
anannan

‘

8km
system user’s guide

‘

digitalequipmentcorporation

,

.
1

DEC—O 8 *MEFA-D

8K Programming

System User‘s Guide

This manual supersedes the information

in Chapter 9 of Introduction to

Programming 1970, and will replace

that chapter in the next printing.

For additional copies, order No. DEC-08-MEFA~D from the

Program Library, Digital Equipment Corporation, Maynard, Mass.

01754.
Price:. $3.00

First printing, October 1970

Reprinted, February 1971

Copyright. C) 1970, 1971 by Digital Equipment Corporation

The PS/8 Software Support Manual

(DEC’PB—MEXB-D) will supersede the

PS/8 Programmer‘s Reference Manual

as of February, 1971.

The following are trademarks of Digital Equipment Corporation,

Maynard, Massachusetts.

DEC

FLIP CHIP

DIGITAL

OMNIBUS

PDP

FOCAL

COMPUTERLAB

UNIBUS

PREFACE

This manual, the PS/8 System User's Guide, obsoletes the

information in Chapter 9 of Introduction to Programming 1970,

and describes the PS/8 Programming System for use by the

average system user. Those programmers requiring a deeper

insight into the system are advised to read the PS/8 Software

Support Manual.

Two of the major components of PS/8, the Keyboard Monitor

and Command Decoder, are described in Chapters 1 and 2,

respectively. Each of the System library programs is described

in detail as to its application to the PS/8 system. Instruc-

tions on using these library programs (for the benefit of

beginning programmers) is contained in Introduction to

Programming 1970 and Programming Languages.

z

The new 8K FORTRAN system is introduced in this document.

The FORTRAN Compiler contains such features as implied DO

loops, device—independent I/O, chaining, and other improvements.

Detailed specifications on the 8K FORTRAN system appear in

this volume.

The Appendices contain summaries of the ASCII and punched

character sets, error messages, and permanent symbol tables.

A demonstration program is included in Appendix D as an aid

to understanding the abilities of PS/8.

CONTENTS

CHAPTER 1 INTRODUCTION

1.1 Hardware Configurations
1.2 System Software Components

CHAPTER 2 KEYBOARD MONITOR

2.1 System Conventions

. 2.1.1 Permanent Device Names

2.1.2 File Names and Extensions

2.2 Use of the Keyboard Monitor

&

2.3 Commands to the Keyboard Monitor

2.3.1 ASSIGN Command

2.3.2 DEASSIGN Command

2.3.3 GET Command

2.3.4 SAVE Command

2.3.5 ODT Command

2.3.6 RUN Command

2.3.7 R Command

2.3.8 START Command

2.3.9 DATE Command

CHAPTER 3 COMMAND DECODER

3.1 Command Decoder Conventions

3.2 Command Decoder Input String
3.2.1 Examples of Command Strings
3.3 Input/Output Specification Options
3.3.1 Slash Construction

3.3.2 Parentheses Construction

3.3.3 Equal Sign Construction

3.3.4 Square Bracket Construction

3.4 Notes On Device Handlers

3.5 Command Decoder Error Messages

CHAPTER 4 PS/8 SYMBOLIC EDITOR

41. Calling and Using the Editor

4.2 1/0 Specification Options
4.3 Special Key Commands to the Editor

4.4 Summary of Editor Commands

4.5 Editor Text Buffer

4.6 Search Mode

. 4.6.1 Intra—buffer Character String Search

4.6.2 Inter—buffer Character String Search

4.7 Error Messages

CHAPTER 5 PAL-8 ASSEMBLER

5 1 Calling and Using PAL-8

5.2 Examples of I/O Specification Strings
5 3 PAL~8 Pseudo-ops
5 4 PAL-8 Error Messages

saw on»

[fillllll HHKDxIONUIowaHI-Jl 0

ill
H

FJF’H nil-WMNNNNNNNNNNNNNN
I

I

I

i

l

l

l

I

l

mmmmmmowI—JHwwwwwwwwww %

HI—‘KQOOOOQUJNH WM
III
1figobbh-bnbfépbub

CHAPTER 6

6.1

6.1.1

6.1.2

6.1.3

6.1.4

6.2

6.2.1

6.2.2

6.2.3

6.3

6.3.1

6.3.2

6.4

6.4.1

6.4.2

6.4.3

CHAPTER 7

7.1

7.1.1

7.1.2

7.1.3

7.1 3.1

7.1.3.2

7.1.3.3

7.1.4

7.1 5

7.1.6

7.1.6.1

7.1.6.2

7.1.6.3

7.1.6.4

7.1.6.5

7.1.6.6

7.1.7

7.1.8

7.1.9

7.1.10

7.1.10.1

7.1.10.2

7.1 10.3

7.1.10.4

7.1.10.5

7.1.10.6

7.1.10.7

7.1 10.8

7.1 10.9

7.2

7.2.1

7.2.2

7.2.3

7.2.4

7.2.5

7.2.6

7.2.7

7.2.8

7.2.9

UTILITY PROGRAMS

Peripheral Interchange Program (PIP)

Calling and Using PIP

Examples of I/O Specification Commands

Additional Information Words in File

Directories

PIP Error Messages
Absolute Binary Loader (ABSLDR)

Calling and Using ABSLDR

Examples of Input Lines

ABSLDR Error Messages
ODT

Calling and Using ODT

Summary of ODT Commands

PS/8 File Conversion Program (CONVRT)

Calling and Using CONVRT

Examples of I/O Specification Commands

CONVRT Error Messages

THE 8K FORTRAN SYSTEM

The 8K FORTRAN Compiler
Calling and Using the 8K FORTRAN COmpiler
Examples of I/O Specification Commands

FORTRAN Language Elements

FORTRAN Constants

FORTRAN Variables

FORTRAN Functions

FORTRAN I/O Under PS/8
Data Transmission Statements

Device Independent I/O and chaining
IOPEN Subroutine

OOPEN Subroutine

OCLOSE Subroutine

CHAIN Subroutine

EXIT Subroutine

FORTRAN Data Files

Mixing SABR and FORTRAN Statements

8K FORTRAN Statement Summary
Error Messages

Implementation Notes

Alphanumeric Data Within FORMAT Statements

Subscripting
DO Loops
PAUSE Statement

EQUIVALENCE Statement

Size of FORTRAN Programs

Using FORTRAN or SABR with the Interrupt ON

Using PAL~8 with SABR or FORTRAN

Errors

8K SABR Assembler

Calling and Using 8K SABR

Examples of I/O Specification Commands

SABR Statements

Statement Elements

Symbols 7—30

Constants

Pseudo—operators
SABR Operating Characteristics

Symbol Table 7-33

!l

I

1

I

I

i

Hqumbbwl-‘H3

l\l\l\l\l\l\l\l\l\l\l\l I

APPENDICES

A

INDEX

Error Messages

Linking Loader

Calling and Using the Linking Loader

Examples of I/O Command Strings
Error Messages

LOADING AND OPERATING PROCEDURES

Loading PS/8 on a DECtape System

Loading PS/8 on a Disk or DECtape System
from Paper Tape

Loading PS/8 on a Disk System from DECtape
Disk Bootstraps
Restart Locations

ASCII Character Set

Punched Card Codes

Error Message Summary
Keyboard Monitor

Command Decoder

Symbolic Editor

PAL—8 Assembler

PIP

ABSLDR

CONVRT

8K FORTRAN

SABR Assembler

Linking Loader

Permanent Symbol Table for PAL—8 and 8K SABR

PS/8 Demonstration Program

7-34

7~36

7’37

7—40

7~4l

mmwwwt'uwwwww Hto~1m(n¢>wrohJH+4 O
O I H

CHAPTER 1

INTRODUCTION

The PS/8 Programming System is a program—development

system, expandable to accommodate any amount of core memory

from 8K up, and a wide range of input/output devices.

In addition to the PS/8 system executive routines, the

system incorporates a great deal of additional software, includ~

ing:

A Symbolic Editor (EDIT) used to create or modify
source files for use by other system programs

such as PAL~8, 8K SABR, and 8K FORTRAN.

PAL—8, an improved version of the 4K and 8K

PAL—D assemblers, accepts source files written

in assembly language and generates absolute

binary code.

PIP, a completely new Peripheral Interchange
Program, used to transfer files between de»

vices, merge files, list and zero directories,
and eliminate "holes" in PS/B directories.

CONVRT, DECtape Conversion Program, a new

program which provides ASCII file compati~
bility between the Disk/DECtape Monitor and

TBS/8 format DECtapes and PS/8 files.

ABSLDR, Absolute Binary Loader, loads abso-

lute binary files from devices into core.

ODT, Octal Debugging Technique, a new debug—
ging package which includes all the features

of the old ODT, but takes up none of the user's

core Space.

An improved version of the 8K FORTRAN language,
consisting of the FORTRAN Compiler, SABR As~

sembler, a new Linking Loader, and the FORTRAN

Library. The advantages of this new FORTRAN

include:

a. Reducing the difficulty of using FORTRAN.

If desired, a program can be compiled,
loaded, and executed automatically by a

single command.

b. Implied DO loops are permitted in the new

PS/8 FORTRAN.

c. Program chaining greatly increases the power
of the language.

d. Device-independent I/O has been added.

PS/8 provides true device~independence. For the first

time on a PDP—8 computer, programs can be written without con~

cern for specific I/O devices. In running a program the user

can select the most effective I/O devices available. Further,

if the system configuration is altered, programs need not be

rewritten to take advantage of the new configuration.

The PS/8 system controls the copying of data from any

medium to any other medium by means of subroutine calls to

executive I/O routines. Logical names can be assigned to

devices within the system to enable symbolic referencing of

devices.

Variable length I/O buffers can be specified by the user

program. Large buffers ensure efficient use of storage devices

and a minimum of time spent in data transfer operations by

minimizing disk and tape motion. PS/8 takes full advantage

of the RK8 disk pack for fast bulk storage, yet full system

services are possible with a single DECtape.

The discussion of the PS/8 Programming System in this

manual assumes that the reader is familiar with 8K PAL—D,

8K SABR, 8K FORTRAN, and the Symbolic Editor as described in

Programming Langyages and Introduction to Programming 1970.

The reader need not be familiar with monitor systems, the

Peripheral Interchange Program (PIP), ODT, the Absolute Binary

Loader, the Linking Loader, CONVRT (the program to convert 4K

Disk Monitor and TSS/8 ASCII files to PS/8 compatible files), or

the fine details of the languages as these are explained in this

document.

1.1 HARDWARE CONFIGURATIONS

The PS/8 Programming System can operate using either disk

or DECtape as the system device. To accommodate PS/8 the disk

configuration should have 64K or more words of storage and

either a DECtape or high—speed paper tape reader/punch (to load

the system and handle I/O).

The minimum PS/ configuration is a PDP-B/I, 8/L, 8/E, or

PDP~12 with 8K of core, one DECtape used as the system device,

and a 33—ASR Teletype terminal. A multiple DECtape system per—

forms appreciably faster than a single DECtape system. The

multiple DECtape system reduces DECtape motion because it is pos~

sible to copy directly (without intermediate searching) from the

system DECtape to another DECtape (or vice versa) when editing

or assembling.

A typical medium~sized system might contain a PDPu8/I, 8/L,

8/E, or PDP-lZ with at least 8K of core, a high—speed paper tape

reader/punch, and an RK8 disk pack and control. A disk system

offers the additional convenience of easy and fast access to

files, and large amounts of storage.

Up to fifteen devices can be interfaced to a single PS/8

system. These optional devices include:

up to 8 DECtape units (TCOl/TUSS or TCO8/TU56)

high~speed paper tape reader/punch

up to four RK8 disks

up to four RF08 disks

up to four DF32 disks

card reader

line printer

PDP—lZ LINCtape

any other device for which it is possible to write a

device handler in one or two pages of core.

1.2 SYSTEM SOFTWARE COMPONENTS

The main software components of the PS/8 system are five:

Keyboard Monitor,
Command Decoder,

library of system programs,

device handlers,and
User Service Routine (USR).

The Keyboard Monitor accepts commands from the Teletype key—

board to create logical names for devices, to run system and

user programs, to save programs, and to call ODT. The Keyboard

Monitor provides communication between the user and the PS/8

executive routines.

The Command Decoder is used when the programmer activates

a system library program. The Command Decoder accepts a command

string from the keyboard indicating input/output files. Follow-

ing the keyboard command to run a system library program, the

Command Decoder prints a star (*) and accepts a command line

containing the files to be used as input, file name and destina~

tion of output, etc. The Command Decoder communicates between

the user and the system library programs.

The library of system programs, as mentioned earlier, contains

the Peripheral Interchange Program (PIP), Symbolic Editor, PAL—8

(the PS/8 version of 8K PAL—D), an Absolute Binary Loader, CONVRT

(the file conversion program), a new, improved 8K FORTRAN, 8K SABR,

and Linking Loader. Other system library programs will be added

as they become available.

The User Service Routine (USR) controls the directory

operations for the PS/8 system. A program can use the USR by

means of standard subroutine calls such as are used to activate

device handler subroutines. Some of the functions performed

by the USR are as follows: loading device handlers, searching

file directories, creating and closing output files, calling

the Command Decoder, and chaining of programs. The details on

the operation and use of the USR are contained in the PS/8

Programmer's Reference Manual (DEC—OB—MEXAwD). For normal PS/8

usage, the USR functions unseen by the user and is of no concern.

When PS/S is operating, the Command Decoder, Keyboard Monitor,

and USR are swapped into core from the system device as required,

and, when their operation has been completed, the previous contents

of core are restored.

The core~resident portion of PS/B is extremely small (256

wordsi) and allows for a maximum use of core by user programs.

CHAPTER 2

KEYBOARD MONITOR

2.1 SYSTEM CONVENTIONS

The PS/8 Programming System has various system conventions

which are quickly mastered by even the novice programmer. Naming

conventions for devices and file extensions have been designed as

simple mnemonics.

PS/8 uses the words: "word", "page", "record", and "block"

as units of storage. In directory listings and elsewhere file

lengths are referenced in terms of blocks (or records). The terms

are defined as follows:

1 block = 1 record = 2 pages
=

25610 words

Each word is composed of 12 bits. The internal structure of the

PDP-8 words and pages is described in detail in Introduction to

Programming 1970.

2.1.1 Permanent Device Names

Each device in the PS/8 system is referenced by means of a

standard permanent device name. These names are used in all I/O

designations and are listed below:

Permanent Name I/O Device

SYS System device (disk if the system has a

large disk - RK8 or RFfl8 — otherwise DTAfl)

DTAn DECtape n, where n is an integer in the

range 0 to 7, inclusive.

DSK The default storage device for all files.

The assignment of DSK is specified at

system generation time.

Usually DSK is the disk on a single disk

system or DTAH on a DECtape system.

TTY Teletype keyboard and printer.

PTP High—speed paper tape punch.

PTR High—speed paper tape reader (system prints
an up arrow (f) to which the user replies
by typing any key, before accepting input).

CDR Card Reader

Permanent Name I/O Device

LPT Line printer (performs a form feed before

it begins printing output from a new pro-

gram).

2.l.2 File Names and Extensions

Files are referenced symbolically by a name of up to six alpha—

numeric characters followed, optionally, by a period and an exten~

sion of two alphanumeric characters. The extension to a file name

is generally used as an aid for remembering the format of a file.

In most cases, then, the user will want to conform to the

standard file name extensions established for PS/8. To lessen the

amount of typing required, the various system programs append as—

sumed extensions to input and output files where specific exten—

sions are not indicated.

If an extension is not specified for an output file, the

system programs append assumed extensions. Where an extension is

not specified for an input file, the system does a search for that

file name with the logical default extension. Failing to find

such a file, a search is then done for the original file without

an extension. For example, if PROG were specified as an input

file to PAL—8, the Command Decoder first looks for the file

PROG.PA (since .PA is the standard extension for PAL—8 input files).

If PROG.PA is not found, the Command Decoder tries to find the

file PROG (with no extension).

TABLE 2 . l

Assumed Extensions

Extension Meaning

.SV A core image file or SAVE file; appended
to a file name by the R, RUN, SAVE, and

GET keyboard Monitor commands.

.FT An 8K FORTRAN source file.

.SB An 8K SABR source file.

.PA A PAL~8 source file.

Extension Meaning

.BN An absolute binary file, default extension

for a Binary Loader input file. Also used

as the default extension for PAL—8 binary
output file.

.RL A relocatable binary file, default exten—

sion for a Linking Loader output file.

Also used as the default extension for an

8K SABR output file.

.MP File containing a loading map (for the

Linking Loader).

.LS A PAL«8 or 8K SABR assembly listing out-

put file.

.TM Temporary file generated by FORTRAN or

SABR for system use.

For example, if the user types:

.RUN DSK PROG

the file PROG.SV (on device DSK) is run if found. If the user

types:

.RUN DSK PROG.A

then PROG.A is run, if found.

2.2 USE OF THE KEYBOARD MONITOR

While using the system library programs the user can alert the

Keyboard Monitor by typing CTRL/C (hold down the CTRL key and type

the C key), which echoes at the teleprinter as +C. The Keyboard

Monitor signals that it is ready to accept input by printing a

dot (.) at the left margin of the teleprinter paper.

Each command to the Keyboard Monitor is typed at the keyboard

and corrected, if necessary, before entering the line to the sys—

tem. A line is entered to the system by typing either the RETURN

key (which causes a carriage return/line feed operation, but no

printed character) or the ALT MODE key (which prints a S).

Correcting typing mistakes is simple. The RUBOUT key is used

to delete the last character typed. Pressing this key initially

causes a backslash (\\) character to be printed followed by the

character which was deleted. Successive RUBOUT keys each cause

one more character to be printed and deleted. The first non~

RUBOUT character typed (after the last RUBOUT in a sequence) causes

a closing backslash to be printed (enclosing the deleted charac—

ters within backslashes). For example:

User types: RUN DSK (RUBOUT) (RUBOUT) (RUBOUT) DTAl FILE

Teleprinter shows: RUN DSK\\KSD\\DTA1 FILE

Keyboard Monitor sees: RUN DTAl FILE

If at any time an input line becomes so corrected that it is

no longer intelligible to the user, he can verify the contents of

the line by typing the LINE FEED key. This causes the entire in~

put line to be echoed as the Keyboard Monitor would see it at

that point. The line is not considered to be entered to the sys—

tem, and the user can proceed to edit, delete, or enter that line

at his discretion.

For example:

User types: RUN DTA3‘\ 3 \52 PRG\\G‘\OG (LINE FEED key typed)

System echoes: RUN DTA2 PROG

To delete a command line completely before it is entered, the

user types CTRL/U (produced by holding down the CTRL key and typ—

ing the U key), which echoes as +U. To the Keyboard Monitor,

CTRL/C is the same as CTRL/U, and returns control to the Keyboard

Monitor without accepting the current input line.

2.3 COMMANDS TO THE KEYBOARD MONITOR

Any of nine commands can be typed in reply to the dot printed

at the left margin of the teleprinter paper. Execution of these

commands occurs only after typing the RETURN or ALT MODE key.

Only the first two characters of any command are significant (need

be typed).

Error messages given by the Keyboard Monitor are indicated

under the command which could generate that message and in the

Error Summary in Appendix B. Following an error message the sys—

tem returns control to the Keyboard Monitor and the command must

be reentered.

The generalized Keyboard Monitor error messages are de~

scribed below:

TABLE 2.2

Keyboard Monitor Error Messages

Message Meaning

XXXX? Where XXXX is not a legal command, for

example, if the user typed

HELLO

. the system would echo

HELLO?

TOO FEW ARGS An important argument has been omitted

from a command. For example,

RUN DSK

would generate this message.

SYSTEM IO ERROR An error occurred while doing I/O to

the system device.

MONITOR ERROR 5 An error occurred while doing 1/0 to the

AT xxxxx system device. This error is normally
the result of not WRITE enabling the

system device.

2.3.l ASSIGN Command

The ASSIGN command is of the form:

.ASSIGN dev udev

or

.AS dev udev

The ASSIGN command causes a new, user—defined device name (udev)

to be considered equivalent to the permanent device name (dev).

Only one user name can be associated with a single device at a

time. For example:

.AS DTAl IN

causes all future references to IN to refer to DECtape unit 1,

although references can still be made to DTAl.

If a user—defined device name is not indicated, any existing

user-defined name is removed and only the permanent device name

is valid. For example:

.AS DTAl IN

.AS DTAl

The above sequence changes the name of DECtape l to IN and then

back to DTAl again.

The user—defined name is composed of up to four alphanumeric

characters the first of which must be alphabetic. The user—defined

name takes precedence over the permanent name. Device—independent

programs are easily possible since a change in the user name of

a device by means of the ASSIGN command can change the operation

of a routine without changing the code.

User—defined device names should be one or two characters

long, because all one and two character device names are unique.

Due to the fact that the device name is internally coded in only

one word, the three and four character names may not be unique.

A three or four character name can be tested for uniqueness by

typing an ASSIGN command as follows:

.AS name

and if a

name NOT AVAILABLE

message results, the name is unique within the current system

and is not in the system tables; therefore it can be used.

2.3.2 DEASSIGN Command

The DEASSIGN command is of the form:

.DEASSIGN

or

.DE

and causes all permanent device names to be restored, discarding

all previous user—defined device names. For example:

.AS DTAl IN

.DE

causes DECtape l to be assigned the name IN. The DEASSIGN com~

mand removes the name IN from the system tables. DTAl can no

longer be referenced as IN.

2.3.3 GET Command

The GET command is of the form:

.GET dev file.ext

or

.GE dev file.ext

The GET command loads core image files (.SV format, not ASCII

or binary) into core from a device. The device (dev) is specified

along with the file name (file) and an optional file name exten—

sion (.ext). The file is loaded into core with its core control

block. The core control block is then moved to a special area

on the system device.

The core control block of a core~image file is maintained

on the system device and contains information about the file

such as its starting address, areas of core occupied by the

file, and a Job Status Word. The Job Status Word is saved and

loaded in location 7746 of field 9 with the file to indicate

what parts of core the file uses and how, as follows:

TABLE 2.3

Job Status Word

Bit Condition Meaning

Bit O = 1 File does not load into locations O—l777

in field 0, (OOOO-l777).

Bit 1 = l File does not load into locations O—l777

in field 1, (lOOOO—l7777).

Bit 2 = 1 Program must be reloaded before it can

be restarted because it modifies itself

during execution.

Bits 3—9 Unused, and reserved for future expan—

sion.

Bit 10 = 1 Locations O—l777 in field 0 need not be

saved when calling the Command Decoder

overlays.

Bit ll = l Locations 0-l777 in field l need not be

saved when calling the USR.

A core control block is created for each core image file (one which

has been dumped from core onto some device by the SAVE command)

when the file is created by the Linking Loader, ABSLDR, or the

SAVE command.

If a file name extension is not specified to the GET command,

the extension .SV (for core image file) is added automatically to

the file name. For example:

.GE DTA3 OH

attempts to fetch the file OH.SV from device DTA3.

Four error messages are associated with the GET command.

These are described below:

Message Meaning

name NOT FOUND The file with the name given was not found

on the specified device.

name NOT AVAILABLE The device with the name given is not avail"

able for use at the moment (check the dew

vice in question), or the user tried to ob~

tain input from an output only device (such
as the high—speed paper tape punch).

BAD CORE IMAGE The file requested was not a core image
file (it could have been an ASCII or bi~

nary file).

USER ERROR Q AT xxxx

An input error was detected while loading
the program. xxxx is meaningless

2—8

-.

2.3.4 SAVE Command

The SAVE command is of the form:

.SAVE dev file.ext a-b,c,...;s=n

or

.SA dev file.ext a-b,c,...;s:n

where:

a—b,c,... the addresses of the areas and locations

in core to be saved. Locations a through

b, location c, and any other specified
locations. a, b, and c are 5 digit loca-

tions. (The first digit represents the
field.) When a single location is indi—

cated (c) the entire page on which c is

located is saved.

75 the starting address of the file.

=n where n is a four digit octal number re—

presenting the contents of the Job Status

Word (see section 2.3.3).

The program currently in core is saved on the device (dev)

specified, with the file name indicated (file.ext). If an ex-

tension is not specified, the extension .SV is automatically

added by the system. If the remaining arguments are not given,

the information they convey is taken from the current core con-

trol block (see section 2.3.3).

