
HTS/8
“my—w“ ”WWW, .i (A (1“ "LV*~>;"' vm pan u ,7 3/

(MM: /
, 4K {2. JR: w-vfi A \ xii

”‘3: g
V

,i :1 ‘23“: \’\ 1 x
‘ ~~/ xi

‘
.

v r:
,

u ‘L w ’7' \

,IIIII
”

User ’5 Manual
Order No. DEC—OS-ORTMA-C-D



HTS/8

User’s Manual
Order No. DEC—OS-ORTMA-C-D

Version 28

digital equipment corporation - mognord, mossochusetts



First Printing, June 1974

Revised: September 1975

February 1977

The information in this document is subject to change without notice

and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license

and may be used or copied only in accordance with the terms of such

license.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright C) 1974, 1975, 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this

document requests the user's critical evaluation to assist us in pre—

paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem—lo MASSBUS

DEC DECtape OMNIBUS

PDP DIBOL 05/8
DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS

COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-B

DDT LAB-8 TYPESET-lO

DECCOMM DECSystem—20 TYPESET-ll

RTS/8



CONTENTS

Page

PREFACE Vii

CHAPTER 1 INTRODUCTION 1-1

1.1 RTS/8 DESCRIPTION 1-1

1.2 REAL-TIME SYSTEM OPERATION 1-2

CHAPTER 2 USING TASKS UNDER RTS/8 2-1

2.1 THE STRUCTURE OF RTS/8 TASKS 2-1

2.2 CONCEPTS OF TASK COMMUNICATION 2-1

2.2.1 Task Synchronization Through the Use of

Event Flags 2—2

2.2.2 Intertask Messages 2—3

2.3 EXECUTIVE INTERNAL TASK TABLES 2-5

CHAPTER 3 RTS/8 EXECUTIVE REQUESTS 3-1

3.1 COMMUNICATION WITH THE RTS/8 EXECUTIVE 3-1

3.2 ERS USED TO COMMUNICATE BETWEEN TASKS 3-1

3.2.1 SEND - Send Message 3-2

3.2.2 WAITE - Wait on Event Flag 3—3

3.2.3 SENDW — Send and Wait 3—3

3.2.4 RECEIVE - Receive Message 3-3

3.2.5 POST - Post Event Flag 3-4

3.2.6 Example of ERS for Message and Event Flags 3—5

3.3 ERS USED TO SET AND CLEAR TASK FLAGS 3-6

3.3.1 BLKARG - Block Task for Specified Reason 3-6

3.3.2 UNBARG - Unblock Task for Specified Reason 3-8

3.3.3 SUSPND - Suspend a Task's Execution 3-8

3.3.4 RUN - Run a Task 3-8

3.4 USING INTERRUPTS IN RTS/8 3-9

3.5 EXECUTIVE REQUEST WAIT STATES 3-12

CHAPTER 4 RTS/8 SYSTEM TASKS 4-1

4.1 CLOCK HANDLER 4—2

4.1.1 Examples of Clock Handler Calls 4—4

4.2 TERMINAL HANDLER 4-4

4.2.1 Additional Assembly Parameters Affecting
Terminal Handler Properties 4—7

4.2.2 Useful Equates in the Parameter File 4-9

4.2.3 Examples of Terminal Handler Messages 4-9

4.3 LINE PRINTER HANDLER 4-10

4.4 MASS STORAGE HANDLERS 4-11

4.4.1 Floppy Disk Handler 4-13

4.4.2 LINCtape Handler 4-16

4.4.3 Example of Mass Storage Handler Call 4-18

4.5 POWER FAIL TASK 4-18

4.6 OS/8 SUPPORT TASK 4-19

4.6.1 Mapping of Fields with 08/8 Support Task 4-20

iii



CONTENTS (Cont.)

OS/8 - RTS/8 COMMUNICATION (OSBCOM)

.1 Using the OSBCOM Task

‘.2 other Techniques

05/8 FILE SUPPORT TASK

UNIVERSAL DIGITAL CONTROLLER/INDUSTRIAL
CONTROLLER SUBSYSTEM (UDC/ICS) HANDLER

4.9.1 AO Analog Output

4.9.2 AI Analog Input

4.9.3 DO Digital Output
4.9.4 DI Digital Input

4.9.5 GC Generic Code

4.9.6 EC Enable Counter

4.9.? RC Read Counter

4.9.8 DC Disable Counter

4.9.9 ECT Enable Contacts

4.9.10 CS Change of State

4.9.11 DCT Disable Contacts

4.9.12 UDC/ICS Assembly Parameters

4.9.13 UDC/ICS Error Conditions

4.10 CASSETTE HANDLER

4.10.1 Handler Function

4.10.2 Utility Function

4.11 CASSETTE FILE SUPPORT HANDLER

4.12 PDP-8A NULL TASK

4.13 KL8-A SUPPORT

4.13.1 Executive KL8—A Support
4.13.2 TTY Task KL8-A Support
4.13.3 KLB-A Support for the 08/8 Support Task

4.13.4 KL8-A Support for a User Task

4.14 EXIT TASK

CHAPTER 5 MONITOR CONSOLE ROUTINE

MCR COMMAND ARGUMENTS

MCR COMMANDS

.l DAte [mm/dd/yyyy [,Time-of—dayll

.2 TIme [Time-of—day]

.3 NAme Task-ID,Newname

.4 REquest Task-ID [,(@Time-of-day ! Interval)

[,Interval]]
STop Task-ID

DIsable Task-ID

ENable Task-ID

CAncel Task-ID

SYstat [Task-ID]
OPen Address [,Count]
EXamine Address [,Count]
DEposit Address,Word [,Word] [,Word] ....

POst Address

EXIT

MCR ERRORS

NONRESIDENT MCRU1U1U'IU1U1U'IU1U101U'IUIU'I cocoon-0000c o

o

o

o

o

o

o

o

o

a

I-‘I—‘I—‘F—‘I—‘KOCDNQUI hWNI—‘OhWNNNNNNNNNN
CHAPTER 6 ASSEMBLING AND LOADING TASKS FOR RTS/8

PARAMETER FILE STRUCTURE

.1 Executive Specifications

iv

Ln [.1

“TTTT NNNNH

IIIIIIIIIIII
NH

|-'

mmmmmmmpnpbbwU'IU'IU1U1U'IU‘IU1U1U1U‘IU'IU1UI
0‘

mm



CONTENTS (Cont.)

6.1.2 Task Definitions

6.1.3 System Task Specifications
6.1.4 System Wide Definitions

6.1.5 Task Setup
6.2 CREATING AN RTS/8 SYSTEM

6.3 USING THE OS/8 BITMAP PROGRAM

6.4 SAMPLE RTS/8 TASK PROGRAM

6.5 USE OF CONTROL FILES UNDER RTS/8
6.6 RTS/8 SYSTEM TASK PARAMETERS.

6.6.1 Clock Handler Parameters

6.6.2 Swapper Parameters

6.6.3 Terminal Handler Parameters

6.6.4 Monitor Console Routine Parameters

6.6.5 08/8 Support Task Parameters

6.6.6 KL8-A Support Parameters

6.6.7 Line Printer Handler Parameters

6.6.8 DECtape Handler Parameters

6.6.9 EXIT Task

CHAPTER 7 NONRESIDENT TASKS

7.1 OVERVIEW

7.1.1 Writeable Tasks

7.1.2 Checkpointable Tasks

7.1.3 Interaction Between Tasks

7.2 MEMORY PARTITIONS

7.2.1 FREE Command

7.3 NONRESIDENT TASK INITIALIZATION

7.3.1 Parameters for Nonresident Tasks

7.3.2 Assembling Nonresident Tasks

7.3.3 Creating the SAVE Image File

7.4 PARAMETER INITIALIZATION FOR PARTITIONS

7.4.1 General Information

7.5 NONRESIDENT TASK IMPLEMENTATION

CHAPTER 8 DEMONSTRATION PROGRAM

8.1 MODIFIED PARAMETER FILE (PARAM.PA)
8.2 NONRESIDENT TASK LISTINGS

8.2.1 Nonresident Task NR20

8.2.2 Nonresident Task NR22

8.3 ASSEMBLY AND LOAD PROCEDURE

8.4 NONRESIDENT TASK ASSIGNMENT AND EXECUTION

CHAPTER 9 ADVANCED RTS/8 PROGRAMMING TECHNIQUES

9.1 PERFORMING A RESCHEDULE

9.1.1 Writing Delicate Code

9.1.2 Inhibiting Task Switching
9.2 EXECUTIVE REQUESTS FOR ADVANCED APPLICATIONS

9.2.1 WAITM - Waiting for Multiple Event Flags
9.2.2 WAITX - Wait for Exactly This Event Flag
9.2.3 DERAIL - Derail a Task's Execution

9.2.3.1 Dangers of DERAIL

9.2.3.2 Restrictions Using DERAIL

9.3 STARTING PARTITIONS AT AN ARBITRARY BOUNDARY

9.4 DIRECT REFERENCES TO SYSTEM TABLES

V

"U m LG ('0

Illlllll H+4u>q~du1ncuuammmmmmmmmmmm

\l\l\l\l\l\l\l\l\l\l\l\l\l ooqqmmmmhwwwwI—J
l—l

i—‘O

I

I

I

I

I

I

I

I

I

I

m\l\l\lU1U'lJ>-J>Ni-‘l—‘\OKDOLOKOKOKDLDOKOKD



CONTENTS (Cont.)

Page

APPENDIX A RTS/8 DISTRIBUTED SOURCE FILES A-l

APPENDIX B RTS/8 COMPONENT SIZES B-l

APPENDIX C RTS/8 FLOWCHARTS C-l

APPENDIX D RTS/8 ASSEMBLY ERROR MESSAGES D-l

APPENDIX E EXECUTIVE INTERNAL TASK TABLES E-l

GLOSSARY Glossary-l

INDEX Index-l

FIGURES

FIGURE 2-l Message Format and Linking of Messages 2-4

7-1 Nonresident Task Implementation 7-2

B-l RTS/8 System Memory Map (Default Memory

Allocation) B—4

E-l Executive Internal Task Table Structure E-5

TABLES

TABLE l-l RTS/8 System Tasks 1—2

2-1 Summary of Event Flag States 2-3

3-1 Summary of Executive Requests 3-2

3—2 Symbolic Names for Specifying WAITBITS 3—7

3-3 Summary of Wait States Incurred by Executive

Requests 3-12

4-1 Summary of Terminal Handler Assembly Parameter

Default Values 4 9

9 1 Summary of Task Switching Flag (TSWFLG) States 9 4

B-l RTS/8 Component Sizes B—l

B 2 MCR Component Size B 5

Vi



PREFACE

This manual describes the PDP—8 Real-Time Operating System (RTS/8).

Knowledge of PDP-8 assembly language programming (PAL8) is essential

for a complete understanding of this manual. In addition, the user

should be familiar with real—time systems in general and with the

operation and use of the development system for the PDP—8, 08/8. The

information in Chapter 9, "Advanced RTS/8 Programming Techniques" is

for the experienced RTS/8 user. It should be read after the user has

gained familiarity with RTS/8.

This version of the manual has been enlarged and expanded to

incorporate several new RTS/8 features. The Major features include

KL8—A Support, PDP-8/A Null Task, the EXIT Task, and two new

Executive Requests. Other features are the nonresident implementation
of the MCR, UDC/ICS support, an OS8COM facility that allows the 08/8
system to talk to an RTS/8 task, and control files that allow the user

to efficiently make multiple task copies. RTS/8 flowcharts have been

added to show system operation.

The following PDP—8 handbooks will be helpful for review and

reference:

INTRODUCTION TO PROGRAMMING (DEC-OB-XINPA-A—D)
SMALL COMPUTER HANDBOOK (90P45)
OS/8 HANDBOOK (DEC-SB—OSHBA-A-D)
UDC8 UNIVERSAL DIGITAL CONTROL SUBSYSTEM MAINTENANCE MANUAL

(46H745)
PDP-8A MINICOMPUTER HANDBOOK (EB0621976)
ICS8 INDUSTRIAL CONTROL SUBSYSTEM MAINTENANCE MANUAL (EKOICSSMM)

vii



CHAPTER 1

INTRODUCTION

1.1 RTS/8 DESCRIPTION

RTS/8 is a compact real—time system designed for the PDP-8 family of

processors (except the PDP—8/S). This system allows up to 63 tasks to

run concurrently and compete for resources on a fixed priority basis.

It can be used for a wide range of applications in which a number of

processes must be monitored and controlled. As with other real-time

systems, RTS/8 responds to physical or conceptual events to permit the

timely execution and,scheduling of tasks.

The RTS/B Executive controls execution and interaction among all

tasks. The Executive decides which tasks should run (based on the

priorities of the runnable tasks), and services the tasks by means of

Executive Requests (ERs).

A task is the basic program unit within RTS/8. RTS/8 system tasks

(DEC-supplied) and their file names are listed in Table 1-1. The

system supports both resident and nonresident tasks. A resident task

resides permanently in memory; a nonresident task is one in which the

major portion of the task resides on a mass storage device and is

loaded into memory only when that task becomes executable. Using
nonresident tasks permits portions of several tasks to share the same

areas of memory, providing economical use of memory.

RTS/8 includes system tasks that control most standard DIGITAL I/O
devices. A full complement of peripherals is supported, including RK8

and RK8—E moving—head disks, DF32 and RF08 fixed-head disks, TC08

DECtape, RX8 floppy disk, LINCtape, DEC cassette, and LE8 and LS8E

line printers (RTS/8 does not support TD8E DECtape). The Monitor

Console Routine (MCR) task provides an interface between the user at

the console terminal and the system. The MCR provides the user with a

series of commands to control, inspect, and, to some extent, debug the

system. The MCR commands are straightforward and easy to use. They
allow the user to schedule and execute tasks at specified intervals,

suspend task execution, and print system status reports.

A system task also is provided that allows a single copy of the 08/8
operating system to, run in the background, creating a real-time

foreground—OS/8 background system. With 08/8 in the background, the

user has the facilities for program assembly, debugging, and editing.
The minimum RTS/8 hardware configuration required for a foreground
only system is a PDP—8 family processor, 4K words of memory, and a

console terminal capable of papertape input. A system capable of

running a real-time foreground and 08/8 in the background requires a

PDP-8 family processor with KM8—A, KM8-E or TSS—8 Time Sharing
options, a mass storage device (such as an RK8E cartridge disk or RX8

floppy disk), and two terminals (one must be dedicated to 08/8 system
execution).

’

l-l



INTRODUCTION

RTS/8 tasks are created by editing the RTS/8 master parameter file to

produce a parameter file that describes the user's particular system.
Task source files are then assembled with the edited parameter file

using the PAL8 assembler. The assembler can run either under 08/8, or

the 08/8 support system under RTS/8. Then using ABSLDR under OS/8,
all task binaries are joined into a complete RTS/8 system.

