbol, GAMMA, is entered into the user’s symbol table

with the value 17.

The value assigned to a symbol may be changed as follows:

ALPHA=5

ALPHA=7

The second line of code shown changes the value assigned to

ALPHA from 5 to 7. (This will generate an RD error, explained

below.)

SymbOls defined by use of the equal sign may be used in any

valid expression. For example:

*203

A=1®® /DOES NOT UPDATE CLC

B=4®® /DOES NOT UPDATE CLC

A+B /THE VALUE saw 15 ASSEMBLED AT LOC. 20%

TAD A /THE VALUE 110% IS ASSEMBLED AT LOC‘ 2G1-

If the symbol to the left of the equal sign has already been

defined, the redefinition diagnostic:

RD xxxx AT nnnn

will be printed as a warning, where xxxx is the symbol name

and nnnn is the value of the location counter at the point of

12

redefinition. The new value will be stored in the symbol table; for

example:

CLA=76®®

will cause the diagnostic:

RD CLA‘ AT sane

Whenever CLA is uSed after this point, it will haVe the value 7600.

Multiple assignments can be carried to two levels only. Where

X is some previously defined symbol or combination of symbols:

AZBZX will assemble, but

A:B=C=X will not assemble.

An error of this type will cause a “Pushdown Stack Overflow”

diagnostic of the form:

PO xxxx AT nnnn

This is a non—recoverable error condition which causes the assembly ,

to terminate. Continuation is not possible at this point. The error

must be corrected and the assembly restarted.
i

The expression to the right of the rightmost equal sign must

be composed completely of numbers and/0r previously defined

symbols.
The omission of the tag in a direct assignment statement will

.

cause various errors, depending on the placement of the statement.

If a statement such as:

:3

occurs before any symbol has been used in a program, PAL III

will generate an RD error message during pass 1, with a meaning-
less printout for the symbol being defined. If the statement :3

occurs after a symbol has been used, the assembler assumes the .

last symbol referenced is being redefined. For instance:

*BQG

CLA

=3

will cause the diagnostic:

l3

RD (Nix AT. @201

during pass 1. In either case, PAL 111 may be restarted after pass

1, but attempting to continue to pass 2 will leave the Assembler in

a state from which it can neither be continued for pass 3 nor re-

started for another pass 1.

Expressions

Symbols and numbers are combined by arithmetic and logical

operators to form expressions. There are three operators:

+
'

plus Signifies tWO’s cOmplement addition

‘-—- minus Signifies‘ two’s complement subtraction

space Space is interpreted in context

When a space occurs in an expression that does not contain a

, memory reference instruction, it‘means an inclusive OR is to be

performed. For example:

CLA CLL

The symbol CLA has advalue of 7200 and the symbol CLL has a

value of 7100; CLA CLL would produce 7300. User defined sym-

bols are treated as operate instructions. For example:

A:333
‘4222

B, CLA

Possible expressions andtheir Values using the symbols just defined

are shown below. Notice that the Assembler reduces each expres—
sion to one 4—digit (octal) word:

‘

'

'

A
.

0333

B — ~

0222
’

A+B 0555

A—B
~

‘

0111
“

-——A
*

7445
'

1—B 7557

B—l 0221

A B 0333 (an inclusive OR is performed)
——71 7707

'

etc.

14

‘An expression is terminated by either a comma, carriage return,

or semicolon. If theeinformation generated is to be loaded, the cur-

rent location counter is incremented. For example:

B-75 A+43 A+B

produces ,

three
,

words of information and the, current location
counter is incremented after each expression. The statement:

'

HALT=HLT CLA

produces no information to be loaded (it produces an association

in the symbol table) and hence
does not

increment the current loca-

tion counter.

‘

*4721

TEMP,

TEM2, .0.

The location counter is not incremented after the line TEMP; the

two symbols TEMP and TEMZ are assigned the same value, in

this case 4721.
_

*

Since a PDP-8 instruction has an Operation code of three hits

as well as an indirect bit, a page bit, and seven address bits, the

Assembler must combine memory reference instructions in a man-

ner somewhat differently from the Way in which it Combines

operate or IOT instructions. The Assembler differentiates between

the symbols in its permanent symbol table and user defined sym-

bols. The following symbolsare used as memory reference instruc-
tions:

- AND .

1,
0000 Logical AND

. TAD 1000 ,Two’ 3 complement addition
182 2000 Increment and skip if zero

DCA 3000 Deposit and clear accumulator

JMS 4000 Jump to subroutine

JMP 5000 Jump .

FADD 1000 Floating addition

FSUB 2000 Floating Subtraction

FMPY 3000 Floating multiply
FDIV 4000 Floating divide

FGET 5000 Floating GET

FPUT 6000 Floating PUT

’

15

When the Assembler has prOcessed one of these symbols,fithe

space folloWing' it acts as an address field delimiter; ~

*4100

JMP A

A: CLA

A has the value 4101, JMP' has the Value 5000, and the space acts

as a field delimiter. These symbols are represented as follows:

A 100 001 000 001

JMP 101 000 000 000

The seven address bits of A are taken, ire:

000 001 000 001

The remaining bits of the address are tested to see if they are

zeros (page zero reference); if they are not, the current page bit is

set:

0000117 000 001..

The operation code is then ORed into the JMP expression to formi

101 011 000 0017

l

or, written more conciselyin octal:
.1

l

5301

In addition to the above tests,‘ the‘page bits of the address field

are compared With the page bits of'the current loCatiOn counter.

If the page bits of the address field are nonzero and do not equal
the page bits of the current location counter, an out-of-page refer-

ence is being attempted and the illegal reference diagnostic is

printed on pass 2 or pass 3. For example:

*aioo
‘ a

A, CLA CLL

*7200

JMP A

The symbol in the address field ofthe JMP instruction has a

value of 4100 while the location coUnter (the address where .» the

16

instrhction is placed'in memory) has a valueoft7200. This instruc-

tion is illegal because PAL III does not generate off-page refer-

ences, and will be flagged during pass 2 or pass 3 by the illegal
reference diagnostic:

IR 4100 AT 7200

NOTE
-

Such a diagnostic would not be generated ,

when using MACRO-8, which automatically

generates off—page references.
'

Address Assignments
'

i

<

The PAL III Assembler sets the origin, or starting address, of

the source program to absolute location (address) 0200 unless the

origin is otherwise specified by the programmer. As source state-

ments are processed, PAL III assigns consecutive memory ad-

dresses to the instructions and data words of the object program.

This is done by automatically incrementing the current location

counter each time a memory location is assigned. A statement

which generates a single object program storage word increments

the location counter by one. Another'statement might generate six

storage words, incrementing the location counter by six.

Direct assignment statements and some Assembler pseudo—ops
do not generate storage words and therefore do not affect the loca-

tion counter.

CURRENT ADDRESS INDICATOR

The special character period (.) always has a value equal to the

value of the current location counter. It may be used as any integer
or Symbol (except to the left of an equal sign), and must be pre-

ceded by a space when used as an operand, For example:

*200

JMP .+2

is equivalent to JMP 0202. Also,

*300

9+2400

l7

will produce in location 0300 the quantity 2700. Consider:

*2200

CALLzLJMS I o

0027

The second line (CALLZJMS I .) does not increment the current

location counter, therefore, 0027 is placed in location 2200 and

CALL is placed in the user’s symbol table with an associated value

of 4600 (the octal equivalent of JMS I .)..

INDIRECT ADDRESSING

When the character 1 appears in a statement-between .a memory

reference instruction and an operand, the operand is interpreted
as the address (or location) containing the address of the operand
to be used in the current statement. Consider: ,

Tanpao

which is a direct address statement, where 40 is interpreted as the

address onpage zero containing the quantity to be added to the

accumulator. References to addresses on the current page and to

page zeromay be done directly. An- alternate way to note the page

zero reference is with the letter Z, as follows: .

TAD Z 40

This is an optional notation, not differing in effect from the pre—

ViOUS example. Thus, if address 40 contains 0432, then
0432

is

added to the accumulator. Now consider.

TAD I 40

which is an indirect address statement, where 40 is interpreted as

the address of the address containing the quantity to be added to

the accumulator. Thus, if address 40 contains 0432, and address

432 contains 0456, then 456 is added to the accumulator.

18

NOTE
'

“Because the letter I is used to indicate in-

direct addressing, it is never used as a vari-

able. Likewise the letter Z, Which is some-

times used to indicate a page zero reference,

is never used as a variable.

AUTOINDEXING

Interpage references are often necessary for obtaining operands
when processing large amounts of data. The PDP-8 computers
have facilities to ease the addressing of this data. When one of the

absolute locations from 10 to 17 (octal) is indirectly addressed,
the contents of the location-is incremented before it is used as an

address and the incremented number is left in the location. This

allows the programmer to address consecutive memory locations

using a minimum of statements.
7

It must be remembered that initially these locations (10 to 17

on page 0) must be set to one less than the first desired address.

Because of their characteristics, these locations are called autoin—

dex registers. No"incrementation takes place when locations 10‘

to 17 are addressed directly. For example, if the instrirction to be

executed next'is in locati0n 300 and the data to be referenced'is

on the page starting at location 5000, autoindex register 10 can be

used to address the data as follows:

@276
g

1377 TAD 04777 /=Saca-1

@277 sala DCA,1®~V v/SET up AUTO INDEX

aaac .1

141a TAD I to /INCREMENT TO 5000

.

1

.

~

. ‘/BEFORE USE AS AN ADDRESS

@377 4777 04777,4777

,

When the instruction in location 300 is executed, the contents

of location 10 will be incremented to 5000 and the contents of

location 5000 will be added to the contents of the accumulator.

When the instruction TAD I 10 is executed again, the contents of

location 5001 will be added to the accumulator, and so on.

Instructions
,

There are two basic groups of instructions: memory reference

and microinstructions. Memory reference instructions require an

operand; microinstructions do not require an operand.

19

MEMORY REFERENCE INSTRUCTIONS

In PDP-8‘ computers some instructions require a reference to

memory. They are appropriately designatedmemory
reference

instructions, and take the following format:

OPERATION MEMORY
CODES (D— 5 pAGE

O 1 . 2 3 4 5 6 7 8 .9 1O 17 1

INDIRECT ADDRESS

ADDRESSING

‘

Memory Reference Instruction Bit Assignments
'

Bits 0 through 2 contain the operatiOn che of the instruction
to be performed. Bit 3 tells the computer if the instructiOn is in-

direct, that is, if the address of the instruction specifies the loca—

tion of the address of the operand. Bit 4 tells the computer if the
instruction is referencing the current page or page zero. This leaves

bits 5 thrOugh ll (7 bits) to specify an address. In these 7 bits,
200 octal or 128 decimal locations can be specified, the page bit

increases acCessible locations to 400 oCtal or 256 decimal. For a

list of the memory reference instructions and their codes, see

Appendix C.

In PAL III a memory reference instruction must be followed
by a space(s) or tab(s), an optional I or Z designation, and any

valid expression, and may be defined with the FIXMRI instruction,

explained under the section on Altering the Permanent Symbol
Table. Permanent symbols may be defined using the FIXTAB in-

struction, and may be used in address fieldsas shown below:

A=1234

FIXTAB

TAD A

MICROINSTRUCTIONS
.

-

.

Microinstructions are divided into two groups: operateand In-

put/Output Transfer (IOT) microinstructions.

20

NOTE

If a programmer mistakenly makes an illegal
combination of microinstructions, the As-

sembler will perform an inclusive OR be—

tween them; for example; .

CLL SKP is interpreted as SPA

(7100 7410) (7510)

Operate Microinstructions 7

Within the operate group, there are two groups of microinstruc—

tions which cannot be mixed. Group 1 microinstructions perform
clear, complement, rotate and increment operations, and are des—

ignated by the presence of a 0 in bit 3 of the machine instruction

word. (See Permanent Symbol Table list in Appendix C.)

ROTATE 1

ROTATE POSITION IF A0

OPERATION AC AND L ZPOSITIONS

CLA CMA RIGHT IF A 1

A A A A.

O ‘I 2 3 4 5 6 7 8 9 IO 11

CONTAINS CLL‘ CML ROTATE IAC

A 2) TO AC AND L

SPECIFY LEFT

GROUPI

Group 1 Operate Microinstruction Bit Assignments

Group 2 microinstructions check the contents of the accumu-

lator and link and, based on the check, continue to or skip the

next instruction. Group 2 microinstructions are identified by the

presence of a 1 in bit 3 and a 0‘ in bit 11 of the machine instruction

word (See Appendix C).

REVERSE

SKIP

OPERATION SENSING OF

CODE 7 CLA SZA BITS 5,6,7 HLT

AFN/AA

01234567891011

V .

CONTAINS A1 SMA SNL 03R CONTAINS A a

TO SPECIFY TO SPECIFY
GROUP 2 GROUP 2

Group 2 Operate Microinstruction Bit Assignments

21

Group 1 and Group 2 microinstructions cannot be combined

because bit 3 determines either one or the other.

Within Group 2, there are two groups of skip instructions. They
can be referred to as the OR group and the AND group.

OR Group
7*

I

.

‘

AND Group

SMA ,

'

. SPA

SZA SNA

SNL SZL

The OR group is designated by a 01n bit 8, and the AND group

by a 1 in bit 8. OR and AND group instructions cannot be com-

bined because bit 8 determines either one or the other

If the programmer does Combine legal skip instructions it is

important to note the conditions under which a skip may oCcur.

1. OR Group———If these skips are combined in a statement, the

inclusive OR of the conditions determines the skip. For

example:
‘

SZA'SNL

The next statement is skipped if the accumulator contains

0000, or the link is a 1, or both conditions exist.

2. AND Group—-—lf the skips are combined in a statement, the

logical AND of the, conditions determines the skip. For

example:

SNA SZL

The next statement1s skipped only if the accumulator differs

from 0000 and the link1s 0.
*

Input/Output Transfer Microinstructions

These microinstructions initiate operation of peripheral equip-
ment and effect an information transfer between the central proces-

sorand the Input/Output device(s).
The Permanent Symbol Table in Appendix. C contains the com,

monly used in IOTs for the disk, TTY, and high speed devices.