Restrictions on the arguments for the SAVE command are as

follows:

a. Each set of limits (a~b) must be in the same field and

not cross field boundaries.

b. No two sets of limits can overlap (a~b,c~d must not

overlap).

c. No area to be saved can contain page 7600 or 17600,
since these are the locations of the system resident

I/O routines and system tables.

If an error message is printed in response to a SAVE command,

the program currently in core has not yet been saved. Possible

error messages are:

Message Meaning

BAD ARGS The arguments to the SAVE command are not

consistent and violate restriction (b)

above.

ILLEGAL ARG. The SAVE command was not expressed cor—

rectly, illegal syntax used.

SAVE ERROR An I/O error has occurred while saving
the program. The program remains intact

in core.

MONITOR ERROR 2 AT xxxx

Attempt made to output to a write~locked

device, usually DECtape.

name NOT AVAILABLE The device with the name given is not in

any system table.

An example SAVE command is shown below:

.SAVE DSK OHLA.SV 55,1fl5flfl-lfl577;lfl5fl2

This statement saves the program in core on the disk as a file

named OHLA.SV. The areas of core saved are locations g to 177

in field 6 (when a single core location is indicated, the entire

page on which that location occurs is saved) and locations 4flfl

to 577 of field 1. The starting address of the program is 5E2

in field 1. The core control block is updated to contain this

information and the old Job Status Word is taken intact from

the original core control block.

Example 2:

.SAVE DSK OHLA.SV

The above statement causes the program in core to be saved on

the disk under the name OHLA.SV where the areas of core to be

saved are taken from the original core control block.

2.3.5 ODT Command

The ODT command is of the form:

.ODT

or

.0D

This command causes the system CDT to be loaded into core and

started. ODT is a system overlay, and, as such, takes up none

of the user's program area unless the breakpoint feature is used,

in which case ODT uses locations 4, 5, and 6 of every field in

which a breakpoint had been placed. When using CDT to debug

programs, the user-defined device names cannot be used. Each I/O

device must be called by its permanent device name.

ODT is described further in section 6.3.

2.3.6 RUN Command

The RUN command is of the form:

.RUN dev file.ext

OI

.RU dev file.ext

The RUN command, like the SAVE command, handles only core image

files. The file indicated (file.ext) on the device (dev) speci~

field is loaded into core and its core control block is moved

to the system scratch area. The program is started at its

starting address. The RUN command is equivalent to a GET and a

START command.

If an extension to the file name is not specified, the exten—

sion .SV is automatically added to the file name. For example:

.RU DTAl PROG

causes the file PROG.SV on DECtape l to be loaded and started.

Possible error messages when using the RUN command are

described below:

Message Meaning

name NOT FOUND The file with the name given was not found

on the device indicated, or the user tried

to input from an output only device.

BAD CORE IMAGE The file indicated is not a core image
file.

USER ERROR fl AT xxxx

An input error occurred while loading the

file. xxxx is meaningless.

name NOT AVAILABLE The device with the name given is not

listed in any system table.

2.3.7 R Command

The R command is of the form:

.R file.ext

and is similar to

.RUN SYS file.ext

This command handles only core image files from the system device.

The file is loaded and started. If the file name extension is

not specified, the extension .SV is automatically added.

The R command differs from the RUN command in that a core con—

trol block is not written to the system device. In order to SAVE

a program which does not have its core control block in the

usual location on the system device, all the optional arguments of the

SAVE command must be explicitly stated. System programs are most

often called using the R command, since they need not be saved.

To call a user program to be later updated and saved, use either

the RUN or GET command.

Error messages for the R command are the same as for the RUN

command.

2.3.8 START Command

The START command

.START nnnnn

or

.ST nnnnn

The program currently

the argument nnnnn is

is of the form:

in core is started at location nnnnn. If

omitted, the program is started at the

starting address specified in the core control block. For example

.ST 10555

starts the program in

.ST

starts the program at

control block.

The START command

handler in core table

The error message:

NOE!

core at location 555 in field 1.

the starting address given in the core

clears certain areas of core: the device

and the Command Decoder output area.

occurs if the user attempts to start (with .ST) a program which

cannot be started. The user must not restart any user program

or system library program which modifies itself while in core

(bit 2 of the Job Status Word is set, see section 2.3.3).

2.3.9 DATE Command

The DATE command is of the form:

.DATE mm/dd/yy

or

.DA mm/dd/yy

The DATE command sets up the date in the system for purposes of

dating directory entries and listings, printing on program out-

put, etc. For example:

.DA 3/l3/7fi

which indicates that the date is March 13, 1970.

The error message:

BAD DATE

is printed if the date is not entered correctly (using slashes).

CHAPTER 3

COMMAND DECODER

Once a system program has been called via the Keyboard Monitor, that system

program uses the Command Decoder to obtain a list of I/O files and devices. The

Command Decoder prints a star (*) at the left margin to indicate it is ready to

accept a command string.

3.1 COMMAND DECODER CONVENTIONS

The Command Decoder uses the same keys as the Keyboard Monitor for the

purpose of correcting typing mistakes. The RUBOUT key deletes one character per

RUBOUT. The CTRL/U combination deletes an entire line. CTRL/C returns the user

to the Keyboard Monitor, and the LINE FEED key causes the entire line to be

printed on the teleprinter paper as it appears in the Teletype input buffer.

The description of files, file names, extensions, devices, and device

names in Chapter 2 define system conventions for the Command Decoder as well as

for the Keyboard Monitor (see sections 2.1, 2.1.1, and 2.1.2 for details).

3.2 COMMAND DECODER INPUT STRING

The expected string for I/O specification takes the form:

(output files) < (input files)

There can be 0‘3 output files and 0—9 input files, depending on the requirements

of the system program. The particular I/O string used with each system library

program is described in the section on that program (later in the manual).

For example:

*DTA1:XY1,LPT:<DSK:PROG

The PAL~8 assembler would use the first output file (DTA1:XY1) for the binary

output of the assembly and the second output file (LPTz) for the listing.

DSK:PROG is the input source file.

Multiple file specifications are separated by commas. If no output files

are indicated, the left angle bracket can be omitted. For example:

*DSK:PROG

would cause the file PROG on device DSK to be accepted as an input file. While

the left angle bracket (<) is the accepted divider character between output and

input files, the backarrow (+) is also acceptable.

File specifications for I/O files take the following forms:

Form

device:filename

device:

filename

(null file)

Meaning

The specified file and the specified
device, for example:

DTA3:FILE1

The specified device used as a non—

directory device. Usually the device

is a non~directory device anyway, such

as

LPT:

If a directory device is used, the

device can be read, but not written;
for example, referencing DSK: causes

the whole disk to be read. DSK: is

always the default output device.

The specified file on an assumed device.

For output files and the first input
file, the device is assumed to be DSK:,
for example:

‘

*NAME<DTA2:PROG

would indicate DSK:NAME as an output file.

For input files after the first, the

device is assumed to be the device of

the previous entry. For example:

*DSK:PROG1<DTA1:FILEl,FILE2,FILE3

will cause the three input files to be

taken from DECtape l.

A null file (the absence of an explicit
file specification) has different mean-

ings in context and is indicated by a

comma not followed by a file designation.

For output files a null file indicates

that there is no output file for this

position. For example:

*,LPT<DTA1:QUEST,DTA2:STAR

If the preceding were an input to PAL~8

the first output file (binary) would not

be generated, but the listing would be

put on the line printer. For input files,
a null file indicates that the device of

the most recent entry is to be used as a

non-directory device:

*DSK:A<PTR:,,

This input string would allow three paper

tapes to be read from the high-speed
reader.

3.2.l Examples of Command Strings

Some examples of command strings specifying I/O are shown below with

appropriate explanations. The command string precedes its explanation.

Example 1:

*DSK:BINARY,LPT:<SOURCE

The file named SOURCE is the input file on DSK. The two output files are:

BINARY on DSK, and a second file on the line printer (LPT). The PAL—8 assembler

uses this format; however, the assembler also adds the extension .BN onto the

file labeled BINARY. Thus, the disk file will be named BINARY.BN (see section

2.1.2).

Example 2:

*INPUTl,INPUT2,INPUT3,PTR:,

This is a string of input files with no output file. Notice that the left

angle bracket is not necessary if there are only input files specified. This

type of input might be given to one of the loaders (which do not require output

files). Three files are taken from device DSK and then two are taken from the

paper tape reader (PTR:;).

Example 3:

*DTAZ:A,B<XYZ:C,D

The input files C and D are taken from device XYZ (which could be any

device with the user-defined name XYZ). The output files are a file named

A on DTA2 and a file named B on DSK.

Example 4:

*,LPT:<SRC

The one input file is named SRC and is on DSK. The two output files

specified are one null file (no output file in that position) and a file to be

sent to the line printer (LPT).

Example 5:

*PTR:,,DTAl:X

This is another all input file string. The first input file comes from the

paper tape reader as does the second (PTR:,). The third input file is named X

and is on DTAl.

Example 6:

*A<TTY:,

The first input file comes from the Teletype (generally the low—speed

reader), as does the second, null, file (TTY:,). The single output file is

named A and is stored on DSK.

3.3 INPUT/OUTPUT SPECIFICATION OPTIONS

In addition to the listing of the output and input files that the Command

Decoder accepts, there are various options which can be indicated to the system

program on the file specification line. These options are unique to the

individual system program and are covered in detail in the sections describing

the various programs.

The user can (and is advised to) skip reading this section on his first

pass through the book. This section describes the format of the options as

part of an input line to the Command Decoder. When the reader is aware of the

particular options he will use, this section will serve as a useful guide to

formats.

Options are either numbers or single alphanumeric option characters.

Numbers used as options are set off from the command line with the equal

sign (=) or square brackets ([]).

The alphabetic option characters are set off from the I/O specifications by

the slash (/) character for single character options, and parentheses for a

string of single characters. The usage of the slash, parentheses, equal sign,

and square brackets is explained below. These explanations will serve as

references and format specifications once the reader has learned which options

he will be needing.

The format for input to the Command Decoder, then, looks generally like

the following:

output file(s) < input file(s) (options)

3.3.1 The Slash Construction

A single alphanumeric option character is preceded by a slash and can occur

anywhere in the input line, even in the middle of a name, although the usual

position is after the input files. For example:

*TTY : /L<DSK:AB

is equivalent to:

*TTY : <DSK:AB/L

The option specified is L (this is a PIP command to list the DSK directory

beginning at file AB).

3.3.2 The Parentheses Construction

Any number of option characters can be grouped together inside parentheses.

This construction is also valid anywhere in the input line. For example:

*OUT:X<IN:Y (A02)

is equivalent to:

*OUT:X<IN:Y /A/Q/Z

3.3.3 The Equal Sign Construction

An octal number up to seven digits long can be used as an option indicator

when preceded by an equal sign. This construction can only occur once in a line

and must be followed by a separator character (comma, left angle bracket,

backarrow, ALT MODE key or RETURN key) or by other options and a separator

character. For example:

*FILE1=1gg2 (AXQ),FILE2

Three separate options are indicated: A, X, and Q.

3.3.4 The Square Bracket Construction

The square bracket construction can only occur immediately after an output

file name and consists of an open bracket, a decimal number between 1 and 255,

and a close bracket. The square bracket construction is never necessary and is

only used by the more sophisticated user to optimize file storage.

The open bracket ([) is produced by holding down the SHIFT key while

typing a K (i.e., SHIFT/K). The close bracket (1) is produced by typing a

SHIFT/M.

This construction is used to provide an upper limit on the number of

blocks (256 words per block) to be contained in the output file in order to allow

the system to optimize file storage. For example:

*BINARY [l9] ,LISTING [2W3] <SOURCE/8

The output files are a file named BINARY on the disk (DSK) with a maximum

length of 19 blocks and a file name LISTIN (only six characters are significant)

on the device DSK with a maximum length of 200 blocks. The input file is SOURCE

on device DSK and the option specified is 8.

3.4 NOTES ON DEVICE HANDLERS

The device handlers supplied with the PS/8 system have certain operating

characteristics which the user should understand. Most of these are extremely

simple and require no action on the part of the user. Some device handlers per—

form additional operations for the user when 1/0 is being performed on a given

device.

The device handler for the high—speed paper tape reader, before reading a

tapel, prints an up arrow (+) and waits for the user to type any single

character at the keyboard. This gives the user time to check the reader to be

sure the tape is loaded in the reader, and it facilitates reading multiple tapes.

Characters are read from the paper tape and packed into an input buffer. The

end of the paper tape or a full input buffer causes the buffer to be made avail—

able to the user program. Typing CTRL/C while the tape is moving causes a

return to the Keyboard Monitor.

The high—speed paper tape punch unpacks characters from the output buffer

1With PAL—8, the user is required to load the source tape three times for the

three passes of the assembler. Each pass generates an up arrow.

3-6

and punches them on paper tape. Typing CTRL/C causes a return to the Keyboard

Monitor. The punch must be manually turned on before an attempt is made to

output to that device.

The line printer performs a form feed operation before beginning an output

task. The characters are unpacked from the output buffer and printed. A form

feed is also produced following the completion of an output task. Typing

CTRL/C while the line printer is printing causes a return to the Keyboard Monitor.

A CTRL/Z found in the output buffer causes printing to terminate and a form feed

to be performed.

The Teletype handler performs I/O transfers between the Teletype keyboard

and an input buffer or between an output buffer and the teleprinter. A CTRL/O

typed while output is being printed terminates printing of the current output

buffer. A CTRL/C typed at any time during input or output causes a return to

the Keyboard Monitor. Typing CTRL/Z as input terminates input and gives an

END OF FILE indication to the calling program. The teleprinter echoes all

typed input and performs a line feed operation after any typed carriage return.

The Teletype handler should not be used to read binary tapes from the low-speed

reader.

The device handler for the card reader reads cards in alphanumeric format

from either a punched card reader or a mark~sense card reader. Card format can

have up to 80 characters per card, and trailing blanks are deleted from each card.

Blank cards cause a carriage return/line feed to be entered into the data stream.

Typing CTRL/C while cards are being read terminates reading and returns control

to the Keyboard Monitor. Typing CTRL/Z terminates further reading and acts as

if an end—of~file card was read. An end—of~file card contains a + character

in column 1 (an 0~8~5 punch) with the remaining columns blank. Either CTRL/z

or the endwof—file card is necessary to terminate reading. Because the card

reader handler is a 2—page routine (the only current 2-page handler), the

following programs cannot use this handler: ABSLDR, LOADER, and SABR.

It is not possible to RUN or GET a program from the card reader as these

commands assume a directory device.

Any DECtape other than the system device (if it is a DECtape System) can

be interrupted with a CTRL/C, and control returns to the Keyboard Monitor.

DECtape unit g on a DECtape system must never be WRITE LOCKED.

The disk and SYS device handlers work completely automatically without any

user intervention.

3.5 COMMAND DECODER ERROR MESSAGES

The following is a complete list of the error messages which can be

generated by an erroneous command string input to the Command Decoder.

Message

ILLEGAL SYNTAX

TOO MANY FILES

name DOES NOT EXIST

name NOT FOUND

Meaning

The command line was formatted

incorrectly.

More than three output files or

nine input files were specified.

The device with the name specified
could not be found in the system
tables.

The file with the name specified
does not exist on the device

indicated. '

CHAPTER 4

PS/8 Symbolic Editor

The new PS/8 Symbolic Editor is used to create and/or modify

source files (ASCII files) for input to other system programs such as

FORTRAN, SABR, and PAL-8. The Editor contains commands for creating,

modifying, or deleting characters, lines, or logical pages of text.

The Editor considers a file to be divided into logical units,

called "pages". A “page" of text is generally 50—60 lines long,

and corresponds approximately to a physical page of program list—

ing. (This is no; the same as a core memory page.) Editor operates

on one page of text at a time, allowing the user to relate his

editing to the pages of his listing. The Editor reads a page of

text from the input file into its internal buffer where the page

becomes available for editing. The Editor is able to accept as

many as nine input files from various devices. Several powerful

commands are available for automatic handling of files through

the text buffer.

The lOW“Speed paper tape reader is not recommended as an in-

put device for the Editor. Input buffering may cause a loss of

certain characters from low-speed reader.

4.1 CALLING AND USING THE EDITOR

To call the Editor from the system device, type

.R EDIT

followed by the RETURN key, where the dot was printed by the Key~

board Monitor. The system responds by alerting the Command De~

coder and printing a star (*) at the left margin. In answer to

the star, the user types his output file designation (1 allowed),

a left angle bracket, and his input file designations (O to 9

allowed).

For example:

*DSK:ABC<PTR:,DSK:AA1

causes input from the highespeed paper tape reader and from a

file named AAl on DSK. The output file is named ABC and stored

on DSK.

Once I/O file designations are entered, the Symbolic Editor is

ready to accept commands from the keyboard and signifies its readi—

ness by printing a number sign (#) at the left margin. This symbol

(#) occurs whenever the Editor is waiting for a command from the

keyboard.

The Editor can use any device which operates in ASCII mode

and has a device handler in the system. For example, the high and

low—speed reader/punch, DECtape, disk, card reader, and line

printer are each legal devices for the Editor. Editor only operates

properly on ASCII files. No error message is given if non—ASCII

files are input to the Editor, but the results of operations are

garbled.

As many as nine input files to the Editor are permitted. If

the number of input files is zero, commands which attempt to read

from a device are disabled, and a question mark (?) appears when

a read is attempted. Where there are no input files, the A com—

mand is allowed and input is accepted from the keyboard. Only

one output file is permitted from the Editor.

4.2 I/O SPECIFICATION OPTIONS

In section 3.3, the format for I/O specification options was

described. These options are specified as part of the I/O Speci-

fication line input to the Command Decoder. The following are

the valid options for the Editor. (After reading this section

the reader is advised to turn to section 3.3 to review the vari*

ous formats.)

TABLE 4.1

Editor I/O Options

Option Meaning

/A Do not return to the Keyboard Monitor

upon completion of a file close opera~

tion (E or Q command). Return control

to the Command Decoder to specify new

files for editing. The Editor is left

in core. Executing an E command re-

turns with clear text buffer; Q command

retains the last text buffer.

/B Convert two or more Spaces to a TAB when

reading from input device.

TABLE 4.1 (Cont'd.)

Editor I/O Options

Option Meaning

/D Delete the old copy of the output file

(if one exists) before storing the new

output file on the device. If /D is

not used, the new file is put onto the

output device under a system—coded name;

the old file is deleted only after the

new file is closed by an E or Q command

and the new file is given its correct

name.

'
’

For example:

*DTA2:FILE<DTAl:ARG/D

This command deletes FILE on DTA2 (if such a file exists) before

creating a new FILE on DTA2.

4.3 SPECIAL KEY COMMANDS TO THE EDITOR

The Editor can be considered as operating in several different

modes. Command mode is indicated by the Editor printing a # at

the left margin of the teleprinter paper. This indicates that

the Editor is waiting for a command from the keyboard.

Text mode is the condition of the Editor when it is processing

various editing and I/O commands.

The following commands are available to allow the user to

transfer between modes.

Command Mode in Which Used Meaning

CTRL/C Text mode and Return to the Keyboard Monitor.

Command mode The text buffer is retained

and the Editor remains acces~

sible to the user. In Text mode,
text between the last carriage
return and the TC is lost.

The START command can be used to restart the Editor as follows:

+C

.START

*

The above command (START) recalls the Command Decoder to accept

new I/O file designations. When the START command is given and the

previous output file was not closed, that output file and the con~

tents of the output buffer are deleted.

Command Mode in Which Used Meaning

CTRL/O Text mode Stops the listing, writing, or punch—

ing of text on the Teletype. Returns

control to the command mode.

CTRL/FORM Text mode Returns the Editor to command

mode.

Other special Editor characters are used to represent numbers

or perform erasures, as described below:

Character Example Meaning

.+l C The dot or period character is

.~7 L used as the current line coun—

L ter character. The dot can be

used alone or with + or
w

an

integer, any place where a

number can be used.

in use to the dot and repre-

sents the highest numbered line

in the text buffer.

/ /~7 L The slash character is similar

/ 5 I

RUBOUT \ Typing the RUBOUT key in text mode

key causes a backslash to be printed
and one character deleted from the

text buffer. The erasure is done

right to left up to the last

carriage return/line feed. Typing
the RUBOUT key in command mode

causes the entire command line to

be deleted. Typing the RUBOUT key
inside a search string causes the

string to be deleted and the $

reprinted.

4.4 SUMMARY OF EDITOR COMMANDS

The following is a summary of the Symbolic Editor commands.

Additional information on these commands and their usage is found

in Chapter 6 of Introduction to Programming 1970.

The commands discussed in this section can each be given whenever

the Editor prints a # at the left margin. The commands are of the form:

#x (RETURN key)

#n x (RETURN key)

or

#m,n x (RETURN key)

where m,n represents line number designations, n represents a

single line number, and X represents the command letter. The

command is entered to the Editor with the RETURN key. Numbers

used in Editor commands are decimal numbers.

Command

A

LINE FEED

key

>

Format

#A

#L

#n L

#m,n L

#>

#<

#I

#n I

#n C

#m,n C

#n D

#m,n D

#K

TABLE 4.2

Symbolic Editor Commands

Meaning

Append the following text being typed at

the keyboard until a FORM FEED (ASCII 214

or CTRL/FORM) is found. The FORM FEED

returns control to command mode. Text

input following the A command is appended to

whatever is present in the text buffer.

List entire contents of the text buffer

on the teleprinter.

List line n of the text buffer on the

teleprinter.

List lines m through n of the text buf-

fer on the teleprinter. Control then

returns to command mode.

Equivalent to .+l L, lists the next line

in the text buffer on the teleprinter.

Equivalent to .+l L, lists the next line

in the text buffer on the teleprinter.

Equivalent to .~l L, lists the previous
line in the text buffer on the teleprinter.

Insert whatever text is typed before

line 1 of the text buffer. The FORM FEED

(CTRL/FORM) terminates the entering pro~

cess and sends control to the command

mode where Editor prints a #.

Insert whatever text is typed (up to a

FORM FEED) before line n of the text

buffer.

Change the text of line n to the line(s)

typed after the command is entered, up to a

FORM FEED.

Delete lines m through n and replace
with the text line(s) typed after the

command is entered. Typing CTRL/FORM
indicates the end of the inserted lines.

Delete line n from the buffer.

Delete lines m through n from the buffer.

The space used by the deleted line(s) is

not reused until after a K command is

performed.

Kill the buffer. Resets the text buffer

pointers so it appears that there is no

text in the buffer.

4-5

TABLE 4.2 (Cont'd.)

Symbolic Editor Commands

Command Format

M #m,n$x M Move lines m through n directly before line

x in the text buffer. The $ character

represents typing the dollar sign key
(SHIFT/4). The old occurrence of the moved

text is removed; no buffer Space is lost.

G #G Get and list the next line which has a

label associated with it. A label in this

context is any line of text which does not

begin with one of the following:

space (ASCII 240)

/ (ASCII 257)
TAB (ASCII 211)

RETURN(ASCII 215)

At the termination of a G command, control

goes to command mode with the current line

counter equal to the line just listed.

#n G Get and list the first line which begins
with a label, starting the search at line n.

B #B List the number of available core locations

in the text buffer. The Editor returns the

number of locations on the next line. To

estimate the number of characters that can

be accommodated in this area, multiply the

number of free locations by 1.7.

S #5 Character search command (see section 4.5).

#J Inter-buffer search command for character

strings (see section 4.5.2).

F #F Follows a J command only. Look for next

occurrence of previously specified character

string (see section 4.5.2).

$ #$ text‘ Performs a character string search for the

#$ text" string "text”. See section 4.5.2

#" Following a string search, #" searches for

the next occurrence of the string.

R #R Read from the previously specified input
device and append the new text to the

current contents of the buffer. If no

input file was indicated or if no input
remains, a ? is printed and control returns

to command mode.

N #N Write the current buffer to the indicated

output file and read the next logical page.

#n N Write the current buffer to the output file,
zero the buffer, and read the next logical
page. This is done n times until the nth

logical page is in the text buffer. Control

then returns to command mode.

TABLE 4.2 (Cont'd.)

Symbolic Editor Commands

Command Format Meaning

The N command cannot be used with an

empty text buffer. A ? is printed if

this is tried.

Y #n Y Skip to a logical page in the input file,
not writing any output. For example:

#5 Y

\.
reads through four logical pages of in—

put, deleting them without producing
output. The fifth page is read into

the text buffer and control automatically
returns to command mode.

P #P , Write the entire text buffer to the out“

put buffer.

#n P Write line n of the text buffer to the

output buffer.