Table l—l

RTS/8 System Tasks

Task Name File Name Task Function

MCR

null task

088

OS8F

PWRF

CLOCK

TTY

LPT

DTA

RK8

RK8

RF08/DF32

CSA

CSAF

UDC/ICS

RX8A

RX8B

RX8C

RX8B

LTA

SWAPPER

NULL8A

EXIT

PARAM.PA

RTS8.PA

MCR.PA

MCR.PA

OSBSUP.PA

OSBSUP.PA

PWRF.PA

CLOCK.PA

TTY.PA

LPT.PA

DTA.PA

RK8.PA

RK8E.PA

RF08.PA

CSA.PA

CSAF.PA

UDCICS.PA

RXOlRT.PA

RXOlRT.PA

RXOlRT.PA

RXOlRT.PA

LTA.PA

SWAP.PA

NULL8A.PA

EXIT.PA

System parameter file with

equates blank. Appropriate
values should be inserted to

create specific parameter files.

RTS/8 Executive

Monitor Console Routine

Null task
‘

08/8 Support Task

OS/8 File Support Task

Power Fail Task

Clock Handler Task

Terminal Driver Task

Line Printer Driver Task

TC08 DECtape Driver Task

RK8 Disk Driver Task

RK8E Disk Driver Task

RF08/DF32 Fixed—Head Disk Driver

Task

Cassette Driver Task

Cassette File Support Task

Universal Digital Controller/Industrial
Controller Subsystem Handler Task

Floppy Disk Handler (lst controller)

Floppy Disk Handler (2nd controller)

Floppy Disk Handler (3rd controller)

Floppy Disk Handler (4th controller)

LINCtape Driver Task

Nonresident Task swapper

Null Task for PDP-8A

Exit Task

1.2 REAL-TIME

A multiprogramming

SYSTEM OPERATION

system a software framework that allows

available resources (such as memory, CPU time, and peripheral devices)
to be shared by several tasks.

machine
Basically, a task is a portion of

code that performs a specific function; a task is defined by
convention since it overlaps with the definitions of "program" and

"subroutine."

Multiprogramming allows many tasks to be in some state of execution

If a task cannot use available central processor timesimultaneously.
because it is waiting for

blocked by some other

completion of an I/O operation (or is

condition), the central processor can be

switched to another task to use the available time, thus increasing
system efficiency.



INTRODUCTION

Most real-time systems are required to serve a group of tasks that run

at varying times or frequencies and alternate between being compute
bound or 1/0 bound. If machine resources are to be efficiently used,
these tasks cannot be run in series since the central processor will

be poorly utilized during the periods the tasks are I/O bound. In

addition, most real—time tasks are essentially time-critical and

should not wait for a slow, less important I/O or compute bound task

to finish before being executed. Thus, multiprogramming and a

priority scheme for scheduling the central processor provide maximum

resource utilization.

Thus, a real-time system is a multiprogramming system that must, in

addition to the multiprogramming features, respond quickly to critical

internal or external events. The real-time system is required to

suspend the operation of a less important task and start the task that

deals with the critical event.

A priority scheme establishes the relative importance of various tasks

in the system. This allows a less important task to be interrupted to

permit execution of a critical real-time task. For RTS/8, a fixed

priority scheme was chosen because such a scheme is simple and

reliable, and requires low scheduling overhead.

1-3



CHAPTER 2

USING TASKS UNDER RTS/8

2.1 THE STRUCTURE OF RTS/8 TASKS

The RTS/8 Executive is the controlling program in an RTS/8 System.
The Executive decides which task should run based on the priorities of

the runnable tasks (those tasks not waiting for completion of any 1/0
or other events). It also provides services to the tasks by means of

Executive Requests. Executive Requests are discussed in Chapter 3.

The user assigns unique task numbers to each task in an RTS/8 System.
He can assign up to 63 (77 octal) task numbers, and must account for

system tasks within the total number of tasks. A task number, once

assigned, cannot change during the execution of the program, since

RTS/8 uses a fixed priority system. Task numbers serve the following
purposes:

1. The task number is used by the RTS/8 Executive as an index to

various system tables which contain information about each

task.

2. The task number is used by other tasks in the system to

reference a particular task when performing certain Executive

Requests (such as sending a message).

3. The task number determines the task's priority — the lower

the task number, the higher the priority of the task.

The Executive uses five internal tables to maintain information about

the tasks in the system. A brief description of these tables is given
in Section 2.3.

2.2 CONCEPTS OF TASK COMMUNICATION

RTS/8 is event driven, i.e., the highest priority runnable task

executes continuously until it is completed or some event or condition

in the system causes it to be suspended. Another change or condition

can reactivate the task. Tasks can be self-starting if assembled to

run at system startup, started by another task, or started by the user

at the terminal console using the MCR task. RTS/8 performs two main

types of task communication, as follows:

1. Task synchronization through the use of Event Flags

2. Intertask messages



USING TASKS UNDER RTS/8

2.2.1 Task Synchronization Through the Use of Event Flags

Whenever two processes occur independently, one process may need to

wait until the execution of the other is finished. This can be

illustrated by using the PDP—8 terminal interface as an example. The

PDP—8, when ready to generate the first character, alerts the terminal

by issuing a Load Teleprinter Sequence (TLS) instruction. The PDP-8

must now wait in a TSF; JMP.-l loop if it wishes to do further I/O

immediately. It cannot proceed with the next character until the

terminal raises its ready flag to signal that it is finished printing
the first character. When the flag is raised, the PDP—8 then exits

from the wait loop and proceeds to load the next character.

Similarly, RTS/8 provides Event Flags as a signalling mechanism to

synchronize tasks with each other. An Event Flag is a user-chosen

location that contains the status of an event. The events are either

1) physical processes such as a clock ticking or a valve closing, or

2) conceptual occurrences such as a certain string of characters typed
by the operator or scheduling a task for execution. Like device

flags, an Event Flag can signify either a busy or a completed state,

defined as PENDING (>0) and FINISHED (=0), respectively. Thus, a task

can direct another task via a message to perform a specified action,
at which time it sets a mutually—agreed upon Event Flag to the PENDING

value. When the second task has completed the specified action it

sets the Event Flag to the FINISHED value; this is known as Posting
the Event Flag. As a simple example, if the first task has been

waiting for the Event Flag with the instructions:

TAD Event Flag /LOAD EVENT FLAG IN AC

SZA CLA /IF EVENT FINISHED, SKIP

JMP .-2 /KEEP TRYING

then the Posting of the Event Flag will cause the first task to exit

from its loop, continuing on with the knowledge that the second task

has completed its processing.

Since this loop ties up the PDP-8 processor, Event Flags under RTS/8
have an additional state, WAITING (<0). Using the example just cited,
the addition of the WAITING state now allows the first task to tell

the RTS/8 Executive that it wants to WAIT until the Event Flag

signifying the status of the second task is FINISHED. The monitor

saves the contents of the waiting task‘s PC and sets the Event Flag
Wait bit in its Task Flags Table Word. The Event Flag is set to the

WAITING state. The WAITING state for an Event Flag is octal 4000 plus
the waiting task's Task Number. When the Event Flag is POSTed via an

RTS/8 Executive Request call, the task WAITING for it is automatically
taken out of Event Flag Wait by RTS/8. (If no other blocking bits are

set, the waiting task is again runnable, and will resume execution

when higher priority tasks are blocked.) WAITE is the mnemonic for the

RTS/8 Executive Request that Waits for an Event Flag.

This code would look as follows:

CAL

WAITE

event flag

All Executive Requests are described fully in Chapter 3. A summary of

Event Flag states is shown in Table 2-1.

2-2



USING TASKS UNDER RTS/8

Table 2—1

Summary of Event Flag States

Event Flag State Value

FINISHED (posted) 0

PENDING >0

WAITING <0 (4000 + Task No.)

2.2.2 Intertask Messages

Just as Event Flags under RTS/8 are analogous to hardware device

flags, messages are analogous to data—sending hardware I/O
instructions (for example, TLS). That is, messages start a task,

providing the task is WAITING for a message, and at the same time,

they pass information to the task. Messages are transmitted by
Executive Requests.

An RTS/8 message consists of a three—word Message Header followed by

any number of contiguous words of information to be exchanged between

two tasks. The Message Header is used exclusively by RTS/8. The

first word of the Message Header is the Event Flag for the message.

When the message is sent, the RTS/8 Executive sets the Event Flag to

the PENDING state. This signifies that the message has been sent but

not yet completed. No action occurs to the Event Flag upon receipt of

the message by the receiving task; however, RTS/8 requires that the

receiver POSTS the Event Flag when it has performed the action

specified (or implied) by the message. This posting serves two

purposes:

1. It informs the task which sent the message (the "sender")
that the requested action has been completed, and

2. It allows the message to be sent again (see Item 2 below).

If multiple messages are waiting to be received by a task, RTS/8 uses

the second and third words of the Message Header to link these

messages together (see Figure 2—1). The second word is a CDF (Change
Data Field) instruction to the field of the next message. The third

word is the address of the next message. A second word of 0 signifies
that this is the last message. If the receiving task is not actively
waiting for a message, the message is placed on the receiving task's

Input Message Queue. Messages are then queued in order of decreasing
priority of the sender (increasing task number). Messages sent from

the same task are queued in the order in which they were issued.

2-3



USING TASKS UNDER RTS/8

HTS/8 EXECUTIVE ,

MSGTBL MESSAGE 1 MESSAGE 2 MESSAGE 3

CDF Event Flag Event Flag Event Flag

Message
PTR CDF CDF 0 Header

PTR PTR

J

N

Message
Content

I

Figure 2-1 Message Format and Linking of Messages

The rest of the message can contain any desired information. Sending
a message does not physically move the message information to the

receiving task, but provides the receiver with the field and address

of the first data word of the message.

It should be noted that the information in a message is not copied
into the receiver's area. This has the following implications:

1. Data in a message should not be modified by the sender while

the Event Flag for the message is PENDING.

2. The same message cannot be sent a second time before its

Event Flag is FINISHED the first time. RTS/8 enforces this

by checking the message Event Flag on a SEND operation and

putting the sender into Event Flag Wait if the message is

still PENDING.

3. It is legal for the receiving task to store information in

the body of the message. In this way, an "answer“ to the

message can be returned without the complications of sending
a return message back to the sender. For example, when a

task sends a message to the disk driver task requesting 1/0,
the driver places the error status of the completed operation
in a specific word in the message to indicate whether an

error occurred.



USING TASKS UNDER RTS/8

2.3 EXECUTIVE INTERNAL TASK TABLES

The Executive uses five internal tables to maintain information about

the tasks in the system. A brief description of these tables is as

follows:

Table Description

Task State Table (TSTABL) Contains information such as the

contents of the task's PC, Link and AC

at the time the task stopped running.

Task Flags Table (TFTABL) Contains information about why the task

is not running, i.e., it indicates for

what conditions (blocking or wait bits)
the task is waiting.

Task Input Message Queue Contains messages that have been sent

Header Table (MSGTBL) to this task. This table is referred to

simply as the Message Table.

Residency Table (RESTBL) Used for nonresident tasks, this table

specifies where the task is to reside in

memory, and where it resides on the swap

device.

Partition Table (PARTBL) Used for nonresident tasks, this table

contains information about each memory

partition, such as length and location

of the partition. Memory partitions are

shared by nonresident tasks.

The user does not need to know the format of these tables to use

RTS/8. However, a detailed explanation of these tables is given in

Appendix E.



CHAPTER 3

RTS/8 EXECUTIVE REQUESTS

3.1 COMMUNICATION WITH THE RTS/8 EXECUTIVE

RTS/8 tasks communicate with the RTS/8 Executive via Executive

Requests (ERs). RTS/8 uses locations 20—27 in every field as a

communication region for ERs to facilitate Executive Requests across

field boundaries. The Executive can be called in any field via a JMS

20 instruction (designated symbolically as CAL). The Data Field (DF)
does not have to be any specific value when the CAL is given, since

the code in location 20 sets the DF to the Instruction Field (IF),
sets the IF to 0 and jumps to the RTS/8 Executive.

A summary of Executive Requests is given in Table 3—1. Most of the

Executive Requests are explained in detail in this chapter. The

RESCHD, WAITX and DERAIL Executive Requests are described in Chapter
9.

The RTS/8 Executive will not honor any request to switch tasks arising
from an interrupt if the interrupted task's Program Counter (PC) was

less than 100(octal). This protects the RTS/8 Executive's entry point
(location 20 in each field) from being destroyed. User tasks must be

written so that instructions are never executed below 100 in any

field.

All ER's except DERAIL and SKPINS can relinquish processor control to

higher-priority tasks as a result of their action.

3.2 ERS USED TO COMMUNICATE BETWEEN TASKS

The five ERs associated with the Intertask Messages and the Event

Flags are SEND, WAITE, SENDW, RECEIVE and POST. An example of their

use is shown in Section 3.2.6. In addition, a sixth ER called WAITX

is described in Chapter 9, Advanced Programming Techniques (Section
9.2.2).



RTS/8 EXECUTIVE REQUESTS

Table 3—1

Summary of Executive Requests

Code Symbolic Description Section Reference

Name

0 SEND Send a message to a task 3.2.1

1 RECEIVE Look for and/or receive a 3.2.4

message from a task

2 WAITE Wait for an Event Flag to be 3.2.2

posted

3 RUN Run a task 3.3.4

4 SUSPND Suspend execution of a task 3.3.3

5 POST Post an Event Flag 3.2.5

6 SKPINS Insert code into interrupt 3.4

skip chain

7 DERAIL Derail or force a task's 9.2.3

execution to a new address

10 BLKARG Block a task from running for 3.3.1

a specific reason

11 SENDW Send a message and wait for 3.2.3

it to be received

12 UNBARG Remove a reason that a task 3.3.2

is blocked from running

13 RESCHD Force the RTS/8 Scheduler to run 9.1.2

14 WAITX Wait for a particular Event 9.2.2

Flag to be posted

3.2.1 SEND - Send Message

Format: CAL

SEND

TSKNUM

MESSAG

The SEND ER sends the message located at MESSAG in the field of the

CAL instruction to the task whose number is TSKNUM. If the receiving
task has a higher priority than the sender and is waiting for a

message, the sender is temporarily suspended and the receiver runs.

In this case, the sender is not put into any WAIT state once the

message is sent. However, if the Event Flag in location MESSAG is

PENDING (nonzero), meaning the message is still busy from a previous
SEND, the sender will be put into Event Flag Wait on location MESSAG,
and only when the Event Flag becomes FINISHED (zero) will this SEND be

performed. Care should be taken that a message is sent from only one

task as only the last request to send a busy message is remembered;
the first task can go to sleep in Event Wait permanently.



RTS/8 EXECUTIVE REQUESTS

3.2.2 WAITE - Wait on Event Flag

Format: CAL

WAITE

EFLG

The WAITE ER checks the status of location EFLG and if it is FINISHED,

returns control to the caller. If EFLG is PENDING, its state is

changed to WAITING and the calling task is put into Event Flag Wait.

When location EFLG is POSTed by another task or interrupt routine, the

calling task becomes runnable again. The Event Flag must be

initialized (set to 1) before use in most cases, particularly when a

task is initiating an event to be completed by another task. The

waiting task must reset the Event Flag before using it again in that

the Event Flag does not reset itself.