These and other IOTs are discussed in detail in the Small Com-

puter Handbook.

22

PSEUDO-OPERATORS‘
'

f

’
‘

The programmer usesp‘seudo-Dperators to direct the Assembler

to perform certain tasks or to interpret subsequent coding in a

certain manner. Some pseudo-ops generate storage words in the

“object program, otherpseudo—ops direct the Assembler [as to how

to proceed with the assembly: Pseudo-ops are maintained in the

permanent symbol table; pseudo-ops should" not be used as variable

names within a program.

The function of each PAL III pseudo-op is described below.

Indirect Addressing

I‘M SymbOIic repreSentation for indirect addressing, must be
'

separated on eaCh sideby at least one space.

For example:

DCA I ADD

The; value of the symbol ADDis’ used as the address of the address

in which the contents of the accumulator will be stored.

Z Optional method of denoting a

page
zero reference.

For example:

DCA ADD
,

DCA 2 ADD'

The two statements abovehave the same meaning and generate
the Same code where ADDis on page Zero.

Both Z and I can be present in the same instruction, separated

by at leastone space, as follows:
‘

'

DQA z 1 ADD
which is the same as:

Don't ADD

Radix Control

Numbers used in a source program are initiallyconsidered to be

23

octal numbers. However, if the programmer wishes to have certain

.

numbers interpreted as decimal, he can use the pseudo-op

VDECIMAL.
‘

DECIMAL All following numbers are taken as. decimaluntil
*

‘

the occurrence of the pseudo-op OCTAL.

OCTAL ,
Resets the radix to its original OCtal‘base.

Extended Memory
When using more than one memory bank, the pseudoop FIELD

instructs the Assembler to output a field setting. This field setting
is punched during pass 2 and is reCOgnized by the Binary Loader,
which in turn causes all subsequent information to be loaded into

the field specified by the expression.

FIELD 11 Where n. is an integer, apreviously defined symbol,
or an expression within the range 0 < n < 7.

The FIELD pseudo-op causes a field setting (binary word) of the

form:

‘

11 XXX 000 where. 000<xxx<1112

to be output on the binary tape duringpass 2 followed by an origin

setting of 200. This word18 read by the Loader, which then begins
loading information into the new field

,

The field setting is never remembered by the Assembler, and no

initial field setting is punched. A binary tape produced without

field settings may be loaded into any one field of core by appro-

priate manipulation of the Data Field switches when using the

Binary Loader. Asymbol in one field may be used to reference the

same location in any other field. The field to Which it refers is

determined by the use of the CDF and CIF instructions. (The pro—

grammer who is unfamiliar with the IOTs but'Wishes to use them

should experiment with several short test programs to satisfy him—

self as to their effect.) An example of this method of symbol space

conservation might be. -

24

0200

@201

0202

0203

@300

@301

@200

0201

0202

0203

@204

@205

0206

P301:

NEXT;

P302;

PRINT:

P6203:

0005

0006

0007

@004

1200

1203

@006

0007

0003

0002

1200

7200

1204

~‘

*200

DATA:

*300

FIELD 1

TAD

CLA

TAD

‘DATA

DATA +3

1a»
1a

DATA

DATA+4

NOTE

GDP and CIF instructions must ‘be used

prior to any instruction referencing a loca—

tion outside of the current field, as shown

in the following example:
‘

*200

TAD

VCDF

CIF

JMS

CIF

JMP

P301

00

10

PRINT

10

NEXT

301'

FIELD l

*200

TAD

CDF

JMS

HLT

302

0

TLS

TSF

JMP

CLA

RDF

TAD

DCA

000

JMP

6203

P302

10

‘PRINT

--1

P6203

.+1

IMPRINT‘.

25

/YIELDS 5 IN AC

/YIELDS 10 IN AC

/YiELDs 6 IN AC

/Y1ELDS 1200 IN AC

When FIELD is used, the Assembler follows the new FIELD set-

ting with an origin at location 200. For this ‘reason, if the pro-

grammer wants to assemble code at location 400 in field 1 he must

write:

FIELD 1 /CORRECT EXAMPLE

*4GG
‘

The following is incorrect and will not generate the desired codei

*Qflfl /INCORRECT

FIELD 1

End of Tape ..
f

The pseudo—op PAUSE signals the Assembler to stop processing
the paper tape being read. The Current passiis not terminated, and

processing continues when the user depresses the CONTinue key.
When processing a segmented program, the programmer uses

the PAUSE pseudo-op as the last statement of each segment (tape)
to halt Assembler processing, giving him time to insert the next

segment of his program.

The PAUSE pseudo-op should be used only at the physical
end of a tape or file and with two or more tapes of one program.

When a PAUSE statement is reached,

1. The Assembler stops.
2. This is the physical end of the tape; the Assembler resets

the input buffer pointer.
A

3. Operator intervention is required to put the next tape seg-

ment of the program in the reader and press the CONTinue

key.

If a PAUSE is encountered somewhere other than at the physical
end of a tape, some of the user code immediately after the PAUSE

will not be assembled. This occurs because PAL III has ‘an input
buffer to allow maximum use of reader speed. A tape is read in

until the buffer is filled or the physical end of the tape is reached.

26

The contents of the buffer are then processed. However, uponrec-

ognizing a PAUSE, PAL lll resets the buffer to empty and waits

for step 3 above.

End of Program
The special symbol dollar sign ($) indicates the end of a pro-

gram. When the Assembler encounters the dollar sign, it termi-

nates the current pass. The Assembler must read a 58 after each

pass before it will correctly proceed with the assembly.

Altering the Permanent Symbol Table

PAL 111 contains a table of symbol definitions for the PDP8
and its most common peripheral devices. These are symbols such

as TAD, DCA, and CLA, which are used in most PDP-8 pro-

grams. This table is considered to be the permanent symbol table

1:3”
PAL Ill; all of the symbols it contains are listed in Appendix

If the user purchases one or more optional devices whose in—

struction set is not defined among the permanent symbols (for

example EAE or an A/D Converter), he would Want to add the

necessary. symbol definitions to the permanent symbol table in

every program he assembles. Conversely, the User who needs more

space for user defined symbols would probably want to delete all

definitions except the ones used in his program. For such purposes,

PAL III has three pseudo-ops that can be used to alter the perma-

nent symbol table. These pseudo--ops are recognized by the As-

sembler only during pass 1. During either pass 2 or

pass
3 they are

ignored and have no efiect.

EXPUNGE Deletes the entire permanent symbol table, ex—

cept pseudo--ops.

FIXTAB Appends all presently defined symbols to the
~ ‘

permanent symbol table. All symbols defined

before the occurrence of FIXTAB are made part
of the permanent symbol table until the Assem-

gbler is reloaded. For example, the PAL 111 EX-

tended Symbols Tape ends with FIXTAB.

To append the following RF08 disk lOTs to the Symbol table,

the programmer generates an ASCII tape of:

27

DCIM=6611

DIML=6615

DIMA=6616

DFSE=6621

DISK=6623
DCXA=6641

DXAL=6643

'Dxaczeeas
DMMT=6646

FIXTAB

PAUSE

The ASCII tape is then read into core ahead of the symbolic

program tape during pass 1. The PAUSE pseudo-op stops assem-

bly, and the Loader waits for the programmer to put the symbolic

program tape into the tape reader and press CONTinue.

Each time the Assembler is loaded, PAL III’s permanent symbol
table is restored to contain only the permanent symbols shownin

Appendix C.

After altering the symbol table to fit his needs, the user might
want to keep PAL III in this state for future use. This can be done

by punching a binary of the section of core Occupied by PAL III

with its new symbol table.

To do this:

1. Readin PAL III and modify symbol table as desired.

2. PAL III’s symbol table begins at location 2332 (octal).
Count all the symbols in the altered symbol table. Since each
symbol and its value require four words, multiplythis num-

ber by 4. Convert this number to octal and add it to 2332

(octal). This number is the upper limit ‘of PAL III. The

lower limit13 0001.

3. Using the Binary Punch Routine (DEC-08-YXlA-PB),
'

which does a binary core dump to the high-speed or Tele-

type punch, and the limits as stated in 2 above, punch
out

the PAL III Assembler.

4. The output of the Binary Punch Routine is the Assembler

with the modified symbol table and can be loaded with the

Binary Loader. This revised version of the Assembler can

thereafter be used instead ofthe original version.

The third pseudo-op used to alter the permanent symbol table

in PAL III (and not present in MACRO-8) is FIXMRI which

may be used only after an EXPUNGE instruction: .

28

FIXMRI Fix memory reference instruction. Memory reference
‘

'

'

instructions are stored in the permanent symbol table

immediately following the pseudo-ops. The letters

FIXMRI must be followed by one space, the symbol ‘

for the instruction to be defined, an equal Sign, and

the value of the symbol. The pseudo-op must be re—

peated for each memory reference instruction to be

defined. All memory reference instructions must be

defined before the definition of. any other symbols.

For example:

EXPUNGE

FIXMRI TAD=1QJ®®

FIXMRI DCA=3$Q®

CLA=72®®

FIXTAB

PAUSE

When the preceding program segment is read into the Assembler

during pass 1, all symbol definitions are deleted and the three

symbols listed are added to the permanent symbol table. Notice

that CLA is not a memory reference instruction. This process is

often performed to alter the Assembler’s symbol table so that it

contains only those symbols used at a given installation or by a

[given program. This may increase the Assembler’s capacity for

user defined symbols in the program.

Program Preparation and Assembler Output
‘

In PAL 1H and MACRO—8, the source language or, sym-

bolic tape is punched in ASCII code on 8—channel paper tape, using
an off—line Model LT-33 Teletype or the on-line Symbolic Editor.

In general, a prOgram should, begin with leader code, which may

be blank tape, code 200, or RUBOUTs.

Certain codes which the Assembler ignores may be used freely
to produce a more readable symbolic program listing. These codes

are TAB and LINE FEED. The. Assembler also ignores extraneous
‘

spaces, carriage return/line feed combinations, and blank tape.
When the Assembler encounters a form feed character, it causes

12 blank lines to be output on the listing (in PAL III only).
The two programs below are identical and produce the same

binary code. The second, however, was generated using the TAB

29

functionof the‘Symbolie Editor and is easier to read. The first

program assembles faster only because there .is less paper tape to

be read into the computer.

PrOgram #1:

*GGG

/EXAMPLE oF INPUT To THE FORMAT

/GENERAToR PRoGRAM

BEGIN, G/START OF PROGRAM

KCC

KSF/wAIT FOR FLAG

JMP .—I/FLAG NOT SET YET

HRH/READ IN CHARACTER

DCA CHAR

TAD CHAR

TAD MSPACE/IS IT A SPACE?

SNA CLA

HLT/YES

JMP BEGIN+2/NO:INPUT AGAIN
CHAR G/TEMPCRARY STDRAGE'

MSPACE,-RAG/-ASCII EQUIVALENT
/END OF EXAMPLE

s

Program #2:

*BOO

/EXAMPLE OF INPUT TO THE FORMAT

/GENERATOR PROGRAM

BEGIN, G
A

‘

'

/START OF PROGRAM
'

> KCC
.

’

‘

_:
,

KSF , ,7 /WAIT FOR FLAG

SJMP’--1‘
_

/FLAG NDT SET YET
KRE /READ IN CHARACTER
DCA CHAR

‘

*

TAD CHAR I,

TAD MSPACE _

/IS IT A.SPACE?

SNA CLA
*

*

'

HLT « i/YES
. JMP BEGIN+2 /No: INPUT AGAIN

CHAR, G
,

/TEMPoRARY STORAGE

MSPACE, -24O /¥ASCII EQUIVALENT
/END OF EXAMPLE .

; r
"

$

30

The program consists of statements and pseudo—ops, is termi—

nated by the dollar sign (33.), and followed by some trailer code. If

the program is large, it can be segmented using the pseudo-op
PAUSE, which oftenfacilitates the editing of the source program

since each section‘will be physically smaller.

The Assembler initially sets the current location counter to

0200. This counter is reset whenever the asterisk (*) is processed.

During pass 1, all illegal characters cause a diagnostic to be

printed. The tape should be corrected and reassembled.

The Assembler reads the source tape and defines all symbols
used. The user’s symbol table is printed (or punched) at the end

of pass 1. The symbol table is printed in alphabetical order. If

any symbols remain undefined, the undefined address diagnostic
is printed. If the program listed on the previous page were assem-

bled, the pass 1 symbol table output would be:
‘

BEGIN cane

CHAR @213

MSPACE ,fl214

DUring pass 2, (the Assembler reads the source tape and gen-

erates the binary code“ using the symbol table equivalences de-

fined during pass 1 The binary tape that is punched may be

lOaded by the Binary Loader. This binary tape consists of

leader code, an origin setting, and data words. At the end

of pass 2, a checksum is punched on the binary tape, and trailer

code is generated.- During pass 2, the Assembler may diagnose an

illegal reference; When using the LT—33 punch, the diagnostic
is both printed and punched, and is preceded and followed by
RUBOUTS. The Binary Loader ignores everything that has been

punched on a tapebetween RUBOUTS
'

During pass 3, the Assembler reads the sOurce tape and gen—

erates the code from the source statements. The assembly listing
is printed (Or punched). It consists of the current location counter,

the generated code in octal, and thesource statement. The symbol
tableis printed at theend of the pass. If the sample program listed

above were assembled, the pass 3‘ output would be:

31

*QOO

/EXAMPLE OF INPUT TO THE FORMAT

/GENERATOR PROGRAM

a2aa aaaa BEGIN, a /START OF PROGRAM
@221 6232 KCC .

.