#m,n P - Write lines m through n, inclusive, to

the output buffer. The lines m through
n are written into the output buffer,
and when this buffer is full, the text

is output to the indicated output file.

T #T Punch trailer tape. Causes 32 frames

of blank tape to be written into the

OUtPUt buffer (only to non-directory devices).

E #E Output the current buffer and transfer

all input to the output file, closing
the output file.

Q #Q Immediate end of file. Q causes the

text buffer to be output. All text

written into the output buffer is then

written into the output file and the

file clOSed. Control then returns to

either the Keyboard Monitor or Command

Decoder, depending on the /A Switch.

. By typing these characters the user can

/: or /: obtain the current line number (.2) and

the last line number in the text buffer

(/=). The number is printed by the Editor

immediately after the user types the equal
Sign. (The colon character is equivalent
to the equal Sign.)

H O H

4.5 EDITOR TEXT BUFFER

In text mode, the Editor performs I/O operations on the text

within the text buffer.

Approximately 5600 decimal characters can be accommodated in the

text buffer. Any changes, additions, character searches, and

deletions use available buffer space; i.e., changing line 1 causes

a new line to be generated while the old line is not deleted from the

physical text buffer (the line is no longer a logical part of the text

within the buffer, however). Deleting lines of text, similarly, does

not reclaim buffer space used by the deleted lines. The user should,

therefore, avoid completely filling the buffer so that useful editing

can be performed.

When the point where only 256 decimal locations are available in

the buffer is reached, a warning bell is rung. Whenever another

carriage return is encountered on input, control returns to command

mode and the Teletype bell rings. Under these conditions, the user

must again give the command and the Editor accepts one line at a time.

When the absolute end of the buffer is reached, no more characters are

added to the buffer. Any attempt to add characters results in a ? and

return to command mode.

4.6 SEARCH MODE

There are two types of search available in the PS/8 Editor. The

first is the standard character search command which is of the form:

#8

#n S

or #m,n S

The search command searches the entire text buffer or the line(s)

indicated for the search character. The search character is typed by

the user after the RETURN key which enters the command. The search

character does not echo on the teleprinter. The Editor prints the

contents of the entire buffer or the indicated line(s) until the

search character is found. Printing stops after the search character

is printed.

When the search character is found, the user has the following

options:

Type Result

CTRL/G (BELL rings) Change the search character to

the next character typed.

CTRL/FORM Continue searching for character.

RETURN key End line here, deleting any fol-

lowing text on that line.

LINE FEED key Make two lines out of the current

line by inserting a carriage return

character at this point.

RUBOUT key Delete characters from this line.

Each RUBOUT echoes a backslash

(\) for each character deleted.

4.6.1 Intra~buffer Character String Search

The second type of search available is the character string
search. This search can identify a given line in the buffer by

the contents of that line or any unique combination of characters.

This search returns the line number as a parameter that can then

be used to further edit the text. There are two types of string

search available: Intra~buffer search and inter—buffer search.

The intra—buffer search will stop when all text in the cur~

rent buffer has been scanned. If the string is not found, a ?

is printed and control returns to command mode. If the string is

found, the line number is put into the current line counter, and

control stays in command mode, waiting for further instructions.

Searching for a string merely furnishes a line number which can

be used with the other Editor commands. This provides a useful

framework for editing, as one no longer need search for line num—

bers by listing lines.

An intra~buffer search is signalled by typing the ALT MODE

key (which echoes as $) in response to the Editor‘s #. The user

then types the string to be found (up to 20 characters long, any

additional characters typed are echoed but not included in the

search). The search string cannot be broken across line

boundaries. Typing a single quote (') terminates the character

string and causes the search to be performed. Use of the single

4~9

quote starts the search at line 1 of the text buffer. Use of the

double quote (") instead of the single quote causes the search to

begin at the current line + 1. Use of
'

and
"

as command elements

prohibits their use in the search string.

For example, if the text buffer contains:

ABC DEF GHI

lA2B3C4D5E6

STRINGOABCDEFG

and the user wants to list the line that contains RINGO. This

could be done by typing:

#$RINGO'L

and the RETURN key in response to the # printed by Editor ($

is printed by the ALT MODE key). The search begins with line 1

and continues until the string is found. The current line counter

is set to the line in which the string occurred, the line is

printed as follows:

STRINGOABCDEFG

and control returns to command mode, awaiting further commands.

If the user wanted to find the next reference to RINGO, he

could type:

#IIL

In this case,
"

is a command which causes the last string searched

for to be used again, with the search beginning at the current

line + 1. It is not necessary to enter the search string again.

The L (List command) or any other command code can be given

following either
'

or . The L command causes the line to be

listed when and if it is found.

In order to clear the text string buffer, the use can type:

#$'

The system will respond with a question mark and the text string

buffer is cleared.

The properties of
‘

and
"

allow for easy and useful editing.

Assume the following text:

TAD GO

DCA GAK

DUM, OSR

SNA CLA

CIF 2g /NEW FIELD

In order to change the CIF 20 to CIF 10, the user can give the

following command:

#$DUM,'$CIF 2g"c
CIF 1g /NEW FIELD

(type CTRL/FORM)

The above set of instructions to the Editor caused a search for

the line beginning with DUM, and began the search with line 1.

Then a search was made for CIF 20 starting from the line after

the line containing DUM. The line number of the line containing

CIF 20 is the current line number when the C (Change) command is

given. The user then changes the line to the correct instruction.

In using this search feature, the result is a line number.

Thus any operations which can be done by explicitly specifying a

line number can be done by specifying a string.

For example,

#SSTRING'+4L

will list the fourth line after the first occurrence of STRING

in the text buffer.

#SLABEL1,',$LABEL2,"L

will list all lines between the two labels, inclusive.

#SPFLUG'S

4*11

will do a character search on the line which contains PFLUG. (The

user types the search character after typing the RETURN key that

enters the line.)

In cases where both strings and explicit numbers are used,

use strings first. For example:

#l+$BAD!'L

will not produce the next line after BAD! occurs. The correct

syntax is:

#$BAD!'+lL

4.6.2 Inter—Buffer Character String Search

The inter—buffer search scans the current text buffer for

an object string. If the string is not found, the current buffer

is written to the output file, the buffer is cleared, and the

next buffer is read from the input device. The search then re~

sumes at line 1 of the new buffer. This process continues until

the string is found or no more input is left. If input is ex—

hausted, control returns to command mode with all the text hav—

ing been written to the output file. If the string is found,

control returns to command mode with the current line equal to

the line number of the first occurrence of the string.

The form of the command is as follows:

#J Where # is printed by Editor

$GONZO' $ is printed by Editor auto«

#,=24 matically. Search proceeds,
first occurrence of GONZO

was line 24 of the current

buffer.

To find further occurrences of the string GONZO, the user can

use the F command. The F command uses the last character string

entered to search the buffer starting from the current line

count + 1.

#F Search for the string GONZO again
#.=lfl6 starting at the current line + l.

After the J or F commands have proceSSed the entire input
file, it is necessary to execute either an E or Q command to

close the output file. If this is not done, the file will be

deleted by the monitor. J and F give a "?" error message if no

output file exists.

4.7 ERROR MESSAGES

Minor errors are indicated by a question mark at the left

margin of the Teletype paper. A ? is caused by an Editor command

string error, an attempt to execute a text type command (R, Y,

P, N, etc.) without assigning a device, or a search for an un—

found string.

Major errors cause the system to leave the Editor and return

to the Keyboard Monitor. These messages are of the form:

? n TC

where n is an error code and the TC indicates that control has

passed to the Keyboard Monitor. These error codes and their

meanings are listed in Table 4.3.

TABLE 4.3

Editor Error Codes

Error Code Meaning

Q Editor failed in reading a device. Error occurred

in device handler, most likely a hardware malfunc-

tion.

1 Editor failed in writing onto a device. Generally
a hardware malfunction.

2 File close error occurred. For some reason the

output file could not be closed; the file does

not exist on that device.

3
’

File open error occurred. This error occurs if the out—

put device is a read only device or if no output file
name is specified on a file-oriented output device.

4 Device handler error occurred. The Editor could not

load the device handler for the specified device.

This error should never occur.

When the output device is full and a write is attempted on that

device, an error occurs. The output file is closed, the message

FULL

*

is printed, and control returns to the Command Decoder for a new set

of I/O specifications. The new output file will contain the text that

would not fit on the output device, and any further editing the user

wishes to do.

1) The contents of the text buffer are retained through
this procedure. Thus, no text will be lost if this

error occurs .

2) If no output file is specified when control returns to

Command Decoder, the Editor returns to Command Decoder

again. This continues until an output device is

specified.

CAUTION: Specifying an improper output device

(such as PTR:) will cause a fatal

error, and the output buffer will be

destroyed.

3) If the output device is valid, Editor will continue the

operation which filled the old file, putting all out-~

put into the new output file. After editing is com~

pleted, the two files should be concatenated with PIP

or EDITOR, as follows:

.R EDIT

*OUT+IN

#Y

#J

$STRING'
FULL

*DTA3:OUT2+

#.L
TAD STRING

#.D

#E

FULL

*DTA4:OUT3+

At this point, the

DSK:OUT,DTA3:OUT2,
file is split like

middle of a line.

output file is the concatenation of

and DTA4:OUT3. When the output
this, the split may occur in the

Therefore, never try to edit the

output files separately as the split lines are lost.

First combine the files with PIP,

follows:

.R PIP

in this case, as

*DTA2:OUT DSK:OUT,DTA3:OUT2,DTA4:OUT3

CHAPTER 5

PAL—8 ASSEMBLER

PAL—8 is the PS/8 version of 8K PAL—D on the Disk Monitor System. For a

detailed description of PAL—8, read the information on 8K PAL—D in Programming

Languages. PAL-8 has, in addition to the features of 8K PAL—D, five extra

pseudo-ops: FILENAME, DEVICE, IFNDEF, IFNZRO, and FIXMRI.

A complete listing of PAL—8 permanent symbols is located in Appendix C.

5.1 CALLING AND USING PAL—8

The user can call PAL-8 from the system device by typing:

.R PAL8

where the dot was printed by the Keyboard Monitor. The system replies by

activating the Command Decoder which, in turn, prints a star at the left margin

of the teleprinter paper.

As input to the Command Decoder, the user types the name of a binary

output file followed by that of a listing output file. The left angle bracket

is followed by l to 9 input files and various options. For example:

*BINARY,LISTING<INPUT

A null output file indicates no output of that type is to be generated.

The assembler prints on the teleprinter any error messages encountered in

the program. Typing CTRL/O at the keyboard during an assembly will cause error

messages not to be printed on the Teletype; messages are still printed in the

output file.

If extensions to the file name are omitted, the following assumed extensions

are assigned:
File Type Extension

Input .PA

Binary output .BN

Listing output .LS

The following options can be indicated in the line typed to the Command

Decoder.

Option

/3

/N

/L

/G

/D

/T

/H

/K

TABLE 5-1

PAL-8 I/O Options

Meaning

Omit the symbol table normally generated with the listing
(applicable only if a listing file is specified).

Generate the symbol table, but not the listing (applicable
only if a listing file is specified).

Call the Absolute Loader at the end of the assembly and

load the binary file (only applicable if a binary file is

specified).

Call the Absolute Loader, load the binary file, and begin
execution at location 200.

Generate a DDT—compatible symbol table.

Output a carriage return/line feed in place of the FORM

FEED character(s) in the program (applicable only if a

listing file is specified).

Generate non—paginated output. Header, page numbers,

and page format are suppressed.

Used in aSSembling very large programs, causes systems

containing 12K or more of core to use field(s) 2 and up

as symbol table storage.

When the /L or /G option is specified, the user can also include any

option to the Binary Loader in the I/O specification line for PAL—8, such as

the = starting address option.

5.2 EXAMPLES OF I/O SPECIFICATION STRINGS

Example 1:

*PTP:,LPT:<SOURCE

The above lines cause the PAL—8 assembler to be brought into core from the

system device and the program SOURCE.PA (or SOURCE) is assembled. The binary

output of the assembly is put onto the paper tape punch and the listing and

symbol table on the line printer.

Example 2:

.R PAL8

*,LISTIN<PROG /s

The above I/O specification line causes PAL—8 to assemble PROG.PA (or PROG),

putting the listing only into the file LISTIN.LS on DSK. No binary output is

generated.

Example 3:

.R PALS

*BIN<INPUT.XY /G=6gg

The above I/O specification line assembles INPUT.XY, putting the binary output

into BIN.BN and then calls the Binary Loader which loads BIN.BN and starts it

at 00600. (=600 is an option to the Binary Loader specifying the starting

address).

Example 4:

.R PALS

*DTAl:PROG

The above lines will assemble file PROG from device DTAl checking for errors,

which are listed on the teleprinter. There are no output files.

5.3 PAL—8 PSEUDO“OPS

In addition to the 8K PAL-D pseudo~ops, PAL—8 also has the following:

IFNDEF, IFNZRO, DEVICE, FILENAME, and FIXMRI (as in PAL III).

IFNDEF is similar to IFDEF in 8K PAL—D. The pseudo~op is expressed in the

form:

IFNDEF symbol <statements>

If the symbol indicated has not been previously defined, the statements enclosed

in angle brackets will be executed; If the symbol is defined, the statements

in the angle brackets are ignored. Any number of statements can be contained

in the angle brackets and may consist of several lines of code.

IFNZRO is similar to IFZERO in SR PAL—D. The pseudo-op is expressed in

the form:

IFNZRO expression <statements>

If the evaluated (arithmetic or logical) expression is not equal to zero,

assemble the statements within the angle brackets. If the expression is equal

to zero, ignore these statements. The expression cannot contain any imbedded

spaces and must have a single space preceding and following it. Any number of

statements can be contained in the angle brackets and may consist of several

lines of code.

Pseudo-ops can be nested. For example:

IFDEF SYM <IFNZRO X2 <...> >

The evaluation and subsequent inclusion or deletion of statements is done by

evaluating the outermost pseudo—op first.

DEVICE and FILENAME are used to generate parameters for calling PS/8 I/O

routines (see the PS/8 Programmer's Reference Manual, DECtPBvMEXA~D). They are

of the form:

DEVICE name

FILENAME name

With DEVICE, name can be 1 to 4 alphanumeric characters. The assembler

allocates 2 words for name and converts the characters to 6~bit ASCII, filled

with zeros on the right.

With FILENAME (or FILENA, which is acceptable), name (or name.extension)

can be as many as 8 characters altogether. Four words are allocated for the

storage of name in 6—bit ASCII, the first three words are the file name filled

with zeros on the right, and the last word is the file extension. For example:

L, FILENAME ABC.DA

is equivalent to the following coding:

L, fing
533%
MW
fi4fil

FIXMRI makes a symbol a memory reference instruction. All FIXMRI

pseudo—ops are of the form:

FIXMRI namezvalue

FIXMRI can appear anywhere in a PAL—8 program. The letters FIXMRI must

be followed by one space, the symbol for the instruction to be defined,

an equal sign, and the value of the symbol. The pseudo—op must be repeated

for each memory reference instruction to be defined. For example:

FIXMRI FADD=lflflQ
FIXMRI FSUBzzggg
FSQRT=2
FIXTAB

PAUSE

When the preceding program segment is read into the Assembler during

pass 1, the three symbols listed are added to the permanent symbol table.

Notice that FSQRT is not a memory reference instruction. This process is

often performed to alter the Assembler‘s symbol table so that it contains

those symbols used at a given installation or by a given program-

The following is a summary of the PAL—8 pseudo—ops. These pseudo~ops

are the same as for 8K PAL-D and are described in greater detail in Programming

Languages.

TABLE 5.2

PAL-8 Pseudo—Ops

Mnemonic Code Operation

$ Indicates the end of a program, terminates each pass of

the assembler.

DECIMAL Decimal conversion, numeric conversion interprets all

numbers input as being decimal numbers.

DEVICE Used to generate I/O routine parameters. See section 5.3.

EJECT Causes the listing to jump to the top of the next page.

(A page eject is done automatically every 55 lines.)

Mnemonic Code

ENPUNCH

EXPUNGE

FIELD

FILENAME

FIXMRI

FIXTAB

IFDEF

IFNDEF

IFZERO

IFNZRO

NOPUNCH

OCTAL

PAGE

PAUSE

TABLE 5.2 (Cont'd.)

PAL—8 Pseudo—ops

W

Causes the assembler to resume or continue binary output.

Deletes the entire permanent symbol table, except for

pseudo—ops.

Causes a field setting to be output on the binary output
file which tells the Loader to begin loading information

into the new field. For example:

FIELD I

will cause subsequent statements to be loaded into

field 1.

Used to generate I/O routine parameters. See section 5.3.

Defines a memory reference instruction. See section 5.3.

Appends all presently defined symbols to the permanent

symbol table. All symbols defined before the occurrence

of FIXTAB are made part of the permanent symbol table

until the assembler is reloaded.

Symbolic representation for indirect addressing. For

example

DCA I ADD

Of the form:

IFDEF symbol <statements>

If the symbol indicated is previously defined, the state“

ments in the angle brackets are assembled. If undefined,
ignore these statements.

See section 5.3.

Of the form:

IFZERO expression <statements>

If the evaluated (arithmetic or logical) expression is

equal to zero, assemble the statements within the angle
brackets. If the expression is non~zero, ignore the

statements.

See section 5.3.

Upon encountering this statement, the assembler continues

to assemble the code, but ceases binary output. See

ENPUNCH.

Octal conversion; numeric conversion is originally set

to octal and can be changed back to octal after a DECIMAL

pseudo—op has been used.

Terminate current page, begin assembly of succeeding
instructions on next core page.

Acts as a NOP in PAL—8. PAUSE appears only for compatibility
with PAL III and PAL—D.

Mnemonic Code

TEXT

XLIST

ZBLOCK

TABLE 5.2 (Cont'd.)

PAL—8 Pseud0*ops

Operation

Text string. Characters are stored in six—bit ASCII, with

a printing character used to delimit the string. For

example:

TAG, TEXT /123*/

the string would be stored as:

6162

6352

flflfifl

Those portions of the source program enclosed by XLIST

pseudo—ops will not appear in the listing file.

Optional method of denoting a page zero reference.

DCA ADD

DCA Z ADD

The two statements generate the same code, where ADD is

on page 0.

Causes the assembler to reserve n words of memory

containing Zeros, starting at the word indicated by
the current location counter. For example:

ZBLOCK 4H

causes the assembler to reserve 4O (octal) words.

PALS ARITHMETIC AND LOGICAL OPERATORS

+ plus
— minus

i multiplication
& logical AND

I

logical OR, inclusive

Lg logical OR, inclusive

5.4 PAL~8 ERROR MESSAGES

The error messages for PAL—8 are the same as those for 4K PAL~D and

8K PALwD. The format of the error messages is

ERROR CODE ADDRESS

where ERROR CODE is a two letter code which specifies the type of error, and

ADDRESS is either the absolute octal address where the error occurred or the

address of the error relative to the last symbolic tag (if there was one) on

the current page. The programmer should examine each error indication to

determine whether correction is required.

5—7

Error Code

BE

DE

DE

IC

ID

IE

II

LD

‘PE

PH

SE

US

ZE

TABLE 5.3

PAL—8 Error Codes

Explanation

Two PAL—8 internal tables have overlapped~—This situation

can usually be corrected by decreasing the level of

literal nesting or the number of current page literals

used prior to this point on the page.

Device Error——An error was detected when trying to read

or write a device. Control is returned to the Monitor.

Device full—-The capacity of an output device has been

exceeded; assembly is terminated and control is returned

to the Monitor.

Illegal Character——An illegal character was encountered

other than in a comment or TEXT field; the character

is ignored and the assembly continued.

Illegal redefinition of a symbol—~An attempt was made

to give a previously defined symbol a new value by
means other than the equal sign; the symbol was not

redefined.

Illegal equals—~An equal sign was used in the wrong

context. Considered a warning and may not indicate

an error but rather an undefined symbol at that point.

Illegal indirect——An off—page reference was made; a link

could not be generated because the indirect bit was already
set. For example:

*2!”
TAD I A

PAGE

A: 724g

This message is given if the /L or /G options have been

Specified and the Absolute Loader cannot be found on the

system device.

Current non—zero page exceededn—An attempt was made to:

l. Override a literal with an instruction, or

2. Override an instruction with a literal; this can be

corrected by
(a) Decreasing the number of literals on the page, or

(b) Decreasing the number of instructions on the page.

Phase error——means either: no S appears at the end of the

program, or the < and > used in conditional pseudo—ops
do not match.

Symbol table exceeded-~Assembly is terminated and control

is returned to the Monitor; the symbol table may contain

up to approximately 880 user svmbols in 8K of core-

Undefined symbol~—A symbol has been processed during pass

2 that was not defined before the end of pass 1.

Page 0 exceeded——Same as PE except with reference to page 0.

5—8

CHAPTER 6

UTILITY PROGRAMS

The following chapter treats four important PS/8 system

programs: PIP, CONVERT, ABSLDR, and ODT. These programs are

used to manipulate files and file directories and for loading

and debugging programs on the PS/8 system.

6.1 PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP is used to transfer files between devices; provide

directory listings; delete and zero directories; and compress

the device directories, eliminating Spaces left by the delete

option.

6.1.1 Calling and Using PIP

To call PIP from the system device the user types:

.R PIP

in response to the dot printed by the Keyboard Monitor. The

Command Decoder then prints a star at the left margin of the

teleprinter paper and waits to receive a line of I/O files and

options. PIP accepts up to nine input files and performs out-

put to a single output file.

Since PIP performs file transfers for all file types (ASCII,

Image or SAVE format, or binary), there are no assumed extensions

assigned by PIP to file names for either input or output files.

All extensions, where present, must be explicitly specified.

Following completion of a PIP operation, the Command Decoder

again prints a
* at the left margin and waits for another PIP I/O

specification line. The user can return to the Keyboard Monitor

by typing CTRL/C.

The various options allowed on a PIP I/O specification

line are detailed in Table 6.1. Either /A, /B, or /I is generally

indicated for each transfer; if none of these are used the system

proceeds as though /A had been typed.

Option

/.A

/B

/I

/Z

/D

/C

TABLE 6.1

PIP I/O Options

Meaning

Transfer files in ASCII mode. The file is modified

as it is COpied: embedded blank tape and RUBOUTs

are deleted and leader/trailer code is reduced to a

standard length. PIP may also do some editing of the

input file under control of the /C and /T options
(see below).

Transfer files in binary mode (used for absolute and

relocatable binary files). Leader/trailer code is

reduced to a standard length, but the checksum is

not recalculated. NOTE: If several absolute binary
files are combined into one, the /S option must be

given to the Absolute Loader in order for them to

load properly. The Linking Loader will not load

combined files at all.

Transfer files in image mode. Used to transfer core

image (SAVE format) files, and any other files which

do not fall into either ASCII or binary categories.

Nothing is done to alter the input file.

Zero directory of output device before file transfer.

Before using a DECtape for the first time, the /Z

option should be used with no input files to create

an empty file directory. For example:

.R PIP

*DTA2:/Z<

Delete old copy of the output file before the transfer.

If /D is not used, the old copy would not be deleted

until all data are transferred. For example:

DTAl:FILE/D+NEW FILE

/D may also be used to delete up to 3 files at a time

by specifying the files to be deleted as output files

and not specifying any input files. For example:

*OLDABC,DTA3:FILE5/D<

deletes OLDABC from DSK and FILES from DTA3.

Eliminate trailing blanks. Valid in ASCII mode only.

TABLE 6.1 (Cont'd.)

PIP I/O Options

OP. tics W

/T Perform conversions of special characters as follows:

Character Is Converted To

TAB enough spaces to reach the next TAB

stop (every eighth position)
Vertical TAB 5 line feeds

FORM FEED 9 line feeds

/T option is valid in ASCII mode only.

=n Save n extra words per file entry in the directory
to contain descriptive information about the file.

For use with the /Z and /8 options only. Typing
=l allows the date of the file creation to be auto—

matically stored in the directory.

/L Lists the directories of the input devices onto the

output file starting at the file specified. Notice

that in this case the input file itself is not trans~

ferred, only the directory.

/F Lists directories in short form (file names only).

/E Lists directories in extended form (the lengths of

empty files are also listed).

/s Moves the contents of the input device onto the output
device, eliminating all free files. This combines all

free files into a single contiguous block instead of

many fragments. Programs are packed together when the

files are transferred from one device onto another or

onto the same device.