NOTE

In advanced applications, the user may

be waiting for multiple Event Flags (see
Section 9.2.1 for description of WAITM).
In this case the task will run whenever

any one of the Event Flags is posted,
and not necessarily the one specified in

the WAITE. To insure that a particular
Event Flag is posted, use the WAITX ER

described in Section 9.2.2.

3.2.3 SENDW — Send and Wait

Format: CAL

SENDW

TSKNUM

MESSAG

The SENDW ER is exactly equivalent to the sequence:

CAL

SEND /SEND THE MESSAGE

TSKNUM

MESSAG

CAL

WAITE /WAIT FOR RECEIVER TO ACKNOWLEDGE

MESSAG

3.2.4 RECEIVE - Receive Message

Format: TAD TSKNUM /ONLY TO RESTRICT TO ONE

CAL /SENDING TASK

RECEIVE

MADDR, 0 /MESSAGE ADDRESS STORED

/HERE; CDF TO MESSAGE

/FIELD IN AC ON RETURN

If the AC is zero when the RECEIVE ER is issued, the calling task's

Input Message Queue is examined. If there are messages in the calling
task's Input Message Queue, the first (i.e., highest—priority) message
is dequeued and the address of its first data word is placed in MADDR.

A CDF to the field of the message is stored in the AC.

3-3



RTS/8 EXECUTIVE REQUESTS

If there are no messages, the task is placed in Message Wait until
such time as a message is sent to this task. However, a task may
first examine its Input Message Queue Header in field 0 to determine

the state of the Input Message Queue.

If the AC is nonzero when the RECEIVE ER is issued, the calling task's

Input Message Queue is searched for a message whose sender's Task

Number matches the contents of bits 1-11 of the AC. If such a message
is found, it is removed from the queue as specified above; if a

message is not found, the issuing task is placed in Message Wait.

This allows a message from only one given task to be received.

NOTE

The following information is useful to

the advanced user. When a task is in

MSGWT, after just having done a RECEIVE,
its PC as stored in the TSTABL points
back to the location containing the CAL.

Thus, ,when a message comes in, the task

re-executes the RECEIVE ER and accepts
the message. This mechanism is normally

transparent to the user. One

implication is that no harm is caused by

taking a task out of MSGWT because once

the task starts up again, it will

re-execute the RECEIVE ER, and go back

into MSGWT.

Normally, if there are no messages in the Input Message Queue when a

task performs a RECEIVE, the task is put into Message Wait. However,

a l in bit 0 of the AC (i.e., the AC is negative) when the RECEIVE is

issued indicates that the task is not willing to wait. Thus, with no

messages in the Input Message Queue (or none sent by the task

specified in bits 1-11 of the AC), the task will then continue to run

(at CAL +3) with the AC equal to zero. The zero AC provides the means

for the RTS/8 Executive to inform the task that there were no messages

(of the desired type) pending.

3.2.5 POST — Post Event Flag

Format: TAD EFPTR /POINTER TO EVENT FLAG

CAL

POST

CDF EFFLD /FIELD OF EVENT FLAG

The Event Flag pointed to by the AC, in the field specified by the

CDF, is set to the FINISHED (zero) state. If its previous state was

WAITING, the task that was waiting for it is cleared of its Event Flag
Wait. This ER never sets the calling task in a WAIT state. If the

task waiting for the Event Flag is of a higher priority than the

calling task, the calling task is temporarily suspended while the

other is run.



RTS/8 EXECUTIVE REQUESTS

3.2.6 Example of ERs for Message and Event Flags

The following example illustrates the RTS/8 ERs dealing with Messages
and Event Flags. Since I/O and interrupts under RTS/8 have not been

discussed yet, this example is elementary. There is no advantage to

keeping the functions of the two tasks separate, and the entire

send/receive structure is being used here as an elaborate subroutine

call. A description of the execution sequence follows the example.

Task A

A1 ALOOP, CAL

SEND /SEND TASK B MESSAGE l

B

MESl

A2 CAL

SEND /SEND TASK B MESSAGE 2

B

MESZ

A3 CAL

WAITE /WAIT FOR MESSAGE l

MESl

A4 JMP ALOOP /LQOP
MESl, ZBLOCK 3 /MESSAGE l

15 /RANDOM NUMBERS

37

23

MESZ, ZBLOCK 3 /MESSAGE 2

—l /RANDOM NUMBERS

4

Task B

Bl BLOOP, CAL

RECEIVE /GET A MESSAGE

MADDR, 0

82 DCA EFCDF /SAVE MESSAGE CDF FOR POST

B3 TAD EFCDF

B4 DCA .+l /PUT CDF INLINE

B5 HLT /CDF TO MESSAGE FIELD

B6 TAD I MADDR /GET lST DATA WORD OF

/MESSAGE (DO NOTHING WITH IT)
B7 CLA

B8 STA CLL RTL /—3 IN AC

B9 TAD MADDR /AC POINTS TO MESSAGE

/EVENT FLAG

B10 CAL

POST /DECLARE MESSAGE RECEIVED

EFCDF, HLT /CDF TO MESSAGE FIELD HERE

Bll JMP BLOOP /LOOP

The flow of execution in this example depends on which of the two

tasks has higher priority. Assuming that at some time both A and B

become runnable and task A has higher priority, the sequence of

execution is as follows:

Sequence Reason For Execution

Al Task A has higher priority than task B.

A2 Task A has higher priority than task B.

A3 Task A has higher priority than task B.

B1 Task A is now in Event Flag Wait since MESl

was PENDING; MESl is now in WAITING state.

3-5



RTS/8 EXECUTIVE REQUESTS

Sequence Reason For Execution

BZ—BlO Task A is still waiting; the RECEIVE at Bl

received MESl

A4 The POST at 810 posted MESl and "woke up" A,
which has higher priority than B.

A1 A continues executing.
A2 A tries to send MESZ again; B has not yet

processed it; MESZ is PENDING.

Bll Therefore, A is put into Event Flag Wait and

B is resumed; MESZ is now WAITING.

Bl—BlO B now RECEIVes and POSTS MESZ.

A2 This brings A out of Event Flag Wait; the

RTS/8 Executive has modified task A's program

counter so that it will re—execute the

offending SEND.

A3 A3 now waits for MESl to be POSTed.

If task B has higher priority, the sequence of execution is:

Sequence Reason For Execution

Bl Task B has higher priority than task A.

A1 Task B is placed in Message Wait since there

are no messages in its input queue. Task A

then sends MESl to Task B.

BZ—Blo Task A's message brings task B out of Message
Wait; since B has higher priority, A is

stopped and B runs.

Bll The POST at 810 sets MESl to FINISHED but has

no other effect.

Bl Now task B tries to get another message.

A2 There are no other messages, so task B is put
in Message Wait and A is run.

B2-Bll Task A sends MESZ which "wakes up" B; B

processes MESZ and

B1 returns for more,

A3 and is put in Message Wait. Since MESl is

FINISHED

A4 the WAITE at A3 has no effect and task A

A1 loops back to Al and sends MESl again.

3.3 ERS USED TO SET AND CLEAR TASK FLAGS

Several ERS allow a task to explicitly set and clear flags in the Task

Flags Table entry of another task, and to set flags in its own table

entry. These ERS are BLKARG, UNBARG, SUSPND and RUN.

3.3.1 BLKARG - Block Task for Specified Reason

Format: TAD TASKNUM /OR 0 IF SELF

CAL

BLKARG

WAITBITS

TASKNUM contains the number of the task to be blocked (that is, not

allowed to run). WAITBITS specifies one or more bits to be set in

that task's Task Flags word. Assuming WAITBITS is nonzero, this will

cause the specified task to become non—runnable. If TASKNUM contains

zero, the issuing task will be blocked on the specified wait bits.

3-6



The TASKNUM=O form

RTS/8 EXECUTIVE REQUESTS

of this ER is the only legal way to specify the

issuing task as the task to be blocked; if TASKNUM is equal to the

issuing task number,

Example:

the action of this ER is undefined.

Task 14 is placed into User Wait by executing the following code.

TAD (14
CAL

BLKARG

USERWT

Symbolic names for specifying the condition for blocking or unblocking
a task in the WAITBITS word is given in Table 3—2.

Table 3-2

Symbolic Names for Specifying WAITBITS

Symbolic Name Value Meaning

NONRWT 4000 Nonresident Wait - This task cannot run

because it is not in memory.

EFWT 2000 Event Flag Wait - This task is waiting for an

Event Flag (which contains a WAITING value

corresponding to this task) to be POSTed.

RUNWT 1000 Run Wait — This task is waiting for a RUN ER

to be executed with its number in the AC, or

for the operator to type "REQUEST task" to the

Monitor Console Routine (see Chapter 5).

SWPWT 0400 Swap Wait - This task cannot run because it is

in the process of being brought into memory.

EORMWT 0200 Event or Message Wait — This task is waiting
for an Event Flag to be posted or a message to

arrive, whichever happens first.

USERWT 0100 User Wait - This bit is reserved for use by
user—written tasks. RTS/8 does not use this

bit.

ENABWT 0040 Enable Wait — This task is waiting to be

Enabled. Use of this bit is restricted to the

Monitor Console Routine for the "ENABLE task"

and "DISABLE task" commands (see Chapter 5).

MSGWT 0020 Message Wait - This task is waiting to be sent

a message.

DNEWT 0001 Task does not exist. This bit should never be

set or cleared by a user task.



RTS/B EXECUTIVE REQUESTS

3.3.2 UNBARG - Unblock Task for Specified Reason

Format: TAD TASKNUM

CAL

UNBARG
WAITBITS

TASKNUM contains the number of the task to unblock, and WAITBITS

specifies one or more bits to be cleared in that task's Task Flags
word. If the Task Flags word becomes zero as a result of this

operation, the specified task becomes runnable; if the specified task

has higher priority than the issuing task and becomes runnable, the

issuing task is temporarily suspended while the higher—priority task

runs.

This ER is a no-op (no operation) if issued with TASKNUM equal to the

issuing task's number.

Example:

Task 14 is taken out of User Wait by executing the following code.

TAD (14
CAL

UNBARG

USERWT

3.3.3 SUSPND — Suspend a Task's Execution

Format: TAD TASKNUM /0 IF SELF

CAL

SUSPND

This SUSPND ER is identical in action to the following instructions:

TAD TASKNUM

CAL

BLKARG

RUNWT

3.3.4 RUN - Run a Task

Format: TAD TASKNUM

CAL

RUN

This RUN ER is identical in action to the following instructions:

TAD TASKNUM

CAL

UNBARG

RUNWT

The SUSPND and RUN ERs exist because their function is performed often

enough to warrant a shorthand version. An example that shows how they
can be used in a task follows.

A data collection task is to print a report every 1000 data points
without interrupting the data collection/reduction process. When

executed, the Report Generation Task comes up running, so that the

3-8



RTS/8 EXECUTIVE REQUESTS

first report occurs on the first data. In this simplified example,

the data operated on by the report program may have been already

updated for the next cycle before being reported. A full example

would require a scheme such as double buffering to protect the data.

Data Control Task

DLOOP, TAD (-1750 /1000 DECIMAL

DCA COUNT

DATALP, CAL

WAITE

DATAEF /WAIT FOR DATA READY

. /CODE TO STORE DATA

. /POINT IN BUFFER

. /GET A DATA POINT

ISZ COUNT /AND PROCESS IT

JMP DATALP /COUNT OFF 1000 POINTS

TAD (REPORT
CAL /RUN REPORT TASK

RUN

JMP DLOOP /KEEP COLLECTING

COUNT, 0

Report Generation Task

RLOOP, CAL /AC=0, SUSPEND

SUSPND /UNTIL NEEDED

JMS TITLE /HAS BEEN RUN

. /PRINT REPORT

/WITH TITLE

JMP RLOOP /REPORT OVER-GO

/BACK AND WAIT

To eliminate interference with the data collection, REPORT should have

a lower priority than DATA.

3.4 USING INTERRUPTS IN RTS/8

The RTS/8 Executive contains code to receive and dismiss hardware

interrupts and to perform interrupt—initiated task switching, but it

does not provide room for an interrupt skip chain. Instead, the skip
chain is literally a chain and is built up dynamically at system

startup time via the SKPINS ER. A description of the SKPINS ER is as

follows.

Format: CAL

SKPINS

MODULE

MODULE is the address (in the current field) of an interrupt
processing module.

3~9



RTS/8 EXECUTIVE REQUESTS

An interrupt processing module has the following format:

MODULE, 0 /THIS WORD GETS A POINTER

/TO THE NEXT MODULE

0 /MODULE ENTERED HERE — CONTAINS

/CDF CIF TO NEXT MODULE FIELD

SKDR /SKIP ON DEVICE READY

(SKP) /(ONLY IF SKDR REALLY MEANS SKIP

/ON DEVICE NOT READY)
JMP I MODULE /NOT READY — GO TO NEXT MODULE IN

/CHAIN
CDF CIF CUR /THIS ONE IS MINE — SET DF AND IF

/CORRECTLY
. /INTERRUPT PROCESSING

CIF o /DISMISS THE INTERRUPT, MAYBE POST

POSTDS /AN EVENT FLAG DEPENDING UPON

/CONTENTS OF AC

See item 7 below for the definition of the POSTDS instruction.

Whenever a task executes a SKPINS ER, the interrupt chain is broken at

the very end and the user's interrupt module is inserted. This is

usually done by tasks at system start—up time only. The last

interrupt module points to the interrupt dismiss routine as its "next

module". In this way, RTS/8 tries to avoid superfluous interrupts.
SKPINS always inserts at the end of the skip chain. This implies that

the Skips in the skip chain are ordered roughly by priority of the

task which inserted them, since any SKPINS ERS in a task are usually
executed as once-only code at system Start—up time.

Once an interrupt module receives control (i.e., its I/O Skip
succeeds), there are several restrictions on its execution:

l. The interrupt module must clear the interrupt request.

2. The Data Field and Instruction Field are those of the next

interrupt module; the user must correct this as described

above before any indirect addressing or jumps are performed.

3. An interrupt module may not issue any RTS/8 ERS.

4. An interrupt module Should not compute excessively when

interrupts are off. Typical execution time should be under

75us. If considerably more computing than this is needed, a

task should be scheduled to perform it by POSTing an Event

Flag. A POSTDS instruction is used to wake up the task from

Event Wait.

5. Interrupt modules must not turn interrupts on because the

state of the interrupted task will be destroyed by a second

interrupt.

6. On entry to the interrupt module, the contents of the AC,

Link, and Data Field have already been saved, but not the

contents of the Multiplier Quotient (MQ). Therefore,

interrupt modules requiring the use of the MO should save it,
and then restore it before dismissing the interrupt.

7. Interrupt modules must dismiss the interrupt by setting the

Instruction Field to 0 and issuing a POSTDS instruction.

POSTDS is defined as a JMP I 24 instruction. An Event Flag
may be POSTed when the interrupt is dismissed by setting the

3-10



RTS/8 EXECUTIVE REQUESTS

Data Field to the field of the Event Flag and placing the

location of the

POSTDS.

CDF CUR

TAD (EVFLG
CIF 0

POSTDS

Event Flag in the AC prior to issuing the

For example:

/DF = THIS FIELD

/EVFLG MAY NOT BE AT LOCATION 0

/DISMISS INTERRUPT AND POST EVFLG

If an Event Flag is not going to be posted by the interrupt
routine, the AC must be cleared prior to issuing the POSTDS

instruction.