@222 6931 KSF /wAIT FOR FLAG

@223 5222 JMP .-1 /FLAG NOT SET YET

@224 6®36 KRB . /READ IN CHARACTER

@265 3213 DCA CHAR

®2®6 1213 TAD CHAR ,

@207 1214 TAD MSPACE /IS IT A SPACE?,
@210 7652 SNA CLA .

2211 7422 .HLT /YES

@212 52a2 amp BEGIN+2 /NO: INPUT AGAIN
C213 anon (Rana a /TEMPORARY STORAGE

@214 75ma MSPACE, -24a /ASCII EQUIVALENT

/END OF EXAMPLE
‘

BEGIN 22am

CHAR 2213'

MSPACE '0214

Operating Procedures

The PAL III Assembler is provided to DEC customers as a

binary tape, which is loaded into the PDP-8 memory by means of

the Binary Loader, using either the LT~33 reader or the high-

speed reader. The Assembler also uses either the LT-33 reader

or the high—speed reader to read the source language tape, and it

uses either the LT.33 punch or the high—speed punch for output.
The selection of I/O devices is made when the Assembler is

started. The source language tape must be in. the proper reader,
with the reader and punch turned on. ..

When using the high-speed punch, the symbol table is printed
on the LT-33 Teletype if bit 11 of the switch register is a O.

The
*

symbol table is punched on the high-speed punch
if bit 11 of

the switch register is a 1..

All diagnostics are printed on the LT—33 except for the undee
fined address diagnostic when using the LT-33 punch, or the

high—speed punch if it is included in the machine configuration and

turned on. The only diagnostic in pass ,2 will be illegal reference.

(Since this diagnostic is printed on the LT-33, it will also be

punched on the binary tape. It will, however, be ignored by the

Binary Loader.) The bit 11 switch option can also be used. during

32

pass 3. If the machine is not equipped with a high-speed punch,
bit 11 must be set to 0.

. In addition to the binary tape of the PAL III Assembler, the

user is provided with an ASCII tape (PAL III Extended Symbols

Tape) containing symbol definitionsfor the instruction sets of the

available options to the PUP—8 (card readers, magnetic tapes, and
A/D converters). A limited amount of space is available in a‘4K'

system; therefore, expanding the number of permanent symbols
that the Assembler recognizes will decrease the maximum number

of symbols the user has available
'

The following is a description of
steps

in using the PAL III
‘

Assembler:

1. Load the ASsembler using either the III—33 reader or the

, high—speed reader (see Appendix A).

2. Set 0200 into the Switch Register; press ADDRess LOAD

3. Place the source language tape in the reader, turn on the

appropriate reader and the punch.
4. Set bits 0 and 1 of the Switch Register for the

proper mass
These settings are:

Bit 0
"

Bit I

0 I pass 1

l 0 pass 2

l 1 pass 3

Pass 1 is required so that the Assembler can initialize its

symbol table and define all user symbols. After pass 1 has

been made, either pass 2 or pass 3 can be made.
'

5.’ Bit ll switch options:
~

pass 1 Bit 11:1 Punch the'symbol table on the high—

speed punch if it is in the machine

configuration.
'

Bit 1120 Print (and punch) the symbol table

on the LT-33 (low-speed punch).

paSs 2 Bit 11:1 Punch binary tape on high—speed,
'

punch.
Bit 11:0 Punch binary tape on low—speed

punch. 1

33

paSs 3 .Bit 11:1 Punch the assembly listing tape in
ASCII on the high-speed punch.

Bulls-:0 Print the
assembly listing

on the

. .

—

._

4 } LT-33 .
¥

— Bit 10 switch options:

pass 3‘ Bit 10:1 Output TAB (code 211) as 8 space
~ »

1

-. tab stops
Bit 10:0; Output TAB as TAB RUBOUT

.
.7

7

, (code 211 and 377).
Bit 2 switch options: -

passes 1 and 3

‘Bit‘ 2::1 Suppress output of symbol table.
Bit 2::0 Output symbol table.

6. Press CLEAR and CONTinue to begin pass 1 only Press
‘

CONTinue to begin passes 2 Or 3. The Assembler halts at the

end of each pass. PrOceed from step 3. If the AsSembler has

halted because of a PAUSE statement putthe next tape into

the reader and press CONTinue.
'

SUMMARY OF DIAGNOSTIC MESSAGES FOR PAL 111 V

Pass I Diagnostics

The Assembler reads the source tape, defines all user symbols,
and outputs the user symboltablein alphabetical order. Pass

1 diagnostics are:

"

IC xxxx AT nnnn . Illegal Character

Where XXXX is the value of the illegal character and nnnn is

the value of the Current 10cation
counter

when the character

was

procesSed
'

‘ '

*

RD XXXX AT nnnn Redefinition

Where XXXX is the symbol being redefined and nnnn is the

value of the current location 'counter at the point of redef-

inition. The symbol is redefined.

DT XXXX AT nnnn ,

’

r

, Duplicate Tag
An attempt is» being made to redefine a symbol using the

.ICOIIIIIIELXXXX“ is the symbol and nnnnis the value of the cur-

rent location counter at the point of redefinition. The previous
.

,

value of the symbol is retained and the symbol is not re-

defined.

34 ._

ST XXXX AT nnnn Symbol Table Full

Where XXXX is the symbol causing the overflow and nnnn is

the value of the current location counter at thepoint of oven

flow. The Assemblerhalts and cannot be restarted.

PO XXXX AT nnnn‘ i\Pushdown List Overflow
’

An attempt is being made to carry a multiple assignment to

more than two leVels; i.e., AszCE—tX.XXXX*is the Value of

the pushdown stack pointer (an internal address in PAL III).

The value of the current location counter When o’Verflow is

detected is nnnn. The Assembler halts at this point without

reading more source tape. The CONTinue key has no effect

at this time; however, the Assembler can be restarted at loca-

tion 200, as indicated in step 2 under Operating Procedures.

UA XXXX AT nnnn Undefined Address

Where XXXX is the symbol that was used, but never defined,

and nnnn is the value of the current location counter when

the symbol was first processed. This message is printed with

the symbol table at the end of pass 1. The symbol is assigned
a value equal to the highest address on the memory page

where it was first used.

Pass 2 Diagnostics
The Assembler reads the source tape, and, using the symbol
table defined during pass 1, generates and punches the binary
code. This binary tape can then be loaded by the Binary
Loader. The pass 2 diagnostic is:

IR XXXX AT nnnn Illegal Reference

Where XXXX is the address being referenced and nnnn is the

value of the current location counter. The illegal address is

then treated as if it were on the proper memory page. For

example:

*73E6

JMP 3(2)?

would produce:

IR @3o7 AT 73o6

and would generate 5307 to be loaded into location 7306.
’

35

Pass 3 Diagnostics ~

g

The Assembler reads the source tape and, using the symbol
table defined during pass 1, generates and prints the code

represented by the source statements. The current location

counter, the contents,- and the source statement are printed
side by side on one line. If bit 11 of the Switch Register is a 1

and the machine configuration includes the high—speed punch,
the assembly listing is punched in ASCII. The pass 3 diag-
nostic is Illegal Reference, as in pass 2.

36

MAQRD-S PROGRAMMING

Macro-8 is a 4K two-pass paper tape assembler similar to PAL

III, which contains several additional features which may be of

use to more advanced PDP—S'programmers. These features include

link generation, literals, Boolean operations, double precision in-
-

teger' input, floating point input, a text input facility, and user—

defined macros. The assembler is compatible in most respects with

PAL III; the areas of difference are noted later in this manual.

Characters

In addition to those characters discussed under PAL III, the

following characters are used in MACRO—8.

Symbol Name Function

,

& Ampersand Combines symbols or numbers.

(Boolean AND)
! Exclamation Point Combines symbols or numbers

'

, (Boolean OR)
”

Double Quote
'

Generates 8-bit ASCII code

() I Parentheses , Defines a literal on the current

-

page

[1 Square Brackets Defines a page 0 literal

<> Angle Brackets Defines a macro

"NOTE: On an tor—33':

[is, generated by SHIFT/K-

] is generated by SHIFT/M

< is generated by SHIFT/, (comma)
> is generated by SHIFT/. (period)

‘

Line Feed (code 212) is ignored, as in PAL III, unless it im-

mediately precedes a dollar sign. The sequence

line feed/dollar sign is taken as unconditional end—
,

of—pass.

Expressions
All symbols and numbers (exclusive of pseudo-ops, macro

names, and double precision or floating point constants), may be *

combined with certain arithmetic and logical operators to form ex-

pressions. These operators are:

37

Operator Name
,

1 Function
7 + _

, Plus , Signifies two’s complement ad-
,

-

. dition*
—

'

1

Minus
A

« Signifies two’s complement sub-
'

, _traction* ;

_
! Exclamation Point SignifiesBoolean inclusive OR

. .
1 (union)

*

& Ampersand Signifies Boolean AND (inter-
section) *

Space Interpreted in context; can sig-

nify an inClusiVe OR, or act
'

as a field delimiter as in
‘

PAL 111

*As explained in Introduction to Programming.

NOTE

Expressions may not contain pseudo-ops
other than I and Z, macro names, double

<

precision integers, or, floating point con-

stants. To do so is an error, and erroneous

code may result without an error message

being giVen.
’

Symbols and integers may be combined with any of the preced—

ingoperators. A symbolic expression is evaluated from left to right
with one exception—space, which serves as a delimiter. Grouping
of terms via the use of parentheses is not permitted in MACRO—8.

Consider the following examples:

A
1

-B A+B Ala-B A113 A&B

VALUE 0002 A 0003 1 0005 7777 0003 ‘0002

VALUE . 0007 ,
0005 0014 , 0002 .0007 0005

VALUE 0700. 0007 0707
A

0671 - 0707 0000

Since space is treated as a delimiter, separating two terms of an

expression, the two expressions:

A!B+C

A B+C

38

are not equivalent. In the first case the assembler interprets the

expression from left to right as follows:

(A!B)+C

In the second case, each term is considered separately and the re-

sults combined with an inclusive OR:

A (3+0)

As in the following example, the values of the two expres‘Sions will

differ: -

'

314+5 2 7+5: 141..
3 4+5 = 3.1118 =13,

NOTE
‘

Expressions of the form A +B and A+ B

are incorrect and may cause erroneous code

to be generated Symbols and integers must

be combined with a single operator separat-
ing them

Origin Setting
The origin is ordinarily set by use of the special character aster-

isk (*) as described in PAL III. All symbols to the right of the

asterisk must already have been defined. For example, if D has the

. value 250 then:

*D+1®i

'WIll set the location counter to 0260.

To ease the programmer’s addressing problems, a convention

has been defined that divides memory into sections called pages.

Each page contains 2001: locations (128m) numbered 0 to 17711

on that page. There are 408 or 32“, pages numbered 0 to 378. Some

examples of page numbers and the absolute and relative locations

(addresses) are shown below. See Chapter 2 of. Introduction to

Programming for a Complete list of page numbers and their ad-

dresses It must be remembered, however, that there18 no physical

separation of pages in memory.

39

Absolute Address Relative Address,. Page

0 0——i77 0——177

1 zoo—~377 0——177

2 400——577 0——177

36 7400—57777 0-_177

37 7600——7777 0——177

To simplify page handling, the pseudo-op PAGE can be used:
.

PAGE 11

PAGE

The PAGE pseudo-op resets the location counter to

the first address of page 11, where n is an integer, a

previously defined symbol, or a symbol expression,
all of whose terms have been defined previously and

whose value is from 0 to 37, inclusive.
'

For example:

PAGE ‘2 Sets the location counter to 0400

PAGE 6 Sets the location counter to 1400

When used without an argument, PAGE resets the

location counter to the first locatiOH on the next suc-

ceeding page. Thus, if a program is being assembled

into page 1 and the programmer wishes to begin the

next segment on page 2 he need only insert the

pseudo-op PAGE, as follows:

*206

JMP -7

PAGE

CLA

In this case, the CLA will be assembled into location

400.
'

If, when the PAGE pseudo--op is used without an argUment, the
current location counter is at the first loCation of a page, it will not

40

be moved. In the following example, the code TAD B is assembled

into location 400:

*377

PAGE

If several consecutive PAGE pseudo-ops are given, the first

will cause the current location counter to be reset as specified. The

rest of the PAGE pseudo-ops in the sequence will be ignored.

NOTE
Since PAGE is a pseudo-op in. MACRO-8,

it is illegal as a tag. Therefore the coding:

PAGE: G

TAD PAGE

may not be used:

Link Generation

In addition to handling the symbolic addressing on the current

page of core memory, MACRO-8 automatically generates links for

off-page references. MACRO—8 compares the page bits of the ad-

dress field with the page bits of the location counter. If the page

bits of the address field are nonzero (not a page 0 reference) and

do not equal the page bits of the location counter an off-page
referenceIS being attempted.

If reference is made to an address not on the page Where the

instruction is located, the assembler sets the indirect bit (bit 3),
and an indirect address linkage will be generated on the current

memory page If the off—page reference is already an indirect one,

the error diagnostic II (Illegal Indirect) will be generated during

passes 2 and 3.

When a link is generated, the LG (Link Generated) message
will be printed on passes 2 and 3. In the case of several off-page
references to the same address, the link will be generated only

once, but the LG message will be printed each time.

41

*2117
p ,-

A,
‘

‘CLA

*2600

In the example above, the space preceding the user defined sym-

bol A acts as; an address field, delimiter. The Assembler will recog-

nize that the register labelled A is not on the current page (in this

case 2600 to 2777) and will generate a link to it as follows:

1. In location 2600 the Assembler will place the word 5777

which is equivalent to IMP I 2777.

2. In address 2777 (the last aVailable location on the current

page) the Assembler will place the word 2117 (the actual

address of A).

Although the Assembler will recognize and generate an indirect

address linkage when necessary, the programmer may indicate an

explicit indirect address by the pseudo—op I. This must be between

the instruction code and the address field, as it would be placed in

PAL III. TheAssembler cannot generate a link for an instruction

that is already specified as being an indirect reference and will print

message II (Illegal Indirect). For example:

*2117

A, CLA~

*2600

JMP I A

The above coding will‘not work because A is not defined on the

page where JMP I A is attempted and the indirect bit is already set.