,/G If errors occur during file transfer, ignore them and

keep copying.

No data transfer occurs if there are no input files specified.

Thus, /Z can be used to zero a directory, and /D can be used to

delete a permanent file entry without creating a file.

For the three directory listing options (/L, /E, /F): if no

output device is specified, the teleprinter is assumed. If no

input device is specified, DSK: is assumed.

Whenever the /S option is used, PIP prints the message:

ARE YOU SURE?

to which the user responds with the letter

if he does wish the compression (and, possibly transfer) to

occur. Typing any other character aborts the /S option.

6.1.2 Examples of PIP I/O Specification Commands

The following are legal command strings to PIP. When PIP

has completed an operation, control returns to the Command Decoder

for additional input to PIP.

Example I;

.R PIP

*SYS:BLACK<PTR:

The above command transfers a tape from the high—speed reader to

a file on the system device under the name BLACK. PIP assumes

that the input tape is in ASCII format. (The system returns to

the Command Decoder; the R PIP command need only be given once.)

Example 2:

*DTA3:MERGE<DTA1:FILE1,FILE2

merges the ASCII files FILEl and FILE2 on DTAl into one ASCII

file, MERGE on DTA3.

Example 3:

*BIN.BN<PTR:/B

reads a binary paper tape from the high—speed reader and creates

a binary file BIN.BN on the device DSK.

Example 4:

*SYS:GAG.SV<PAL8.SV/I

transfers the core image file PAL8.SV from the device DSK to

GAG.SV, on the system device.

Example 5:

*TTY:</E

produces an extended listing of the device DSK on the Teletype.

An extended listing contains all files with their associated lengths,

and all "holes" in the directory. For example, an extended listing

might appear as follows (the current date is printed before the

file listing):

9/14/7g
ABSLDR.SV 4 8/21/7g
p1p.sv 1g 8/21/7g
APPLE 17 9/12/7g
<EMPTY> 3 -

JACK 14 9/g8/7g
<EMPTY> 52g

523 FREE BLOCKS

The file lengths are decimal numbers (not octal), as is the number

of free blocks. The date of file creation is printed if at least

one additional information word is present in the directory (see

section 6.1.3).

Example 6:

*/F

produces a directory listing of file names only. Thus, the

above directory would appear on the teleprinter as follows:

9/14/7g
ABSLDR.SV

PIP.SV

APPLE

JACK

523 FREE BLOCKS

Example 7:

*LPT:<DTA2:FETCH/L

produces a listing of the DTA2 directory on the line printer;

however, the files that occur before FETCH are not listed. The

/L option gives the regular listing which includes the file name

and extension length, and date (if a date is contained in the

directory). Empty files are not indicated in the listing.

6.1.3 Additional Information Words in File Directories

If a device has any additional information words specified

in its directory, PS/8 automatically enters the last date

specified in a DATE command into the first of the additional in~

formation words when a file is created on that device. (See

Section 2.3.9 describing the DATE command.)

Dates put into these additional words appear in directory

listings. Words after the first are not currently used by the

PS/8 system.

The additional words must be specified by a /Z=n or /S=n

option. The number of additional words can be changed once

assigned to a device by compressing the device onto itself.

When using /S to transfer from a device which contained no

additional information words, if those words are specified in

the output device directory the date entries are garbled. This

can be fixed by copying each file onto itself, using the PIP

/I and /D options as follows:

device:file<device:file(ID)

NOTE

The system is initially created with one

additional information word in the file

directory.

6.1.4 PIP Error Messages

TABLE 6.2

PIP Error Messages

Message

NO ROOM FOR OUTPUT FILE

LINE TOO LONG IN FILE # n

OUTPUT ERROR

ERROR DELETING FILE

INPUT ERROR, FILE # n

CAN‘T OPEN OUTPUT FILE

Meaning

Self explanatory; either room on

device or room in directory is

lacking.

In ASCII mode a line has been found

greater than 140 characters. Be

sure the transfer is really in

ASCII mode. n is the number of

this file in the input file list.

Output error, possibly a write

locked device, parity error, or

attempt to output to a read—only
device.

The user tried to delete a file

that does not exist.

An input error occurred while

reading file number n in the input
file list.

Output file on read-only device,
or else there is no name specified
for the file.

DEVICE # n NOT A DIRECTORY DEVICE

PREMATURE END OF FILE, FILE # n

ILLEGAL BINARY INPUT, FILE # n

BAD DIRECTORY ON DEVICE # n

Error message given by directory
listing options when an incorrect

device designation is made. n is

the number of the device in the

input list.

/B option, incomplete binary input
of file n in the input file list

(ran out of input before finding
trailer tape, for example).

Self explanatory, n is the number

of the file in the input file list.

Directory listing error, the system
is trying to read the directory of

a blank device; where n is the

number of the device in the input
list.

TABLE 6.2 (Cont'd.)

PIP Error Messages

Message Meaning

DIRECTORY ERROR /S error, an error has occurred

while reading or writing the direc—

tory during an /S option. The option
is aborted; output is likely to be

garbled.

IO ERROR - CONTINUING /S error, error in copying a file.

The /S option continues.

ARE YOU SURE? /S message, respond with a Y if

you are sure you want to compress

the files.

SORRY - NO INTERRUPTIONS /S message given if +C is typed
while compressing a device onto

itself. The /S Option continues.

NO ROOM ~ CONTINUING /S message given when the output
device cannot contain all of the files

on the input device. The message

is printed once for each file which

will not fit onto the output device.

6.2 ABSOLUTE BINARY LOADER (ABSLDR)

The Absolute Binary Loader is used to load the binary output

from the PAL—8 Assembler. The input files are loaded according

to the options specified, and a core control block is constructed.

(For a description of the core control block, see Section 2.3.3).

6.2.1 Calling and Using ABSLDR

The user calls the Absolute Binary Loader from the system

device by typing

.R ABSLDR

in response to the dot printed by the Keyboard Monitor. The

system responds by printing a
* at the left margin. The user then

types an input line to ABSLDR, indicating input files and any

options desired. ABSLDR does not recognize any output files,

since the purpose of the loader is to load and start binary output

files.

The standard input devices for ABSLDR are: PTR, DTAn, DSK,

and SYS. Any other device which can contain absolute binary files

can be used as an input device if a device handler exists. TTY

should not be used, as the binary code may appear to the TTY handler

as control characters.

ABSLDR normally accepts absolute binary files. Relocatable

files must be loaded with the Linking Loader (see Section 7.3). Save

(.SV) format files can be loaded with the I option. If no extension

to the input file name is typed, ABSLDR assumes the .BN extension.

Up to nine input files are allowed. If more than one program is

present in a file, only the first program is loaded. (This feature

allows ABSLDR to ignore any noise characters which might be caused

by reading over the end of a paper tape.)

By typing the RETURN key at the end of an input specification

line, the loader is signalled that more input is to be given on

the next line. If the ALT MODE key is used as a line terminator,

no more input is expected, the Command Decoder is not recalled,

and control returns to the Keyboard Monitor. For example:

.R ABSLDR

*DTAleILEl ,FILEZ ,FILE3,FILE4
*PTR:$
o

The preceding lines cause FILEl, FILEZ, FILE3, and FILE4

to be loaded at their absolute locations in core from DECtape 1.

Then a file is to be read from the highuspeed paper tape reader.

The S character is printed by the ALT MODE key which indicates a

return to the Keyboard Monitor.

The various options accepted by ABSLDR are detailed in

Table 6.3.

TABLE 6.3

ABSLDR I/O Options

Option Meaning

/8 Used when locations fl—l777 of field g are not being
used by the program. Eliminates extra DECtape motions

to save those locations, hence saves time. For addi~

tional information, see the section 2.3.3 or the PS/8

Programmer's Reference Manual (DEC—OB—MEXA—D).

/9 Similar to /8, used when locations fi—l777 of field 1

are not to be saved.

/I Treat the input file(s) as a core image file to be

overlaid with the input of succeeding lines. If this

option is not used in the first command line, it cannot

be used unless ABSLDR is recalled from the Keyboard
Monitor level. The /I option can be used to make

patches to an already saved program without reassembling
the entire program.

/R Resets internal core map of ABSLDR to look as though

nothing has been loaded into core.

/S Load all binary programs in the specified input file(s)

(instead of loading only the first program in each

file, which is normally done).

/G Start program execution upon finishing the loading pro—

cedure. Normally, control returns either to Monitor

or Command Decoder (depending on the terminator key).
If /G is specified, control is given to the program

just loaded. The starting address is assumed to be 200

unless specified in the input string.

Control stays with the user's program until he releases
it to the Monitor from within his program. No automatic
return to Monitor or the Command Decoder occurs.

/n Where n is an integer, forces loading of all files

speCified on this input line into field n.

Set the starting address of the program in core to n,
where n 18 a 5 digit octal integer.

6.2.2 Examples of Input Lines

Example 1:

.R ABSLDR

*SYS:RPOG.SV /I
*DTAl:PATCH$
.SAVE SYS:PROG

The above commands load the core image file PROG.SV and then
overlay part of that program file with a binary patch from
DTAl. Control then returns to Monitor at which time the user

saved the patched program on the system device.

6-10

When using the /I option, the starting address and Job Status

Word of the core image being loaded are ignored by the Loader.

The user must specify starting address and contents of Job Status

Word.

As another example, the user could overlay PIP with a binary

patch which will not change its starting parameters:

.R ABSLDR(CR)

*PIP.SV/I(CR)
*PTR:=13ggfl(89)$
.SAVE sys PIP

This could also be done using an explicit SAVE, i.e.,

.R ABSLDR

*PIP.SV/I(CR)
*PTR:$

.SAVE sys PIP;13¢¢¢=6¢93

Example 2:

.R ABSLDR

*PTR: (89)/G$

One binary tape is loaded from the high—speed paper tape reader.

Areas fiflfiflfi-fil777 and 1gggg—11777 of core are not used by the

program. The starting address of the program is considered to

be 200 and control transfers to the user program.

6.2.3 ABSLDR Error Messages

In each case control returns to the Command Decoder and

the user can try the procedure again, or reset the loader (using

the /R option) and try again using different inputs.

TABLE 6.4

ABSLDR Error Messages

Message Meaning

I/O ERROR FILE # n An I/O error has occurred in

input file number n

BAD INPUT, FILE n Attempt to load non—binary file

as file number n of the input
file list, or a non—core image
with /I option

BAD CHECKSUM, FILE #.n File number n of the input file

list had a Checksum error

NO INPUT No input file was found on the

designated device

NO /I! Use of /I is prohibited at this

point

6.3 ODT

ODT, Octal Debugging Technique, allows the programmer to run

his binary program on the computer, control its execution, and

make alterations to his program by typing instructions at the key—

board.

Usage of ODT is described in Chapter 6, Introduction to

Programming 1970. The presentation of CDT in this section is a

summary of the commands and the application of CDT to the PS/8

system.

6.3.1 Calling and Using ODT

As explained in section 2.3.6, ODT is called into use by

typing:

.ODT

where the dot was printed by the Keyboard Monitor. Before calling

ODT, the user should have a running version of his program in core.

When ODT is used, none of the user's core is absorbed by the

running of ODT. ODT carefully preserves the sections of the

user's program which it occupies in core on the system device

and swaps it back into core as necessary. ODT is invisible

to the user and does not limit his program. Whenever using the

breakpoint feature of ODT, locations 4, 5, and 6 of the memory

field in which the breakpoint is set, are used by ODT.

ODT should not be used to debug programs which use inter—

rupts.

Typing CTRL/C causes ODT to disappear and returns control

to the Keyboard Monitor from where the user can save the program

on any device.

6.3.2 Summary of ODT Commands

Addresses can be five digits long on input and are printed

as five digits.

The following is a brief summary of the ODT commands.

Additional notes follow the summary.

TABLE 6.5

ODT Command Summary

Command Meaning

nnnnn/ Open location designated by the octal number nnnnn,

where the first digit represents the memory field.

ODT prints the contents of the location, a space,

and waits for the user to enter a new value for

that location or close the location.

/ Reopen latest opened location.

nnnn; Deposit nnnn in the currently opened location,
close that location and open the next sequential
location for modification. A series of octal

values can be deposited in sequential locations

through use of the ; character. Multiple ;'s skip
a memory location for each ; typed and prepare to

insert subsequent values beyond the one(s) skipped.

RETURN key Close the previously opened location.

LINE FEED key Close location and open the next sequential one

for modification and print the contents of that

location.

Command

11+

A
T or

(up—arrow or

circumflex)

+ or
_

(back-arrow

or underline)

nnnnnG

nnnnnB

nnnnC

M

LINE FEED

LINE FEED

nnnnW

CTRL/O

TABLE 6.5 (Cont'd.)

ODT Command Summary

Meaning

Open the current location plus n for modification

and print the contents of that location.

Open the current location minus n for modification

and print its contents.

Close location, take contents of that location as

a memory reference and open the location referenced,

printing its contents.

Close location, take contents of that location as a

12—bit address and open that address for modification,

printing its contents.

Transfer control of program to location nnnnn, where

the first digit represents the memory field.

Establish a breakpoint at location nnnnn, where the

first digit represents the memory field. Only one

breakpoint is allowed at any given time.

Remove the breakpoint.

Open for modification the location in which the

contents of the accumulator were stored when the

breakpoint was encountered.

Open for modification the location in which the

contents of the link were stored when the break—

point was encountered.

Proceed from a breakpoint.

Continue from a breakpoint and iterate past the

breakpoint nnnn times before interrupting the

user's program at the breakpoint location.

Open the search mask, initially set to 7777, which

can be changed by typing new value.

Open the lower search limit (four octal digits)

Open the upper search limit (four octal digits)

Search the portion of core as defined by the upper

and lower limits for the octal value nnnn. Search

can only be done on a single memory field at a time.

See the F command.

Open for modification the word containing the data

field which was in effect at the last breakpoint.
Contents of D always appear as multiples of 108

—

i.e., 10 means field 1, 20 field 2, etc.

Stop any printing currently in progress.

6—l4

TABLE 6.5 (Cont'd)

ODT Command Summary

Command Meaning

F Open for modification the word containing the

field used by ODT in the W (search) command, in the

+ and f (indirect addressing) commands, or in the

last breakpoint (depending upon which was used

most recently. The contents of F are always ex-

pressed as multiples of 108 (as in the D command).

RUBOUT key Cancels previous number typed, up to the last

non-numeric character typed.

When using the breakpoint feature, the user should keep

certain operating characteristics of CDT in mind:

a. ODT keeps track of the TTY flag and restores the

TTY flag when it continues from a breakpoint

b. Breakpoint feature uses locations 4, 5, and 6 in

the memory field in which the breakpoint is set.

c. The Breakpoint feature of DDT uses the table of

uservdefined device names as scratch storage, destroying

any device names the user may have created. After a

session with CDT in which breakpoints are used, the

user should give a DEASSIGN command to clear out the

user-device name table.

d. Breakpoints must not be set in the Monitor, in the

device handlers, or between a CIF and the follow—

ing JMP instruction.

The user is advised not to use uservdefined device names

in programs being developed with ODT breakpoints.

ODT uses the Job Status Word of the particular program to

determine whether or not swapping occurs. If the program does

not use locations Q~l777 in field 0, less swapping occurs during

use of the breakpoint feature.

If the user is typing any amount of a program directly into

core (in octal), the core control block of the program may not

reflect the true extent of the program. If octal additions are

6-15

made below location 2000 in field 0, ODT may give erroneous

results. The user can correct this condition by correcting the

Job Status Word.

The Job Status Word is location 7746 of field 0. The Job

Status Word can be examined and changed with ODT. Location 7745

of field 0 is the 12-bit starting address of the program in core

and location 7744 contains the field designation in the form 62n3

where n is the field designation of the starting address.

6.4 PS/B File Conversion Program (CONVRT)

CONVRT transforms DECtape ASCII files from either 4K Disk

Monitor or TSS/8 format to PS/8 format.

6.4.l Calling and Using CONVRT

To call CONVRT fromthe system device, the user types:

. R CONVRT

in response to the dot printed by the Keyboard Monitor. CONVRT

only recognizes DECtape files as legal input; any other device

causes an error message. Only one input file is accepted at a

time. A single DECtape file is indicated as input and is put

into PS/8 format on the designated output device.

CONVRT can use any device accepting ASCII code for output,

as long as it has a device handler within the system. These devices

usually include: SYS, DTAn, DSK, LPT, and FTP. Only one output

file is specified to CONVRT at a time.

Upon completion of an Operation, CONVRT returns to the user

for more input by printing another start at the left margin.

The user can then input additional commands to CONVRT, or return

to the Keyboard Monitor by typing CTRL/C.

The I/O specification line can include one of the following

options:

TABLE 6.5

CONVRT I/O Options

Option Meaning

/T Input tape is a TSS/8 DECtape. Use the /T option
whenever a TSS/8 tape is being converted.

/L Produce a listing of all ASCII files on the input
tape. For a TSS/8 tape, both /T and /L must be

issued to obtain a correct listing.

/K When converting 4K Disk Monitor DECtape files, the

file directory is brought into core with the first

file conversion specified. Subsequent files from

the same input device need not reread the directory.
Time can be saved by using the directory already in

core to convert later files. The /K Option is only
valid after the initial conversion of a file, as the

initial pass reads the directory into core.

6.4.2 Examples of CONVRT I/O Specification Commands

Example 1:

.R CONVRT

*TTY:<DTA2: /L

The above commands cause CONVRT to be started and all ASCII files

present on DTAZ are listed. CONVRT assumes 4K Disk Monitor input'

format, since /T is not specified. The listing of the file names

is put on the teleprinter.

Example 2:

.R CONVRT

*LPT:<DTA4: (LT)

The above lists all ASCII files present on DTA4 onto the line

printer. TSS/8 format is assumed.

Example 3:

.R CONVRT

*DTAl:PROGQDTA2:DEMO

*LPT:<DTA2:JOB /K

The above commands call CONVRT from the system device, and

convert the 4K Disk Monitor file DEMO on DTAZ to a PS/8 file

PROG, on DTAl. Now, to convert another file from the same device,

6vl7

the user typed the last line, which produces a listing of the 4K

Disk Monitor file JOB on DTA2 and puts the listing of the file

on the line printer. For the second operation, CONVRT uses the

Disk Monitor directory already in core (/K option).

6.4.3 CONVRT Error Messages

Any error made while using CONVRT causes a message to be

printed and the Command Decoder recalled for a new, corrected,

I/O string.

TABLE 6.6

CONVRT Error Message

Message Meaning

FILE OPEN ERR‘ An output file could not be opened on the

the specified device

OUT DEV FULL There is no more room on the output device.

Something must be deleted on the output
device before CONVRT can work properly.

INPUT DEV WRONG The input device specified is not a DECtape,
or SYS was specified as input.

INPUT READ ERR The DECtape read routine detected some

error while reading the input tape.

IN FILE NOT FOUND The input file was not found, or none was

specified.

BAD EOF A zero link was detected before the logical
End of File. The output file is closed at

this point.

FILE CLOSE FAILED An error occurred in closing the output file.

OUTPUT WRITE ERR Device handler detected an error in trans—

ferring data.

OUT DEV HANDLER ERR Output is inhibited, usually because no

output device has been specified.

CHAPTER 7

THE 8K FORTRAN SYSTEM

7.1 THE 8K FORTRAN COMPILER

The 8K FORTRAN Compiler is discussed in detail in Chapter 15

of Programming Languages. For those users not familiar with DEC's

8K FORTRAN, it is suggested that they first read that chapter.

This section describes the differences and summarizes the 8K FORTRAN

language as implemented on the PS/8 system. PS/8 FORTRAN is an im—

proved version of the old 8K FORTRAN, including such features as

Hollerith constants, implied DO loops, chaining, mixing of SABR

and FORTRAN statements, and device independent I/O.

7.l.l Calling and Using the 8K FORTRAN Compiler

The user calls the FORTRAN Compiler by typing:

.R FORT

in reply to the dot generated by the Keyboard Monitor. When the

Command Decoder prints a star at the left margin, the user types

the appropriate I/O files and any of the acceptable specification

options allowed for 8K FORTRAN.

The line to the Command Decoder consists of O to 3 output

files; the first file holds the binary output with the assumed

extension .RL, the second file the listing with the assumed ex-

tension .LS, and the third file the Linking Loader output (with

/M, /U, or /P Linking Loader options, explained in Section 7.3.1)

having the assumed extension .MP. One to 9 input files are pos—

sible with FORTRAN (although ordinarily only 1 is used). For

example:

*BINARY,LISTING,OUTPUT<INPUT (Options)

The default extension for FORTRAN input files is .FT and

the Compiler produces an output file named FORTRN.TM on the

system device for input to the 8K SABR Assembler. The compiler

automatically calls SABR after compiling. The FORTRN.TM file

is deleted by SABR, unless the /K Option is specified. (The

/K option indicates that the system is to keep the file FORTRN.TM

as a permanent file.) It is also possible to have the system auto“

matically load or automatically load and execute the output of the

SABR assembly; this is done by specifying the /L or /G options,

respectively.

SABR outputs a file in relocatable binary format into the

specified binary output file. If a binary output file is not

specified and the /L or /G option is given, then the binary out—

put goes into a file called FORTRL.TM on the system device. If

/L and /G are both absent, a null binary output file indicates that

no binary output is to be generated. A SABR listing is not gener—

ated if a listing output file is not specified.

FORTRAN only assembles one main program or subroutine per

call. A job with multiple programs must be run by compiling each

routine separately and combining them with the Linking Loader.

TABLE 7 . l

-FORTRAN I/O Options

Option Meaning

/L Load, but do not start execution. Call the Linking
Loader at the end of the assembly and load the

specified binary file. If a binary output file is

not specified, then the temporary file FORTRL.TM

is loaded into core and deleted from the file device.

The loader then either returns to the Keyboard Monifl

tor with a core image in core, or asks for more in"

put, depending on whether an ALT MODE or RETURN key
terminated the input line.

/G Load and execute the file. Call the Linking Loader,
load the binary output file and execute that file

in core. If a binary output file is not specified,
then FORTRL.TM is loaded into core and deleted from

the file device. If a starting address is not Speci”
fied (using the options described under the Linking
Loader in Section 7.3.1) control is sent to the pro—

gram entry point MAIN (FORTRAN Compiler gives this

name automatically to the main program).

/K Keep the file FORTRN.TM as a permanent file instead

of using it as input to SABR and then deleting it.

Used whenever it is desirable to edit the output of

the FORTRAN Compiler for later assembly.

The /N and /S options to the SABR Assembler can also be speci—
fied to the FORTRAN Compiler. See Section 7.2.1 for details.

Options to the Linking Loader other than /L can also be used

(see Section 7.3.1).

7.1.2 Examples of FORTRAN I/O Specification Commands

Example 1:

.R FORT

*DTAlzTEST /G

The input file TEST.FT (or TEST) on DTAl is compiled, the output

stored in FORTRN.TM on the system device, and SABR is called. SABR

uses FORTRN.TM as input and outputs the assembled file into FORTRL.TM,

deleting the old FORTRN.TM. The /G option specifies that the Link—

ing Loader then loads FORTRL.TM, deletes FORTRL.TM upon loading,

and sends control to the entry point MAIN.

i

Example 2:

.R FORT

*,,LPT:<INPUT/L/M

The FORTRAN Compiler compiles and SABR assembles the file

DSK:INPUT.FT (or INPUT), outputting the binary file in SYS:FORTRL.TM.

The Linking Loader is automatically called (/L) to load

SYS:FORTRL.TM into core and delete that file from SYS. The

Linking Loader puts a full loading map on the LPT device (/M).

The Loader then asks for another command string. If the line had

terminated with an ALT MODE key instead of the RETURN key, control

would have returned to the Keyboard Monitor after loading.

Example 3:

.R FORT

*BINARY,LPT:{MATRIX.AB /N/K

The input file MATRIX.AB on DSK is compiled and output into

SYS:FORTRN.TM. SABR is called and assembles SYS.FORTRN.TM, put-

ting the relocatable binary output into DSK:BINARY.RL and the

symbol table only (/N) on the LPT device. The /K option causes

SYS:FORTRN.TM to be kept as a permanent file.

Example 4:

.R FORT

*DTA5:SOURCE /L

The file SOURCE on DTA5 is compiled, assembled, and loaded, but

not executed.

Example 5:

.R FORT

*DTA1:PROG,PTP: ,PTP : <DTAl: PROG (NMG)

For those users with DECtape systems, keeping the source program

on a non—system DECtape and putting the binary on a non-system

DECtape gives the best possible results in terms of minimizing

tape motion.