For example, an RTS/8 Paper Tape Punch handler task might contain the

following sections of code:

In the initialization code

system start-up time):

START, CAL

SKPINS

PTPINT

GETREQ, CAL

RECEIVE

(contained in a task that is runnable at

/LINK THE PUNCH SKIP

/INTO THE SKIP CHAIN

/WAIT FOR MESSAGE

As a character punch subroutine used by the main body of the task:

PUNCH, O

DCA TEMP

CAL

WAITE

PTPEF

ISZ PTPEF

TAD TEMP

PLS

CLA

JMP I PUNCH

Interrupt skip chain code:

PTPINT, ZBLOCK 2

PSF

JMP I PTPINT

CDF CIF CUR

PCF

TAD (PTPEF
POSTDS

PTPEF, 0

TEMP, 0

/ENTER WITH CHAR IN AC

/SAVE CHAR

/WAIT UNTIL PUNCH READY

/SET PUNCH EVENT FLAG

/TO THE PENDING STATE

/PUNCH CHAR

/RETURN

/USED To CHAIN SKIPS

/CHECK PUNCH FLAG

/N0T READY

/SET CORRECT DF, IF

/CLEAR PUNCH FLAG

/DISMISS INTERRUPT,

/POSTING PTPEF

/PUNCH INITIALLY READY

RTS/8 does not provide a mechanism for removal of entries from the

interrupt skip chain.



RTS/8 EXECUTIVE REQUESTS

3.5 EXECUTIVE REQUEST WAIT STATES

A summary of wait states generated by Executive Requests is shown in

Table 3—3.

Table 3-3

Summary of Wait States Incurred by Executive Requests

ER Wait State Condition PC Suspended
At

SEND none EFWT for SEND if —

message busy at

'CAL'

RECEIVE MSGWT If no messages 'CAL'

(No wait in Input Queue
if AC=4000) and AC positive

WAITE EFWT If Event Flag 'CAL'+3

(No wait if not FINISHED

EF 'done')

RUN none - —

SUSPND RUNWT If task = self 'CAL'+2

POST none
— -

SKPINS none — -

DERAIL none — -

BLKARG any (given by If task = self 'CAL'+3

argument)

SENDW EFWT If message free 'CAL'+3

but Event Flag
not FINISHED

EFWT If message busy 'CAL'

UNBARG none — —

RESCHD none - —

WAITX EORMWT If specified Event 'CAL'

Flag not FINISHED

WAITM any (given by - 'CAL'+3

argument)

NOTE: (a) 'CAL' denotes the address of the CAL instruction in the

(10)

Executive Request.

A message is said to be busy if its Event Flag has not yet
been POSTED by its previous user.



The RTS/8
standard

provides
allows a

backgroun
however,

available

CHAPTER 4

RTS/8 SYSTEM TASKS

system includes system tasks that control most of the

Digital PDP—8 I/O devices. Also included is one task that

interactive system control from the console terminal and

single copy of the 08/8 monitor system to run in the

d. Foreground tasks are protected from background tasks;
the reverse is not true. The complete list of system tasks

in the RTS/8 system is as follows:

Clock Handler —

accepts requests in the form of RTS/8

messages to perform actions after a specified time has

elapsed.

Console and Non-console Terminal Handlers — handle a single
terminal in either line or character mode.

Line Printer Handler -

supports an L88, LS8E, LP8 or LV8 line

printer.

Mass Storage Handlers - Control the passing of information

from these devices to and from memory for the RK08 and RK8-E

moving-head disks, DF32 and RF08 fixed-head disks, and TC08

DECtape unit. Data is read and written in the standard RTS/8
block format (400 octal contiguous words).

Floppy Disk Handler - provides support for the use of the RX8

floppy disk.

LINCtape Handler -

supports both 08/8 and DIAL—format

LINCtapes.

OS/8 Files Support Task — allows the user to look up, create,
and delete files in OS/8 directories from a foreground task.

This task, when used with the mass storage handlers, provides
the capability to read or write OS/8 files on mass storage
devices.

08/8 Support Task —

supports the execution of an OS/8
operating system in the background.

UDC/ICS Handler - enables the user to control the various

types of UDC/ICS modules.

Cassette Handler — allows the user to read or write data on a

tape cassette.

Cassette File Support Handler — allows the user to look up,

enter, and delete files from a DECcassette in CAPS-8 format.



RTS/8 SYSTEM TASKS

0 Power Fail Task - when used with power fail hardware, it

provides for an orderly shutdown when AC power is lost.

Also, it allows a programmed restart when power returns.

0 Exit Task - allows the user to perform Special processing
before making an exit from RTS/8.

o PDP—8A Null Task - allows the user to count in decimal on the

LED display of the PDP—8A.

The sources of the system tasks are supplied with the RTS/8 system.
The tasks referred to as "handlers" are completely message—driven,
i.e., when idle they are in the Message Wait state. Other tasks send

these handlers I/O request messages. When the handler completes the

I/O operation, it POSTS the Event Flag associated with the request

message and issues another RECEIVE ER.

4.1 CLOCK HANDLER

The Clock Handler Task can be assembled to handle any one of four

hardware clocks. The user selects the clocks by setting the symbol
CLKTYP in the parameter file to 0 for KD8-EA/DK8-EC, to l for KWlZ, to

2 for PDP-8A, or to 3 for DK8—EP. The Clock Handler accepts RTS/8

messages and inserts the entries into an internal clock queue. As the

entries become due, they are removed from the queue, and the request
is decoded and executed. The user fixes the length of the queue at

assembly time by defining the symbol CLKQLN in the parameter file to

the minimum number of entry slots. The default value for CLKQLN is

20.

The format of a clock message is:

CLKMSG, ZBLOCK 3 /3 WORDS RESERVED FOR RTS/8
COMMAND+TASKNO /TASKNO=O MEANS TASKNO=SENDING TASK

TIMEHI

TIMELo

EXTRAl

EXTRAZ

The words TIMEHI and TIMELO Specify a time interval from the present
time in terms of "system ticks". The user specifies the number of

system ticks in a second in the RTS/8 parameter file by defining the

parameter SHERTZ. The hardware tick rate (in ticks per second) is

specified by the parameter HERTZ. CLKTYP and HERTZ are determined

completely by the user's hardware configuration. SHERTZ equals the

reciprocal of the software system clock resolution. HERTZ must be an

exact multiple of SHERTZ. For example, the parameters for a

line—frequency clock might be:

DECIMAL

HERTZ= 120

SHERTZ= 10

indicating that there will be 10 "system ticks" per second based on a

60-cycle clock. Such parameters might be used if only 1/10 second

resolution is necessary in the Clock Handler. Note that the maximum

interval that can be expressed in TIMEHI and TIMELO is (2**24)/SHERTZ
seconds. This is approximately three days if SHERTZ=60.

Other RTS/8 system tasks use the symbol CLOCK when referring to the

Clock Handler. The user should define this symbol in the RTS/8

parameter file to be equal to the Clock Handler's task number. It

4-2



should

system.

COMMAND

Octal

0000

1000

2000

3000

7000

RTS/8 SYSTEM TASKS

be undefined if a Clock Handler is not to be included in the

(See Chapter 6 for a description of the parameter file.)

is the type of request and has the following meanings:

Symbolic

MARKTIME

SCHEDULE

TIMOUT

SCHEDULE PERIODICALLY

CANCEL

Description

POST the event flag CLKMSG after the

specified interval elapses. TASKNO,

EXTRAl, and EXTRA2 are ignored.

POST CLKMSG immediately. Execute a

RUN ER on the task specified by TASKNO

after the specified interval elapses.
EXTRAl and EXTRA2 are ignored.

POST CLKMSG immediately. DERAIL the

task specified by TASKNO into a

subroutine whose address is specified
in EXTRAl after the specified interval

elapses. EXTRA2 is ignored.

POST CLKMSG immediately. Execute a

RUN ER on the task specified by TASKNO

after the specified interval elapses,
and re-queue this command with the

parameters EXTRAl and EXTRA2 in place
of TIMEHI and TIMELO. This has the

effect of running the specified task

periodically with a period specified
by EXTRAl and EXTRA2.

Cancel all the clock requests for the

task specified by TASKNO. TIMEHI,

TIMELO, EXTRAl, and EXTRA2 are

ignored. POST CLKMSG immediately.
Note that the requests are not

actually deleted and that they still

occupy space in the queue until they
time out.

0 1 2 3

\-——~k-—J

Command: —_—|
0 MARKTIME

1 SCHEDULE

2 TIMOUT

3 SCHEDULE PERIODICALLY

7 CANCEL

Task number

Command Word Format - Clock Handler



RTS/8 SYSTEM TASKS

The Clock Handler also maintains the current time-Of—day (in system
ticks until midnight), in symbolic locations TODH (high—order) and

TODL (low-order) in Page 0 of Field 0. When this time—of-day reaches

zero (i.e., at midnight), it is reset to the quantity -(SHERTZ*86400)
(24 hours until midnight) and an OS/8-format date word in symbolic
location DATE in Page 0 of Field 0 is incremented by one day.

Note that in order for the quantity SHERTZ*86400 to be contained in 24

bits, SHERTZ must be less than 192. If SHERTZ is larger, an assembly
error will result while assembling the Clock Handler.

4.1.1 Examples of Clock Handler Calls

CAL /WITH A 60HZ SYSTEM TICK RATE,
SENDW /THIS CAUSES THE CURRENT TASK

CLOCK /TO "GO TO SLEEP" FOR 2 SECONDS.

SLEEPM

SLEEPM, ZBLOCK 3 /MESSAGE HEADER

0 /SET EVENT FLAG AFTER INTERVAL

0;17o /INTERVAL IS 120 (DECIMAL) SYSTEM

/TICKS

If the user Changes the value 170 to the assembler expression
2“SHERTZ, the preceding sequence becomes configuration—independent.

CAL /RUN THE TASK REPORT ONCE

SEND /EVERY HOUR, INDEFINITELY,
CLOCK /ASSUMING A 60HZ SYSTEM TICK RATE

RUNMSG

RUNMSG, ZBLOCK 3 /MESSAGE HEADER

SCHEDULE REPORT PERIODICALLY

/RUN REPORT AFTER SPECIFIED

/INTERVAL AND PERIODICALLY

/THEREAFTER,
0;l /FIRST RUN IS ALMOST IMMEDIATELY

/(l/60 SECOND)
64;5654 /PERIOD BETWEEN RUNS IS 216000

/(DECIMAL) SYSTEM TICKS = 3600

/SECONDS = 1 HOUR.

4.2 TERMINAL HANDLER

The RTS/8 Terminal Handler handles a Single terminal in either line or

Character mode. Input in line mode is terminated by a carriage return

or an ALTMODE character and may be edited using the RUBOUT and “U

characters. The RUBOUT character deletes the last valid character

typed and prints a backslash; the "U Character deletes the entire

line and returns the carriage. Character mode input is not-echoed and

is terminated by overflow of a specified character count.

If multiple terminals are to be handled, multiple copies of this

Terminal Handler must be assembled. Assembly parameters in the body
of the handler specify which device codes the handler will use to

access its terminal. These parameters also specify whether the

handler is to be a "console" Terminal Handler, that is, the terminal

4-4



RTS/8 SYSTEM TASKS

on which the MCR program is going to be run. The console Terminal

Handler invokes the MCR whenever a “C is typed on the keyboard;
nonconsole terminal handlers treat “C as any other character. For the

console handler, "C wakes up MCR by POSTing an Event Flag.

The parameters edited into the distributed version of the Terminal

Handler assemble the handler to handle the PDP—8 console terminal as a

"console" device. Thus, when the MCR function is required, both the

MCR task and the Terminal Handler task must be assembled and included

as part of the RTS/8 system. Modification of the Terminal Handler to

support a VT50 terminal and other features are described in Section

4.2.1.

The format of messages to the Terminal Handler can be either of the

following:

ZBLOCK 3 ZBLOCK 3

command+length ASSGN+tsknum

INBUF

OUTTXT

Description: Description:

Types text specified by ASSGN=200

OUTTXT and command, then Assigns Terminal Handler to task specified
reads text into INBUF. Deassigns Terminal Handler if tsknum=0

Legal Commands, which can be combined, are as follows:

Octal Symbolic Action if specified Action if not specified

4000 NOPACK Output text is in Output text is in

unpacked ASCII, one packed 6—bit, two

character per word characters per word

terminated by a 0000. terminated by a 00.

2000 NOCRLF Do not type a CR/LF Type a CR/LF after

after the message. typing the message.

1000 IND OUTTXT points to the OUTTXT is the first

first word of the word of the output text.

output text.

0400 NOLINE Input is in character Input is in line mode;

mode; terminated terminated by a CR

after 'length' input or ALTMODE (ESC). The

characters read. length is still tested.

Length Is a seven-bit field which specifies the

maximum size of the input buffer if input is

in line mode, or the number of characters to

input if input is in character mode. If

input is in line mode and there are LENGTH—l

characters in the input buffer, characters

other than carriage return, ALTMODE, RUBOUT

and “U will not be accepted or echoed the

message Event Flag is Posted.

INBUF Is a pointer to the input buffer; if it is

zero, no input is taken. The input buffer is

filled with input characters packed one per
word with the parity bit (bit 4) forced on.

If input is in line mode, the last character

of the line is followed by a zero word (if a

4-5



OUTTXT

ASSGN =200

tsknum

Command gbits 0-4}

_3

f9

7'39
0:

1: Input in character modef

Bit 4 must be a 0

Packed ASCII

}: Unpacked ASCII

CR/LF at end of message

No CR/LF at end of message

OUTTXT is the first word

OUTTXT points to first word

Input in line mode I

RTS/8 SYSTEM TASKS

carriage return terminated the line) or a

-l(7777) word (if an ALTMODE character

terminated the line).

Is either the first word of the output text

string (if IND=0) or a pointer to the first

word of the output string (if IND=1000) ir

the same field as the message.

"Assigns" the Terminal Handler to the

specified task. This will cause the terminal

handler to only accept messages 'from the

specified task. If another task tries to

SEND a message to the Terminal Handler while

it is assigned, the message will be placed in

the Terminal Handler's Message Input Queue
but will not be removed for processing by the

Terminal Handler until the assignment is

released. The task to which the Terminal

Handler is assigned can release the

assignment by sending a message assigning the

Terminal Handler to task number 0. No I/O
operation is performed by an assignment
message.

Is a 6—bit field used with the ASSGN command

to specify the task number of the task to

which the terminal is to be assigned. If

this field is zero, the terminal is

deassigned allowing the terminal task to

accept commands from any task.

}_______J

Length (bits 5-11)

If bit 3=1, no. of characters to input
If bit 3=0, maximum size of input buffer;

Command and Length Word Format - Terminal Handler I/O Mode



Unused

Bit 4 must be a 1

Unused

RTS/8 SYSTEM TASKS

Task Number

Command Word Format — Terminal Handler ASSGN Mode

4.2.1 Additional Assembly Parameters Affecting Terminal Handler

Properties

Several assembly parameters are available to the user as an aid in

using the TTY task. This section describes these parameters. A

summary of their default values is shown in Table 3-4.