Literals .

Symbolic expressions appearing in the operand part of an in—

struction usually refer to locations containing the quantities being

operated upon. Therefore, the programmer must explicitly reserve

locations to hold his constants. The MACRO-8 language provides
a means (known as literals) for using a constant directly. Suppose,

42

for example, that the programmer has an index which is to be

incremented by two. One way of coding this operation would be

as follows;

*2aa

CLA;.
TAD‘INDEX

"TAD ca
.,

DCA INDEX.

C2, 2

Using a literal, the same coding would be reWritten as:

CLA

TAD INDEX

TAD (2)

DCA INDEX

The left parenthesis is a signal to the Assembler that the expres-

sion following is to be evaluated and assigned a word in the con-

stants table of the current page. This is the same table in which

the indirect address linkages are stored. In the previous example,
the quantity 2 is stored in a word in the linkage and literals list

beginning at the top of the current memory page. The instruction

in which the literal appears is encoded with an address referring to

the address of the literal. A literal is assigned to storage the first

time it is encountered; subsequent reference to that literal from the

current page is made to the same register.
The use of literals in preference to the first method of handling

constants frees symbol storage space for variables.
'

If the programmer wishes to assign literals to page zero rather

than to the current page, he may use square brackets, [and], in

place of the parentheses. This enables him to reference a single
literal from any page of core. For example:

43

*200

, TAD [2]

*500

TAD [2]

For the first and succeeding times the literal 2 is referenced, iden-

tical code is generated to a single location on page zero containing
the literal. In this case, the following code would be generated:

Location Contents

0177 0002

0200
f

1 177

0500 1 177

Whether on page zero or the current page, the right (closing)
member is ignored and may be omitted. The following examples
are acceptable:

TAD (777

AND [JMP

In the second example, the instructionAND [JMP has the same

effect as: .

'

7

AND [5000

Literals can be nested.- For example:

*200

TAD (TAD (30

will generate the following:

Location Contents
‘

0200 1376

0376~ 1377
0377 0030

w

44

This type of nesting can be carried to two levelsas in the. preceding
example. Further nesting will cause BE (overlapping of internal

tables) and US (undefined symbol) error messages to be generated.
Literals are stored on each page starting at page address 177

(relative) and extending toward page address 0' (relative).’If a

literal is generated for a nonzero page and the origin is then set to

another page, the current page literal buffer is output (punched on

pass 2; printed on pass 3). This does not affect later execution. The

uSer may find that the literal buffer hasbeen dumped before the

end of a page to make room for more literals. The same‘literal Will

be generated if used after that point. If the origin is then reset to

the previously used page, the same literal will be generated if used

again, but it will not destroy previously used literals on that page.

Literals and links are stored only as far doWn as the highest in—

struction on the page. Further attempts to define literals will result

in a PE (Page Exceeded) or ZE (Page Zero Exceeded) error mes—

sage. Links are not stored in empty locations preceding the highest
location Used for instruction.

To summarize, literals may take the following forms:

EC cc

[V (v

E"A ("A

[I (I

[E (E

where C is a constant, V is a variable, A is any Single ASCII char-

acter other than blank tape (code 000) or leader—trailer (code

200), I is an instruction, and E is an arithmetic expression, [indi-

cates a page 0 reference and (indicates a current page reference.

Arithmetic. expressions may consist of cOnstants, variables, and

operators but must not include literals.
V

Single text characters may be combined with each other’in an

arithmetic expression but not with other constants or variables.

For example:

(VIA+I'B_UIC

is equivalent to

(son

45

An instruction may contain a literal; for example:
.

TAD (JMP 1 [son
I“

is valid; bowieveri

ran ca+<sa

Will not assemble since (A+ (50IS not a valid expression. Literals
A

may be usedas the address part of a memory reference instruction.

TAD (so

or in place of an instruction:

(MSG14'

which causes ”the location addreSs of the literal (MSG'4A to beEaS—
sembled at the .pointwhere it occurs in the program.

NOTE

If a large number of nested literals or par-

ticularly large numbers of literals are used,
the literal list may be output before the log-
ical end of the page. This will not affect

'

later execution.

Field Pseudo--0p

In addilon to punching the field setting and new origin setting

(*200) as in PAL III, the FIELD pseudo—op in MACRO-8 first
causes all current page literals and links then all page 0 literals
and links to be output. For this reason the following programming

techniques should be considered:
1

1. Complete all coding1n one field before moving to another.
If you return to a previous field, the literals and links will

not have been remembered. '

2. Be exceedingly careful about referencing in one field a

variable which was defined in another. The field of a

variable is not stored (the assembler does not know what

field a variable is in). For example:

46

FIELD 1
~ *3Da

1030a! 0340 A, 34a

10301 134a TAD A

FIELD 2

anaao 334a (DOA A

In this example, the codingDCA A in field 2 caused octal

.

3340 to be generated, but this may be taken as a refer-

ence to location 340 in field 2.

The argument to the FIELD pseUdo-op should be a value

0<N<7. If N is greater than 7, the bits to the left of the low order

digit will be ignored. Thus field 8 Will be assembled as field 0 and

~

flagged as an illegal character if the radix is octal.

On pass 3, the octal address will be preceded by a single digit
‘

denoting the current field. The first digit is merely a convenience for

.

the programmer and has no other effect on the assembly.

Text Facility .

SINGLE CHARACTER TEXT FACILITY

If a single character is, preceded by a double quote (“), the 8—bit

value of ASCII code for the character is inserted instead of inter—

preting the letter as a symbol. For example;

CLA

TAD ("A

will place the constant 0301 in the accumulator.

The code“ . will be assembled as 0256.
y

g

If a carriage return is desired as the text character, it must not

be the carriage return intended to end the line of code. To generate
a 0215 with this facility, it is necessary to generate:

“[CARRIAGE RETURN /LINE FEED]
, [CARRIAGE RETURN /LINE4 FEED]

OI
:

“[CARRIAGE RETURN /LINE FEED]
OI'

“[CARRIAGE RETURN]
.

[CARRIAGE RETURN/LINE FEED]

~47

The latter cannot be generated with the Symbolic
Editor, which outputs a line feed after each carriage
return. The Editor also cannot generate the sequence:

“[LINE FEED]

[CARRIAGE RETURN/LINE FEED]

which is necessary to generate the code 0212 with this facility. In

this ca'seitis best to use the octal 212 instead of “‘[LINE FEED].

On pass 3, certain characters, while causing the Correct octal

coding to be printed, will be interpreted as format-control char-

acters in the source listing. A summary of special cases follows:

Source Code ,

, Listing Appearance
'

*200
“

'

‘

“

,

,

00200 0215
“ '

“
'

’

g

__

‘7 00201 0215
“

“
°

‘

l

’

"

00201 0212 ‘5
“(FORM FEED)

'

“

00203 0214
..

(FORM FEED)

“(TAB)
.

2 00204 0211 “(SPACES TO NEXT

,

7
y

,

. TAB STOP)

TEXT STRINGS .

-

‘

A string of text characters can be entered by giving the pseudo-

op TEXT followed by a single space (code 240), any delimiting
character (except blank tape or leader-trailer), a string of text, and

the same delimiting character. For example:

TEXT ATEXTA

The‘character codes are stored two per word in ASCII code that

has been trimmed to the rightmost six bits. Following the last char—

acter, a 6-bit zero is inserted as a stop code. The above statement

would produce:

2405

3024

0000

The string in the following example:

TEXT /.!./

48

would produce:
5641

56@@

The TEXT pseudo-op could also be used as part of a calling

sequence to a subroutine: .

Example 1 :

JMS MESS

TEXT / /

Example 2:

JMS MESS

NOWDS /NO WORDS IN MESSAGE

ADDMES /ADDRESS OF MESSAGE

ADDMES, TExr /MESSAGE/_

NOTE

While the TEXT pseudo-op causes charac-

ters to be stored in a trimmed code, the use

of the single character control (“) causes

characters to be stored as a full 8-bit ASCII

code. .

With regard to delimiting characters, it should be noted that the

Symbolic Editor always generates carriage return ascarriage re—

turn/line feed and tab as tab/rubout or as multiple spaces. If car—

riage return (code 215) or tab (code 211) were chosen as

delimiter, line feed (code 212) or rubout (code 377) would be-

come the first character of the text string.

NOTE

If no delimiter is seen, line feed/dollar Sign
will terminate the pass. If no dollar sign is

found, an effective PAUSE (on high- speed

input) is executed, or 55 may be typed (on

low-speed input). (See HALTS at the end

of this manual.) .

NUMBERS

The types of numbers allowed in MACRO-8 assemblies are in-

tegers, double precision integers, and double precision floating point

49

numbers. If the characters 8 and 9 are encountered in octal radix,

they are flagged as illegal characters and ignored. Thus 1283 in

octal radix becomes 123.

Double Precision Integers
Double precision integers may be positive or negative (stored as

two’s complement) according to their sign but may not be com-

bined with operators in expressions. They are always taken as

decimal radix although the current radix of the program is not

disturbed. Each double precision integer is allotted two consecutive

words with the sign indicated by bit 0 of the first word, as shown

below:

Sign Bit
‘

'

I WORD 1

0 1 1

WORD 2

12 ,

, 23

Double precision Constants must be in the range:

—83‘88608<N<8388607

The double precision integer mode is entered throUgh the use of

the pseudo-op DUBL. All numbers encountered after the occur-

rence of DUBL are- considered double precision integers (stored in

2 words) until an alphabetic character, *, or $ is encountered.

Each numberis terminated by a carriage return, semicolon (;) or

comment. For example:

*AQQ

DUBL 679467

44
‘

'

-3.

TAG, CLA

Once the double precision mode has been entered, the programmer

must terminate it with an alphabetic character, *, or $ before pro-

ceeding with the program. With the exception of unique floating

point format characters (. and E), the same rules of character

50

recognition apply for double precision integers as for floating point
constants. ,

-

The preceding section of code would produce:

Location Contents
/

00400 0245 The numbers indicated under contents

00401 7053 are the octal equivalent of the decimal

7

numbers in the preceding example.
00402 0000 The CLA instruction is given the value

00403 0054 7200 as found in the permanent sym-

00404 7777 bOI table. The 'symbol‘ TAG would

00405 7775 have a value of 0406.

00406 7200

Floating Point Constants

The floating point input facility is designed. to assemble constants

for use by the PDP—8 Floating Point Package.

Double precision floating point constants may be positive or

negative according to their sign but cannot be combined with

operators. Decimal radix is assumed but the current radix of the

program is not altered. Floating point iconstants are each assigned
three words and are stored in normalized form, as shown below:

Binary exponent:

23120th Two’s complement
P 116

0 11 signed quantity

, High order

Sign of 412 23
Mantissa

Mantissa ,

,

L Low order

24 3 5
Mantissa

The exponent is a signed two’s complement quantity in one 12—

bit word. The signed two’s complement mantissa is stored in two

12-bit words, maintaining 23 bits of significance, making a total

of three words for storage.

51

’

The double precision floating point mode is entered throughuse
of the pseudo-op FLTG. All numbers encountered after the use of

FLTG will be interpreted as double precision floating point con-

stants until the occurrence ofaan *, a $ or an alphabetic character

other than B. The

general input
format of a floating point num-

ber15:

DDD .DDDEDD

where each D13 a decimal digit. While1n floating point mode, each
character13 handled1n one of the following ways:

‘

1. If it is a legal part of the format of a floating point num-

ber, it is handled as suchand is used to generate code.

2. If it is an asterisk, a dollar sign, or an alphabetic character

other than B, it terminates the current number and termi-

nates floating point or double precision conversion.

3. If it is a format character (i. e. ,,space slash, carriage re—_

turn), it terminates the current number and is otherwise
ignored. Comments are ignored.

4. If it does not fall into any of the above categories, i.e‘.,
=

, (%) an IC error message is generated. The number

is terminated, and the: character is ignored.

In floating point format, the mantissa and the exponent may be

preceded by signs (+ or -—). The decimal point and the
exponent

may be omitted. For example:
‘

*400
'

FLTG +509.32E®2

-62.97E-4

1.®®E-2

TAG, CLA

would produce upon executiOn:

Location.
,. Contents

00400 0003

00401 2427

00402 6675

00403
‘

7771

00404 4615

00405 2172

52

Location Contents

00406 7772

00407 2436

00410
.

5604

00411 7200

and the symbol TAG would be assigned a value‘of 0411.

Accuracy of floating point conversion compares favorably with
the PDP-8 Floating Point Package. The most significant variation

is in the handling of large negative exponents These are Calculated
by multiplying by an inverse rather than by dividing, due to space
limitations. No error checkingis donein the floating point routines;

users, therefore, should stay within the range of 7 significant digit
mantissas and exponents in the range —600 to 600.

'

ilser DefinedMacros

When writing a program, it often happens that certain coding

sequences are used several times with diflerent arguments. If so, it

is convenient to generate the entire sequence with a single state—

ment. To do this, the coding sequence may be defined, as a

“macro,” using dummy arguments. A single statement referring to

the macro name, along with a list of real arguments, will generate
the correct sequence in line with the rest of the coding.

DEFINING A MACRO
The macro name must be defined before it is used. The macro is

defined by means of the pseudo-op DEFINE followed by the

macro name and a list of dummy arguments separated by spaces.

For example, a simple macro to move the contents of word A to

word B and'leave the result in the accumulator could be coded

as follows:

DEFINE MOVE DUMMYl DUMMY2

<CLA

TAD DUMMYI

DCA DUMMY2

TAD DUMMY2>

The choice of symbols used as dummy arguments is arbitrary; how—

ever, they may not be defined or referenced prior to the macro

definition. The actual coding of the macro is enclosed in angle
brackets.