7.l.3 FORTRAN Language Elements

7.l.3.l FORTRAN Constants

8K FORTRAN has three types of constants, integer constants,

real constants, and Hollerith constants. Integer constants are

represented by a digit string of one to four decimal digits with

an optional sign and without a decimal point. Integer constants

must fall within the range -2047 to +2047. For example:

47

+47 (+ sign is optional)
—2

0434 (leading zeros are ignored)
-0 (same as 0 or +0)

Real constants are represented either as a decimal number

or in exponential form. A real number can have any number of

digits, but only the leftmost eight digits are significant (ap-

pear in the compiled version). Real constants must fall in the

range i 1.7 x 1038. For example;

+4.50 (+ sign is optional)
4.50

—236l.008
l4

—3.0El4 (same as ~3.0 x 10)

A Hollerith constant is a string of up to 6 characters (in—

cluding blanks) enclosed in single quotes. A Hollerith constant

is treated like a real constant, except that Hollerith constants

cannot be used in arithmetic expressions other than for simple

equivalence (A=B). Any character except the quote character it—

self can be used in a Hollerith constant. For example:

'MOM'

'A+B=C'

'5 & 10'

7.1.3.2 FORTRAN Variables

FORTRAN variables can be integer or real, scalar or array,

as defined in standard FORTRAN practices (see Programming

Languages for greater detail, if necessary). For example:

LOW integer variable, scalar

MAX(I,J) integer variable, array
I integer variable, scalar

G2(2) real variable, array

ALPHA(M,N) real variable, array

SIGMA real variable, scalar

The first five characters are interpreted as defining the variable

name, the rest are ignored.

CAUTION

Programs containing subscripting compiled with the

new FORTRAN compiler (on or after October 1970) will

not run with a FORTRAN library previous to October,
1970. A new subscripting algorithm has been used

with the new FORTRAN compiler which occupies 50%

less core space and allows the user to run an up to

35% larger program (depending on the amount of sub-

scripting used) than with the earlier 8K FORTRAN.

Similarly, programs containing subscripting developed
with the new FORTRAN compiler will not run under the

old FORTRAN system.

Without parentheses, algebraic operations are performed in

the following descending order;

**
exponentiation

-

unary negation

* and / multiplication and division

+ and ~ addition and subtraction

= equals or replacement sign

Parentheses are used to change the order of precedence; an operation

enclosed in parentheses is performed before its result is used in

other Operations. In the cases of equal precedence, the calcula~

tions are performed from left to right.

Integers and real numbers can be raised to either integer or

real powers.

7.1.3.3 FORTRAN Functions

The FORTRAN Library of functions is loaded on the system de—

vice when the PS/8 system is built. The Library must be on the

system device in order to use any of the function calls. Once

the function(s) are present in the system, the user need only use

the standard function call in his program in order for that function

to be computed. Table 7.2 contains the list of the FORTRAN func—

tion Library.

TABLE 7.2

8K FORTRAN Function Library

_
Type of

Function Definition Argument(s)

ABS(x) the absolute value of x real

IABS(x) the absolute value of x integer

FLOAT(x) convert x from integer to real format integer
IFIX(X) convert x from real to integer format real

IREM(fl) remainder of last integer divide is integer
returned

IREM(x/y) remainder of x/y is returned integer

EXP(x) exponential of X, eX
x

real

ALOG(x) natural logarithm of x, loge real

SIN(x) sine of x, where x is given in radians real

COS(x) cosine of x, where x is given in

radians real

TAN(x) tangent of x, where x is given in

radians real

ATAN(x) arctangent of x, where x is given
in radians real

SQRT(x) square root of x is returned real

IRDSW(Q) read the console switch register, integer

In general,

to seven digits with the eighth digit being questionable.

returning a decimal equivalence of

the octal integer in the switch

register. The switch register can

be set before executing the FORTRAN

program; or, using the PAUSE state~

ment, during execution.

floating—point arithmetic calculations are accurate

Subsequent

digits are not siginficant even though several may be printed to

satisfy a field width requirement.

are accurate to six decimal places.

Results of function operations

The floating—point arithmetic routines check for both over—

flow and underflow. Overflow causes the FPNT error message to be

printed and program execution terminated. Underflow is detected

but does not cause an error message; the arithmetic operation in—

volved yields a zero result.

Integer arithmetic operations do not check for overflow. For

example, the sum 2047+2047 yields a result of ~2. For more informa~

tion, refer to Chapter 1 of Introduction to Programming l970 or any

text on binary arithmetic.

Zero raised to a power of zero yields a result of l. Zero

raised to any other power yields a zero result. Numbers are raised

to integer powers by repetitive multiplication. Numbers are raised

to floatingupoint powers by calling the EXP and ALOG functions.

A negative number raised to a floating~point power does not cause

an error message but uses the absolute value of the negative number.

Thus, the expression (-3.0)**3.0 yields a result of +27.

7.1.4 FORTRAN I/O Under PS/8

FORMAT statements each have line numbers and one or more data

field specifications. FORMAT statements are used in conjunction

with the list of a data transmission statement. Both numeric and

alphanumeric field specifications can appear in a FORMAT statement.

The FORMAT statement also provides for handling multiple line for—

mats, skipping characters, space insertion, and repetition.

TABLE 7.3

FORMAT Field Specification Codes

Field Type External Format

E decimal floating point with E exponents: .324E+l0

F decimal floating point with no exponent: 283.75

I decimal integer: 79

Aw alphanumeric data, w characters are to be trans-

mitted. Number of characters transmitted is

limited by the number of characters which can be

stored in the space allotted for the variable.

This maximum number depends on variable type: 6

characters for a real variable and 2 characters

Field Type

nH

nX

TABLE 7.3 (Cont'd)

FORMAT Field Specification Codes

External Format

for an integer variable. The characters are stored

in stripped ASCII format. If not enough data is

supplied as input to the variables, the data is

padded with blanks on the right. For example:

READ (l,2fl)(M(I),I=1,8)
2g FORMAT (8A1)

if the user types at that point:

123ABC

the following are the octal values of M(I):

M(l)=6l40 or 1 blank

M(2)=6240 or 2 blank

M(6)=0340 or C blank

M(7)=4040 or blank blank

M(8)=4040 or _blank blank

As a second example:

READ(l,2¢)ALPHA

1g FORMAT (A6)

the user types:

123AB

and the octal value of ALPHA is

6162 6301 0240

Alphanumeric data can be transmitted directly
from the FORMAT statement using Hollerith con—

version. H—conversion is referenced by WRITE

statements only. The string is specified by the

form antring where n is the number of charac—

ters in the string, including blanks. For example:

zgg FORMAT (17H PROGRAM COMPLETE)

will print PROGRAM COMPLETE on the output listing.
Alphanumeric fields can be placed among other

fields in a FORMAT statement. For example:

21g FORMAT (I5,7H FORCE=Flfl.5)

can be used to output the line:

22 FORCE= 17.689fll

Blanks can be introduced into an output record

or characters skipped on an input record by use

of the nX specification. The number n indicates

7—8

TABLE 7.3 (Cont'd)

FORMAT Field Specification Codes

Field Type External Format

the number of blanks or Characters skipped and must

be greater than zero. For example:

5g FORMAT (5H STEPIS,lfiX2HY=F7.3)

can be used to output the line:

STEP 28 Y: 3.872

Output formats are specified in the forms:

Fw.d

Fw.d

Iw

Aw

where A, E, F, and I designate the conversion type, w is an integer

specifying the field width, and d is an integer specifying the

number of decimal places to the right of the decimal point. For

E and F input, the position of the decimal point in the external

field takes precedence over the value of d (Fw.d or Fw.d). For

example:

159 FORMAT (IS,Flfl,2,El6‘8)

could be used to output the line

32 £17.6Q .59625476E+Q3

on the output listing. Field width (w) should be large enough to

include the decimal point, sign, and exponent. Otherwise, the

number is right justified in the permissible field, excess digits

on the left being lost.

Repetition of a field specification can be indicated by pre—

ceding the control character E, F, I, or A by an unsigned integer

giving the number of repetitions required. For example:

3Q FORMAT (2E12.4,3IS)

is equivalent to:

3% FORMAT (E12.4,E12.4,IS,IS,IS)

Repetition of groups is indicated by enclosing the group in

parentheses and preceding the whole with the repetition number.

For example:

4% FORMAT (2I8,2(E15.5,2F8.3))

is equivalent to:

40 FORMAT (2I8,E15.5,2F8.3,E15.5,2F8.3)

Multiple record (line) formats are accomplished by use of

the slash character. Where the slash is used in place of a comma,

the output device skips to the next line (or card, or whatever the

unit record may be). For example:

5g FORMAT (3I8/IS,2F8.4)

is equivalent to:

FORMAT (318)

and

FORMAT (IS,2F8.4)

In general, numeric input conversion is compatible with most

other FORTRAN prOCessors. A few exceptions are listed below:

a. Blanks are ignored except to determine in which

field digits fall. Thus numbers are treated as

if they were right justified within a field. In

an F5.2 format, the following:

bbb12

12bbb

.leb

00012

would each be read as the number 0.12 (where "b" repre~

sents a blank space).

b. A null line delimited by two CR/LF‘s is treated as a

line of blanks, and blanks are appended to the right
of a line (if necessary) to fill out a FORMAT state—

ment. Thus

12(CR/LF)
lebb

bbblZ

ww

wan-w

are all identical under an F5.2 format. If an

entire line is blank, numeric data from that

line is read as all zeroes.

c. No distinction is made between E and F format

on input. Thus:

lOO.bb

lOOEZb

l.E2bb

blOOOO

are all read identically under either an F5.2

or E5.2 format.

7.1.5 FORTRAN Data Transmission Statements

The two FORTRAN data transmission statements are READ and

WRITE. Data transmission statements accomplish the I/O transfer

of data listed in a FORMAT statement. The two statements are of

the form:

READ (unit, format) I/O list

WRITE (unit, format) I/O list

The input/output lists are lists specifying the order of

transmission of the variable values. An element in an input/output

list can take one of the following forms:

a. Arithmetic expression: expressions more complicated
than a single variable (which can be subscripted)
are meaningless in an input operation.

b. The name of an array (1 or 2 dimensional): this indi—

cates that every element of the array is to be trans—

mitted. Elements are transmitted in the order in

which they are stored in core. For example:

DIMENSION A(2,2)
READ (l,lflfl)A

reads:

A(l,l),A(2,l),A(l,2),A(2,2)

c. Implied DO loops: of the form:

(51,52,...,sn,i=ml,m2,m3)

repeat the list elements (5) with the value of i

being equal to m through m having an optional

step value of m . The m's are integer constants

or variables, 1 is an integer variable, and
sn

are the input/output list elements

(possibly including an implied DO 100p).
For example:

DIMENSION A(3,6)
WRITE (I,lfifl) I,(A(J,I),J=l,3)

will output the values:

I,A(l,I),A(2,I),A(3,l)

It is important to remember that when using

implied DO loops, the entire implied DO loop
must be on the same input line or card. An

implied DO loop cannot be continued onto the

next line with a continuation character.

The READ statement specifies a transfer of information from a

selected input device to core memory. The READ statement assumes

the following form:

READ (d,f) list

where d is a device designation which can be an integer constant

or an integer variable, f is a FORMAT statement line number, and

list is a list of the variables whose values are to be input. The

data read by the system is converted to internal form as specified

in the referenced FORMAT statement. For example:

READ (1,15) ETA,PI,(A(I),I=1,N)

The WRITE statement is used to transmit information from core

memory to a specified output device. The WRITE statement assumes

one of the following forms:

WRITE (d,f) list

WRITE (d,f)

where d is a device designation (integer constant or integer vari—

able), f is a FORMAT statement line number, and list is a list of

variables.

The first form of the WRITE statement causes the values of the

variables in the list to be read from memory and written on the

device designated in ASCII form. The data is converted to external

form as specified by the designated FORMAT statement.

The second form of the WRITE statement causes information

to be read directly from the specified FORMAT statement and writ~

ten on the device designated (Hollerith-type information, generally).

The I/O device designations used in the READ and WRITE state-

ments are as follows:

Device Code

TABLE 7.4

Device Codes

Input Designation

Teletype keyboard
or

Low—speed reader

High~speed reader

Card reader (CR8/I)

Assignable device

(see Section 7.1.6)

Output Designation

Teleprinter

High—speed punch

Line printer (LPQB)

Assignable device

(see Section 7.1.6)

Device code 3 is assigned to the card reader (for all READ

statements), and the line printer (for all WRITE statements). The

card reader uses a two~page device handler, which is too large to be

used with the device independent I/O feature (Device code 4).

fore,

The line printer is a separate

require special formatting,

to the top of a page.

a control character.

They are as follows:

the card reader has its own device code.

such as

Theree

output device because it can

inserting a Form Feed to skip

The contents of the first column of any line is

These control characters are never printed.

Character in Column 1

space

I?!

1

Resulting Spacing

single space

double space

skip to top of

next page (Form Feed)

7.1.6 Device Independent I/O and Chaining

PS/8 FORTRAN provides for device independent, file-oriented,

formatted I/O through use of the device number 4 in the READ and

WRITE statements and several utility subroutines.

The user must indicate the /I option in order to use device

independent input, the /0 option to use device independent output.

Both options must be indicated for device independent input and

output.

NOTE

The card reader cannot be used as an assignable
device in device independent I/O statements.

The run time FORTRAN system will not permit any
two page device handlers at this time.

7.1.6.1 The IOPEN Subroutine

The subroutine IOPEN prepares the system to accept input

from a specified device when device code 4 is used in a READ

statement. IOPEN takes two arguments which are interpreted as

Hollerith strings. After a

CALL IOPEN (A.B)

any READ statement reading from device 4 will read from the file

specified by B (which must have the extension .DA) on the device

specified by A. For example:

CALL IOPEN ('DTAS',‘INPUT')

will prepare for input from the file DTA5:INPUT.DA

CALL IOPEN ('Fl',fl)

will prepare for input from the device Fl.

If the filename and device name are read with READ statements

using A format, the two nameS, must be read using A6 format and the

remaining characters filled with @ signs, not blanks.

7.1.6.2 The OOPEN Subroutine

The subroutine OOPEN prepares the system to send output to a

specified device when device code 4 is used in a WRITE statement.

The arguments of OOPEN are treated like those of IOPEN. Future

WRITE statements using device 4 write on the device and file

specified in the call to OOPEN. An error message is printed if the

program has previously issued a CALL OOPEN without issuing a sub-

sequent CALL OCLOSE. For example:

CALL OOPEN ('PTP',E)

prepares device 4 to output on device PTP:

CALL OOPEN ('SYS','LADE')

prepares device 4 to output to the file SYS:LADE.DA.

7.1.6.3 The OCLOSE Subroutine

The subroutine OCLOSE is called with no arguments. Its func—

tion is to terminate output on the output file opened by OOPEN.

If OCLOSE is not called, the output file will never exist on the

specified device.

7.1.6.4 The CHAIN Subroutine

A call to the subroutine CHAIN terminates execution of the

calling program and starts execution of the core image On the

system device as specified by the argument to CHAIN. Variables in

COMMON storage are not disturbed. For example:

CALL CHAIN('PROG‘)

causes the file SYS:PROG2.SV to be loaded and started. Notice that

PROGZ must be compiled and stored on the system device in order to

be successfully accessed.

7.1.6.5 The EXIT Subroutine

To return to the Keyboard Monitor from a FORTRAN program, the

EXIT subroutine is used, as follows:

CALL EXIT

7.1.6.6 FORTRAN Data Files

When doing FORTRAN output onto DECtape or disk into a file

which is to be read only as a data file by another FORTRAN program,

a significant time saving can be obtained by using A6 format to

output floating~point variables and A2 format to output integer

values. The same format specifications must be used when the'

data is read. The data file is not an ASCII file and should not

be edited with EDIT. The file should only be moved by PIP in

image mode (/I option).

7.1.7 Mixing SABR and FORTRAN Statements

An S in column 1 of an input line identifies that line as

containing SABR code. This feature is very useful for doing

things which are undefined in the FORTRAN language. For example:

DIMENSION M(1g)

J=N(l)
DO 55 K=2,1fl
L=M(K)

s TAD \L

5 AND \J

s DCA \J

55 CONTINUE

This section of code will form the logical AND of M(l) through

M(lfi) in the variable J.

Notice that whenever a FORTRAN variable is used in a SABR

statement, the variable name is preceded by a backslash (‘\).

FORTRAN line numbers referenced in SABR statements are also pre—

ceded by a backslash for identification purposes. (A backslash

is produced by typing a SHIFT/L.)

'vwv

7.l.8 8K FORTRAN Statement Summary

TABLE 7.5

BR FORTRAN Language Summary

Statement

Arithmetic Statements

v=e

Control Statements

GOTO n

GOTO (nl,n2,...,ni)j

IF (expreSSion) nl,n2,n3

DO n izml,m2,mQ

CONTINUE

PAUSE

PAUSE n

STOP

END

Definition

v is a variable (scalar or array);
e is an expression.

Transfer control to the statement

numbered n.

Where n. are statement numbers and j
is a scalar integer variable. This

statement transfers control to the j
member of the series of

mi.

th

This statement transfers control to

the statement numbered n ,n , or n

if the value of the numeric expression
is less than, equal to, or greater than

zero, respectively. The eXpression can

be simple or complex.

Repeat execution through statement n,

beginning with i=m , incrementing by
m

, while i is less than or equal to m .

I m is omitted, it is assumed to be E
m's and i's cannot be subscripted. m‘s

can be either integer numbers or integer
variables. i is an integer variable.

Dummy statement, used primarily as a

target for transfers, particularly as

the last statement in the range of a DO

loop. A DO loop need not end with a

CONTINUE statement.

Temporarily suspend execution. The

octal equivalent of the decimal number

n is displayed in the accumulator. Pro~

gram execution can be resumed by depres~

sing the CONT key on the console.

Terminate execution.

Terminate compilation; must be the last

statement in a program.

TABLE 7.5 (Cont'd)

8K FORTRAN Language Summary

Input/Output Statements

FORMAT(sl,sz,...,sn)

READ (u,f) list

WRITE (u,f) list

Specification Statements

COMMON
vl,v2,...,vn

DIMENSION
al,a2,...,an

EQUIVALENCE (vl,v2,...),

(Vi’vi+l"")

Subprogram Statements

FUNCTION v(al,a2,...,an)

Where 5 are data field specifications,
this statement is used with either a READ

or WRITE statement. See Section 7.1.4

for details.

Where u is a device designation (integer
constant or integer variable); f is a

FORMAT statement number; and list is a

list of variables.

Where u is a device designation (integer
constant or integer variable), f is a

format reference, and list is a list of

variables.

Specified variables or arrays are

stored in an area available to other

programs.

Used to declare variable names to be

array names and specify the number and

bounds of each one and two dimensioned

array.

The inclusion of two or more variable

or array names in a parenthetical list

indicates that the quantities in the

list are to share the same memory loca—

tion and hence have the same value.

Subscripts of array variables must be

integer constants. Names must not ap-

pear in both EQUIVALENCE and COMMON

statements.

Declares the program which follows to

be a function subprogram. v is the

name of the function being defined. v

must appear as a scalar variable and be

assigned a value during execution of

the subprogram. See Chapter 15, Program—
ming Languages 1970 for a detailed ex—

planation.

SUBROUTINE V(al,a

CALL V

CALL V(al,a2,...,a

RETURN

2"

I1
)

TABLE 7.5 (Cont'd)

8K FORTRAN Language Summary

..,an)Declares the program which follows to be

a subroutine subprogram. The arguments
in the list(s) are dummy arguments repre~

senting the arguments of the subprogram.
Dummy arguments must agree in number,

order, and type with the arguments used

by the calling program. See Chapter 15,

Programming Languages for a detailed ex-

planation.

Statement used to transfer control to

a subroutine subprogram. v is the sub—

routine name in the SUBROUTINE statement.

The arguments can be of any type, but

must agree in number, order, type and

array size with the arguments in the

SUBROUTINE statement. One or more of

the arguments can be used to return re-

sults to the calling program. For ex-

ample:

CALL EXIT

CALL TEXT(VALUE,123,275)
CALL TECK('MAX',3)

Returns control from a subprogram to

the calling program. Each subprogram
must contain at least one RETURN state~

ment. RETURN cannot be used in the main

program.

7.1.9 FORTRAN Error Messages

FORTRAN Compiler error messages are self-explanatory.

ARITHMETIC EXPRESSION TOO COMPLEX

EXCESSIVE SUBSCRIPTS

ILLEGAL

ILLEGAL

ILLEGAL

ARITHMETIC EXPRESSION

CONSTANT

CONTINUATION

ILLEGAL EQUIVALENCING

ILLEGAL

ILLEGAL

ILLEGAL

OR EXCESSIVE DO NESTING

STATEMENT

STATEMENT NUMBER

ILLEGAL VARIABLE

MIXED MODE EXPRESSION

SYMBOL TABLE EXCEEDED

SYNTAX ERROR (usually indicates illegal punctuation)

If an error is discovered in the user's FORTRAN program, the

Compiler prints the incorrect line, followed by an error message.

Although Compiler output will be suppressed, the rest of the user's

program is read, and additional error messages are printed where

necessary .

The following error messages have been added to the PS/8

version of FORTRAN:

Message Explanation

I/O A device handler has signalled an I/O
error

NO ROOM FOR OUTPUT The file FORTRN.TM cannot fit on the

system device.

SABR.SV NOT FOUND The SABR Assembler is not present on

the system device.

NO END STATEMENT The input to the Compiler has been

exhausted.

COMPILER MALFUNCTION The meaning of this message has been

extended to cover various unlikely
monitor errors.

During execution, the various library programs check for cer—

tain errors and print error messages in the form:

XXXX ERROR AT LOC NNNNN

where XXXX is the error code and NNNNN is the location of the

error.

Error Code

ALOG

IOER

CHER

FMTl

FMTZ

FMT3

DIVZ

EXP

OVFL

FLPW

SQRT

FIX

TABLE 7.6

FORTRAN Library Error Messages

Meaning
The following errors are fatal and cause a

return to the Keyboard Monitor.

Attempt to compute log of negative number.

One of the following has occurred:

1) Device independent input or output

attempted without /I or /0 options,
2) Bad arguments to IOPEN or OOPEN, or

3) Transmission error while doing I/O.

File specified as argument to CHAIN not found on

system device.
'

Invalid Format Statement

The following input errors are fatal unless

input is coming from the Teletype, in which

case the entire READ statement is tried again.

Illegal Character in I format.

Illegal character in F or E format

The following errors do not terminate execution

of the user's program.

Division by zero —

very large number is returned.

Argument to EXP too large,- very large number is

returned.

Floating point overflow —

very large number is

returned.

Negative number raised to floating point power
-

absolute value taken.

Attempt to take square root of negative number -

absolute value used.

Attempt to fix a number >2047; 2047 is returned.

In addition, the error message

USER ERROR 1 AT XXXX

means that the user tried to reference an entry point of a program

which was not loaded. XXXX has no meaning.

7~2l

To pinpoint the location of a library program execution error:

a. Determine, from the storage map, the next lowest

numbered location (external symbol) which is the

entry point of the program or subprogram contain—

ing the error.

b. Subtract, in octal, the entry point location of

the program or subprogram containing the error

from the location of the error indicated in the

error message.

0. From the assembly symbol table, determine the

relative address of the external symbol found in

step a and add that relative address to the result

of step b.

d. The sum of step c is the relative address of the

error, which can then be compared with the rela—

tive addresses of the numbered statements in the

program.

7.l.lO Implementation Notes

7.l.lO.l Alphanumeric Data Within FORMAT Statements

Alphanumeric data can be transmitted directly from the FORMAT

statement by two different methods: H-conversion or the use of

single quotes.

Hollerith (H) format is used in WRITE statements only. An

attempt to use H format specifications with a READ statement will

cause characters from the format field to be either printed or

punched. This can occasionally be a useful feature, since it

provides a simple way of identifying data that is to be read from

the keyboard. For example, the following instructions:

READ (1,3g)A,B
3g FORMAT (4HA = ,F7.2/4H : ,F7.2)

would cause A: and B: to be printed before the data is read.

The same effect is achieved by merely enclosing the alphanu~

meric data in single quotes. The result is the same as in H-

conversion; on output the characters between the single quotes

(including blanks) are written as part of the output data. For

example, when referenced from a WRITE statement,

FORMAT ('PROGRAM COMPLETE')

would cause PROGRAM COMPLETE to be printed. This method eliminates

the need to count characters.