VT50

WIDTH

SCOPE

=0

=n

Do not treat CTRL/S and CTRL/Q as special
characters.

Support CTRL/S and CTRL/Q. If this feature

is enabled, typing CTRL/S while data is being
printed/displayed on the terminal will cause

data to stop until the next CTRL/Q is typed.
This can be used on fast CRT terminals to

temporarily "freeze" the screen. This

parameter must be set to 1 if the user's

terminal is a model VTSO or VT52 since these

terminals will occasionally send

synchronization characters to the host

computer of their own volition.

Where n is an octal number that sets the page

width to n characters. TTY width is

currently set to 120(octal) characters. For

example, setting the parameter

WIDTH = 60

changes the TTY page width to 80(decimal)
characters. After n characters are printed
on the terminal, the handler will

automatically type out a carriage—return
line-feed. Sometimes it is desirable to

suppress this CR/LF (for example, when using
direct cursor addressing). In this case,

WIDTH should be set equal to 0.

This option is used to determine treatment of

the RUBOUT key as follows:

SCOPE=0 provides the normal mode of RUBOUT

support (echo rubouts with a backslash).

4-7



TAB

FILL

CONSOL

OLDTTY

LSBOT

TTFLD

TTLOC

RTS/8 SYSTEM TASKS

SCOPE=1 causes RUBOUT to move the cursor left
one position, physically removing the

character from the screen. If the cursor is

in column 1, RUBOUT still works, but has no

visible effect.

This option is used to simulate tabs by the

proper number of spaces. This is

accomplished via the assembly parameter TAB

as follows:

TAB=0 specifies that the hardware does not

support tabs. The software simulates tabs

with spaces.

TAB=1 specifies that the hardware does

support tabs.

Fill characters are supported via the

assembly parameter FILL as follows:

FILL=0 provides no fill characters.

FILL=n sends n fill characters (nulls) after

a line feed. The number n must be in the

range 1—5. FILL=4 is recommended for 2400

baud VTOSS.

CONSOL = 1 means the handler is being
assembled for the console terminal(default).

CONSOL = 0 means that this handler will not

wake up the MCR when a "C is typed.

OLDTTY = l specifies the use of the old

two-page handler which was supplied with

RTS/8 version 1. This handler has fewer

features than the new handler but it is a

page shorter. The parameters VT50, WIDTH,

SCOPE, TAB and FILL described herein have no

effect when using this handler.

OLDTTY = 0 specifies the use of the new

3-page terminal handler.

LSBOT = l specifies the listing of both the

old two-page and new three—page.

LSBOT = 0(default) causes only the handler

selected by the OLDTTY parameter to be

listed.

Specifies the field of the TTY Handler task;
for example, 20 designates field 2.

Specifies the starting location of the TTY

Handler task; for example, 3000 designates
the starting location at 3000.

4-8



RTS/8 SYSTEM TASKS

Table 4-1

Summary of Terminal Handler Assembly Parameter

Default Values

Parameter Default Value Meaning

VTSO 1 Support “S, “Q

WIDTH 120 Page width of 80(decimal) characters

SCOPE 0 Rubouts echo as \

TAB 0 Simulate tabs

FILL 0 No fill characters

CONSOL l "C wakes up MCR

OLDTTY 0 Use 3-page TTY task

LSBOT 0 List only TTY task selected by OLDTTY

TTFLD 10 Not a default value, but given as an

example to Show that the given number

TTLOC 5000 assignments for TTFLD and TTLOC load the

TTY Handler in field 1 Starting at

location 5000

4.2.2 Useful Equates in the Parameter File

Several useful equates (described in Section 4.2) are available which

can be used when sending messages to TTY or LPT tasks. They are as

follows:

NOPACK = 4000

NOCRLF = 2000

IND = 1000

NOLINE = 400

ASSGN = 200

KL8ALINE = 100

Used if output message is not 6-bit ASCII

format.

Used if output message should not be followed

by carriage return/line feed.

Used if OUTTXT points to the first word of

the output text.

Used if input is in character mode.

Used to assign the device handler for use

only by this task.

Used with KL8-A support (see Section 4.13.2).

4.2.3 Examples of Terminal Handler Messages

HIYA, ZBLOCK 3 /MESSAGE HEADER

0 /PACKED TEXT, END WITH CR/LF,
0 /NO INPUT

TEXT /HELLO/ /TEXT TO BE OUTPUT

Sending the above message to the Terminal Handler prints HELLO on the

terminal.

4—9



RTS/8 SYSTEM TASKS

QUEST, ZBLOCK 3 /MESSAGE HEADER

NOCRLF+60 /PACKED TEXT, NO CR/LF,
/48—CHARACTER INPUT LIMIT

ANSWER /POINTER TO INPUT BUFFER

TEXT /TYPE THE ANSWER:/

Sending the above message to the Terminal Handler prints TYPE THE

ANSWER: on the terminal and inputs a reply without first returning
the carriage. The answer obtained from the above message could be

printed on the terminal by sending the following message:

TYPANS, ZBLOCK 3 /MESSAGE HEADER

NOPACK+IND /UNPACKED TEXT, INDIRECT, WITH CR/LF
0 /NO INPUT

ANSWER /POINTER TO OUTPUT TEXT

4.3 LINE PRINTER HANDLER

The RTS/8 Line Printer Handler outputs to an LE8, LSBE, LP8 or LV8

line printer. The format of messages to the Line Printer Handler is

identical to the format of messages to the terminal handler, but the

INBUF word and the LINE bit are ignored (the INBUF word must, however,
be present in the message).

Command (bits 0-4}

0: Packed ASCII

: Unpacked ASCII

0: CR/LF at end of message

} ‘

._|

1: No CR/LF at end of message

O: OUTTXT is the first word

I: OUTTXT points to first word

0: input in line mode I
I: Input in character modef

Bit 4 must be a 0

Length (bits 5-11)

If bit 3:1, no. of characters to input I
If bit 3:0, maximum size of input bufferj

Command and Length Word Format — Line Printer Handler I/O Mode



RTS/8 SYSTEM TASKS

. Unused

Bit 4 must be a 1

Unused

Task Number

Command Word Format — Line Printer Handler ASSGN Mode

4.4 MASS STORAGE HANDLERS

Handlers are available for TC08 DECtape, DF32 and RF08 fixed-head

disks, RK8 and RK8E moving-head disks, RXOl floppy disks and LINCtape.
All mass storage handlers accept the same message format to read or

write blocks on various mass storage devices. However, the Floppy
Disk Handler and the LINCtape Handler allow the use of additional

parameters other than the ones described herein. These parameters are

described in Sections 4.4.1 and 4.4.2.

The format of messages to mass storage handlers is:

MSMESG, ZBLOCK 3

UNIT

RW + PAGES + FIELD

BUFADD
’

BLOKNO

STATUS

where:

UNIT Is the number of the logical unit on which the operation
'

is to be performed. DF32 and RF08 disks consist of only
one unit. TC08 DECtape has logical units 0-7

corresponding to its physical units 0-7. LINCtape has

logical units 0—7 corresponding to its physical units

0—7. RK8 disk has logical units 0-3 corresponding to

its physical units 0—3. RK8E disk has logical units

0—7. Units 0—3 correspond to the outer (lower track

number) half of physical units 0-3, and units 4-7

correspond to _the inner (higher track number) half of

physical units 0—3, respectively. RXOl has units 0 or 1

which corresponds to the left and right drive,

respectively.

RW Is 0 for a read operation, 4000 for a write operation.

PAGES Specifies the number of (128—word) pages to transfer

(times 100 octal). For example, PAGES=2000 specifies
the transfer of 20(octal) pages or 2048 words; if

PAGES=0, 40(octa1) pages or 4096 words are transferred.



FIELD

RTS/8 SYSTEM TASKS

Is the PUP-8 field in which the transfer takes place
(times 10 octal). For example, if FIELD=30, the

transfer takes place in field 3.

The RW+PAGES+FIELD word is sometimes called the function word of the

message.

Reserved for task use ——————J

Unit

0: Read operation

}

Unit Word Format — Mass Storage Handlers

1: Write operation

No. of pages to transfer

0-7: Field of transfer

Reserved for task use

BUFADD

BLOKNO

STATUS

Function Word Format - Mass Storage Handlers

Is the starting address of the buffer to be transferred.

Is the block number on the device from which the

transfer will begin. All devices are assumed to have

256—word blocks. On DECtape, the first 128 words of

each of an even/odd pair of 129-word DECtape records are

considered to be a block.

Is a word that the handler sets on completion of the

operation. It contains a zero if the operation is

successful, otherwise it will contain a nonzero quantity
which is the contents of the device status register.
Tasks which use the mass storage handlers should test

this word after the I/O operation has been completed

(that is, after the Event Flag has been POSTed) to

determine if any errors occurred during the transfer.

All RTS/8 mass storage handlers retry operations three

times if errors are encountered before setting the

STATUS word to a nonzero.

Note that the middle three words of a message to the RTS/8 mass

storage handlers are identical to the arguments to an OS/8 handler

when the same operation is performed.

4-12



RTS/8 SYSTEM TASKS

4.4.1 Floppy Disk Handler

Each copy of the Floppy Handler can control one single or dual RXOl

drive; for more than one RXOl, multiple copies of the handler are

required. The format of messages to the Floppy Disk Handler is:

ZBLOCK 3

CODE+DEL+MODE+UNIT

RW+PAGES+FIELD

BUFADD

BLOKNO

STATUS

where:

CODE

DEL

MODE

UNIT

4000

2000

100

Regular condition. BLOKNO is interpreted as an

OS/8 logical record number. Also, PAGES is

interpreted in the 08/8 sense to mean the number

of pages of data to transfer. The DEL bit is

ignored.

Special Physical Sector Condition. PAGES is

ignored. One sector is transferred. It is

specified by BLOKNO which is to be interpreted as

TTTTTTTSSSSS. That is, the high order 7-bits of

BLOKNO represent the physical track number. This

number must be in the range 0—76 decimal (0-114

octal). The low order 5 bits of BLOKNO represent
the sector number on that track. This number must

be in the range 1—26 decimal (1—32 octal).

Deleted data marks should not be considered.

Handle deleted data marks (if CODE=4000) as

follows: If writing a sector, write deleted data

indication. Do not note this fact in STATUS word.

If reading a sector, set bit 5 of STATUS word to a

1 if read deleted data indication. In such a

case, the STATUS word may be nonzero even though
no physical error has occurred. Other STATUS bits

are relevant and STATUS negative means hard error.

Specifies transfer in 12—bit mode.

Specifies transfer in 8—bit mode.

OS/8 format uses 12-bit mode. In 12—bit mode, the

64 12-bit words that comprise an OS/8 floppy
sector are packed into the first 96 bytes of the

sector, while the last 32 bytes contain random bit

patterns. In 8—bit mode, an 8-bit byte on the

floppy disk corresponds to the low order 8-bits of

a 12-bit word in memory. Data in the high order 4

bits of a word in memory is not transferred to the

floppy disk.

In 12—bit mode, a sector contains 64 (decimal)
12-bit words of data. In 8-bit mode, a sector

contains 128 8-bit bytes of data.

Specifies the drive unit number. It may be 0 or

1. The number 0 refers to the unit on the left of

a dual drive.

4—13



RTS/8 SYSTEM TASKS

0: Regular condition

1: Special physical sector condition

0: Do not handle deleted

marks}1: Handle deleted marks

0: Transfer in 12-bit mode

1: Transfer in 8-bit mode

...a

0: Left unit of dual drive

Right unit of dual drive

CODE = 4000 (bit 0 set to 1) transfers one sector specified by

BLOCKNO as follows:

L 4\ I
\ r T

Physical track no. ‘——_|
(0-114 octal)

Sector no. on track

(132 octal)

Unit Word Format — Floppy Disk Handler

Hard error

Deleted data

INIT done

Parity error

CRC error

Status Word Format - Floppy Disk Handler

The largest legal OS/8 block number on a floppy disk is 755 octal. If

block 756 is referenced, an error is generated. Use of larger block

numbers may produce unpredictable results. Specifying an illegal
track or sector may produce an error with STATUS = 4000.

4-15



RTS/8 SYSTEM TASKS

The standard 05/8 Interleave Scheme is as follows:

OS/8 Logical Block (octal) Floppy Sectors (track/sector in decimal)

0 1/1, 1/3, 1/5, 1/7

1 1/9, 1/11, 1/13, 1/15

2 1/17, 1/19, 1/21, 1/23

3 1/25, 1/2, 1/4, 1/6

4 1/8, 1/10, l/12, 1/14

5 1/16, 1/18, 1/20, 1/22

6 1/24, 1/26, 2/1, 2/3

7 2/5, 2/7, 2/9, 2/11

10 2/13, 2/15, 2/17, 2/19

11 2/21, 2/23, 2/25, 2/2

12 2/4, 2/6, 2/8, 2/10

13 2/12, 2/14, 2/16, 2/18

14 2/20, 2/22, 2/24, 2/26

15 3/1, 3/3, 3/5, 3/7

Track 0 is not used by 08/8, and cannot be accessed in the 12-bit

mode.

4.4.2 LINCtape Handler

The LINCtape Handler supports both 08/8 and DIAL format LINCtapes.
The format of messages to the LINCtape Handler is:

ZBLOCK 3

MODE+UNIT

RW+PAGES+FIELD

BUFADD

BLOKNO

STATUS

where:

UNIT: Specifies the LINCtape unit number in range 0 to

7.

MODE=0 Specifies OS/8 Mode. A LINCtape is presumed to

contain 200 or 201 (octal) words per physical
block.



=4000

RW =0

=4000

PAGES

FIELD

BUFADD

BLOKNO

STATUS

RTS/8 SYSTEM TASKS

Specifies DIAL Mode. A LINCtape is presumed to

contain 400 (octal) words per physical block.

Note: The LINCtape used is not checked to see if

it is properly formatted for the specified mode.

Use of a LINCtape with improper physical format

will produce unpredictable results.

Read data from LINCtape

Write data to LINCtape

Specifies the number of 128—word pages to transfer

(times 100 octal). For example, PAGES=2000

transfers 20 octal pages or 2048 words; if

pages=0, 40 octal pages or 4096 words are

transferred.

Specifies the PDP—8 field in which the transfer

takes place (times 10 octal). (For example,
FIELD=30, the transfer takes place in field 3).

Is the starting address of the buffer to be

transferred.

Is the block number on the device from which the

transfer will begin. All devices are assumed to

have 256—word blocks. On OS/8 LINCtapes, two

consecutive physical blocks comprise one OS/8
logical block. Only the first 128 words in each

physical block contain meaningful data.

When running in DIAL mode, BLOKNO represents a

physical LINCtape block number. In this case,

PAGES must be even because an even number of pages

is transferred. If PAGES is (incorrectly) odd,
the last page is not transferred, except if

PAGES=1 which will result in one block (2 pages)

being transferred.

is the ones complement of tape check (checksum).
The value 0 means no error. STATUS is always 0 on

a Write operation. Three software retries are

attempted on a checksum read error. Note that the

hardware performs infinite retries on most errors

(write—lock-out, tape not mounted, bad spot on

tape) and does not return control to RTS/8 until

successful.