53

The preceding definition of the macro MOVE can also be written

as follows:

DEFINE MOVE ARGIVARGB
<CLA3TAD ARGISDCA AR623TAD ARGB>

The definition of the macro is enclosed in angle brackets, as men-

tioned before and the semicolon characters indicate the termination

of a line of code, as in PAL 111..

When a macro name is processed by the Assembler, the real

arguments replace the dummy arguments. For example, assuming
that the macro MOVEhas been defined as above:

*40@

A: 0

B: ‘6

7 MOVE AaB,

the followmg codevis produced:

Location
’

Contents

} 00400; 0000

00401
p

-

‘

7772

00402 7200

00403
e

1200

00404
,

f3201

00405”,
"

’

1201

Notice that a macro definition has spaces separating the dummy

arguments and the macro call has commasseparating the macro

arguments.

A macro need not have any arguments. For example, a sequence

of coding to rotate the accumulator and link six places to the

left might be coded as a macro by means of the following code:

DEFINE ROTL

<RTL3RTL3RTL>

If; core space is tight and the sequence is to be used several times,

it would be better to code this as a subroutine:

54

ROTL:
"

Q

‘R’I‘L,
RTL

RTL.

JMP I ROTL

The Subroutine occupies five locations and each call, IMS ROTL,

occupies 1. Each call to the macro ROTL occupies three locations.

The main advantage of the macro is the use of dummy arguments.

,

Its greatest disadvantage is the amount of symbol space required.
The entire macro definition is placed in the macro table, two

characters per word, with a dummy argument‘value replacing the

symbolic names. For example:

DEFINE LOAD A

<CLA.~

TAD A>
A

is
stored,

in the macro table, roughly as follows:

[CLIA [TAID l7700l>00

,Where the vertical lines indicate successive 12-bit words. Comments

andline feeds are not stored. The macro definition can consist of

any valid coding, with the following restrictions:

‘1. Macros cannot be nested, iw.e., another macro name or

definition cannot appear in a macro definition and cannot

be brought in as an argument at the time a macro is refer-

enced.

TEXT (or
“

type) statements cannot appear in a macro

definition.

Arguments cannot be another macro name, a TEXT

pseudo-op or a
“

character.

The symbols used as dummy arguments must not have

been

previously defined or referenced or subsequently
redefined

'

‘

A macro cannot be redefined (the macro name may not be

. used for any other purpose).
A macro definition must end with a >, which may not

occur in a comment (comments are ignored).

Dummy arguments may neither be pseudo-ops nor contain

1 v pseudo—ops, and the real arguments are subject to the same

restriction.

55

The programmer who wishes to use pseudo-Ops in a macro

definition (not as arguments) should experiment with short pro-

grams using the intended macro to be sure that its expansion and

execution are legal and as. expected or desired.

Consider the following macro definition:

DEFINE LOOP A B

<TAD A

DCA B
,

TAD.COUNT
ISZ B

MP 0‘2)

A macro is referenced by giving the macro name, a space and

the list of real arguments, separated by commas. There must be at

least as many arguments in the macro call as in the correspOnding
macro definition. When a macro is referenced, its definition is

found, expanded, and the real arguments replace the dummy argu-

ments. The expanded macro is then prOcessed1n the normal
fashion

For example, the macro call:

LOOP x, Y2

in the context of the program in which it appears, is'eq‘uivalent to:

TAD X

DCA Y2

TAD COUNT

ISZ Y2

JMP .~2

The .macro table .sharesthe available spacefwith. the symbol
table (see Symbol Table). Thus the'prog'rammer must be aware

of the amount of room required by his macros and the fact that

each symbol occupies four words Of memory Also, the arguments

of a macro call are temporarily stored in this buffer space while

the macro is being expanded.
‘

‘

MACRO-8 Pseudo--Operators
The following list summarizes the pseudo--ops available in

MACRO-8.

56

Pseudo-op Description

DECIMAL All following numbers interpreted as decimal

DEFINE Used to define a macro

I

DUBL Enter double precision integer mOde

EXPUNGE Deletes permanent symbol table withexception
,

.

'

. of pseudo—ops
FIELD Causes the literals to be dumped and a field

setting to be output
FIXTAB Appends all presently defined symbols to the

_

‘

permanent symbol table

FLTG Enter double precision floating point mode

I Indirect addressing
OCTAL Resets radix to its original octal base

PAGE Resets the location counter

PAUSE Signals assembler to stop processing paper tape

. being read .
.

TEXT Allows a character string to be entered
Z Ignored (convenience to programmer only——

see PAL III)
,

$ End-of-pass (MACRO-8 recognizes line feed

followed by 33 as unconditional end-of—pass,
whether in a text string, macro definition, or

anywhere.)

Symbol Table

Because of the extra features of MACRO-8, there is less room .

available for symbol storage than was found in PAL III. Programs
that were originally coded to be assembled by PAL III may have

too many symbols to be assembled by MACRO—8v. If register
switches 9 and 10 are set to 1 during assembly, MACRO—8’s user

symbol table will be extended. These switches cause the macro

processor and double precision and floating point processor to be

deleted (see the operating instructions).
The high-speed reader buffer occupies 4008 locations which will

be used for symbol storage if low—speed input is requested. With

high-speed input, the symbol table capacity is 11510 symbols, each

of which requires four core locations. Using the LT—33 as the

input device, the capacity is 1791., symbols.

57

SYMBOL TABLE MODIFICATION

Because of the small amount of core remaining to be used for

programmer symbols and the macro table, the following suggestions
are offered allowing a particular installation or

individual to con—

serve symbol table space
‘

By use of the pseudo——ops EXPUNGE and FIXTAB, unnecessary

instruction mnemonics can be removed from the symbol table,

making more space available for programmer defined symbols and

macros. This also decreases assembly time as the unused instruc-

tion symbols are not involved in the Symbol table searches. The

mostoften used instruction mnemonics should be assembled first,

so that they“ will be in core next to the special characters and

pseudo——.ops This is desirable because the symbol search routine

starts with the pseudo--Ops at the top of the table (7577) and works

down.
At an installation which does not have Optional equipment

(RFO8 disk, TCOI DECtape, high-speed reader/punch, etc.) avail—

able, the corresponding instruction sets can be removed. A sym—

bolic tape beginning with EXPUNGE, containing all necessary

instruction mnemonic definitions, and ending with FIXTAB and 35

could be assembled (only pass 1 is necessary) by MACRO-8 prior
to any other assemblies For example:

'

EXPUNGE

AND=$®®®

TAD=1®®®

CLA=72®®

FIXTAB
$

_

The pseudo-op PAUSE could also be used in place of the dollar

sign "with the above tape, as the first tape of'a multiple tape assem-

bly. The definitions will remain in the table until a subsequent
EXPUNGE or until the Assembler1s reloaded. See the list of per-

manent symbols1n Appendix C >

INTERNAL SYMBOL REPRESENTATION
FOR MACRO—8

Each permanent user defined symbol occupies four words (loca-

tions) in the symbol table storage area, as follows:

58

012

WORD 1 l I C1 ><0'45(8)p 4432 FIRST 2 CHARACTERS

WORD 2. E C2 x 45(8) +C—4 SECOND 2 CHARACTERS
WORD 3 C5 X 45(8) +C6 THIRD 2 CHARACTERS

WORD 4 OCTAL CODE OR ADDRESS

where C1, C2,” C6 represent the first character, second char-

acter“ .

, sixth character, respectively. (Symbols may consist Of

from one to six characters.) Bits 0 and 1 Of Word 1, and bit 0 of

word 2 are a three digit code denoting the type Of Symbol. Word 4

contains the octal code Of the symbol; if a user defined symbol,
Word 4 contains the address of the symbol. For example, the per—

manent symbol TAD is represented as follows:

WORD l: 248 X 458 + 011213458 OR TA

WORD 2: 048 X 458 + 00: 2249 + 40009: 42248 OR D

WORD 3—
’r

0000

WORD 4 r: 1000 (OCTAL CODE FOR TAD)
4'

Note that the octal code for each character is always scaled by the

Assembler so that the Character is represented using six bits of a

word. For example, ASCII code for T is 324, and was trimmed to

24; A is 301, trimmed to 01; etc. Digits 0
through

9 are scaled

to the range 33 through 44.

MACRO— 8 recognizes eight categories Of symbols:
1. Special Characters .

These include single non-alphanumeric characters which

have special meaning to the Assembler, i.e., + —-

,
=1.

They are not affected by EXPUNGE or; FIXTAB and may

not be redefined. The programmer may not define addi-

tional special characters. Special characters are recognized

by the Assembler by their three digit code of 011.

2. Pseudo-ops
These are instructions to the Assembler, which, with the

exception Of FIELD, do not produce binary code. When

they are recognized by the Assembler, they are executed

immediately. They are not affected by
~

EXPUNGE or

FIXTAB and may not be redefined. The programmer may

59

not define additional pseudo—ops. Pseudo—ops may not oc-

cur tothe left of an 2 sign or
, (cOmma) nor may pseudo—

ops other than I and Z in their proper context appear to

the right of an 2 sign. Pseudo-ops are recognized by the

Assembler by their three digit code of 100. _,

Permanent Symbols ,

These are symbols which are part of the permanent as-

sembler symbol table or which were used1n the program

prior to the pseudo-op FIXTAB. They include such sym-

bols as TAD, CLA, TLS, and any user-defined permanent

symbols. They are designated as permanent symbols by
‘

their position in the table and are not necessarily defined.
For example, the coding sequence

TAD A

FIXTAB

will cause A to be entered as a permanent symbol with

no definition. It must later be defined, at whichtime it will

be the same as any other permanent symbol. Permanent

symbols may be redefined only if the new definition agrees

with the old.

User-defined symbols .

These include all non-permanent, non—pseudo—op, non—

special character symbols. They are recognized by the

Assembler by their place in the symbol table.

Defined symbols
‘

These are permanent or user-defined symbols which

either are part of the assembler symbol table or have been

defined with z or a comma. Permanent symbols and those

defined with comma may only be redefined if the new defi—

nition agrees with the old. Any user-defined symbol may

be redefined with 2. They are recognized by the Assem-

bler by the three digit code 001.

Undefined symbols
These have never been defined with~— or a comma. They
are stored in the symbol table1n the order of their occur—

rence and are recognized by the Assembler by their three

digit code of 010.

Macro names

These are the names defined with the pseudo——op DEFINE

60

8.

as the names of macros. They are stored with the user—

defined and permanent symbols and are recognized by
the Assembler by their three digit code of 000.

Macro dummy arguments
‘

These are the arguments which follow the macro name in

the macro definition. These are stored with the permanent
and user-defined symbols and are recognized by the Assem—

bler by their three digit code of 101.

MEMORY REFERENCE INSTRUCTION RECOGNITION

Memory reference instructions are recognized by their use in an

expression, according to the following rule:

Given an expression SYMl SYMZ, SYMl is a memory refer-

ence instruction if and only if SYMl is a permanent symbol and

SYMZ is not a permanent symbol. In any other case SYMl and

SYMZ will be combined with an inclusive OR. For example:

CLA CLL Both permanent; will be combined with in-

clusive OR.

A B . Both user—defined; will be combined with in-

clusive OR.

B CLA User-defined followed by permanent; will be

combined with inclusive OR.

AND A Permanent symbol followed by user—defined;

permanent symbol will be treated as a memory

reference instruction and user-defined symbol
as referenced address.

COMPATABILITY BETWEEN PAL 111 AND MACRO-8

MACRO-8 will assemble code produced for PAL HI with the

following exceptions:

1. The symbol table in MACRO-8 is considerably shorter

than the symbol table in PAL 111 due to the added features

of MACRO=8. See the section dealing with limited symbol

space for suggestions on breaking large tapes into smaller

ones.
'

MACRO—8 has no FlXMRl pseudo-op. Refer to the

section on internal symbol representation for a discussion

of MACRO-8 memory reference instruction recognition.

Tags which are legal user-defined symbols in PAL III,

61

f such as PAGE, DUBL, or FLTG, maybe pseudo-ops in

VMACRO—8

While PAL III allows two levels of definition with—
'—

i.e.,

A:B:O, MACRO— 8 only allows one level, A:O; B:O.

A special check wasinserted into PAL III for the conve—

,~ nience ofprogrammers who forgot the space in code in-

volving «7., (suchas IMP .~——l); no such check exists in

MACRO—8.

Programming Hints

1.

2.

,3.

be defined prior to that expression so that all terms de-

fined thereafter will be given the proper value on pass 1.

Arrange coding in order Of ascending address to avoid

confusion.

Comment profusely wherever possible.
All terms in any origin expression (* or PAGE) need to

All terms to the right of an equal sign (2) must have

been previously defined sothat the term on the left is

given the proper value on pass 1.

Since line feed/ dollar sign is recognized as unconditional

end-of—pass, it is wise to develop the habit of typing the

terminating 55 at the left hand margin so that it will be

caught if a TEXT or macro delimiter is missing. It is also

wise to keep several short tapes with just carriage return/

line feed, dollar sign, carriage return/ line feed in the tape

tray for assembling short subroutine tapes which end in

PAUSE. Often these Subroutines may be debugged separ—

ately prior to inclusionin a larger program.

If the link generating facility is used it may be wise to

suppress the LG error message on pass 2. In MACRO-8

(version DEC-O8—CMAB-PB) location 1233 contains

4777 normally. To suppress the LG message reset loca-

tion 1233 to contain 7200 (CLA) on

pass
2. It should be

reset to 4777 on pass 3

DEALING WITH A LIMITED SYMBOL SPACE
1. Breaking long programs into smaller ones

Due to a“ shortage of symbol space it is often necessary to

break a. large program into several smallerones and as-

semble each one separately. Then the binaries may all be

62

loaded into c0re together; Record separately the map of.

where each program fits into core,- so that tWo segments
are not assembled and loaded into ‘the'Same area.