7.l.lO.2 Subscripting

Since excessive subscripting tends to use core memory inef-

ficiently, it is suggested that subscripted variables be used

judiciously. For example, the statement

A=((B(I)+C2)*B(I)+C1)*B(I)

could be rewritten with a considerable saving of core memory as

follows:

T=B(I)

A=((T+C2)*T+Cl)*T

CAUTION

Programs containing subscripting compiled with the

new FORTRAN compiler (on or after October 1970) will

not run with a FORTRAN library previous to October

1970. A new subscripting algorithm has been used

with the new FORTRAN compiler which occupies 50% less

core Space and allows the user to run an up to 35%

larger program depending on the amount of subscript—
ing used than with the earlier 8K FORTRAN. Similarly,
programs containing subscripting develOped with the

new FORTRAN compiler will not run under the old FORTRAN

system.

7.1.10.3 DO Loops

DO loops are treated slightly differently in 8K FORTRAN than

in most compilers. The index is tested before the range of the

DO is executed. Therefore, in the following example

DO 20 N =l,M

20 CONTINUE

the instruction between the DO statement and statement 20 is never

executed if M is less than one.

7.1.10.4 PAUSE Statement

The PAUSE statement may be used for a variety of reasons to

temporarily suspend program execution. In some cases, the PAUSE

statement can be used to give the operator a chance to change

data tapes or to remove a tape from the punch. When this is done

it is necessary to follow the PAUSE statement with a call to the

OPEN subroutine. This subroutine initializes the I/O devices

and sets hardware flags that may have been cleared by pressing

the tape feed buttons. Example:

PAUSE

CALL IOPEN

7.1.10.5 EQUIVALENCE Statement

Because of core memory restrictions within the compiler,

variables can not appear in EQUIVALENCE statements more than once.

Thus,

EQUIVALENCE (A,B,C)

would be valid, but the statement

EQUIVALENCE (A,B),(B,C)

would not compile correctly.

7.1.10.6 Size of FORTRAN Programs

The maximum size of any FORTRAN program is 36 octal or 30

decimal pages of code.

PS/8 can run FORTRAN programs in 8 to 32K of core. No one

program or subprogram can be longer than 4K, however.

The user can estimate the size of his program as follows:

Take the amount of core available on the system (at least 8K) and

from it subtract 4K for the linkage subroutines; external symbol

table; and I/O, math, error, and utility subroutines. From the

remainder subtract the amount of storage required for data. The

remaining space can be used to hold FORTRAN coding, at the rate

of 50—70 FORTRAN statements per lK of core.

One way to have a longer FORTRAN program in core than is

usually possible is to divide a FORTRAN program into three

chained segments:

Segment l —

inputs data into COMMON storage

Segment 2 — FORTRAN program for data processing

Segment 3 ~ does output to desired device(s)

When this technique is used the I/O handler routines are not loaded

with the second program. The second program can then be longer

than if those routines were in core while the processing is being

done.

When chaining to a subroutine, the user must be sure he has

compiled, loaded, and saved a complete runnable main program on

the system device. This program is brought into core by the

FORTRAN CHAIN subroutine.

7.1.10.7 Using FORTRAN or SABR with the Interrupt ON

SABR code can be run with the interrupt on, providing the

user supplies his own interrupt handling code. That code which

is executed when the interrupt is off must not call any of the

SABR subroutines and must be independent of all SABR or library

subroutines and linkage subroutines.

With the interrupt on the user should not call exit routines

or do any generalized (device-independent) I/O, unless those

routines are modified to make allowances for interrupts.

7.1.10.8 Using PAL“8 with SABR or FORTRAN

It is possible to call PAL—8 subroutines from a SABR or

FORTRAN program. The user should build a core image of the

7-25

running program and return to the Keyboard Monitor by typing $

(ALT MODE key) on the last Linking Loader Command. He should

then save the core image. The core image file (.SV) can be used

as input to the absolute loader (ABSLDR) with the /I option, fol-

lowed by the binary of the PAL-8 routine. For example:

.R ABSLDR

*DTA7:CHAIN2.SV /I
*PALSUB.BN /G$

The above calls the Absolute Loader, loads the core image CHAIN2.SV

and then merges the PALSUB.BN program with it. Execution starts

at location 200 and, when completed, the system returns to the

Keyboard Monitor for further instructions.

7.1.10.9 Errors

Undefined statement numbers are not detected until the as~

sembly phase. A U error message is given. See list of SABR

error messages .

7.2 8K SABR ASSEMBLER

The 8K SABR assembler can be used as the automatic second

pass of the FORTRAN Compiler, called separately to do assemblies

of FORTRAN“compiled files, or used as an independent assembler

with its own assembly language. As explained in Section 7.1.7,

it is also possible to mix SABR statements into a FORTRAN program

to expand the capabilities of the FORTRAN language.

The 8K SABR assembler is described in Chapter 14 of Programw

ming Languages. The description in this section summarizes the

SABR language and the capabilities of the assembler. For more

complete details and examples of usage, the reader is referred

to Programming Languages.

7.2.1 Calling and Using 8K SABR

Unless otherwise specified, the SABR assembler is called

automatically by the system to assemble the output of a FORTRAN

compilation. At other times the user can call SABR by typing:

.R SABR

where the dot was printed by the Keyboard Monitor. When the

Command Decoder prints a star at the left margin the user types

the appropriate I/O files and any of the acceptable options.

The line to the Command Decoder consists of O to 3 output

files (the first for binary output, the second for the listing,

and the third for Linking Loader loading map output). 1 to 9

input files are then indicated. A null binary file is assumed

to be SYS:FORTRL.TM if the /L or /G options are specified.

Otherwise, a null binary output file indicates that no binary

output is to be generated.

The assumed extensions for SABR.are as follows:

File Type Extension

input
.

.SB

binary output .RL

listing output .LS

Table 7.7 describes the options which can be included in a command

string to 8K SABR.

TABLE 7.7

SABR I/O Options

Option Meaning

/L Call the Linking Loader at the end of the assembly and

load the specified binary file. If a binary output
file is not specified, then the temporary file FORTRL.TM

is loaded into core and deleted from the file device.

The Loader then either returns to the Keyboard Monitor

with a core image in core or asks for more input, de-

pending on whether an ALT MODE or RETURN key terminated

the input llne.

/G Call the Linking Loader, load the program into core and

begin execution. If a binary output file is not speci—
fied, then FORTRL.TM is loaded into core and deleted

from the file device. If a starting address is not

Specified (using the options to the Linking Loader),
control is sent to the program entry point MAIN (FORTRAN

Compiler gives this name automatically to the main pro~

gram.

/F Indicates that the input file is an 8K FORTRAN output
file.

/N Output the symbol table but not the rest of the listing
(applicable only if a listing file is specified).

/S Omit the symbol table from the listing (applicable only
if a listing file is specified).

7—27

When the /L or /G options are specified, any options to the Linking

Loader (described in Section 7.3.1) can be included in the command string

for SABR. This does not include the /L (Library) option of the Linking

Loader, since it would conflict with the SABR /L option.

NOTE

The FORTRAN Compiler automatically generates an entry point
named MAIN whose address is the beginning of the program.
When writing a main program in SABR, the user should

specify the entry point MAIN with the entry pseudo—op in

order to symbolically specify the starting address to the

Linking Loader (otherwise the starting address must be

specified to the Loader as a five digit address).

7.2.2 Examples of 8K SABR I/O Specification Commands

Example 1:

.R SABR

*FORTRN.TM/F/G

DSK:FORTRN.TM is assembled as a FORTRAN output file and the relocatable

binary is loaded and started at the entry point MAIN.

Example 2:

.R SABR

*SYS:TEERL,TTY:<TEE /S

The input file TEE.SB(or TEE)on DSK: is assembled. The relocatable

binary goes to the output file TEERL.RL on SYS:, the listing without a

symbol table goes to the Teletype.

7.2.3 SABR Statements

SABR symbolic code is written as a sequence of statements and is

usually prepared onwline through the Symbolic Editor program. SABR state—

ments are virtually format free. A statement line is composed as follows:

label, operator operand /comment

each element of which is separated from the others by spaces or tabe.

Labels require a command following them and comments must be preceded by

a slash. SABR generates one or morenmchine(binary) instructions or data

words for each source statement.

An input line can be up to 72 characters long. The RETURN key

is both a statement and a line terminator. The semicolon can be used to

terminate an instruction without terminating the line, permitting the user

to have more than one instruction per line of listing. Null lines created

by typing an extra RETURN key appear as blank lines in the program listing.

Table 7.8 contains a list of all special characters used

in the SABR language.

TABLE 7.8

Special SABR Characters

Character Usage

, delimits a symbolic address label

/ indicates the start of a comment

(indicates a literal

(D indicates that the numeric literal

is decimal

(D32 is equivalent to octal 40

(K indicates numeric literal is octal

(K~32 is equivalent to 7746 octal

”

precedes an ASCII constant, for example:

“; is equivalent to 273 octal

~"A is equivalent to —301 octal

~

negates a constant

increases the value of the preceding symbol
by one. For example: TAD LOC# is equivalent
to the PAL statement TAD LOC+l.

RETURN key terminates a statement line

; terminates an instruction

space separates and delimits items on the statement

line

TAB same as space

LINE FEED, FORM FEED, and RUBOUT are ignored. All other

Characters are illegal except when used as ASCII constants fol~

lowing a quote or in comments or text strings.

7.2.4 Statement Elements

Statements are composed of labels, operators, operands, and

(optionally) comments. A label is a symbolic name or location

tag created by the programmer to symbolically identify the address

of a statement in the program. Subsequent references to the state—

ment can be made by referencing the label. For example:

SAVE, fl
ABC, TAD SAVE

SAVE and ABC are labels.

An operator can be one of the following:

a. a memory reference instruction (direct or indirect)

b. an operate or IOT microinstruction

c. or a pseudo—operator

An operand can be a user—defined address symbol, a literal, or

a numeric constant.

7.2.5 Symbols

Permanent symbols are predefined and maintained in SABR's per-

manent symbol table (see Appendix C). Additional permanent sym~

bols are defined using the OPDEF and SKPDF pseudo—operator. User-

defined symbols are l to 6 alphanumeric characters long and conform

to these rules:

a. Characters must be alphanumeric, A—Z, 0—9

b. First character must be alphabetic

c. Only the first six characters are significant

d. Cannot be the same as any permanent symbol

Must be defined only once. A symbol is defined

when it appears as a symbolic address label or

in an ABSYM, COMMN, OPDEF, or SKPDF statement.

f. No more than 64 different user-defined symbols
on any one core page.

When an address label appears alone on a line (with no instruc-

tion or parameter) the label is assigned the value of the next ad«

dress assembled. For example:

TAGl,

TAG2, 3121
TAG3,

TAGl and TAG2 are equivalent symbols and are each assigned the

value 30. TAG3 is defined as being the octal location value of

TAG2, plus 1.

7.2.6 Constants

Numeric constants consist of strings of from 1 to 4 digits,

optionally preceded by a + or
-

sign. The digit string is inter—

7—30

preted as either octal or decimal according to the latest perma»

nent mode setting by an OCTAL or DECIM pseudOwoperator. Octal

mode is assumed at the beginning of an assembly. Digits 8 and 9

must not appear in an octal string.

ASCII constants are also allowed as shown in Table 7.8.

F!

ASCII constants are preceded by a character.

See also Table 7.8 for a way to increment operands using the

character. The # feature is intended primarily for manipulating

dummy variables when picking up arguments from external subroutines

and returning from external subroutines.

7.2.7 PseudO*Operators

Table 7.9 contains a list of the pseudo—operators used with

8K SABR and a brief description of their use. For a detailed

description of each pseudo—op, see Programming Languages.

TABLE 7.9

BR SABR Pseudo—Operators

Mnemonic Code Operation

ABSYM Direct absolute symbol definition, used to in“

dicate an absolute core address. For example:

ABSYM TEM 177 /PAGE ZERO ADDRESS

ARG Argument for subroutine call, indicating a value

to be transmitted, one value per ARG statement.

Used only with CALL. For example:

Nl, ARG (5g
N2, ARG LOCATN

BLOCK Reserve Storage block, reserves n words of core

by placing zeros in them. For example:

BLOCK 2gg /RESERVE 36%
BLOCK lag /(OCTAL) LOCATIONS

CALL Call external subroutine. For example:

CALL 2,SUBR

where 2 is the number of arguments to be passed
and SUBR is the subroutine name.

Mnemonic Code

COMMON

CPAGE

DECIM

DUMMY

EAP

END

ENTRY

FORTR

IF

TABLE 7.9 (Cont’d)

8K SABR Pseudo~Operators

Operation

Common storage definition, used to name loca—

tions in field 1 as externals to be referenced

by any program. For example:

A, COMMN 2g /2fl WORDS IN COMMON

Check if page will hold data, followed by the

number of words of code which must be kept to—

gether in a unit on a page. That number of

words following the CPAGE will be assembled as

a unit on the next available core page.

Decimal conversion, numeric conversion inter-

prets all numbers input as being decimal num-

bers.

Dummy argument definition, used in passing
arguments to and from subroutines. DUMMY

variables are defined in the subprograms which

reference them. For example:

ENTRY Al

DUMMY X

DUMMY Y

Enter automatic paging mode, restore automatic

paging (see LAP).

End of program or subprogram.

Define program entry point, used at beginning
of subprograms to give name of entry point
for the Linking Loader. For example:

ENTRY SUBROU

SUBROU, BLOCK 2

Assemble FORTRAN tape.

Symbolic representation for indirect addressing.
For example:

DCA I ADD

Conditional assembly, of form:

IF NAME, 7

if the symbol NAME has been previously defined,
the statement has no effect. If NAME is not

defined, the next 7 symbolic instructions are

NOT assembled.

Mnemonic Code

OCTAL

OPDEF

PAGE

PAUSE

REORG

RETRN

SKPDF

TEXT

ACH

ACM

ACL

TABLE 7.9 (Cont‘d)

8K SABR Pseudo~Operators

Operation

Leave automatic paging. Assembler is initially
set for automatic jumps to the next core page

when the current page is full (or upon REORG

or PAGE statements). This feature can be sup-

pressed with LAP.

Octal conversion, numeric conversion is origin—
ally set to octal and can be changed back to

octal after a DECIM pseudo—op has been used.

Define non-skip operator. For example:

OPDEF DTRA 6761

Terminate current page, begin assembly of suc—

ceeding instructions on next core page.

Pause for next tape, designed to allow large
source tapes to be broken into several smaller

segments. Assembly is continued by pressing
the CONT switch.

Terminate page and reset origin; origin set-
tings are always to the first address of a page.

For example:

REORG lagg

Return from external subroutine, the name of

the subroutine being left must be specified.
Before the RETRN statement is used, the pointer
in the second word of the subprogram entry must

be incremented to the point following all argu~

ments in the calling program (after the CALL

statement).

Define skip—type operator. For example:

SKPDF DTSF 6771

Text string, similar to BLOCK, except that the

argument is a text string. Characters are

stored in six—bit stripped ASCII with a print—
ing character used to delimit the string. For

example:

TAG, TEXT /123*/

the string would be stored as:

6162

6352

0000

The floating-point accumulator (in field 1)

7.2.8 SABR Operating Characteristics

SABR assembles programs page-bywpage, building various tables

as instructions are read. Literals and off~page pointers are

gathered together in a table at the end of each program page.

The LAP and EAP pseudo~ops can be used to control the automatic

paging facilities of SABR.

7.2.9 Symbol Table

One and two character symbols require three symbol table

words. Three and four character symbols require four words,

and five and six character symbols, five words.

The symbol table, not counting permanent symbols, contains

about 1800 (decimal) words of storage. This space is also used

when there are unresolved forward and external references,

temporarily stored as two-word entries.

Symbols are listed in alphabetic order at the end of the

assembly pass 1 with their relative addresses beside them. The

following flags are added to denote special types of symbols:

TABLE 7.10

SABR Symbol Flags

Flag Meaning

ABS Address referenced by this symbol is absolute.

COM Address is in COMMON.

EXT Symbol is external, and may or may not be

defined in this program. If not defined in

this program, it is assumed to be defined in

another program.

OP Symbol is an operator.

UNDF Symbol is not external and has not been de~

fined in the program. Programmer error.

7.2.10 SABR Error Messages

Because SABR is a onewpass, automatic paging assembler, ob—

ject errors are difficult to correct. If there are errors in

7-34

the source,

less.

the assembled binary code will be virtually use—

During assembly, error messages are printed at the Teletype

as they occur in the form:

C AT LOC +0004

which means that an error of type C has occurred at the fourth

instruction after the location tag LOC. The line count includes

comment lines and blank lines. The following messages can occur:

Error Code

UNDF

TABLE 7.11

SABR Error Codes

Meaning

Too many or too few ARG statements follow a

CALL statement.

An illegal character appears on the line.

A device handler has returned a fatal error

condition.

/L or /G option was indicated, but the

LOADER.SV file does not exist on the system
device.

A symbol is multiply defined. Listings of

programs with multiple definitions have un—

marked errors.

An illegal syntax has been used, one of the

following:

a pseudo-op with improper arguments
a quote mark with no argument
a non*terminated text-string
an improper address

an illegal combination of micro—instructions

There is no END statement.

Either the symbol table has overflowed, common

storage has been exhausted, more than 64 dif—

ferent user—defined symbols occurred in a core

page, or more than 64 external symbols have been

declared. Could also indicate a system error

such as overflowed output file.

No symbol table is being produced, but there

is at least one undefined symbol in the program.

Undefined symbol, printed in the symbol table

listing.

7-35

7.3 LINKING LOADER

The Linking Loader can be called automatically to load or

load and start a FORTRAN or SABR program. The Linking Loader

can also be called independently to load or load and start a

relocatable binary file stored on a device.

The Linking Loader is capable of loading and linking a user's

program and subprograms in any field(s) of memory. It is even

capable of loading programs over itself. The Linking Loader has

options which can obtain storage map listings of core availa—

bility for the user.

The Linking Loader has the capability to search program

libraries for subroutines which are referenced by the program

in core and load those subroutines needed. A library is a col—

lection of relocatable subroutines (FORTRAN or SABR output) with

a directory at the beginning to facilitate searching. Any lib—

rary can be searched by using the /L option to the Loader, but

the system library, LIBB.RL, is searched automatically just before

the Loader completes the building of a core image of the user's

program. If LIBS.RL is not on the system device, there is no

automatic library search. A program which will allow the user

to build his own subroutine library will be available early in

1971.

The Linking Loader is capable of loading any number of user

and library programs into any field of memory. Several programs

are usually loaded into each field. Because of the space reserved

for the Linkage Routines, the available space in field 0 is three

pages smaller than in all other fields.

Any common storage reserved by the programs being loaded is

allocated in field 1 from location 200 upwards. The space reserved

for common storage is subtracted from the available loading area

in field 1. The program reserving the largest amount of common

storage must be loaded first.

The RunnTime Linkage Routines necessary to execute SABR pro—

grams are automatically loaded into the required areas of every

field by the Linking Loader as part of its initialization. The

user needs to know nothing more about these routines than the

particular areas of core they occupy (see Section 7.3.3).

7.3.1 Calling and Using the Linking Loader

The user can automatically call the Linking Loader following

a SABR assembly (of either a SABR program or a SABR—assembled

FORTRAN program) by use of the /L and /G options. For details

on automatic calling of the Linking Loader, see Sections 7.1.1

and 7.2.1.

Where the user wishes to call the Linking Loader specifically

to load or load and start a relocatable binary file, he issues the

command:

.R LOADER

to the Keyboard Monitor (which printed the dot).' The Command

Decoder replies by printing a star at the left margin and the user

then indicates input/output files and any desired options.

There can be 0 to 1 output files, and l to 9 input files.

Only one binary program per file is permitted. The assumed ex-

tension for input files is .RL. The output file, if indicated, is

used to hold a map of the loaded program.

The user has the ability to specify all options and opera—

tions to be performed on one line or have various operations

performed individually. Where all options are being specified at

one timeJthe line to the Command Decoder contains the complete

instructions for the Linking Loader. If operations are to be

done individually, the user can type a command, entered with the

RETURN key, and that command will be done, with another command

expected when the first is completed. To indicate the last com-

mand the user types an ALT MODE character or ends the last command

with a /G option (start the program).

The options to the Linking Loader are as shown in Table

7.12.

Option

/I

/O

/G

/M

/U

/P

/n

/R

TABLE 7.12

Linking Loader I/O Options

Meaning

A program doing device-independent input is to

to be loaded. (This feature costs the user 3

pages of core.)

A program doing device—independent output is

to be loaded. (This feature costs the user 3

pages of core.) .

If both /I and /O are indicated, 6 pages of

core are used to handle device—independent 1/0.

/I and /0, if used, must be given before or on

the first input line specifying files to be

loaded. For example:

*INPUT,FILES /0$

is acceptable, but

*INPUT
* /O FILES

is not legal and will generate an error message.

Start the program after processing the rest of

the command string. Execution starts at the

symbol MAIN unless otherwise indicated.

Specifies the starting address of the program

if other than the entry point MAIN; where n

is an octal number up to 5 digits long.

Output a map of the loaded programs onto the out~

file specified, followed by a count of the free

pages in each field. If no output file is speci-~
fied, the map is put onto the teleprinter. The

assumed extension for the map output file is .MP.

The map is printed after the rest of the command

line is processed.

Like /M, but only outputs undefined symbols.
b

Like /M, but only outputs counts of free pages

in each field.

Where n is an integer in the range 0 to 7, in~

clusive, search through the available fields

starting at field n for space large enough to

hold each input file. Only one binary program
can be in each input file. If n is not speci—
fied, the Loader starts looking at field 0.

Restart loading process (forget all previously
loaded programs). This command is equivalent
to restarting the Linking Loader, but is much

faster for DECtape systems, since no tape motion

is involved.

7—38

TABLE 7.12 (Cont'd.)

Linking Loader I/O Operations

Option
_

Meaning

/L Load the first input file as a library file

(Loader eXpects a Library Directory as the
.

first block of the file). All other input files

on the line are ignored.

The Core Availability option (/P), causes the number of free

pages of memory in every field of memory to be printed in a list

on the teleprinter. For example, if the user has a 16K configura—

tion, a list like the following might be printed:

0002 (number of free pages in field 0)

0010 (number of free pages in field 1)

0030 (number of free pages in field 2)

0036 (number of free pages in field 3)

The number of pages initially available in field 0 is 0033 and

in all other fields is 0036.

The Storage Map option (/M), when selected, causes a list

of all program entry points to be printed along with the actual

address at which they have been loaded. Entry points of programs

which have been called but which have not been loaded are also

listed along with a U flag for "undefined“. Such flagged programs

must be loaded before execution of the user's programs are possible.

The core availability list is automatically appended to the storage

map. A sample is shown below for an 8K machine:

MAIN lazgg
READ 01055
WRITE 01066
IOH g3g31
ERROR Egggg U

GENIO fififififi U

FDV 94722
CLEAR g5247
IFAD 95131
FMP Q4632
ISTO g5g74
STO E4447

FLOT g521g
FAD g4g1g
DIV fififififi U

IREM fifififlfi U

FSB ¢4¢¢¢
FLOAT fl5fi46
FIX a4513
IFIX $4561
CHS $5231
fifill
W33

7.3.2 Examples of I/O Command Strings

The user having typed:

.R LOADER

the system returns a star and expects input to the Command

Decoder. The following is an example of input to the Command De-'

coder:

*PROG,DTA2:SUBR1,SUBR2/G

which loads DSK:PROG.RL, DTA2:SUBl.RL, DTA2:SUB2.RL, loads any

necessary library routines requested, and starts the program at

the entry point MAIN. The same process could have been done

as follows:

*PROG

*/U

*DTA2:SUBR1,SUBR2

*LPT:/M<$

.SAVE DTA2 FORTPG

.START

load DSK:PROG.RL

get a list of undefined symbols
on the teleprinter

(symbols go here)

load DTA2:SUBRl.RL,SUBR2.RL

put loading map on the line printer
load the binary of any library
routines requested by the program

and exit. ($ is printed by the

ALT MODE key.)

save the core image on DTA2 as

FORTPG.SV.

start the core image at its start—

ing address (entry point MAIN in

this case).