CAUTION

In the 08/8 mode, the word following the

of the buffer is temporarily
destroyed while a LINCtape operation is

progress. The location is then

restored upon completion of the

operation. However, since RTS/8 is a

real-time system, code may be executing
while the tape operation is in progress.
The user must make sure that this word

never referenced while the LINCtape
is being used. Under no circumstances

Should the word following the end of the

buffer belong to another task.

4-17



RTS/8 SYSTEM TASKS

0: 05/8 mode

1: DIAL mode

Unit number

Unit Word Format — LINCtape Handler

4.4.3 Example of Mass Storage Handler Call

CAL

SENDW

DTA /SEND A MESSAGE TO THE DECTAPE

/HANDLER
DTAMSG /AND WAIT FOR COMPLETION

TAD STATUS /CHECK THE STATUS OF THE OPERATION

SZA CLA

JMP ERR /BAD - GO TO ERROR ROUTINE
‘

'

/OK — CONTINUE PROCESSING

DTAMSG, ZBLOCK 3 /MESSAGE HEADER

4 /DECTAPE UNIT 4

4210 /WRITE 256 WORDS FROM FIELD 1

BUFFER /ADDRESS OF BUFFER

55 /INTO BLOCK 55 (RECORDS 132 & 133)

STATUS, 0 /STATUS OF OPERATION STORED HERE

4.5 POWER FAIL TASK

The Power Fail Task provides the mechanism by which the system
recovers from power failure. If the power-fail/auto—restart hardware

option is present and if the system parameter PWRFAL was equated to a

nonzero .value, the SPL (Skip on Power Low) instruction is included in

the interrupt skip chain. If a power low condition occurs, the

processor state is saved and the processor is halted. When power

comes back, the processor state is restored and an Event Flag is

POSTed which wakes up the Power Fail Task. The Power Fail Task

restores the clock, console terminal, and 05/8 terminal if they are

present, and also performs an action for each task in the system based

on the contents of an internal table. Each task has a one—word entry
in this table, which contains:

0 If nothing should be done for this task (default value)

-1 If the EFWT (Event Flag Wait) bit should be cleared in

the Task Flags Table entry for this task (i.e., this

task should be taken out of Event Flag Wait)

4-18



RTS/8 SYSTEM TASKS

ADDR If the task should be DERAILed to location ADDR in the
field in which it is executing as well as hav1ng 1ts

EFWT bit cleared.
‘

'

Each task in the system may alter its entry in the Power Fail Task's

table by sending a message to the Power Fail Task. The format of the

message is:
v

PWRMSG, ZBLOCK 3

WORD

where:

WORD is the new contents of the Power Fail Task's table entry
.for the sending task.

4.6 OS/8 SUPPORT TASK

The 05/8 Support Task supports the execution of the 08/8 operating

system as a task under RTS/8. OS/8 is run in the top two or more

memory fields under .control of the KM8-E memory extension and

timeshare option (standard on PDP—8/E, 8/F, or 8/M with 8K or more of

core memory) or TSS—8 time sharing hardware option.

NOTE‘

A jumper on the KM8-E module is used to

select the timeshare function. The

module is shipped with this jumper in

place (timeshare function disabled).
The PDP—8A utilizes the memory extension

and 'timeshare option provided by the

KM8—A extended option board. A switch

on the KM8—A module is used to enable

the timeshare function.

The 05/8 Support Task is configured at system startup- time to

establish a correspondence between OS/8 devices and RTS/8 handler

tasks. Terminal input and output from OS/8 are ring-buffered by
several characters to minimize input loss due to the usurpation of the

CPU by tasks of higher priority. Because of the large number of

trapped CDF instructions in 08/8 and its Commonly Used System Programs
(CUSPs), response time is slower than a stand-alone OS/8 system but

still quite 'reasonable. The background OS/8 task must have the same

system device that was used by the.OS/8 system to load RTS/8. The

08/8 Support Task cannot run on a stand-alone PDP—8 without OS/8.

Several parameters in the system parameter file control the assembly
of the 08/8 Support Task. The parameters and their meanings are as

follows: -

'

:

‘

g
.

- OSFLDS . Defined as the number of fields to be dedicated to
"

_, 08/8.
’

Example: OSFLDS=2 specifies two fields or' 8K of

memory for 08/8. .

.

OSKBDV:
*

Set equal to-the keyboard IOT code of 'the 08/8
terminal.

Example: OSKBDV=03 specifies the use of the

console terminal keyboard of 08/8.
Note: OS/8 requires its own dedicated terminal.

4-19



RTS/8 SYSTEM TASKS

OSTTDV Set equal to the teleprinter IOT code of the 08/8
terminal.

Example: OSTTDV=04 specifies the use of the

console teleprinter for OS/8.

OSFILL Specifies how many null characters must follow a

line-feed character on the 08/8 terminal. This

allows high—speed VT05 terminals to be used as

OS/8 terminals. For standard Teletypes1 and

DEeriter terminals, this parameter should be

set to zero.

Example: OSFILL=4 allows the use of a 2400 baud

VT05.

OSSYSD Specifies the 08/8 system device driver task.

Example: OSSYSD=DTA specifies DTAO as the 08/8
system device.

NOTE

The user does not need to include a

terminal driver for the 08/8 terminal

device (it is built into OS8SUP).

The OS/8 system that runs under the 05/8 Support Task runs all OS/8
CUSPS except BUILD, BOOT, PIPlO, INDUSTRIAL BASIC, and BASIC and

FORTRAN LAB runtime functions. All references to the keyboard and

teleprinter are diverted to the specified OS/8 keyboard and

teleprinter. References in 08/8 to the LE8, LSBE, LP8 or LV8 line

printers are diverted to the RTS/8 line printer handler if the system

parameter LPT is defined; otherwise they are executed directly by the

Support Task. References to the following OS/8 device names will be

diverted to the corresponding RTS/8 handler if one is defined:

DTAO—DTA7

LTAO-LTA7

RKAO-RKA3

RKBO-RKB3

RXAO-RXA7

If one is not defined, OS/8 will perform the I/O directly using the

standard OS/8 handler.

In addition, the 08/8 handlers SYS and DSK are diverted to the handler

specified by the parameter OSSYSD. Other references to I/O under the

supported OS/8 system may cause the 08/8 support task to hang in a

loop. References to a handler called RTS8 are diverted to OSSCOM (see
Section 4.7).

4.6.1 Mapping of Fields with 08/8 Support Task

The parameter HGHFLD in the parameter file must specify the highest
field available to the entire RTS/8—OS/8 system. This is usually the

highest field available in memory (e.g., 30 for a 16K machine). The

OS8SUP task maps OS/8 fields into real fields as follows. The field

which OS/8 uses as field 0 is actually HGHFLD. OS/8 fields 1, 2, 3,

etc. are mapped into consecutive fields beginning with field

1Teletype is a registered trademark of the Teletype Corporation.

4-20



RTS/8 SYSTEM TASKS

HGHFLD-OSFLDS+1, proceeding upward. If an OS/8 program references a

field greater than HGHFLD, unpredictable results will occur, as these

fields are mapped over the lower OS/8 fields., The software core size

is correctly set to OSFLDS and should be used by multi—field OS/8

programs.
'

4.7 OS/8 - RTS/8 COMMUNICATION (OSBCOM)

The 08/8 Support Task contains a mechanism by which OS/8 can talk to

an RTS/8 task. To perform this communication, the 08/8 system must be

configured with a handler called RTS8. This handler can be a dummy;
it need not do anything. In faCt, it can be some other handler to

which the name RTSB has been assigned. The 08/8 Support Task traps
all calls to this handler. The arguments that are passed to the RTS8

handler by an OS/8 program will be passed to an RTSB task called

OSBCOM. The user is responsible for writing this OS8COM task.

The OSBCOM task performs an RTS/8 RECEIVE ER. The task can then

receive a message any time an OS/8 program reads or writes to the RTS8

handler. This message looks like any other message to a mass storage
device. OSBSUP does make one change to the arguments. Bits 6 through
8 of the function word originally contain the field of the buffer.

This is the field where OS/8 expects the buffer to be. When OS8COM

gets control, these bits identify the actual field that contains the

buffer. OS8COM can return information to 05/8 through these

arguments.

4.7.1 Using the OSBCOM Task

An OS/8 program that runs an RTS/8 task as specified by the 08/8 user

is shown in the following example.

Example:

USR=7700 /LOCATION OF OS/8 USER SERVICE ROUTINE

JMS PRINT /PRINT MESSAGE "WHAT TASK WOULD YOU

/LIKE TO RUN?" ON THE OS/8 TERMINAL

JMS READ /READS RESULT FROM OS/8 KEYBOARD
'

/RETURNS TASK NUMBER IN RANGE 1-77

/ IN AC

DCA TASKNUM /STORE IT AWAY

CIF 10

JMS I (USR /CALL USR

1 /TO DO A FETCH

DEVICE RTSB /OF DEVICE 'RTS8'

ENTRY, ADDR /DUMMY ADDRESS (HANDLER WILL ALREADY

/BE RESIDENT

HLT /ERROR (HANDLER NOT FOUND)

/NOTE THAT THIS CODE IS NOT REUSABLE AND THAT LOCATION

/'ENTRY' IS SET TO THE ENTRY POINT FOR THIS HANDLER

CIF 0

JMS I ENTRY /CALL HANDLER

0 /DUMMY READ

TASKNUM, 0 /TASK NUMBER

ZBLOCK 2 /DUMMY
JMP I (7605 /RETURN TO OS/8

It should be noted that TASKNUM is being passed as the second argument

instead of the first because OSBSUP automatically modifies bits 6—8 of

the first argument, presuming that a mapped field number is located

4-21



RTS/8 SYSTEM TASKS

there. OSBCOM expects three arguments after the handler call plus an

error return. These must be specified by the user.

Where the 08/8 portion of the program has been written, the OS8COM

task that handles the RTS/8 side of the communication must be written.

OSBCOM is written like any other RTS/8 user task, and an example of

what it might look like is as follows:

TASK=OSBCOM /088COM IS ASSIGNED A PRIORITY IN THE

/PARAMETER FILE

INIWT=O /COMES UP RUNNING

CUR=4O /SPECIFY FIELD HERE

FIELD CUR%10

*200 /STARTING ADDRESS

START, CAL -

RECEIVE /IMMEDIATELY GO.INTO RECEIVE WAIT

MADDR, 0 /ADDRESS OF MESSAGE LEFT HERE

DCA MSGFLD /CDF TO MESSAGE FIELD LEFT IN AC

MSGFLD, HLT
“

ISZ MADDR /POINT TO FUNCTION WORD

ISZ MADDR /POINT TO BUFFER ADDRESS

‘ /(SECOND OS/8 ARGUMENT)
TAD I MADDR /GET TASK NUMBER

CAL

RUN /RUN THIS TASK

/OS8COM WANTS TO BE HIGHER

/PRIORITY THAN TASK IT IS RUNNING

TAD MSGFLD

DCA EFCDF

TAD (—5
TAD MADDR /GET ADDRESS OF EVENT FLAG

/FOR MESSAGE

CAL

POST /POST MESSAGE

EFCDF, HLT

JMP START /GET ANOTHER MESSAGE

In this example, the task number was put in the second argument of the

08/8 call. However, it became the third word of the RTS/8 message
because OSBSUP always adds a word to the mass storage call argument
list, namely the unit number. For a description of the 08/8 standard

handler call format, see Section 4.1 of the 08/8 Software Support
Manual. For a description of the standard message format for mass

storage devices, see Section 4.4 of this manual.

4.7.2 Other Techniques

Other techniques which can be employed by the user are as follows:

1. If the RTS/8 handler STATUS word (word 5) of the message

posted by OSBCOM is nonzero, then return is taken to 08/8 at

the error return of the handler call.

2. Arguments may be passed back to 08/8 through the argument
list.

3. If more than three words of data need to be passed to OSBCOM

from OS/8, the user can pass a CDF and address of the area

where the data resides. If the CDF occurs as the first

argument to the handler call, it automatically will be

relocated before being passed to OSBCOM.



RTS/8 SYSTEM TASKS

4.8 OS/8 FILE SUPPORT TASK

The OS/8 File Support Task (OSBF) allows other tasks to look up,

create, and delete files in OS/8 directories. This task is included

in the same source file as the 08/8 Support Task, but the user can

assemble it independently of that task (depending on which tasks are

defined in the system parameter file). The format of messages to OSBF

ls:
'

OSFMSG, ZBLOCK 3

DEVHND"10+UNIT+FUNCT

FILPTR

STATUS

BLOKNO

LENGTH

where:

DEVHND Is the task number of the handler for the desired

device.

UNIT Is the unit number on which the operation is to be
’

performed.

FUNCT Represents the function to be performed. It can

have the following values:

0 Looks up the specified filename and returns

its starting block number in BLOKNO, and its

length in LENGTH (as a two's complement
number).

2000 Enters the specified filename into the first

empty space (on the device) whose length is

equal to or exceeds the value in LENGTH.

Returns the starting block number of the new

file in BLOKNO. If a file of the same name

previously existed on the device it is

deleted. The value of LENGTH is unchanged.

4000 Deletes the specified filename.

FILPTR Is a pointer to a 4-word filename in the same

, field as the message. The PAL8 pseudo-op FILENAME

can be used to generate these filenames.

STATUS Describes the final status of the operation as

follows: ,

0 Operation successful.

1 File not found on Lookup or Delete.

2 No room for file on Enter.

>2 I/O error occurred. The value is the

hardware error status of the device.

-1 Invalid directory on device.



RTS/S SYSTEM TASKS

\__\,._J i
\l lljk J

V V

Function: —————_J

0 Lookup

1 Enter

2 Delete

3 Unused

Unused

Task number

Unit

OS8F Call Function Word

If both OSSF and the 05/8 Support Task are present in a system, an

interlock is set up to prevent simultaneous updating of directory
blocks by both systems. Because 08/8 tends to leave directory blocks

in memory for long periods of time, this interlock scheme causes

lengthy delays for the OS8F task. Before a Delete or Enter operation
is performed, OSBF waits until 08/8 is in a state in which:

_

1. There is no active temporary file on the 08/8 device

corresponding to DEVHND and UNIT.

2. 05/8 has just loaded the Keyboard Monitor, Command Decoder,

or USR into core.

Look up operations are not interlocked since they do not modify the

directory.

4.9 UNIVERSAL DIGITAL CONTROLLER/INDUSTRIAL CONTROLLER SUBSYSTEM

(UDC/ICS) HANDLER

The UDC/ICS handler gives the user the capability to control the

various types of UDC/ICS functional devices. This handler performs
two types of action: immediate and associated. Immediate actions

include reading and sending analog and digital values to appropriate
UDC/ICS functional devices. Associated actions can be linked to

specified events within the UDC/ICS (counters overflowing, switches

being thrown). The associated actions can do the following:

1. Run a specified task when the event occurs

2. Set the'Event Flag when the event occurs

3. DERAIL a specified task when the event occurs

The number of associated requests that can be pending simultaneously
is determined by the size of the buffer, which is specified by the

assembly parameter RINGBUF.