Make each segment as self-sufficient as possible. At the

beginning of each tape, insert comments indicating where

that segment expects other Segments to be and define tags

for locations which must be referenced; For example, a

subroutine which calculates the sine of a number starts at

*400. It expects the double? precision multiplication sub-

routine to be at *2’00.‘ »

’

The beginning of the multiply subroutinet“

/DCUELE PRECISION MULTIPLY SUBROUTINE

/CALLED WITH ADDRESS OF HIGH ORDER MULTIPLIER

/IN AC AND ADDRESS OF HIGH ORDER MULTIPLICAND

/IN LOCATION FOLLOWING JMS

/ FCR EXAMPLE:

/ TAD MULTI

/ JMS MULT

/ MULT2

*2®@

MULT, E

The beginning of the sine subroutine:

/DOUBLE PRECISION SINE SUBROUTINE

/EXPECTS DOUBLE PRECISION MULTIPLY SUBROUTINE

/TO START AT LOCATION BOO

/CALLED WITH ADDRESS OF ARGUMENT IN AC

/STORES RESULT IN LOCATIONS BOO AND SOI

MULTP=2®G

*AGQ

SINE, Z

TAD ARG

JMS I MULTI

ARG2

MULTI: MULTP

Each subroutine is self—sufiicient and may be debugged
and assembled separately. It is only necessary to be sure

63

that each piece is. where it is expected to be. Comments in

the source listing are a great advantage here. .

Reducing the number. of symbols in the program

Todecrease the number of symbols in a program, consider

. thefollowing: .

_.

7a. Use of . instead of severaltags close together, i.e.,

JMP .+3 instead of JMP TAG. There is a reasonable

limit, around 108 instructions, beyond which a separate

tag is more feasible. A JMP .+17 can be trouble if a

line of code is removed later. ,

b. Lists of pointers and constants instead of scattering
them through a page, for example:

LIST: TAGI

TAGB

TAGB

TAG4

rather than:

START: TAGI

END, TAGB

Go.T TAGS

These locations may then be referenced as. follows:

JMS I LIST+2

instead of:

JMS I GO

c. Let the Link Generating Routine handle the reference:

JMS TAGB

*d. If. links are not wanted, make use of the Literal

Processor to free symbol space:

64

JMS (TAG3

The effect of c and d is the same, with the exception
of the diagnostic message LG (Link Generated).

(Many programmers avoid generating links so that if

one is generated, it will be noted as an error.)

Use of Switch Options (see MACRO—8 Switch Options)
If a program does not use macros or floating point, delet—

ing those processors will provide mere symbol space. If

the program is very long and will only need to be assem-

bled once, using the low speed reader instead of the high

speed reader gains 64- symbols worth of space.

Revising symbol table

If a program does not require all of the Assembler’s per-

manent symbols, the extra ones may be deleted by using

,
EXPUNGE, redefining the necessary ones, and using
FIXTAB. This gains one symbol space for each mnemonic

_

deleted. (See Appendix C for the permanent symbol

table.) If the EXPUNGE definition and FIXTAB are put
on a separate tape, this tape need only-be assembled on

pass 1.

Curtail the use of macros Wherever possible
Use of a subroutine in place of a macro will decrease the

amount of symbol space necessary since the macro is

‘

stored in its entirety in the symbol table.

Punching a new assembler tape
if MACRO-8 is to be used frequentlywith a revised sym—

bol table, it may be wise to punch» a new tape of theAssem-
'

bler with the revised table (and deleted processors, if any).
To do so, it is necessary to obtain the source tapes for

the Binary Punch Routine (DEC—OB—YXlA—PB), edit it

to reset the origin to 6000, and punch a new binary tape.

(The Binary Punch Routine currently resides in core in

the same locations as MACRO-8’s permanent symbol
table.) Load MACRQ-S, EXPUNGE, redefine, and mod-

ify as necessary. Then load the new Binary Punch Routine

and cause it to dump all core from locations 0 to 7577.

The resulting tape is the newAssembler. (Location 6000

is in the middle of the symbol table and. using it for the

origin should allow plenty of room for the Binary Punch

65

Routine. If there is doubt, obtain the MACRO-8 source

listing for reference.)

SummaryofMACRO-S Error Diagnostics

The format of the error messages is:
*

ERROR CODE , ADDRESS

where ERROR CODE is a two character code which specifies the

type of error, and ADDRESS is either the absolute Octal address

where the error occurred Or the address of the error relative to the

last symbolic label (if there was one) on that page.
‘

'rAssembly can be continued after most errOrs. Onnonrecoverable

errors, assembly halts, and the program must be edited to correct

the error and assembly restarted.

'

Table 1 MACRO-8 Error Messages

"

Error Code
'

‘

Meaning
'

'BE
A

‘

TWO MACRO-8 internal tables have overlapped.
'

‘

This situation can usually be corrected by decreas-

ing the number of current page literals used prior
to this point on the page. It is sometimes the result

of too many nested literals in an eXpression.

IC. Illegal Character

1. A non-valid character was found other than in

a comment field or, a text field

2. A valid character was found under the wrong

conditions, i.e., 8 or 9 in octal radix

The illegal character is flagged and ignored, subject
.to conditions stated elsewhere in this chapter. (See

floating point constants, double precision integers,

etc.)

ID* Illegal redefintion of a symbol
An attempt was made to give a previously defined

symbol anew value. The symbol was not rede-

fined (this is similar to the duplicate tag diagnostic
‘

of PAL III).
-

7

IE - Illegal Equals
'

‘

‘An equal Sign Was used in the wrong context. For

example:

TAD=®33

A+B=C

AZBT—Q

66

Table 1 (Can’t)
"

manna—s Error Messages

Error Code , Meaning .

11

IM

LG

.

RAP-

The exPression to the left of the equal sign must

be a single symbol.
Only one level of definition is allowed in MACRO-

‘8 (unlike PAL 111 where two levels are allowed).
Permanent symbols may be redefined only if the

new and old definitions match. (After EXPUNGE,

only pseudo-Ops remain.) User-defined symbols

may be redefined with .—: at any time.

Illegal Indirect

An out—of— page reference was made, and a link

could not be generated because the indirect “bit was

already set. For example:

*2@@

TAD I A

PAGE

A: CMA CLL

Illegal format in a Macro definition

The eXpression after the DEFINE pseudo-instruc-
tion does not comply with the. macro definition

position or structural rules. For example: a macro

name is referenced before the macro definition.

Link Generated ,

A warning message; a' link was generated for an

out-of-page. reference at this address. For example:

a

.
_

*BZQ . ,

.,_
a

LG @02Q0 @177
g _

TAD A.» /COMMENT

@0377 _a4ee

PAGE
,

means ‘714@ A, CLA CLL

Missing Parameter in a macro call

An argument, called for by the macro definition, is

missing. For example:
‘

67

Table 1 (Can’t) MACRO-8 Error Messages

'

Error Code Meaning

PE

SE

US

XX

ZE

DEFINE MAC A B
‘

<TAD A

CIA

DCA B>

*2flfl

SUM=3®®

@GBQG 13®® .MAC SUM

®®2®1 7$41

MP ®®2®2 3600

Current, non—zero Page Exceeded

An attempt was made to override a literal with an

instruction, or override an instrUction with a literal.

This can be corrected by decreasing the number of

literals on the page, or decreasing the number of

instructions on the page.

Symbol Table Exceeded

The symbol table and macro table overlap. Non-

recoverable error. The number of symbols or

macros must be reduced.

Undefined Symbol
Asymbol has been processed during pass 2 that

7 was not defined by the end of pass 1.

Reference was made to a deleted processor through
*one of the following symbols: DUBL, FLTG,

DEFINE, <, >. Non-recoverable error. The As-

sembler must be reloaded to handle the source

tape or the source tape must be edited to remove

the illegal reference. .

Page zero exceeded. Same as PE only with refer-

ence to page 0.

Pass 3 Output—Assembly Listing
The output on pass 3 is a side—by—side listing of the source pro—

gram and its generated octal code. Depending on the setting of bit

11, this output is to either the Teletype or the high—speed punch.
The listing has the following characteristics:

The first 3 characters of the line are reserved for a two char—

acter error message, if necessary, and a single space. If there

is no error message for that line, the spaces are left blank. If

68

there is more than one error message, the succeeding ones

will be added to the first with no intervening spaces and the

remainder of the line will be shifted to thelright.
‘

l

The 4th through 8th characters contain the addressinto

which coding on that line was assembled. If there was no.

assembled coding, these characters are spaces. The address is

a four digit octal address preceded by a one digit field number.

The 9th and 10th characters are spaces.

The 11th through 14th Characters contain the assembled

code, if any. If there was none, these characters are also

spaces.

The 15th and 16th characters are spaces.

The 17th through 72nd characters contain the source cod—

ing, including comments. Any tab characters (ASCII code 211)

appearing in the source code will be output as spaces to the

next tab stop. Tab stops occur every eight spaces in the source

code field. Since an LT—33 has, a 72 character line length,
there is only room for a total of 56 characters in the source

code and comment on one line. Any extra characters will be

typed over the last of the 56 characters. For neat listings On

the LT-33 comments should be restricted so that the line

does not exceed 56 characters. If the listing is to be generated
on the high-speed punch for later printing on a wider de-

vice, this restriction can be modified without changing the

Assembler.

Since the LT-33 does not handle a form feed (ASCII code

214) as a top---ofform, MACRO—8 will outputtthis character as six

blank lines, a form feed, and six blank lines, so that listings may be

conveniently divided into pages.

A sample of this format is given under the LG error message

in the previous section.

Dollar sign is not printed when it is the terminating pseudo--op.

(Itis printedin a text string or single character text.)

MACRO-8 Operating Procedures

ASSEMBLER OUTPUT

MACRO-8 is a two pass assembler with an optional third pass

which produces an octal/symbolic assembly listing. During the first

pass, MACRO—8 processes the sourcetape and places all symbol
definitions and macro definitions in its symbol table and macro

69

table, respectively. During the second pass, MACRO-8 processes

the source tape and punches the binary format tape and symbol
table. This punchedtable can be read by DDT. The third pass

provides a listing of the generated octal code and the original source

language followed by a

printed symbol
table.

Input Device

MACRO8 can be used with either the high-speed reader or with

the low--speed (LT—33) reader. The choice1s determined on first

paSs by-the location of thesource tape and is remembered for the

other two passes.
-

Output Device

On pass 1 the only output is to the Teletype in the form of the

error messages which have been generated.
‘

8

On pass 2 the device on which the binary tape is to be punched
is determined by bit 11 of the switch register. If bit 11 is set to 0,

the LT—33 'will be used. If bit 11. is" set to 1, the high-speed punch
will" be used. Thepunch should be turned'on before beginning the

pass. The symbol table will be punched On the same device (also

printed if the LT-33 was specified.) Any error messages will ap—

pear on the LT-33

On paSs 3, the same choices on bit 11 will determine Whether

the listing Will be produced on the Teletype or the high speed

punch.

OPERATING INSTRUCTIONS

l. Loader (see Appendix A). Leave the data field and in-

struction field set to this field for the remainder of the

assembly. '(On a-4K machine, load into field .0.)

2. Prepare for pass I.
8

Turn Teletype to LINE

Place source in reader
* Turn on reader

Set switch register to 0200

Press ADDRess LOAD

Set switch register for pass and desired options (see

MACRO-8 Switch Options)

g. Press CLEAR and CONTinue
.

If there are multiple tapes each ending1n PAUSE when the

computer halts, remove the tape from the reader, insert the

70

OPP-9.0".”

next tape, and press CONTinue. Repeat until all tapes have

been read.
_

3. Passes2and3
7

_

.

_

a. Place source tapes in reader (if not the same reader as

the previous pass, follow instructions from b under pass

1).
‘

b. Set switch register for pass and desired option. (see
MACRO—8 Switch Options)

*

c... Turn on output device, if not already on.

(:1. Press CONTinue.
‘

‘

If there are multiple tapes, followithe procedure for them as given
under pass 1.

‘

MACRO—8 SWITCH OPTIONS
Switches should be set as noted to obtain the desired option.

Switches not mentioned are ignored by the Assembler
PASS SETTING

Bit O
_

Bit 1
. Option

0 »

1 Pass .1

1‘ - 1 -

. Pass 1——to retain all

~

previously de—

,

"

fined symbols
0 1 Pass 2

1 0 Pass 3

Processor DeletiOn

Certain processors may be deleted to make room for more symbols:

Bit 9 = 1 Delete the floating point and double precision proces-

sors. This increases the size of the symbol table by

68“) symbols.
Bit 10 = 1 Delete the macro processor and the floating point and

double precision processors. This increases symbol

space by 13110 symbols.
NOTE

Switches 9 and 10 are sensed whenever

pass 1 is entered. Once processors have

been deleted, MACRO-8 must be reloaded

to handle subsequent programs that use

macros, double precision integers, or float—

ing point numbers. Reference to a deleted

processor is a non-recoverable error.

71

Output Device

Bit 11 : O Teletype printer (and punch, if turned on)
.

Bit 11 = 1 High-speed punch

Error messages Will be output to the Teletype, which must be

turned on-line. ‘

Halts

Locations mentioned in the following section refer to the version

of MACRO-8 released in March 1971 (DEC~08-CMAB).
The halt on $ is at location 4232. Next pass can be started from

this halt.

The halt on PAUSE is at location 1747. Another tape may be

added to the current pass from this halt.

The halt on end—of—-tape in high-speed reader ‘(an effective pause)
is at location 340. This would occur if no 55 or PAUSE was seen.

Insert separate tape of $ and press CONTinue to end pass.

If the LT-33 runs out of tape Without encOuntering al$ or

PAUSE, it stops reading and leaves the machine in an IOT loop.
(KSF; JMP .—1;). Type 33 on keyboard to end pass.

Other halts should be preceded by an error message.

72

, appendx o

’

Ioodng procedures

Initializing the system
Before using the computer system, it is good practice to initialize

all units. To initialize the system, ensure that all switches and con-

trols are as specified below.
'

Main power cord is properly plugged in.

Teletype is turned OFF.