7.3.3 Linking Loader Error Messages

The Linking Loader gives error messages in the form:

ERROR nnnn

The different values of the nnnn error code are listed in

Table 7.13.

TABLE 7.13

Linking Loader Error Messages

Error Code Meaning

0000 /I or /O specified too late.

0001 Symbol table overflow, more than 64 subprogram
names.

0002 Program will not fit into core.

0003 Program with largest common storage area was

not loaded first.

0004 Checksum error in input tape.

0005 Illegal relocation code.

0006 An output error has occurred while reading
a binary file.

0010 No starting address has been specified and

there is no entry point named MAIN.

0011 Input device handler requires two pages

and will not fit into core where device—

independent 1/0 is being done.

0012 1/0 error on system device.

CHAPTER 8

LOADING AND OPERATING PROCEDURES

8.1 LOADING PS/8 ON A DECTAPE SYSTEM

It is suggested that the user copy the PS/8 System DECtape

(DEC‘P8~MSUB~UC) onto a certified PDP~8 DECtape, with the DECtape copy

program (DEC—OB—YPTA—PB), before using the PS/8 System. The copy can

be used, and the original stored in a safe place, in case part of the

PS/8 system should ever be inadvertently destroyed during subsequent use.

If your system uses DECtape as the system device (SYS and DSK),

use the following loading procedures:

1. Mount the PS/8 system DECtape (DEC~P8~MSUB~UC) on DECtape

unit 0 (unit 8 on some tape drives).

2. Set the LOCAL/REMOTE switch to REMOTE, and the WRITE LOCK

switch to WRITE LOCK.

3. Deposit the following bootstrap routine with the console

switches (for instructions on how to do this, see the

description of how to load the RIM Loader in either

Introduction to Programming or Programming Languages.

Location Instruction

7613 6774

7614 1222

7615 6766

7616 6771

7617 5216

7620 1223

7621 5215

7622 0600

7623 0220

7754 7577

7755 7577

4. Turn the Teletype control knob to LINE. Now set the

switch register to 7613, then press the LOAD ADD and

START keys in that order. The DECtape should rock two

or three times and the PS/8 Keyboard Monitor should

respond with a dot at the left margin.

5. To be sure the Keyboard Monitor is running, type a

CTRL/C. The system should respond by printing "TC“

followed by another dot on the next line. Now set

DECtape unit 0 to WRITE ENABLED and you are ready to

begin programming with PS/8.

If the system is not functioning properly after these steps, either

the bootstrap loader was not deposited correctly, the DECtape has been

damaged or not mounted correctly, or a hardware malfunction has

occurred. First check the bootstrap loader and try the procedure

again. If the system still does not appear to function, contact the

local DEC sales office.

8.2 LOADING PS/8 ON A DISK OR DECTAPE SYSTEM FROM PAPER TAPE

If your system uses DF32 disks, an RFO8 disk, an RK8 disk, or DEC—

tape, use the following loading procedures:

1. First load the RIM and Binary Loaders. For instructions,

see Introduction to Programming or Programming Languages).

2. Load the PS/8 binary tape with the Binary Loader,

as follows: Put the_tape in the high—speed reader,

place 7777 in the switch register (set the Data Field to

zero and the Instruction Field to the field in which the

Binary Loader is present), press the LOAD ADD key, de—

press switch register bit zero, and press the START key.

The tape will be read and will stop on the trailer code.

3. Several Configuration tapes (CONFIG) are available for

different disks. After the PS/8 Binary tape has been

read, place the appropriate Configuration binary tape in

the high¥speed reader and press the CONT key on the console

to load this tape. After reading each tape (in steps 2 and 3)

check to see that no checksum errors have occurred. If any

accumulator lights are on after a tape is read, a check—

sum error was encountered and that tape should be reloaded.

4. Put 0200 in the switch register, press the LOAD ADD and

START keys in that order. This causes the Keyboard

Monitor, USR, and ABSLDR to be loaded on disk with a

directory. The computer should then halt with 7777 in

the accumulator lights. If the lights do not contain 7777,

go back to step 2.

5. At this point the Binary Loader is still in core and is

used to load the PS/8 Command Decoder tape. Place the

tape in the reader, put 7777 in the switch register,

press LOAD ADD, depress switch register bit 0, and

press the START key. When the tape is loaded, the

accumulator should be zero (all lights off). If any

accumulator lights are on, a checksum error has occurred,

and the tape should be reloaded.

8—2

Put 0200 in the switch register, press LOAD ADD and START

keys in that order. This causes the Command Decoder and

CDT to be written onto the disk and the Keyboard Monitor

is brought into core. The system does a carriage return/

line feed and prints a dot at the left margin of the

paper.

PS/8 is now up and running. Using ABSLDR, the user should then

load the various system programs.

1. PIP Tape DEC~P8~PWXB-PB

Place the PIP binary tape into the high~speed reader.

Type the following (where . and *
are printed by the

Keyboard Monitor and Command Decoder, respectively)

.R ABSLDR (RETURN key)
*PTR:=l3flflfl(89)$ ($=ALT MODE key)

When + is printed, type any character on the keyboard,

and the tape is read. The Keyboard Monitor responds

with a dot. Type:

.SAVE SYS PIP (RETURN key)

PIP has been saved on the system device.

EDITOR Tape DEC*P8~ESAB~PB

Place the EDITOR binary tape in the reader. Load as

follows:

.R ABSLDR (RETURN key)
*PTR:(9)$ ($=ALT MODE key)

When + is printed, type any keyboard character to read

the tape. The EDITOR is read and the Keyboard Monitor

responds with a dot. Type:

.SAVE sys EDIT (RETURN key)

The EDITOR is now written on the system device.

PAL8 Tape DEC—PB-ASAE—RB

Place the PALS binary tape in the reader. Load as

follows:

.R ABSLDR (RETURN key)
*PTR:(9)$ ($=ALT MODE key)

When + is printed, type any keyboard character to load

the tape. The tape is read and the Keyboard Monitor

responds by printing a dot. Type:

.SAVE SYS PAL8 (RETURN key)

PALS is now written onto the system device.

8—3

FORTRAN Tape DEC—PB-KFXB-PB

Place the FORTRAN binary tape into the reader. Load as

follows:

.R ABSLDR (type RETURN key)
*PTR:/S$ ($=ALT MODE key)

When f is printed, type any keyboard character to

initiate reading the tape. When loading is complete,

Monitor responds with a dot. Type:

.SAVE SYS FORT (RETURN key)

FORT has been saved on the system device.

SABR Tape DEC—PB—ARXB—PB

Place the SABR binary tape into the reader. Load as

follows:

.R ABSLDR (RETURN key)
*PTR:/S$ ($=ALT MODE key)

When + is printed, type any keyboard character to initiate

reading the tape. When loading is complete, Monitor

responds with a dot. Type:

.SAVE SYS SABR (RETURN key)

SABR has been saved on the system device.

Linking Loader Tape DEC—P8—LLXB—PB

Place the Linking Loader binary tape in the reader. Load

as follows:

.R ABSLDR (RETURN key)
*PTR:(9)$ ($=ALT MODE key)

When f is printed, type any keyboard character to load

the tape. Monitor responds with a dot. Type:

.SAVE SYS LOADER (RETURN key)

The Linking Loader has been saved on the system device.

LIBS Tapes DEC_P8"SFXB—PB, DEC—PB-SYXB-PB

Place the Library Setup (LIBSET) binary tape in the reader.

Load as follows:

.R ABSLDR (RETURN key)

*PTR:/G=126flfl (RETURN key)

When + is printed, type any keyboard character to load

the tape. When the first tape is loaded, the system

responds by printing an asterisk. Now place the LIBB

Relocatable binary tape in the reader and type:

*/S$ ($=ALT MODE key)

The tape is read, and a LIB8.RL file is created on the

system device.

8. CONVRT Tape DEC»P8—SUTB«PB

Place the CONVRT binary tape in the reader. Load

as follows:

.R ABSLDR (RETURN key)
*PTR:(9)$ ($=ALT MODE key)

When l is printed, type any keyboard character to

load the tape. After loading, Monitor responds with

a dot. Type:

.SAVE SYS CONVRT (RETURN key)

CONVRT is now written onto the system device.

That completes the building of the PS/S system.

8.3 LOADING PS/S ON A DISK SYSTEM FROM DECTAPE

Follow steps 1 to 5 in section 8.2 on loading PS/8 on a disk

system from paper tape.

Put the DECtape containing the system library programs onto

DECtape unit 1 (the unit number does not matter, but must be‘consistent

with the commands given later). When the Keyboard Monitor prints a dot

at the left margin, type the following commands:

.GET DTAl PIP

.SAVE SYS PIP

.START

*EDIT.SV<DTA1:EDIT.SV /I
*PAL8.SV<DTA1:PAL8.SV /I
*FORT.SV<DTA1:FORT.SV /I
*SABR.SV<DTA1:SABR.SV /I
*LOADER.SV<DTAI:LOADER.SV /I
*LIB8.RL<DTA1:LIB8.RL/I
*CONVRT.SV<DTA1:CONVRT.SV /I
*fC

c

When each of the system programs is loaded, the Command Decoder returns

for further input and the user types CTRL/C to return to the Keyboard

Monitor. All system library programs are now loaded and available

for use.

8.4 DISK BOOTSTRAPS

Once a PS/8 System has been built on a disk, it may occasionally

be necessary to start (or bootstrap) the system into operation when

8~5

nothing is in core memory. This procedure is also recommended when a

program bug has been encountered such that the faulty program might have

changed the contents of any location above 7577 in either field 0 or

field 1.

The DF32 and RF08 bootstraps are as follows:

Location Instruction

775g 7600
7751 6693
7752 6622

g

7753 5352

7754 5752

After depositing the bootstrap, set the switch register to 7750

press the LOAD ADD and START keys in that order. The PS/8 Keyboard

Monitor should respond with a dot.

The RK8 bootstrap is as follows:

Location Instruction

gg3g 6733

flfl3l 5g31

Set the switch register to 0030, press the LOAD ADD and START keys

in that order.

8.5 RESTART LOCATIONS

If a PS/8 system should ever halt and cease any apparent response

to the user, the system can be restarted by setting the switch register

to either 7606 or 7665 in field 0, press LOAD ADD and then the START

key.

Restarting at location 7600 saves the contents of core which are

again available when the system resumes operation. Restarting at

location 7605 does not preserve the contents of core and therefore

saves time on a DECtape system.

8.6 PS/8 on the PDP—lZ

The PS/8 system provided for the PDP~12 consists of two LINCtapes.

One LINCtape contains the source of PS/8 and CONFIG; the other contains

the binary programs needed to use the system. This version of PS/8 will

run on LINCtape formatted to either l28 or 129 words per block.

8.6.1 Bootstrapping the System

Either tape can be mounted on LINCtape unit 0, as the system is

present on both tapes. The tape unit should not be WRITE ENABLED. Set

the console switches as follows:

left switches: 0700

right switches: 0000

Press the I/O PRESET switch in LINC mode. Depress the DO switch. When

the processor halts, depress the START 20 switch.

This reads and starts the Keyboard Monitor. At this point the

tape on LINCtape unit 0 should be WRITE ENABLED. From this point the

operation of the system is exactly as in a standard PDP~8 system.

8.6.2 System Tape

The system LINCtape contains the source of PS/8 and CONFIG. The

user can edit and assemble CONFIG to create special device handlers, etc.

This version of CONFIG is fully commented.

8.6.3 Binary Tape

The binary LINCtape also contains the PS/8 system. In addition

to the standard binaries of the system programs, various versions of

CONFIG are already included:

a. LTA.BN

This is the standard LINCtape system, including LINCtape

handlers, where LINCtape unit 0 is the system device.

b. DF32.BN

Contains LINCtape handlers, two DF32 disks are the system

device.

c. RF08.BN

Contains LINCtape, two RF08 disks are the system device.

(3.. RK8.BN

Contains LINCtape, a single RK8 disk is the system device.

APPENDIX A

ASCII~1968 CHARACTER SET

Character EEQE Character Code Character 9923

A 301 0 "22.0"~ : 241

B 302 1 261
" 242

c 303 2 262 # 243

D 304 3 263 $ 244

E 305 4 264 % 245

F 306 5 265 & 246

G 307 6 266
' 247

H 310 7 267 (

V

250

I 311 8 270) 251

J 312 9 271
* 252

K 313 + 254

L 314 ,
254

M 315
~ 255

N 316 < 274 . 256

0 317 > 276 / 257

p 320 / 337 = 272

Q 321
m

337 ; 273

R 322
A

336 a 275

s 323 1 336 ? 277

T 324
[333 (SHIFT/M)

U 325
\ 334 (SHIFT/L)

v 326 1 335 (SHIFT/K)

w 327 BELL 207

x 330 TAB 211

Y 331 LINE FEED 212

Z 332 CARRIAGE~ 215

RETURN

SPACE 240

RUBOUT 377

Note 1: The separator character between output and input files (in
lines to the Command Decoder) can be either < or +

. In

preliminary versions it was +

Note 2: Due to a change in the ASCII character set, the characters
A

(circumflex) and
_

(underline) replace f (upmarrow) and

+(back~arrow), respectively.

PUNCHED CARD CODES

E92e_ Punches Character EEES. Punches Character

space
1 1 11 7 P

2 2 11 8 Q

3 3 11 9 R

4 4 11 8—2 I

5 5 11 8—3 $

6 6 11 8—4 *

7 7 11 8—5)

8 8 11 8—6 ;

9 9 11 8—7 \

8—2

8—3 # 12 &

8-4 @ 12 1 A

8—5 '

_12 2 B

8—6 = 12 3 C

8-7 " '

12 4 D

.

12 5 E

0 g 12 6 F

0 1 / 12 7 G

0 2 S 12 8 H

0 3 T 12 9 I

0 4 U 12 8—2 [

0 5 V 12 8—3 .

0 6 W 12 8-4 <

0 7 X 12 8—5 (

0 8 Y 12 8-6 +

0 9 Z 12 8—7 +

0 8—2]

0 8—3
,

0 8—4 %

0 8—5 +
1. The card reader handler works

w1th elther a punched card

0 8'6 > reader or a mark—sense card

0 8—7 ?
reader.

2. The card reader handler works

with any length card up to 80

11 ~ characters.

11

11

ll

11

ll

11

3. NOTE: These are 029 card

codes.

m

U1

h

L»

m)

H

OZ'SL-‘m‘u

APPENDIX B

PS/B ERROR MESSAGE SUMMARIES

Summary of Keyboard Monitor Error Messages

Message

SYSTEM IO ERROR

MONITOR ERROR 5 AT XXXXX

XXXX?

TOO FEW ARGS

name NOT AVAILABLE

name NOT FOUND

BAD CORE IMAGE

USER ERROR fl AT xxxx

BAD ARGS

ILLEGAL ARG.

SAVE ERROR

MONITOR ERROR 2 AT xxxx

NOE!

BAD DATE

Meaning

An error occurred while doing 1/0 to the

system device.

An error occurred while doing 1/0 to the

system device. System device may not be

WRITE enabled.

Where XXXX is not a legal command. ‘For

example, if the user typed "HELLO", the

system responds "HELLO"?.

An important argument has been omitted from

a command.

Device name given in an ASSIGN, SAVE, RUN,
or GET command was not available.

The file name given was not found on the

device indicated or the user tried to

input from an output only device (see
section 2.3.3 or 2.3.7).

The file requested was not a core image
file (see section 2.3.3 or 2.3.7).

Input error detected while loading program.

xxxx can be any location.

Arguments to SAVE command inconsistent

(see section 2.3.4).

SAVE command not expressed correctly,

illegal syntax (see section 2.3.4).

An I/O error occurred while saving the

program. Program is intact in core.

Attempt made to output to a write locked

device, usually DECtape.

Attempt to restart a program which modifies

itself (see 2.3.5).

Improper syntax for date entry (see

section 2.3.9).

Summary of Command Decoder Error Messages

Message Meaning

ILLEGAL SYNTAX The command line was formatted incorrectly.

TOO MANY FILES More than three output files or nine input
files were specified.

name DOES NOT EXIST The device with the name given could not be

found in the system tables.

name NOT FOUND
V

The file with the name given does not exist

on the device indicated.

Summary of Symbolic Editor Error Messages

Minor errors are indicated by a question mark (?) printed at the left

margin of the teleprinter paper. A ? is caused by an Editor command

string error, attempt to execute-a text type command without assigning a

device, or a search for an unfound string.

Major errors cause the system to leave the Editor and return to the

Keyboard Monitor. These messages are of the form:

? n +C

where n is an error code and +C indicates a return to the Keyboard

Monitor. The meanings of the error codes are listed below:

Error Code Meaning

6 Editor failed in reading a device.

1 Editor failed in writing onto a device.

2 File close error occurred.

3 File open error occurred.

4 Device handler error occurred.

When the output device is full and a write operation is attempted

on that device, the output file is automatically closed and the message:

FULL

*

is printed. Control returns to the Command Decoder to obtain I/O

specifications for the remainder of the output file. See page 4—14 for

additional details.

Summary of PAL—8 Error Messages

Error messages for PALaB are the same as for 4K PALuD and 8K PALwD.

The format of the message is:

ERROR CODE ADDRESS

where ERROR CODE is a two letter error designation code and ADDRESS is

either the absolute octal address where the error occurred or the address

of the error relative to hee last symbolic tag on the current page.

Error Code Meaning

BE Internal tables have overlapped, decrease the level of

literal nesting or number of current page literals

used prior to this point on the page.

DE Device error detected during I/O operation. Control

returns to the Keyboard Monitor.

IC Illegal character, character is ignored, assembly
continues.

ID Illegal redefinition of a symbol. Symbol is not

redefined.

IE Illegal equals, may indicate an undefined symbol at

that point.

II Illegal indirect reference off page.

LD Absolute Loader cannot be found on system device.

PE Current non—zero page exceeded. See page 5~8.

PH Phase error, missing $‘or improper < or >
.

SE Symbol table exceeded, assembly terminated and control

returns to the Keyboard Monitor.

US Undefined symbol.

ZE Page zero exceeded.

Summary of PIP Error Messages

Message

NO ROOM FOR OUTPUT FILE

LINE TOO LONG IN FILE #n

OUTPUT ERROR

ERROR DELETING FILE

INPUT ERROR, FILE #n

CAN‘T OPEN OUTPUT FILE

DEVICE #n NOT A DIRECTORY DEVICE

PREMATURE END OF FILE, FILE #n

ILLEGAL BINARY INPUT, FILE #n

BAD DIRECTORY ON DEVICE #n

DIRECTORY ERROR

IO ERROR - CONTINUING

ARE YOU SURE?

Meaning

Self explanatory; either room on

device or room in directory is

lacking.

In ASCII mode a line has been found

greater than 140 characters. Be

sure the transfer is really in

ASCII mode. n is the number of the

file in the input file list. e

Output error, possibly a write

locked device, parity error, or

attempt to output to the paper tape
reader.

The user tried to delete a file that

does not exist.

An input error occurred while read~

ing file n in the input file list.

Output file on read—only device

or else there is no name Specified
for the file.

Error message given by directory
listing options when an incorrect

device designation is made. n is

the number of the device in the

input list.

/B option, incomplete binary input
of file n in the input file list (ran
out of input before finding trailer

tape, for example).

Self explanatory; n is the number of

the file in the input file list.

Directory listing error, the system
is trying to read the directory of

a blank device. n is the number of

the device in the input list. .

/8 error; an error has occurred

while reading or writing the

directory during an /8 option. The

option is aborted; output is likely
to be garbled.

/S error, error in copying a file.

The /S option continues.

/S message, respond with a Y if you

are sure you want to compress the

files.

Summary of PIP Error Messages (Cont.d)

Message

SORRY — NO INTERRUPTIONS

NO ROOM - CONTINUING

Summary of ABSLDR Error Messages

Message

I/O ERROR FILE #n

BAD INPUT, FILE n

BAD CHECKSUM, FILE #n

NO INPUT

NO /1:

Meaning

/S message given if C is typed
while compressing a device onto

itself. The /S option continues.

/S message given when the output
device cannot contain all files on

the input device. The message is

printed once for each file which

will not fit onto the output file.

Meaning

An I/O error has occurred in

input file number n.

Attempt to load non—binary file

as file number n.

File number n had a checksum error.

No input file was found on the

designated device.

Use of /I is prohibited at this

point.

Summary of CONVRT Error Messages

FILE OPEN ERR

OUT DEV FULL

INPUT DEV WRONG

INPUT READ ERR

IN FILE NOT FOUND

BAD EOF

FILE CLOSE FAILED

OUTPUT WRITE ERR

OUT DEV HANDLER ERR

An output file could not be opened on the

specified device.

There is no more room on the output device.

Something must be deleted on the output
device before CONVRT can work properly.

The input device specified is not a DECtape,
or SYS was specified as input.

The DECtape read routine detected some error

while reading the input tape.

The input file was not found, or none was

specified.

A zero link was detected before the logical
End of File. The output file is closed at

this point.

An error occurred in closing the output file.

Device handler detected an error in trans—

ferring data.

Output is inhibited, usually because no

output device has been specified.

Summary of FORTRAN Error Messages

FORTRAN Compiler Error Messages

ARITHMETIC EXPRESSION TOO COMPLEX

EXCESSIVE SUBSCRIPTS

ILLEGAL ARITHMETIC EXPRESSION

ILLEGAL CONSTANT

ILLEGAL CONTINUATION

ILLEGAL EQUIVALENCING

ILLEGAL OR EXCESSIVE DO NESTING

ILLEGAL STATEMENT

ILLEGAL STATEMENT NUMBER

ILLEGAL VARIABLE

MOXED MODE EXPRESSION

SYMBOL TABLE EXCEEDED

SYNTAX ERROR (usually indicated illegal
punctuation)

If an error is discovered in the user's FORTRAN program, the

Compiler prints the incorrect line, followed by an error message.

Although Compiler output will be suppressed, the rest of the user‘s

program is read, and additional error messages are printed where

necessary.

The following error messages have been added to the PS/8 version

of FORTRAN:

Message Explanation

1/0 A device handler has signalled an I/O error.

NO ROOM FOR OUTPUT The file FORTRN.TM cannot fit on the system
device.

SABR.SV NOT FOUND The SABR Assembler is not present on the

system device.

NO END STATEMENT The input to the Compiler has been exhausted.

COMPILER MALFUNCTION The meaning of this message has been extended

to cover various unlikely monitor errors.

During execution, the various library programs check for certain

errors and print error messages in the form:

XXXX ERROR AT LOC NNNNN

B—7

where XXXX is the error code and NNNNN is the location of the error.

Error Code Meaning

The following errors are fatal and cause a return to the

Keyboard Monitor.

ALOG Attempt to compute log of negative number.

IOER One of the following has occurred:

1) Device independent input or output attempted without

/I or /0 options,
2) Bad arguments to IOPEN or OOPEN, or

3) Transmission error while doing I/O.

CHER File specified as argument to CHAIN not found on system fl

device.

FMTl Invalid Format Statement

The following input errors are fatal unless input is coming
from the Teletype, in which case the entire READ statement

is tried again.

FMT2 Illegal character in I format.

FMT3 Illegal character in F or E format

The following errors do not terminate execution of the user‘s

program.

DIVZ Division by zero
-

very large number is returned.

EXP Argument to EXP too large
-

very large number is returned.

OVFL Floating point overflow —

very large number is returned.

FLPW Negative number raised to floating point power
— absolute

value taken.

SQRT Attempt to take square root of negative number — absolute

value used.

FIX Attempt to fix a number >2047; 2047 is returned.

To pinpoint the location of a library program execution error:

a. Determine, from the storage map, the next lowest numbered location

.(external symbol) which is the entry point of the program or sub—

program containing the error.

b. Subtract, in octal, the entry point location of the program or sub—

program containing the error from the location of the error indicated

in the error message. a

c. From the assembly symbol table, determine the relative address of

the external symbol found in step a and add that relative address to

the result of step b.

d. The sum of step c is the relative address of the error, which can

then be compared with the relative addresses of the numbered state-

ments in the program.

Summary of 8K SABR Error Messages

During assembly, error messages are printed at the Teletype as they

occur, in the form:

C AT LOC +0004

which means that an error of type C has occurred at the fourth instruc«

tion after the location tag LOC. The line count includes comment lines

and blank lines. The following messages can occur:

Error Code Meaning

A Too many or too few ARG statements follow a CALL

statement.

C An illegal character appears on the line.

D A device handler has returned a fatal error condi—

tion.