RTS/8 SYSTEM TASKS

The UDC/ICS handler permits the following operations:

1. Analog Output send a 10—bit value to an analog channel

2. Analog Input
-

accept input from analog subchannel

3. Digital Output - send a 12-bit value to a digital channel

4. Digital Input - read a digital channel

5. Get Generic Code - determine the generic code for a

specified channel

6. Enable Counter — permit interrupts from a counter channel

7. Read Counter - read current value of the counter

channel

8. Disable Counter - disable interrupts from a counter

channel

9. Enable Contacts - permit interrupts from a contact channel

10. Change Of State — find the current COS value for a contact

channel

11. Disable Contacts - ignore interrupts from a contact channel

Each operation is discussed in detail below, including the format of

the message for specifying the operation. The first three words are

required for use by the Executive. Word 4 specifies one of the 11

UDC/ICS operations which are as follows: AO=O; DO=1; DI=2; GC=3;

EC=4; RC=5; DC=6; ECT=7; CS=10; DCT=ll; AI=12. Word 5

designates the channel being used for the indicated operation. Words

6 through 8 may be required to completely specify the operation, and

the number used is dependent upon the operation. The word that

follows the last word specifying the desired operation is used for the

value read or the value returned. Word 10 of all UDC/ICS messages
contains the error state.

The general format for a UDC/ICS message is:

ZBLOCK 3

OPERATION

CHANNEL

OPWORDl

OPWORD2

OPWORD3

VALUE

STATUS

4.9.1 A0 Analog Output

Format: AO

channel number

subchannel & value

Channel number is the analog output channel. The subchannel and value

word is formed by the subchannel (0—3) in bits 0 and l and the 10—bit

value in bits 2-11. For example, a message for an analog output
operation:



RTS/8 SYSTEM TASKS

AOEX, ZBLOCK 3
A0 /ANALOG OUTPUT

. 23 /CHANNEL 23 -

4614 /SUBCHANNEL 2, VALUE 614

ZBLOCK 3

AOER, 0 /ERROR INDICATOR

K J\ SJ

Subchannel _—i
Value

Subchannel and Value Word Format — UDC/ICS Handler

4.9.2 AI Analog Input

Format: AI
'

channel

subchannel & gain
answer

where channel is the analog input channel. The subchannel and gain
word need only specify the gain in bits 1—3 and the subchannel in bits

9-11 for UDC, and 5-11 for ICS. The handler automatically sets bit 0

(enable conversion) and read control register (UDC bit 8; ICS bit 4);
The ICS analog converters must have addresses which are less than 20

(octal) since all converter modules must be located in the first 16

slots of the ICS unit. After conversion, 'the digitized value is

placed in the answer word. .

Enable conversion

Gain

ICS read control register;

(for UDC, bit 8)

ICS subchannel;

(for UDC, bits 9-11)

Subchannel and Gain Word Format - UDC/ICS Handler



RTS/8 SYSTEM TASKS

An example of a message for an analog input operation is as follows:

AIEX, ZBLOCK 3

AI /ANALOG INPUT

17 /CHANNEL 17

3 /SUBCHANNEL 3, GAIN 1

AIANs, o
»

/RESULT HERE

ZBLOCK 2

AIERR, 0 /ERROR INDICATOR

The user should ensure that for each major channel there is sufficient

time (approximately 250 microseconds for UDC; 5 milliseconds for ICS)
for each subchannel conversion to be completed before another is

indicated. In general, it may be helpful if all A/D conversions for a

major channel are initiated from the same task.

4.9.3 DO Digital Output

Format: DO

channel

value

Channel is a legal digital output channel and value is the number to

be output. .For example:

DOEX, ZBLOCK 3

DO' /DIGITAL-OUTPUT
'20 /CHANNEL~20
7777 .

» /VALUE = 7777

ZBLOCK 3.
-

_.
.

DOER, 0 /ERROR INDICATOR

4.9.4 DI Digital Input

Format: DI

channel

result

Channel is the appropriate digital input channel and result will

contain the value of the channel when read. For example:

DIEX, ZBLOCK 3

DI /DIGITAL INPUT

27 . /CHANNEL 27

DIANS, o /VALUE OF CHANNEL 27 WILL BE PUT

/HERE
ZBLOCK 3

DIER, o /ERROR INDICATOR

4.9.5 GC Generic Code

Format: GC
« channel

result



RTS/8 SYSTEM TASKS

The generic code of the specified channel is put in result. For

example:

GCEX, ZBLOCK 3

GC /DETERMINES GENERIC CODE

27 /CHANNEL 27

GCANS, 0 /GENERIC CODE PUT HERE

ZBLOCK 3

GCER, 0 /ERROR INDICATOR

Generic codes are as follows: 0 — No interrupt; l — Controller

error; 2,3 - Contact Interrupt Modules; 4 - Counter Module; 7 - A/D
converter.

4.9.6 EC Enable Counter

Format: EC

channel

initial value

reload value

event action

address

Channel is the counter channel to be enabled, initial value is the

first value to be loaded into that channel, and reload value is the

value with which to reload the channel after every event. If the

reload value is 0, the counter is not reloaded. The event action and

address words specify what happens when the counter interrupts. There

are three mutually exclusive possibilities, indicated by setting the

appropriate bit in the event action word as follows:

Bit 0 = l — Set Event Wait Flag of this job; continue

execution of this job when the event occurs.

Address word not used.

Bit 1 = l - Run a task that sent the message; run task

specified by bits 4-11 of event action word.

Address word not used.

Bit 2 = l - DERAIL the task that sent the message; the

address word is only used by the DERAIL operation
and specifies the address of the DERAIL

subroutine. The subroutine must be in the same

field as the calling task.

Bit 3 = l — Do action just once. If bit 3 = 0, specified
action is performed after each interrupt. Bit 3

indicates whether action is to occur once or

repeatedly.

Several enable counter examples follow:
'

ECEXl, ZBLOCK 3

EC /ENABLE COUNTER

4 /CHANNEL 4

7700 /INITIAL VALUE OF 7700

7710 /RESET TO 7710 AFTER EACH EVENT

4000 /POST EVENT FLAG ON EVENT EVERY TIME

/IT OCCURS

0 /UNUSED
ECERl, o /ERROR INDICATOR



ECEXZ,

ECERZ,

ECEX3,

ECER3,

4.9.7 RC

Format:

where channel is the counter channel whose

That value is placed in result.read.

RCEX,

RCANS,

RCER,

4.9.8 DC

Format:

where channel

ignored. For

DCEX,

DCER,

4.9.9

Format:

Enabi

ZBLOCK 3

EC

4

1205

0

2016

0

0

ZBLOCK 3

EC

5

10

7700

1015

5620

0

Read Counter

RC

channel

result

ZBLOCK 3

RC

6

0

ZBLOCK 3

0

DC

channel

is the counter channel from which interrupts are to

example:

ZBLOCK 3

DC

6

ZBLOCK 4

0

ECT

RTS/8 SYSTEM TASKS

/ENABLE COUNTER

/CHANNEL 4

/INITIAL VALUE OF 1205

/DON'T RESET

/RUN TASK 16 ON EVENT EVERY TIME IT

/OCCURS
/UNUSED
/ERROR INDICATOR

/ENABLE COUNTER

/CHANNEL 5

/INITIAL VALUE OF 10

/RESET TO 7700

/DERAIL TO TASK 15 EVERY TIME IT

/OCCURS
/AT LOCATION 5620

/ERROR INDICATOR

current value is to be

For example:

/READ COUNTER

/CHANNEL 6

/VALUE OF CHANNEL 6 PUT HERE

/ERROR INDICATOR

Disable Counter

be

/DISABLE COUNTER

/CHANNEL 6

/ERROR INDICATOR

Contacts

bit & channel

event action

address



RTS/8 SYSTEM TASKS

where the bit & channel word specifies the bit on the contact channel
from which to enable interrupts. Channel is specified in bits 4—11

and the contact bit is packed in bits 0-3 as a value from 0—l3(octal).

Event action and address are specified in the same manner as in the

enable counter function. For example:

ECTEXl, ZBLOCK 3

ECT /ENABLE CONTACTS

5401 /FROM BIT 13(OCTAL) OF CHANNEL 1

2013 /RUN TASK 13 AFTER AN EVENT OCCURS

ZBLOCK 3

ECTEIR, 0 /ERROR INDICATOR

ECTEXZ, ZBLOCK 3

ECT' /ENABLE CONTACT

1001 /FROM BIT 2 OF CHANNEL 1

4000
'

/ON lST OCCURRENCE OF EVENT, POST

/EVENT FLAG

ZBLOCK 3

ECTE2R, 0 /ERROR INDICATOR

Twelve messages are required to enable the entire channel.

4.9.10 CS Change of State

Format: CS 0

channel

result

where channel is the contact channel whose current change of state

value is to be placed in result. For example:

COSEX, ZBLOCK 3

cs /READ cos

1 /CHANNEL 1

COSANS, 0 /RESULT HERE

ZBLOCK 3

COSER, 0 /ERROR INDICATOR

4.9.11 DCT Disable Contacts

Format: DCT

bit & channel

where bit & channel is specified as in enable contact. That is, bits

0-3 specify the bit (0 - 13 octal) and bits 4—11 specify the channel

to be disabled. For example:

DCTEX, ZBLOCK 3

DCT /DISABLE CONTACTS

5401 /FROM CHANNEL 1, BIT

/l3(OCTAL)
ZBLOCK 4

DCTANS, 0 /ERROR INDICATOR



RTS/8 SYSTEM TASKS

4.9.12 UDC/ICS Assembly Parameters

The UDC/ICS handler has several assembly parameters that the user must

specify to indicate the UDC/ICS configuration. The number and address

is required only for those modules that perform interrupts. They are

as follows:
'

‘

RINGBF Number of interrupts that can be stored in the

ring buffer.

NCNTR Number of counter modules.

NCNTC ~ Number of contact modules.

NAD 'Number of analog input converter modules.

FCTR Address of the first counter module. The modules
must be at contiguous module addresses.

FCT Address Of the first contact interrupt module.

Interrupt modules must be at contiguous module

addresses.

FAD Address of the first A/D converter module. Analog
input modules must' be at contiguous module

addresses.
.

NMPLX Number of multiplexer modules per analog converter

(ICS only).

These parameters are used mainly to specify the sizes ~of~ several

tables in the UDC/ICS handler, allocated as 30(octal) words per

contact module, 3(octal) words/counter module, and 16(octal) words per

analog module. The UDC/ICS handler currently assumes that the handler

and all its tables are entirely within the same data field (although
the user could easily reprogram this). -4

The user must keep in mind when establishinngINGBF size that if the

buffer is full, UDC/ICS interrupts are disabled until there is room in

the buffer. Also, each interrupt requires two entries in the buffer;
that is, the actual buffer size is 2 * RINGBF.

4.9.13 UDC/ICS Error Conditions

To indicate error conditions, the UDC/ICS handler places a value in

the tenth word of the task's message. The values and meanings are:

Value _' Meaning

1 Illegal generic code for specified channel and

operation '.

‘

2 Channel or subchannel value not valid

3 Illegal function code

5 UDC/ICS control not responding (power off or

hardware error)



RTS/8 SYSTEM TASKS

The user should initialize and check the error word. A no error

condition puts a 0 in this location.

Only errors encountered at noninterrupt time are returned in this

manner, thus they may also indicate a faulty UDC/ICS hardware

functional device. Generic codes of 0 or 1 encountered at interrupt
time are ignored.

4.10 CASSETTE HANDLER

The Cassette Handler (CSA) allows the user to read and write

variable-length records on DEC cassettes, as well as to perform
various special functions (such as rewind and write end-file). One

copy of the Cassette Handler can operate eight units.

There are two general categories of cassette operation:

1. Handler functions — read and write

2. Utility functions - rewind, backspace file gap, write file

gap, backspace block gap, and skip to file gap

The user should call these functions in a meaningful sequence. The

first word of the message defines the cassette unit and either the

handler or utility call.

4.10.1 Handler Function

The format of a message to the Cassette Handler when using a handler

call is:
'

ZBLOCK 3

CALL + UNIT

RW + FIELD + NONSTORE

BUFADD

SIZE

STATUS

For a handler function, the words after the RTS/8 message header are

defined as follows:

Word 1 bit 0 = 0 Utility call

bit 1 = 0 Handler call

bits 9—11 Cassette unit

Word 2 bit 0 = 0 Read

0 = 1 Write

bits 6-8 Field of buffer

bit 11 Do not store data (applicable to read

only)

Word 3 Buffer address

Word 4 Record size in bits 4-11

Word 5 Status return

4-32



RTS/8 SYSTEM TASKS

0: Handier call

1: Utility call

Unit

Unit Word Format — Cassette Handler

0: Read

1: Write

Field

0: Read into memory

1: Check data

Function Word Format - Handler Call

Cassette conventions specify a record size of 200 bytes, but the user

can use any size up to 377 (8 bits are transferred). The buffer

specified by the message cannot cross field boundaries. For a read

operation, the buffer is optional (although its word in the message
must be included), according to bit 11 of word 2. TheL nonstore

capability can be used for advancing through a long file. Word 5

contains the contents of status register B, which is defined by the

bit setting as follows:

Bit Meaning

CRC /block error

Timing
EOT/BOT
EOF

Drive empty
Read/write
Write lockout

ReadyI—‘l—‘kOCDflONUIuh l—‘O

4-33



RTS/B SYSTEM TASKS

CRC/block error

Timing

EOT/BOT

EOF

Drive empty

‘

Read/write

Write lookout
-

Ready

Status Return Word Format — Cassette Handler

At the end of each cassette operation, the user should examine Word 5

to check for errors encountered.
'

An example of a cassette handler message to write 100 bytes from a

buffer starting at 21200 to cassette unit 3 is as follows:

MSGl, ZBLOCK 3

g,
- 4003 1

. /HANDLER OPERATION QN UNIT 3

4020
_

.

. /WRITE FROM FIELD 2 THE

1200: .4
.

v /BUFFER AT 1200 WHICH IS

0100 »

v /100 BYTES LONG

0000 /STATUS RETURN

To read and not store 200 bytes from unit 2, the message is:

MSGZ, ZBLOCK 3

4002 /HANDLER OPERATION ON UNIT 2-

0001 /READ AND DON'T STORE

0000 /UNUSED
0200 /200 BYTES

0000 /STATUS RETURN

4.10.2 Utility Function

The format of a message to the Cassette Handler when using a utility
call is:

ZBLOCK 3

CALL+UNIT

FUNCTION

STATUS

4-34



RTS/8 SYSTEM TASKS

For a utility function, the words after the RTS/8 message header are

defined as follows:

Word 1 bit 0 = 0 Utility call

bit 0 = 1 Handler call

bits 9—11 Cassette unit

Word 2 (function in bits 6—8): 10 Rewind

30 = Backspace file gap

40 = Write file gap

50 = Backspace block gap

70 = Skip to file gap

Word 3 Status return

0 1 2 3 4 5 6 7 8 9 10 11

\____\/____J

Function: J
1 Rewind

3 Backspace file gap

4 Write file gap

5 Backspace block gap

7 Skip to file gap

Function Word Format — Utility Call

For example, to request a rewind on unit 1, the message is:

MSG3, ZBLOCK 3

0001 /UTILITY OPERATION 0N UNIT 1

0010 /REWIND
0000 /STATUS RETURN

If an error is encountered, the operation is retried 3 times, except
when a write lock out is placed on a write operation or an error

occurs while reading CRC.