Low—speed punch is OFF.

Low-speed reader is set to FREE.

Computer POWER key is ON.

PANEL LOCK is unlocked.

Console switches are set to O.

SING STEP is not set.

High—speed punch is OFF.

DECtape REMOTE lamps OFF.ppmflewewwel-—-\

The system is now initialized and ready for your use.

Loaders

READ—IN MODE (RIM) LOADER

When a computer in the PDP-8 series is first received, it is noth—

ing more than a piece of hardware; its core memory is completely

demagnetized. The computer “knows” absolutely nothing, not even

how to receive input. However, the programmer can manually
load data directly into core using the console switches.

The RIM Loader is the very first program loaded into the com—

puter, and it is loaded by the programmer using the console

A—l

switches. The RIM Loader instructs the computer to receive and

store, in core, data pUnched on paper tape in RIM coded format

(RIM Loader is used to load the BIN Loader described below)

There are two RIM loader programs: one is used when the in—

put is to be from the loW--speed paper tape reader and the other

is used when input is to be from the high—speed paper tape reader.

The locations and corresponding instructions for both loaders are

listed in Table A—1.

The procedure for loading (toggling) the RIM Loader into core

is illustrated in Figure A—l.

Table A-1. RIM Loader Programs

InstrUction

Location Low—Speed Reader High-Speed Reader

7756 6032 6014

7757 6031 6011

7760 5357 5357

7761 6036‘ 6016

7762 7106 7106

7763 7006 7006

7764 7510 7510

7765 5357 5374

7766 7006 7006

7767 6031
‘

6011

7770 5367 5367

7771 6034 6016

7772 7420‘ 7420

7773 3776 3776

7774 3376 3376

7775 5356 r 5357
_

7776
_

0000 0000

'

After RIM has been loaded, it is good programming practice to

verify that all instructions were stored properly. This can be done

by performing the steps illustrated in Figure A—2, which also

shows how to correct an incorrectly stored instruction.

When loaded, the RIM Loader occupies absolute locations 775 6

through 7776.

A—Z

E‘V

199961NIHam8111990191-Vemfitd

anvmSIwna

-F

N
SNOIiOflELLSNI

71V

[d30SsaadJ

~

NOIJQHHLSNI.LX3N

=88138

dBG3838c]J

NOLLOHHLSNI.LSHL-J

=as.J38

0V0?800V

SSBHd

1‘
QQLL01

HS.138

T
800VGVO‘T.LX3

SSBHd

(D073:]OiNlINIHGVO‘T
*0131;!ViVOGWHOHS88380EdVlOEG-X

(BL-H830OJ.
1

“-6SEHOJJMS1.3

«x-O'IBL-iNOIiOflHiSNI

03818300.1.

8-9SBHOJJMS.LBS

‘OWOJ.
HOUMS-80.133138

AHVLOH.LES

LEZI‘IVIJJNI)

(:g quouZE A;)

SET ROTARY

INDICATOR

SWITCH TO MD

I

SET SWITCHES

6*8 TO FIELD IN

WHICH RIM HAS

BEEN LOADED

I
,

PRESS

EXT ADDR LOAD

ITSET SR=7756#;]

,

PRESS

ADDR LOAD

I

I L
[PRESS EXAM

J.

MD=
‘

CORRECT

INSTRU?CTION

[SET SR=MA—1 J

I
PRESS

ADDR LOAD

ALL

VINSTRUCHONS

CHEgKED

GIM IS LOADED)
SET SR= CORRECT

INSTRUCTION

[PRESS DEP I—————————RJ

Figure A-Z. Checking the RIM Loader

BINARY (BIN) LOADER—

The BIN Loader is a short utility program which, when in core,

instructs the computer to read binary-coded data punched on paper

tape and store it in core memOry. BIN is used primarily to load the

programs furnished in the software package (excluding the loaders

and certain subroutines) and the programmer’s binary tapes.
BIN is furnished to the programmer on punched paper tape in

RIM—coded format. Therefore, RIM must be in core before BIN

can be loaded. Figure A—3e illustrates the steps necessary to prop-

erly load BIN. And when loading, the input device (low- or high-

speed reader) must be that which was selected when loading RIM.

A—4

I

LOAD Rm

SET ROTARY
SELECTOR SWITCH

TO MD

SET SWITCHES

6-8 TO FIELD
WHICH CONTAINS

RIM

I
SET SWITCHES

9—11 TO FIELD IN

WHICH BIN IS

TO BE LOADED

PRESS

EXT ADDR LOAD I

'SET SR=7756

PRESS ADDR LOAD'

WHICH

READER

?

HIGH-SPEED

READER

TURN HSR ON

, PUT'enq LOAOER
IN HSR

PRESS

CLEAR AND CONT

LOW-SPEED

READER

TURN TTY TO LINE

PUT BIN LOADER

IN LSR

g}PUT LSR TO STARTI

TAPE

READS IN

?

PRESS HALT

——————-——1
SET SWITCHES

6-8 To FIELD
BIN WAS LOADED

INTO

PRESS
EXT ADDR LOAD

SET SR=7777

PRESS

‘ ADDRLOAD

PRESS EXAM

’YES

,' BIN LOAOER

IS‘LQAQED

Figure A-3 . Loading the BIN Loader

A—S

__ __ _.._. __ See Figums CZ-I.C2-2

When stored in core, BIN resides on the last page of core, oc-

cupying absolute locations 7625 through 7752 and 7777.

BIN was purposely placed on the last page of core so that it

would always be available for use—the programs in DEC’s soft—

ware package do not use the last page of core (excluding the Disk

Monitor). The programmer must be aware that if he writes a

program which uses the last page of core, BIN will be wip-
ed out when that program runs on the computer. When this

happens, the programmer must load RIM and then BIN before

he can load another binary tape.

Binary tapes to be loaded should be started on the leader-trailer

code (Code 200) ,
otherwise zeros may be loaded into core, destroy—

ing previous instructions.

Figure A—4 lilustrates the procedure for loading binary tapes
into core.

SET ROTARY

SELECTOR SWITCH

TO AC

SET SWITCHES

6-8 TO FIELD IN

WHICH BIN IS

LOADED

I
SET SWITCHES 9'11

TO FIELD IN WHICH

PROGRAM IS TO BE

LOADED

RRESS

,EXTTQDPRHEQAD

SET SR To 7777‘

f "PRESS
'

I

. .599R LOAD O ;

LOW-SPEED READER

mo ONE

:—

gfiiliiliilliflifii

HIGH-SPEED READER ,

"

w—

—
WI PRESS CLEAR' ‘%

:

AND CONT
‘

TAPE

READS IN

’?

NO_.

YES
I

PRESS CONT

TAPE

STOPS AT

TING, BEGHMWNG OF

,EADER/TRNLER
CODE ,1

?

’

YES

VOTES

‘EIOBJECT TAPE-m.
‘

SIS LQQQEQM M!

Figure A4. Loading A Binary Tape mmg BEN

A57

ASCII-11 Character Set

Decimal Decimal

8—Bit 6-Bit Equivalent 8-Bit 6-Bit Equivalent
Character Octal Octal (A1 Format) Character Octal Octal (A1 Format)

A 301 01 96 1 241 41 —1952

B 302 02 160 ”

242 42 ——1888

C 303 03 224 # 243 43 —-1824

D 304 04 288 $ 244 44 —— 1760

E 305 05 352 % 245 45 ——1696

F 306 06 416 & 246 46 —1632

G 307 07 480 ’

247 47
’

-1568

H 310 10 544 (250 50 -—1504

I 311 11 608) 251 51 —1440

I 312 12 672 at 252 52 —-1376

K 313 13 736 + 253 53 —1312

L 314 14 800 ’ 254 54 ~1248

M 315 15' 864 - 255 55 ——1 184

N 316 16 928
.

256 56 ——1120

O 317 17 992 / 257 57 —1056

P 320 20 1056 g 272 72 —352

Q 321 21 1120 ; 273 73 —~288

R 322 22 1184 < 274 74
l

~224

S 323 23 1248 Z 275 75‘ —160

T 324 24
V

1312 > 276 76 ~06

U 325 25 1376 17 277 77 ~32

V 326 26 1440 ‘

@ 300 32

W 327 27 1504 [333 33 1760

X 330 30 1568 \ 334 34 1824

Y 331 31 1632] 335 35 1888

Z 332 32 1696 ¢(A)’-’ 336 36 1952

0 260 60 .——992 <— _

3 337. 37 2016

1 261 61 _928 Leader/Trailer 200

2 262 62 1—864 LINE FEED 212

3 263 63 ——800 Carriage RETURN 215

4 264 64 -——736 SPACE 240 40 ~2016

5 265 65 —-672 RUBOUT 377

6 266 66 1—608 Blank 000

7 267 67 -—544 BELL 207

8 270 70 ~-——480 TAB 211

9 271 71 -—416 FORM 214

1 An abbreviation for American Standard Code for Information Interchange.
2 The character in parentheses is printed on some Teletypes.

B—l

PAL 1H, MACRO—8

The following are the most commonly used elements of the

PDP—8 instruction set. For that reason they are foundlin the per-
manent symbol table within most assemblers. These instructions

are already defined within the computer. For additional informa-

tion on these instructions and for a description of the symbols used

when programming other, optional, I/O devices, see the Small
Computer Handbook, available‘from the DEC Software Distribu-

tion Center.
7

INSTRUCTION CODES

Mnemonic Code Operation Time (lasecjl

Memory Reference Instructions

AND 0000 Logical AND V 2.6»

TAD 1000 Two’s complement add 2.6

182 2000 Increment and skip it zero 26

DCA 3000 Deposit and clear AC 2.6

JMS 4000 Jump to subroutine 2.6

JMP 5000 Jump 1.2

Floating-Point Instructions

FEXT 0000 Floating exit 60

FADD 1000 Floating add
,

I 900

FSUB 2000 Floating subtractiOn 920

FMPY 3000 Floating multiply
‘

1450

FDIV 4000 Floating divide 1480

FGET 50001 Floating get
‘

115

FPUT 6000 Floating put -

r 125

FNOR 7000 Floating normalize 800

1 Times are representative of the PDP-8/E.

C—1

Mnemonic Code Operation
.

Sequence

Group 1 Operate Microinstructions (1 cycle-‘3)
NOP 7000 No operation -———

IAC 7001 Increment AC
_

J

3

RAL 7004 Rotate AC and link left one 4

RTL 7006 Rotate AC and link left two 4 1

RAR 7010 Rotate AC and link right one 4

RTR 7012 Rotate AC and link right two 4

CML 7020 Complemented link 2

CMA 7040 Complement AC 2

CLL 7100 Clear link 1

CLA 7200 Clear AC 1

BSW 7002 Swap Bytes in AC 4

Group 2 Operate Microinstructions (1 cycle)

HLT 7402 Halts the computer 3

OSR 7404 Inclusive OR SR with AC 3

SKP 7410 Skip unconditionally 1

SNL 7420 Skip on nonzero link
.

1

SZL 7430 Skip on zero link 1

SZA 7440 Skip on zero AC 1
‘

SNA . 7450 Skip on nonzero AC 1

SMA 7500 Skip on minus AC 1

SPA 7510 Skip on positive AC (zero is positive) 1

Combined Operate Microinstructions

CIA 7041 , Complement and increment AC 2, 3

STL 7120 Sent link to 1 1, 2

GLK 7204 Get link (put link in AC, bit 11) 1, 4

STA 7240 Set AC to —— l 2

LAS 7604 Load AC with SR 2, 3

MO Microinstructions

MQL 7421 Load MQ from AC, then clear AC

MQA 7501 Inclusive OR the MO with AC

CAM 7621 Clear AC and MO
SWP 7521 Swap AC and MO
ACL 7701 Load MQ into AC

Internal IOT Microinstructions

ION 6001 Turn interrupt processor on

IOF 6002 Disable interrupt processor

2 1 cycle is equal to 1.2 microseconds.

C-2

Mnemonic Code Operation

Internal IOT Microinstructions (1 cycle)

SKON 6000 Skip if interrupt ON, and turn OFF

SRQ 6003 Skip on interrupt request
GTF 6004 Get interrupt flags
RTF 6005 Restore interrupt flags
SGT 6006 Skip on greater than flag
CAF 6007 Clear all flags

Keyboard/ Reader (1 cycle)

KSF 6031 Skip on keyboard/ reader flag
KCC 6032 Clear keyboard/ reader flag and AC;

set reader run
_

KRS 6034 Read keyboard/ reader butter (static)
KRB 6036 Clear AC, read keyboard buffer

(dynamic), clear keyboard flags
KCF 6030 Clear keyboard/ reader

KlE 6035 AC 1 l to keyboard/ reader interrupt
enable FF.

Teleprinter/ Punch (1 cycle)

TSF 6041 Skip on teleprinter/ punch flag
TCF 6042 Clear teleprinter/ punch flag
TPC 6044 Load teleprinter/ punch and print
TLS 6046 Load teleprinter/ punch, print, and clear

teleprinter/ punch flag
TFL 6040 Set teleprinter/ punch flag
TSK 6045 Skip on printer or keyboard flag

High Speed Reader——Type PR8/ E (1 cycle)

RSF 6011 Skip on reader flag
RRB 6012 Read reader buffer and clear reader flag
REC 6014 Clear flag and buffer and fetch

Character

RPE 6010 Set interrupt enable for reader and

punch
RCC 6016 Read reader buffer, clear flag and

buffer, and fetch character

PCB 6020 Clear interrupt enable for reader and

punch

C—3

Mnemonic Code Operation 1 Time (M860)

High Speed Punch—~Type PP8/ E (1 cycle)
'

Skip on punch flag
Clear flag and buffer

Load punch buffer and punch character

Clear flag and buffer, load buffer and

punch character
,

C

Set interrupt enable for reader and

punch
Clear interrupt enable for reader and

punch

Operation

Memory Extension Control, Type MC8/ E (1 cycle)

PSF 6021

PCF 6022

PPC 6024

PLS 6026

RPE 6010

PCE 6020*

Mnemonic Code

CDF 62N1

CIF 62N2

RDF 6214

RIF 6224

RIB 6234

RMF 6244

CD1 62n3

Change to data field N

Change to instruction field N

Read data field

Read instruction field
'

Read interrupt butter

Restore memory field

Change to data field and instruction.

field 11

C-4

PSEUDOEGPERATORS

The following is a list of the PAL III and MACRO—8 assembler

pseudo—ops.