L /L or /G option was indicated, but the LOADER.SV

file does not exist on the system device.

M A symbol is multiply defined. Listings of programs

with multiple definitions have unmarked errors.

I An illegal syntax has been used, one of the

following:

a pseudo~op with improper arguments
a quote mark with no argument
a nonvterminated text—string
an improper address

an illegal combination of micro—instructions

E There is no END statement.

S Either the symbol table has overflowed, common

storage has been exhausted, more than 64 different

user~defined symbols occurred in a core page, or

more than 64 external symbols have been declared.

Could also indicate a system error such as over—

flowed output file.

U No symbol table is being produced, but there is at

least one undefined symbol in the program.

UNDF Undefined symbol, printed in the symbol table listing.

Summary of Linking Loader Error Messages

The Linking Loader gives error messages in the form:

ERROR nnnn

The different values of the nnnn error code are listed below:

Error Code

0000

0001

0002

0003

0004

0005

0006

0010

0011

0012

W3

/I or /O specified too late.

Symbol table overflow, more than 64 subprogram names.

Program will not fit into core.

Program with largest common storage area was not

loaded first.

Checksum error in input tape.

Illegal relocation code.

An output error has occurred while reading a binary
file.

No starting address has been specified and there

is no entry point named MAIN.

Input device handler requires two pages and will

not fit into core where device independent 1/0 is

being.done.

I/O error on system device.

APPENDIX C

PERMANENT SYMBOL TABLE FOR PAL~8 AND 8K SABR

The following are the most commonly used elements of the PEP—8

instruction set. For that reason they are found in the permanent

symbol table within the assemblers. These instructions are already

defined within the computer. For additional information on these

instructions and for a description of the symbols used when programming

other,optional, I/O devices, see the 1970 Small Computer Handbook, avail~

able from the DEC Program Library.

INSTRUCTION CODES

Mnemonic Code Operation

Memory Reference Instructions

AND 0000 Logical AND

TAD 1000 Two's complement add

ISZ 2000 Increment and skip if zero

INC1 2000 Nonskip ISZ

DCA 3000 Deposit and clear AC

JMS 4000 Jump to subroutine

JMP 5000 Jump

Group 1 Operate Microinstructions

OPR2 7000 Same as NOP

NO? 7000 No operation

IAC 7001 Increment AC

RAL 7004 Rotate AC and link left one

RTL 7006 Rotate AC and link left two

RAR 7010 Rotate AC and link right one

RTR 7012 Rotate AC and link right two

CML 7020 Complement link

CMA 7040 Complement AC

CLL 7100 Clear link

CLA 7200 Clear AC

1Not present in PAL—8.

2Not present in 8K SABR.

Mnemonic

INSTRUCTION CODES (Cont'd)

Code

Group 2 Operate Microinstructions

HLT

OSR

SKP

SNL

SZL

SZA

SNA

SMA

SPA

7402

7404

7410

7420

7430

7440

7450

7500

7510

Operation

Halts the computer

Inclusive OR SR with AC

Skip unconditionally

Skip

Skip

Skip

Skip

Skip

Skip
is

Combined Operate Microinstructions

CIA

STL

GLK3

STA

LAS3

Program Interrupt

IOT3

ION

IOF

Keyboard/Reader

KSF

KCC3

KRS3

KRB

7041

7120

7204

7240

7604

6000

6001

6002

6031

6032

6034

6036

3Not present in 8K SABR

on

on

on

on

on

on

nonzero link

zero link

zero AC

nonzero AC

minus AC

positive AC (zero

positive)

Complement and increment AC

Set link to 1

Get link (put link in AC, bit 11)

Set AC to *1

Load AC with SR

Turn interrupt processor on

Turn interrupt processor off

Skip on keyboard flag

Clear keyboard flag and AC

Read keyboard buffer (static)

Read keyboard buffer (dynamic)

INSTRUCTION CODES (Cont'd)

Mnemonic Code

Teleprinter/Punch

TSF 6041

TCF” 6042

Tpc‘+ 6044

TLS 6046

High Speed Reader

RSF 6011

RRB 6012

RFC 6014

High Speed Punch

PSF 6021

PCF” 6022

PPC” 6024

PLS 6026

Operation

Skip on teleprinter flag

Clear teleprinter flag

Load teleprinter and print

Load teleprinter sequence

Skip on reader flag

Read reader buffer and clear

reader flag

Reader fetch character

Skip on punch flag

Clear on punch flag

Load punch buffer and punch
character

Load punch buffer sequence

DECtape Transport Type TU55 and DECtape Control Type TCOl”

DTRA

DTCA

DTXA

DTSF

DTRB

DTLB

6761

6762

6764

6771

6772

6774

”Not present in 8K SABR.

Contents of status register is

ORed into AC bits 0—9

Clear status register A, all

flags undisturbed

Status register A loaded by
exclusive OR from AC. If AC

bit 10:0, clear error flags;
if AC bit 11:0, DECtape control

flag is cleared

Skip if error flag is l or if

DECtape control flag is 1

Contents of status register B is

ORed into AC

Memory field portion of status

register B loaded from AC bits

6-8.

INSTRUCTION CODES (Cont'd)

Mnemonic Code Operation

Disk File and Control, Type DF 325

DCMA

DMAR

DMAW

DCEA

DSAC

DEAL

DEAC

DFSE

DFSC

DMAC

6601

6603

6605

6611

6612

6615

6616

6621

6622

6626

Clear disk memory request and

interrupt flags

Load disk from AC, clear AC read

into core, clear interrupt flag.

Load disk from AC, write onto disk

from core, clear interrupt flag.

Clear disk extended address and

memory address extension register

Skip if address confirmed flag = 1

Clear disk extended address and

memory address extension register
and load same from AC

Clear AC, load AC from disk extended

address register, skip if address

confirmed flag = 1

Skip if parity error, data reques

late, or write lock switch flag = 0

(no error)

Skip if completion flag = 1 (data
transfer completed)

Clear AC, load AC from disk memory

address register

Memory Extension Control, Type 1835

CDF N0

CIF N0

RDF

RIF

RIB

RMF

5Not present in 8K SABR

6201

6202

6214

6224

6234

6244

Change to data field N

Change to instruction field N

Read data field

Read instruction field

Read interrupt buffer

Restore memory field

PSEUDO~OPERATORS

The following is a list of the PAL—8 and 8K SABR pseudo~ops.

The first section consists of those pseudo=ops which have counter-

parts in the other assembler. Below the blank space are the

various pseudo-ops individual to the particular assembler.

PAL—8 8K SABR

DECIMAL DECIMAL

OCTAL OCTAL

PAUSE PAUSE

I I

$ $

PAGE PAGE

EXPUNGE ABSYM

FIXTAB ARG

z BLOCK

FIELD CALL

XLIST COMMN

IFDEF CPAGE

IFNDEF DUMMY

IFZERO EAP

IFNZRO END

ENPUNCH ENTRY

NOPUNCH FORTR

ZBLOCK IF

EJECT LAP

TEXT OPDEF

FIXMRI REORG
‘

RETRN

SKPDEF

NOTE: The symbols ACH, ACM, and ACL are also present in the

permanent symbol table for 8K SABR. For details, see

Chapter l4, Programming Languages.

New Instructions for the Basic PDPa8/E

The following instructions are present in every PDP—B/E, but not

in the other members of the PDP-8 family. None of these instructions

(other than NOP or CLA)

941133992

SKON

SRQ

GTF

RTF

SGT

CAF

BSW

NOP

CLA

MQL

MQA

DAD

DST

DCM

NMU

SAM

CAM

ACL

CLA SWP

Code

6000

6003

6004

6005

6006

6007

7002

7401

7601

7421

7501

7563

7565

7567

7451

7453

7621

7701

7721

is in either SABR or PAL—8.

Operation

Skip if interrupt on and turn interrupt off

Skip if interrupt request

Get interrupt flags

Restore interrupt flags

Skip if greater than flag

Clear all flags

Swap bytes in AC

No operation

Clear AC

Load MQ from AC, then clear AC

Inclusive OR, MQ with AC

Double precision add

Double precision store

Double precision two‘s complement

Absolute normalize

Subtract AC from MQ

Swap AC and MQ

Load MQ into AC (conflicts with SABR

permanent symbol, change one or the

other)

Load AC from MQ, clear MQ

APPENDIX D

PS/8 DEMONSTRATION PROGRAM

The following pages contain a demonstration

of the PS/8 system taken from a teleprinter on~line

with PS/8. The teleprinter paper is coded with

letters and brackets (to the left of the teleprinted

material). The letters correspond to the textual

explanations on the facing page.

The demonstration exhibits the use of some

utility programs, the Editor, and FORTRAN Compiler,

and will give the reader a feeling for PS/8 inter—

action.

A {0R
PIP

*DTAI:</Z=l

*IEtC

B { .DATE 10/19/70

C—

D

oASSIGN DTA! IN

.R PIP

*IN/E

IN NOT FOUND

*INzlE

16/19/70

E {EEMPTY> 730

F...

73% FREE BLOCKS

anc

{fGET
SYS EDIT

G

I

_.,.../\»

.SAUE IN EDIT 0-5008§260=2601

.R FORT

*IN:FORT2<FORT2/G

llfl B(I)aFLOAT(I)#A(I

I

ILLEGAL ARITHMETIC EXPRESSION

I603 FORMAT('TG REPEAT: TYPE A CARRIAGE RETURN'II)

1

NO END STATEMENT

.RUN IN EDIT

*IN:FORT3<FORT2

V'Y

6/20043

#516 'L

19 B(I)=FLOAT(I)*A(I

#.S

10 BCI)=FLDAT(I)*A(I)

Law.16 B(I)BFLOAT(I)*A(I)

#IL

603 FORMATC'TO REPEAT, TYPE A CARRIAGE RETURN'II)

IA

END

The user calls PIP into core from the Keyboard Monitor. The

Command Decoder prints a star (*) and awaits an input line.

.The first input line gives the command to zero the DECtape
on unit 1, specifying one additional information word in the

directory.

By typing CTRL/C the user returns control to the Keyboard
Monitor and uses the DATE command to set the system date to

October 19, I970.

The ASSIGN command is uSed to give DTAl the additional name IN.

All subsequent references to IN refer to DECtape unit I.

PIP is called again to list the directory of DECtape unit 1. The

user gets the error "IN NOT FOUND" because he forgot to put a

colon after IN.

This is the extended directory listing of DTAl.

The Command Decoder returns to accept another PIP command. The

user types CTRL/C to return to the Keyboard Monitor.

The Keyboard Monitor GET and SAVE commands are used to copy
EDIT from the system device to DECtape unit 1.

The FORTRAN Compiler is run to compile and execute the program

FORT2. However, the program has two errors in it. FORTRAN

returns control to the Keyboard Monitor after compiling the

program and printing the error messages.

The program EDIT, located on DECtape unit 1, is used to correct

the errors in the FORTRAN program. The old program FORTZ is

input to the Editor and a new program, FORTB, is written by
the Editor onto DECtape unit I.

The string search feature of the Editor is used to find line 10

and correct it.

An END statement is added to the program.

000

00000

16

000

z

Ar—‘A‘gfi

(————A——~\

E

mmmmmgz
4

u

3 h

(DQ

500

606

601

602

663

THIS IS A DEMO OF SOME OF THE NEW FEATURES

IN PS/8 FORTRAN- SPECIFICALLY: IMPLIED DO LOOPS

AND DIRECT INSERTION OF SABR CODE.

THE PROGRAM PERFORMS A SIMPLE TRANSFORMATION ON

A TEN ELEMENT ONE DIMENSIONAL ARRAY (A(I)): PUTTING

THE RESULTING ARRAY IN Bo BOTH THE OLD AND NEW

ARRAYS ARE PRINTED: AND THE USER HAS THE OPTION OF

REPEATING THE PROGRAM OR TERMINATING EXECUTION.

DIMENSION AC19):B(10)

WRITE(1:600)

READ(1:500) (A(I):I=l:10)

WRITE(1:6@1)

WRITE(1:SOO) (A(I):I=I:IO)

DO IO I=I:IB'

B(I)=FLOAT(I)#A(I)

URITE<Ia602)

WRITE(1:5@O) (B(I):I=1:IO)

WRITE<12604>

THE SABR CODE FOLLOWING LOOKS FOR A CARRIAGE

RETURN CHARACTER TO INITIATE REPEATING THE

PROGRAMe ANY OTHER CHARACTER TERMINATES THE PROGRAM.

KSF

JMP X

KRB

TAD MYES

SZA

JMP \20

GO TO 05

-215

CALL EXIT

FORMAT(F6¢2)

FORMAT<°ENTER IO NUMBERS IN F6o2 FORMAT'I)

FORMAT('THE ORIGINAL ARRAY ISS'I)

FORMAT('THE TRANSFORMED ARRAY IS:'/)

FORMAT('TO REPEAT: TYPE A CARRIAGE RETURN'II)

END

l$(l:604)'5

WRITE<196O4\3)

WRITE(I:6@3)

The user makes the Editor list the entire FORTRAN program.

Note the use of implied DO loops in the READ and WRITE

statements. This is a new feature of PS/8 FORTRAN.

An S in column 1 of a FORTRAN line indicates that the line

contains SABR code. This is an important new feature of

PS/8 FORTRAN.

At the end of the program CALL EXIT is used to return control

to the Keyboard Monitor.

The string search feature of the Editor is used to correct

another error discovered when the program was listed.

The E command to the Editor closes the file and returns to

the Keyboard Monitor.

Ru .AS DTAl OUT

S
.R FORT

(0UT:FORT3<OUT:FORT3/G

ENTER 1% NUMBERS IN F6-2 FORMAT

00.0.0... 888888888
THE ORGINAL ARRAY IS:

o—xoonslo‘mbwmo— 8 8

1009

2009

303$

400%

5-00

6093

7090

8-93

9030

13-09

THE TRANSFORMED ARRAY IS:

1-53

4930

9-90

16000

QScQG

36.53

49.6%

64-36

BlaDZ

IEEoZZ

U~ TO REPEAT: TYPE A CARRIAGE RETURN
&

.DEAS

oAS DTAl X

0R PIP

*X3/L

16/19/70

EDIT «SV 19 10/19/76

PORTS 3 16/19/7fl

PORTS oRL 3 10/19/79

714 FREE BLOCKS

W

.

’

“\r‘w

The ASSIGN command is used to change the assigned name of

DTAl from IN to OUT.

The FORTRAN Compiler is called again. The /G option is

used to cause automatic loading and execution of the FORTRAN

program. In addition, an output relocatable binary file

named FORT3 is saved by SABR on DECtape unit 1.

The results of the FORTRAN program.

After running the program once the user types something other

than the RETURN key and exits to the Keyboard Monitor.

The DEASSIGN command is used to delete all user assigned
device names. The ASSIGN command is then used to give the

name X to DTAl.

PIP is run to give the directory listing of DECtape unit 1.

*TTY:<SYS:/L

10/19/79

ABSLDR.SV

PIP .SV

EDIT .SV

FORT oSV

SABR oSV

LOADERoSV

L188 V.RL

FORT2

533 FREE BLOCKS‘

*FORT2</D

*FORT3<X3FORT3

*tC

Next, PIP is used to print the directory of the system device.

Note that this directory has no dates. This is because no

additional information words were specified in the directory
of the system device.

PIP is then used to delete the old file FORTZ, and then to

copy the ASCII file FORT3 from DECtape unit 1 to the device

DSK (which is the same as SYS in this example). Finally,
CTRL/C is typed to return control to the Keyboard Monitor

before leaving.

Absolute Binary Loader, 6—8

ALT MODE key, 6—9

calling, 6—8

error messages,

options, 6—10

RETURN key, 6—9

using, 6—8

ABSLDR, see Absolute Binary
Loader

Additional Information Words, 6—6

ALT MODE key, 2-3, 3—1, 4—9, 6—9

ASCII character set, A—l

ASSIGN Command, 2—4

6—11

Backarrow character (+), 3—2, 3—7

Binary files, 6—9

Block, 2—1

.BN, 2—3

Bootstrap Routines, 8—6

Card reader, 1—3

character set, A—2

handler, 3—7

CDR, 2—1

CHAIN subroutine, 7—l4

Command Decoder, 1—4

input string, 3—1

Conventions, system, 2—1

CONVRT, 6-l6

calling, 6—16

error messages,

options, 6—17«

using, 6—16

Core control block,

2—13, 6—15

Core image files

6—18

2—7 through

loading and starting, 2-11,—12

moving, 2—7

Core—resident Monitor, 1—5

CTRL/C, 2—3, 3—1, 3—6, 3—7, 4—3,

6—1, 6—13

CTRL/FORM, 4-4, 4‘9

CTRL/G 4—9

CTRL/O, 3—7, 4—4, 5—1

CTRL/U, 2~4, 3-1

CTRL/Z, 3—7

Data files, FORTRAN, 7—15

DATE command, 2—14

Date of file creation, 6—5, —6

DEASSIGN command, 2-6

DECtape, 1—3

handler, 3—7

Demonstration program, D—l

device: 3—2

devicezfilename, 3—2

Device handlers, 3—6

INDEX

Device names,

permanent, 2—1, 2—6

user—defined, 2—4, 2—6

DEVICE pseudo—op, ~4

Devices, optional, 1—3

DF32, 1—3

Directory entries, dating,
Directory listings, 6—5

Disk bootstrap routines, 8-5

DSK, 2-l

DTAn, 2~l

2—14

EDIT, see Symbolic editor

Editor, see Symbolic editor

End—of-File card, 3—7

Equal sign construction for

I/O option, 3—5

Error message summary, B—l

Extensions, see File name extensions

File conversion program, see CONVRT

filename, 3—2

File name extensions, 2—2

assumed, 2—2

FILENAME pseudo—op, 5—4

File names, 2—2

Files

I/O, 3—1

specifications, 3—2

FIXMRI, 5-4

FORTRAN compiler, 7—1

calling, 7—l

CHAIN, 7—14

constants, 7—4

data files, 7—15

data transmission, 7—11 to 7—13

device independent I/O, 7—13

DO loops, 7—23

EQUIVALENCE, 7—23

error messages, 7—18 to 7—21

errors, 7—25

FORMAT specifications, 7—7 to

7—11

functions, 7—6

Hollerith, 7—4

interrupt usage, 7—24

I/O operations under PS/8, 7—7

IOPEN, 7—13

mixing SABR and FORTRAN,

OCLOSE, 7—l4

OOPEN, 7—14

options, 7—2

7—15

PAL—8, with, 7—24

PAUSE, 7—23

program size, 7—23

statement summary, 7—16 to 7—18

subscripting, 7-22

using, 7—1

variables, 7—5

.FT, 2—2

GET command,

Handlers, device, 3—6

Hardware configurations,
High—speed paper tape, 1

handler, 3—6

1—3

—3

IFNDEF, 5-3

IFNZRO, 5~4

Input specifications,
IOPEN subroutine, 7—13

I/O specification commands,

I/O Specification options,

3—1

3—1

3—4

Job status word, —13

6—15, —l6

2—7, —8, -10,

Keyboard Monitor,
commands, 2—4

use, 2—3

Left angle bracket character (<),

3—1, —2

Library search for subroutine,

LINCtape (PDP—12), 1—4

LINE FEED key, 2~ 3—1,
Line printer, 1—3

handler, 3—7

Linking Loader,

calling, 7—36

error messages, 7—40

options, 7—37, —38

using, 7—35, —36

Loading PS/8 on DECtape system,

Loading PS/8 on Disk System from

DECtape, 8-5

Loading PS/8 on

paper tape,

LPT, 2—2

.LS, 2—3

LTAn, 2—2

7—35

4, 4—9

7—35

8—1

Disk System from

8—2

Mixing SABR and FORTRAN state—

ments, 7—15

.MP, 2—3

Null file, 3—2

Number sign character (#), 4—2

OCLOSE subroutine, 7—14

Octal Debugging Technique,
ODT, 6—12

breakpoint, 6—15

calling, 6—12

command summary,

using, 6—12

see ODT

6—13

ODT command, 2—10

OOPEN subroutine,

Options, I/O, 3—4

Output specification,

7-14

3—1

.PA, 2—2

Page, 2—1

Editor usage, 4—1

PAL—8 Assembler, 5—l

assumed extensions,

calling, 5—l

error messages,

options, 5—2

pseudo-ops,

using, 5—l

Parentheses construction for

I/O options, 3—5

Period character (.), 4—4

Peripheral Interchange Program,
see PIP .

Permanent device names, 2—1

Permanent symbol table listing for

PAL—8, SABR, C—l

PIP, 6—1

additional information words,

calling, 6—1

directory listings,
error messages, 6—7

options, 6—1, —2, —3

using, 6—1

PTP, 2—l

PTR, 2—1

5—l

5—7

5—3, 5—5

6—6

6—5

Quote character,

double ("), 4—10

single ('), 4—10

R command, 2—12

Record, 2—1

Relocatable binary files,

7—2, 7—35

RETURN key,

RF08, 1—3

.RL, 2—3

RK8, 1—3

RUBOUT key,
RUN command,

6—9 I

2—3, 3—1, 4—9, 6—9

2—3, 3—1, 4-3, 4—9

2—11, 2—l2

SABR assembler, 7—25

automatic entry point,
calling, 7—25

constants, 7—29

error messages,

extensions, 7—26

labels, 7—28

operands, 7—29

operating characteristics,

operators, 7—29

options, 7—26

7—27

7—33

7—33

pseudo—ops, 7—30 to 7—32

special characters, 7—28

statement format, 7—27

symbol flags, 7—33

symbol table, 7—33

symbols, 7—29

using, 7—25

SAVE command, 2—9

.SB, 2—2

Slash character (/), 4—4

Slash construction for I/O options,
3—5

Software components, 1—4

Square bracket construction for

I/O options, 3—6

START command, 2—l3

Storage map listings, 7—35, —38

.SV, 2—2

Symbolic Editor, 4—l

calling, 4—l

Character string search, 4—9,—lZ
command mode, 4—3

command summary, 4—4

error messages, 4—l3

keys, 4—3

options, 4—2

search mode, 4—

text buffer, 4—

text mode, 4—3

using, 4—1

SYS, 2—l

System conventions, 2—l

System library programs, l—4

System library routines, 7035

8

8

Teletype handler, 3—7, 4—l

.TM, 2—3

TTY, 2—l

Two—page device handler, 3—7

Up—arrow character (f), 3—6

User—defined device names, 2—4,—6
User Service Routine, see USR

USR, 1—4, —5

Word, 2—l

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements of new and revised software, as well as programming notes,
software problems, and documentation corrections are published by
Software Information Service in the following newsletters:

Digital Software News for the PDP—B and PDP~12

Digital Software News for the PDPw9/15 Family

Digital Software News for the PDP-ll

These newsletters contain information to update the cumulative

Software Performance Summary for the PDP~8 and PDP—lZ

Software Performance Summary for the PDPw9/15 Family

Software Performance Summary for the PDP-ll

The appropriate edition of the Software Performance Summary is included

in each basic software kit for new customers. Additional copies may be

requested without charge.

Any questions or problems on the articles contained in these publications
or concerning the use of Digital's software should be reported to the

Software Specialist or Sales Engineer at the nearest Digital office.

New and revised software and manuals, and current issues of the Software

Performance Summary are available from the Program Library. To place
an order, write to

Program Library
Digital Equipment Corporation
146 Main Street, Building l~2

Maynard, Massachusetts 01754

When ordering, include the code number and a brief description of the

program or manual requested.

Digital Equipment Computer Users Society (DECUS) maintains a user

library and publishes a catalog of available programs as well as the

DECUSCOPE magazine for its members and nonwmembers who request it. For

further information, please write to:

DECUS

Digital Equipment Corporation
l46 Main Street

Maynard, Massachusetts 0l754

PS/8 System
User's Guide

DEC-P 8-MEFA-D

READER’S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its publi—
cations. To do this effectively we need user feedback —

your critical evaluation of this manual.

Please comment‘on this manual’s completeness, accuracy, organization, usability, and readability.

Did you find errors in this manual?

How can this manual be improved?

Other comments?

Please describe your position.

Name Organization

Street Department

City State Zip or Country

... FOICI HCI'C ..

.. Do Not Tear - Fold Here and Staple ...

FIRST CLASS

PERMIT NO. 33

MAYNARD. MASS.

BUSINESS REPLY MAIL

N0 POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

an an
Digital Equipment Corporation
Software Information Services

146 Main Street, Bldg. 3-5

Maynard, Massachusetts 01754