(""3 x,
,

1 Z
I Il (2/ _-,L:.</

”:M '

W

“N ”I
X

I

:0»

f»

«ILL,

V}

M

a”

M

.

(SN

*1»

{)3

KSQRERE’

FRI?

5*&

3%»

I

M’s/£53
ff: M9;T
C M

V i" m ("am
x ,z/ / ff‘v

4* 4-»?
I: if 29,

W ,

I i

PAL III

DECIMAL

OCTAL

FIELD

PAUSE

I

Z

$
EXPUNGE

FIXTAB

H

1*IXMRI

MACRO—8

DECIMAL

OCTAL

FIELD

PAUSE

I

Z

55
EXPUNGE

FIXTAB

PAGE

>l<

DEFINE

DUBL

FLTG

TEXT

C—S ‘

VINDEX

11

17

Address arithmetic (PAL III),
Address assignments (PAL III),
Address field delimiter

MACRO—8, 42

PAL—ll, l6

Ampersand (&) operator (MACRO-8),
AND group skip instructions

(PAL III), 22

Arithmetic expressions (MACRO-8,
Arithmetic operators (PAL III),
ASCII code (PAL III), 29

ASCII—l character set, ‘B—l

Assembly listing (PAL III),
Assembler output

MACRO-8, 69

PAL—ll, 29

Autoindexing

38

45

14

31

(PAL III), 19

Binary punch routine

MACRO—8, 65

PAL III, 28

Binary tape (PAL III),
BIN (binary) loader,

loading, A-5, A—7

2,

A-4

Character codes, B-l

Character set (PAL III),
Characters (MACRO—8), 37

Checksum (PAL III), 31

Coding practices (PAL III), 6

Combining memory reference instruc~

tions (PAL III), 15

Comments (PAL III), 6

Compatibility — PAL III and

MACRO-8, 61

Constants table (MACRO-8),
Current address indicator

(PAL III), 17.

Current location counter

3, 8

incrementation,

2,3

43

(PAL III),

15, 17

DDT, l

DECIMAL pseudo—op'
MACRO-8, 57

PAL III, 3, 24

Defined symbols (MACRO-8),
DEFINE pseudo-op (MACRO-8),
Delimiter for address field

(PAL III), 16

Diagnostic messages,

PAL III, 34

Direct assignment statements

(PAL III), 11

Dollar sign ($) (end of program)
pseudo-op,

MACRO—8, 57

PAL III, 27

6O

53, 57

summary of

Double precision constants

(MACRO’B), 50

Double precision floating point
constants (MACRO-8), 51

Double precision integers
(MACRO-8), 50

DUBL pseudo—op (MACRO—8), 57

Dummy arguments (MACRO—8), 53, 61

Duplicate tag (PAL III), 34

Editor, symbolic tape, 1

End of program (PAL III), 27

End of tape (PAL III), 26

Equal sign (PAL III), 12

Error diagnostics (MACRO—8), '66

Evaluation of a symbolic expression
(MACRO-8), 38.

Exclamation point (I)

(MACRO-8), 38

Expressions
MACRO-8, 37

PAL~III, 14

termination,
EXPUNGE pseudo-op

MACRO-8, 57, 58

PAL III, 27

Extended memory (PAL III), 24

Extended symbol tape (PAL III),

operator

15

33

FIELD pseudo—op
MACRO-8, 46,
PAL III, 24

Field setting (PAL III), 24

FIXMRI pseudo-op (PAL III),
FIXTAB pseudo—op

MACRO-8, 57,
PAL III, 27

Floating point (MACRO-8)

constants, 51

conversion accuracy,

number format, 52

FLTG pseudo—op (MACRO-8), 52,
Format effectors (PAL III),
Form feed (PAL III), 3

57

28, 29

58

53

57

3

Halts (MACROZB), 72

Hardware configuration (PAL III), 2

I (indirect address) pseudo—op
MACRO-8, 42, 57

PAL III, 23

Illegal characters

Illegal reference (PAL III),
Inclusive OR (PAL III), 14

Incrementing current location

counter (PAL III), 15, 17

Indirect addressing (PAL III),

34

35

(PAL III),

18,23

Indirect address linkage (MACRO—8),
41

Input device (MACRO—8), 7O

Input/output transfer micro~

instructions (PAL III), 22

Instruction codes,' C—l
“

Instructions (PAL III), '6, l9

Integers (MACRO—8), 49

Internal symbol representation
MACRO-8, 58

PAL III, 7

Labels (PAL III), 5

Leader code (PAL III),
Limited symbol space, 62

Link generation (MACRO—8), 41

Literals (MACRO-8), 42
‘

29, 31

Loaders
7

BIN (binary), A—4‘

RIM (Read—In-Mode), A—l, A—2

Loading procedures, Ael

PAL III, 32

Location counter (MACRO-8),‘ 4O

Logical operators (PAL III), 14

Macro definition (DEFINE)
(MACRO-8), 53

restrictions, 55

MACRO—8 programming, 37

Macros, user defined (MACRO—8),"53

Memory, extended (PAL III), 24

Memory reference instructions

MACRO-8, 61

PAL III, 15, 20

Microinstructions (PAL III),
Minus (—) operator

MACRO-8, 38

PAL III, 14

Multiple assignments (PAL III), .13

Nested literals (MACRO—8), 44

Nonprinting characters (PAL III), 2

Normalized form (MACRO-8), 51

Numbers
V

A

'

MACRO-8, 49

PAL III, 3

OCTAL pseudo—op
MACRO-8, 57

PAL III, 3‘24

CDT, 1

Operands (PAL III), 6

Operate microinstructions (PAL III),21

Operating instructions (MACRO—8), 70

Operating procedures
MACRO-8, 69

PAL III, 32
'

Operation code (PAL III), 20

Operators, arithmetic and logical
MACRO-8, 38

'

'

PAL III, 14

OR group skip instructions

PAL III), 22

Origin setting (MACRO—8), 39

Origin (starting address) of

source program (PAL III), 17

Output device (MACRO—8), 70, 72

PAGE pseudo—op (MACRO—8),

Pages (MACRO-8), 39

PAL III programming, 1

Pass 1 (PAL III), 2, 31

'diagnostics, 34

Pass 2 (PAL III),_ 2, 31
diagnostics, 35

Pass 3 (PAL III), 2, 31

diagnostics, 36
_

Pass 3 output
—

assembly listing,

(MACRO-8), 68

PAUSE (end of tape) pseudo—op
MACRO-8, 57

PAL III, 26

Period (.) character (PAL III),.17
Permanent symbols (MACRO—8), 60

Permanent symbol table (PAL III), 7

alterations, 27, 28
'

Permanent symbol tables,
Plus (+) operator

MACRO-8, 38

PAL III, 14

Processor deletion (MACRO—8), 71

Programming
MACRO-8, 37

techniques, 46

PAL—III, l
'

Programming hints, 62

Program preparation (PAL III), 29

Pseudo—operators, C—5

MACRO—8, 56, 57, 59

PAL III, 23

Punching new assembler tape

(MACRO—8), 65

Pushdown list overflow

40, 57

C-1

(PAL III), 35

Radix control

Redefinition (PAL III), 34

Referencing a macro (MACRO-8), 56

Registers, autoindex (PAL III), 19

RETURN key (PAL III), 4

RIM (Read—In—Mode) loader,

checking the loader, A—4

programs, A—2
‘

ROTL macro, advantages and dis—

advantages (MACRO-B), 55

(PAL III), 3, 23

A—l

Semicolon (7) as statement

terminator (PAL III), 4

Single character text facility
(MACRO-8), 47

Skip instructions (PAL III), 22

Source program preparation
(PAL III), 5

Space operator

MACRO-8, 38

PAL III, l4

Special characters (MACROcS), 59

Starting address (origin) of source

program (PAL III), 17

Statements (PAL III), 5

Statement terminators (PAL III),
Switch option (MACRO-8), 65, 71

Symbol capacity (PAL III), 11

Symbol categories (MACRO—8), 59

Symbol definitions, addition or

deletion (PAL III), 27

Symbolic addresses (PAL III),

Symbolic Editor (PAL III), 29

Symbolic expression (MACRO—8),

Symbolic instructions (PAL III),

Symbolic operands (PAL III), 10

Symbolic tape (PAL III), 29

Symbolic tape editor, 1

Symbols (PAL III), 7

Symbol space, limited,

Symbol table (MACRO—8),

capacity, 57

modification,
revision, 65

Symbol table (PAL III),

4

8

38

IO

62

57

58

357, ll,

Tabulation (PAL III), 3

Tape editor, symbolic, l

Terminating an expression
(PAL III), 15

Terminators of statements

PAL III), 4

Text facility (MACRO—8), 47

TEXT pseudo—op (MACRO-8), 48, 57

Text strings (MACRO—8), 48

Trailer code (PAL III), 31

Two-pass assembler (PAL III), 1

Undefined address (PAL III), 35

Undefined symbols (MACRO-8), 6O

User—defined macros (MACRO-8), 53

Userwdefined symbols
MACRO-8, 60

PAL III, 7

Using PAL III assembler, 33

Z (page zero reference) pseudo—op
MACRO-8, 57

PAL III, 23

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in

Maynard, publishes software neWsletters for the various DIGITAL products.
Newsletters are published monthly, and keep the user informed.about cus-

tomer software problems and solutions, new software products, documenta-

tion corrections, as well as programming notes and techniques.

There are two similar levels of service;

. The Software Dispatch

. The Digital Software News

The Software Dispatch is part of the Software Maintenance Service. This

service applies to the following software products:

PDPm9/15
RSX—llD

DOS/BATCH
RSTS~E

DECsystem—lo

A Digital Software News for the PDP-ll and a Digital Software News for

the PDP—S/lz are available to any customer who has purchased PDP-ll or

PDPe8/12 software.

A collection of existing problems and solutions for a given software

system is published periodically. A customer receives this publication
with his initial software kit with the delivery of his system. This

collection would be either a Software Dispatch Review or Software Per—

formance Summary depending on the system ordered.

A mailing list of users who receive software newsletters is also main-

tained by Software Communications. Users must sign—up for the news—

letter they desire. This can be done by either completing the form sup-

plied with the Review or Summary or by writing to:

Software Communications

P.O. Box F

Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to DIGITAL's software should be reported
as follows:

'North and South American Submitters:

Upon completion of Software Performance Report (SPR) form remove last

copy and send remainder to:

Software Communications

P.O. Box F

Maynard, Massachusetts 01754

‘The acknowledgement copy will be returned along with a blank SPR form

upon receipt. The acknowledgement will contain a DIGITAL assigned SPR

number. The SPR number or the preprinted number should be referenced in

any future correspondence. Additional SPR forms may be obtained from

the above address.

All International Submitters:

Upon completion of the SPR form, reserve the last copy and send the re—

mainder to the SPR Center in the nearest DIGITAL office. SPR forms are

also available from our SPR Centers.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In the

United States, send orders to the nearest distribution center.

Digital Equipment Cerporation Digital Equipment Corporation
Software Distribution Center Software Distribution Center

146 Main Street 1400 Terra Bella

Maynard, Massachusetts 01754 Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest

Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computers Users Society, maintains a user ex-

change center for user—written programs and technical application infor-

mation. The Library contains approximately 1,900 programs for all

DIGITAL computer lines. Executive routines, editors, debuggers, special
functions, games, maintenance and various other classes of programs are

available.

DECUS Program Library Catalogs are routinely updated and contain lists

and abstracts of all programs according to computer line:

. PUP-8, FOCAL-8, BASIC-8, PDPan

. PDP-7/9, 9, 15

. PDP-ll, RSTS-ll

. PDPn6/10, 10

Forms and information on acquiring and submitting programs to the DECUS

Library may be obtained from the DECUS office,

In addition to the catalogs, DECUS also publishes the following:

DECUSCOPE
‘

-The Society's technical newsletter, published bi—monthly,
’

aimed at facilitating the interchange of technical in—

formation among users of DIGITAL computers and at dis-

seminating news items concerning the Societyo Circula-

tion reached 19,000 in May, 1974.

PROCEEDINGS OF -Contains technical papers presented at DECUS Symposia
THE DIGITAL held twice a year in the United States, once a year

EQUIPMENT USERS in Europe, Australia, and Canada.

SOCIETY
'

MINUTES~OF THE -A report of the DECsystem—10 sessions held at the two

DECsystem-lO United States DECUS Symposia.
SESSIONS

COPY-N-Mail “A monthly maiied communique among DECsystem-lo users.

LUG/SIG —Mailing of Local User Group (LUG) and Special Interest

Group (SIG) communique, aimed at providing closer

communication among users of a Specific product or

application.

Further information on the DECUS Library, publications, and other DECUS

activities is available from the DECUS offices listed below:

DECUS
,

DECUS EUROPE

Digital Equipment Corporation Digital Equipment Carp. International

146 Main Street a (Europe)
Maynard, Massachusetts 01754 POO. Box 340

1211 Geneva 26

Switzerland

4K Assemblers Pal III

Macro 8

DEC-08~LAS4A~A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems

with software should be reported on a Software

Problem Report (SPR) form (see the HOW TO OBTAIN

SOFTWARE INFORMATION page).

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well—organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs

required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer

Higher—level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmerDDDDDD Non-programmer interested in computer concepts and capabilities

Name
A

.

:" - Date

Organization

Street

City State ; Zip Code
< or

Country

If you do not require a written reply, please check here, [3

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications

P. O. Box F

Maynard, Massachusetts 01754