The CAPS—8 User's Manual (DEC—8E—OCASA-A—D) is suggested reading for

users who are unsure of cassette conventions.

4.11 CASSETTE FILE SUPPORT HANDLER

The Cassette File Support Handler (CSAF) supports the DEC standard

cassette format and allows the calling task to look up and enter files

on cassettes in that format. This handler requires the cassette

handler (CSA) to perform the actual I/O operations involved.

The cassette operations ENTER, LOOKUP and CLOSE are performed by the

Cassette File Support Handler (CSAF) which in turn calls the cassette

handler (CSA). ENTER and LOOKUP require the user to put‘ appropriate
information in a record header area with which CSAF performs the file

operations. The header area must be at least 40(octa1) words long and

cannot cross field boundaries.



Word definitions for a

Word 1 bit 0 = 1

bit 1 = 1

bit 2 = 1

bits 9—11

Word 2

Word 3

Word 4

RTS/8 SYSTEM TASKS

CSAF message are as follows:

ENTER

LOOKUP

CLOSE
— unit

Address of header for ENTER and LOOKUP;
status return for CLOSE

Field of header for ENTER and LOOKUP (bits
6—8)

Status return for ENTER and LOOKUP

In all cases, the status return is the contents of Status Register B.

0 1 2 3 4 5 6 7 8 9 10 5

Function: —_l
1 Close

2 Lookup
4 Enter

Unit

Unit Word Format - Cassette File Support Handler

For ENTER and LOOKUP, the format of the header area must conform with

cassette standards (and therefore is compatible with CAPS-8). This

format is as follows:

Byte

12-13

14—15

16-23

24-35

Use

Filename

Filename extension

File type
1 = ASCII

0 = undefined

File record length.
Currently word 12 must be

0

Unused

Date (ASCII) specified as

ddmmyy

Unused

Reference is to 8—bit bytes, one per word, right
justified

For an ENTER operation,
header area is found on

if a file with the name specified in the

the specified unit, it is deleted.

4-36



RTS/8 SYSTEM TASKS

For a LOOKUP operation, the record size of the specified file is

returned in location header+l3 (byte 13). If the file is not found or

if an error occurs, this location contains 0.

The CLOSE operation is automatically followed by a REWIND.

Examples of messages follow.

MSG4, ZBLOCK 3

4000 /ENTER ON UNIT 0

6400 /INFORMATION IN HEADER STARTING AT

/6400
0010 /OF FIELD 1

0000 /STATUS RETURN

MSGS, ZBLOCK 3

1003 /CLOSE ON UNIT 3

0000 /STATUS RETURN

4.12 PDP-8A NULL TASK

The PDP-8A Null Task counts from 1 to 9999 in decimal in the AC

display. It also counts from 1 to 7777 in octal in the MO display.
The source which is called NULL8A, takes up a page. The user can

configure the null task into an RTS/8 system by inclusion in the

parameter file of its task name and the statement

NULL8A = NTASKS+1

4.13 KL8—A SUPPORT

The KL8—A is a 4—serial line asynchronous multiplexer for the PDP—8/A
that has three lines with partial modem control and one line with full

modem control. KL8-A support is available to the RTS/8 Executive, the

TTY task, and the 08/8 Support Task. To use KL8—A support, the user

should perform the procedures that are described in the following
sections.

4.13.1 Executive KL8-A Support

The symbol KL8A in the parameter file is set to a value equal to the

number of KL8~A units being employed by the user. If one KL8—A is

being used, then KL8A=1 is spciified.

If the symbol 'KL8A' is set to 0 or undefined in the parameter file,
no KL8—A support will be provided by RTS/8.

KL8-A support is provided by the RTS/8 Executive. The source file

KL8ASR.PA must be assembled as follows:

.PAL KL8ASR<PARAM,KL8ASR



RTS/8 SYSTEM TASKS

The parameters in the parameter file that relate to KL8—A service are

as follows:

KL8A = 0 or undefined means that no KL8—A service is desired.

= n means support for n physical lines is

desired. Each physical KL8—A provides
four lines.

KL8ADV Device code for the first KL8—A.

Default is 40. Each KL8—A uses two

consecutive device codes (e.g., 40 and

41). If multiple KL8-A's are used, they
should have consecutive device codes.

KL8ACT Specifies page for start of KL8—A

connect routine. Default is 7400 (if
KL8A = l). The KL8-A connect routine

must be located in field 0. It is

l-page long for one KL8—A and grows a

page for every three additional KL8—A's

used (or part thereof). The default

value of this parameter is such that the

KL8-A support routine gets jammed up

against the end of field 0, ending at

location 7577.

4.13.2 TTY Task KL8-A Support

KL8—A support in the TTY task is initiated by setting symbol KL8A in

the parameter file to nonzero. Then the KL8—A line to be used is

specified in place of the terminal IOT device code plus 100. For

example, if the TTY task is to control line 3 of a KL8-A,

TTDEV = KL8ALINE+3

is specified in the parameter file. (The symbol KL8ALINE is defined

to have the value 100 in the parameter file.) If more than one KL8—A

interface is used, the lines are numbered consecutively beginning with

0 and continuing across interfaces. Thus, KL8—A logical line number 5

actually is physical line number 1 of the second KL8-A interface.

Physical lines are numbered from 0 to 3.

KL8-A support requires additional memory in field 0 for Executive

Support but does not increase the size of the TTY task. KL8-A support
is included in both the old (2-page) and new (3-page) TTY task.

4.13.3 KL8-A Support for the 08/8 Support Task

KL8-A support for 08/8 is similar to that described for the TTY task.

However, the following procedure is used. First, the symbol KL8A is

set to nonzero in the parameter file. Then, the particular KL8—A line

is specified by using a number of the form 100+line in place of the

device code, where "line" is the line number of the KL8-A that is 08/8

being used. The symbol KL8ALINE is conveniently defined as being 100

in the parameter file. For 08/8 support, the parameter

OSTTDV = KL8ALINE+2



RTS/8 SYSTEM TASKS

specifies that terminal output goes to line 2 of the KL8—A. When more

than one KL8-A is used, the lines should be numbered successively as

described for the TTY task support in Section 4.13.2.

4.13.4 KL8—A Support for a User Task

The KL8-A support in the Executive allows a user to program the KL8-A

in a manner similar to the KL8-J.

First, the user task must insert the KL8-A into the interrupt skip
chain and provide a keyboard and printer interrupt routine to service

the line he wishes to use. This is accomplished via the following
code:

CDF CUR

CIF 0

ICE

TAD (LINE"4
JMS I (KL8ACT
KEYBD INTERRUPT ROUTINE

PRINTER INTERRUPT ROUTINE

where LINE is the line number of the KL8—A desired. KL8—A line

numbers are consecutive, begin at 0, and may span across KL8-As. The

KL8-A line number is actually of the form 4a+b where a is the number

of the KL8—A (0,1,2...) and b is the physical line number of the

specific KL8-A (0—3).

Second, the user must define the instruction corresponding to the TLS

instruction that will be used when outputting to the KL8—A line.

For example, if the device code for the KL8-A is 40, then the user

will probably want an instruction such as

TLSX=6404

in his task.

Normally, a program would contain the following code to output a

character:

TAD char

TLS

When using a KL8-A, the task would first connect up the KL8—A support

by calling KL8ACT. Then, to output a character, the following code

would be used:

TAD line "400

TAD char

TLSX

The AC is not cleared by the TLSX.

4.14 EXIT TASK

The EXIT Task is not required for RTS/8 operation. If this task is

included in a system, it is run by the MCR EXIT command. The EXIT

task performs the same functions as those performed by the MCR EXIT

command, that is, it waits for any pending operations to be completed,

4-39



RTS/8 SYSTEM TASKS

then turns off interrupts and returns to the 08/8 operating system.
In addition, the EXIT Task allows a user task to request additional

special exit processing just prior to shutting down RTS/8. This is

done by having the user task send a message to the EXIT Task. This

message contains a single word. This word is the address of a routine

(in the same field as the message) that will be called (via a JMS) at

the time of the exit. When the MCR EXIT command is typed, these

routines will be called and executed in the order that they were sent

to the EXIT Task.

NOTE

Any message sent to the EXIT Task will

not get posted. Also, do not use the

MCR REquest command to run the EXIT

Task.



CHAPTER 5

MONITOR CONSOLE ROUTINE

The Monitor Console Routine (MCR) provides functions that the user can

request from the console terminal to control, inspect, and debug (to

some extent) his system.

The MCR indicates that it is active and ready to accept commands by

printing the prompting character > on the system console terminal. An

MCR command consists of a command word followed by arguments and

terminated by either a carriage return or an ALTMODE. Only the first

two characters of the command are significant except for the EXIT

command. Commands can be a maximum of 40 characters long. If a

carriage return terminates the command line, the MCR returns to the

terminal for another command when it finishes processing the current

command. If an ALTMODE terminates the command line, the MCR puts
itself in a wait state when it finishes processing the command. The

MCR is brought out of this wait state by typing "C (CTRL C) on the

console terminal.

When the MCR prompts with its > and is waiting for input, no other

RTS/8 task can use the terminal. Therefore, if the terminal is used

for something other than an exclusive MCR terminal (for instance,
error logging); type "C, type the MCR command and terminate it with an

ALTMODE character. This procedure prevents the MCR from tying up the

terminal.

5.1 MCR COMMAND ARGUMENTS

Certain syntactic constructions are used as arguments to several MCR

commands. The definitions of these arguments follow.

A single comma or a single space may be used

interchangeably to separate arguments to MCR

commands.

Task-ID A Task-ID is either an octal number or a

name. If it is a number, it represents the

internal RTS/8 Task Number. This number also

designates the priority of a task. If it is

a name, the first 4 characters of the name

are looked up in the MCR's Task Name table to

produce a Task Number.

Time-of—day A time-of-day is of the form hh:mm, where hh

represents hours past midnight and mm

represents minutes past hh:00.

Address An Address is an octal number from 1 to 5

digits that represents a PDP—8 memory

5-1



MONITOR CONSOLE ROUTINE

address. If the address is less than five

digits long it is assumed the high order

digits are 0.

Word A Word is an octal number from 1 to 4 digits
long.

5.2 MCR COMMANDS

In the MCR command descriptions that follow, the significant portion
of the command word is capitalized. Optional arguments are enclosed

in square brackets ([]) and choices are embedded in parentheses,
separated by exclamation points (1). Commands preceded by asterisks

(*) are not present if the user did not define the symbol CLOCK in the

RTS/8 parameter file (indicating that a clock is not in the system),
or if the symbol MCRCLK is set to 0 (in order to shorten the MCR code

length).

5.2.1 * DAte [mm/dd/yyyy [,Time-of—day]]

The date mm/dd/yyyy, if specified, becomes the system date. For the

year portion of the date, only the last digit is significant; the

others are ignored since 197 assumed. The RTS/B system date is

automatically incremented at midnight, but all months are treated as

being 31 days in length. The second argument, if specified, is set

equal to the system time—of-day. If no arguments are specified, the

current system date is printed on the console terminal in the form

mm/dd/7y.

>DATE 07/31/76
>DATE

07/31/76

5.2.2 * TIme [Time—of-day]

If a Time-of—day command is specified, it becomes the system

time—of—day. If no argument is specified the current system

time—of-day is printed out on the console terminal in the form hh:mm.

>TIME 14:00

>TIME

14:00

5.2.3 NAme Task-ID,Newname

The character string Newname becomes the new name of the task if

specified by this command. The old name of that task (if any) is

lost. Newname can be any length, but only the first 4 characters are

stored. Newname should not be the name of any other task or an error

message results.

Examples:

>NAME 7 REPORT

Task number 7 is given the name REPO.

5-2



MONITOR CONSOLE ROUTINE

>NAME REPORT,FOO

Task number 7, which is knOwn as REPO, is now known as FOO.

NOTE

The system initializes the MCR name

table at assembly time to contain the

names of any DEC-supplied tasks that are

listed in the parameter file (e.g., if

the symbol CLOCK is defined in the

parameter file as CLOCK=2, task number 2

gets the name CLCK). By editing the

file MCR.PA after the label NMTBL, user

task names can be permanently included

by modifying the MCR name table.

5.2.4 REquest Task—ID [,(@Time-of-day ! Interval)[,Interval]]

The REquest Task-ID command requests a task to run immediately (if

only Task—ID is specified), at a given time—of—day, after a given
interval, or at a given interval.

Interval is of the form:

nH n hours

nM n minutes

nS n seconds

nT n system ticks

Requesting a task clears the RUNWT bit in the Task Flags Table entry
for that task. The interval, given in the third argument, specifies
the period at which the task is rerun. If the parameter CLOCK in the

RTS/8 parameter file is not defined, the second and third arguments of

this command are ignored and the given task runs immediately. In the

examples given below, three different formats are used for the REquest
command, but only the first two characters are significant except when

using the EXIT command.

Examples:

>REQUEST X

runs task X immediately.

>RE FOO,@2:00

runs task FOO at 2:00 am (if it is after 2 am, FOO will run tomorrow

at 2 am).

>RE 5,10M,5M

runs task number 5 ten minutes from now and every five minutes

thereafter.

>REQ HIPR,1T,6T

On a machine with a 60 Hz clock, this command runs the task HIPR

immediately (that is, .016 seconds from now, and 10 times per second

thereafter).



MONITOR CONSOLE ROUTINE

NOTE

If, at the time the REquest command is

executed, (which may be several hours

after it is typed in) the task specified
by Task—ID does not have the RUNWT bit

set in its Task Flags Table entry, then

the REquest command is a no—op (no

operation), that is, the command has no

effect. Similarly, the task will not

run upon execution of the REquest
command if it had other bits set beside

RUNWT; the task will run only when the

other blocking bits are cleared.

5.2.5 STop Task—ID

The STop Task-ID command suspends execution of the task specified by
Task—ID by turning the RUNWT bit on in the Task Flags Table entry for

that task. A task that has been stopped can be restarted by using the

REguest MCR command (in this instance it is easier to think of it as

the REsume MCR command).

5.2.6 DIsable Task—ID

The DIsable Task—ID command disables future execution of the specified
task by setting the ENABWT bit on in the Task Flags Table entry for

that task.

5.2.7 ENable Task—ID

The ENable Task-ID command clears the ENABWT bit in the Task Flags
Table entry for the specified task, thus enabling it to run. If the

ENABWT bit was not set, the command is a no—op.

5.2.8 * CAncel Task-ID

The CAncel Task-ID command cancels any clock queue entries involving
the task specified by Task—ID. This includes l)any entries made by
the MCR (from previous timed Request commands), 2)entries involving
the specified task made by other tasks (e.g., a timed DERAIL) and

3)entries made by the specified task involving itself (e.g., a timed

POST). In the case of the timed POST, the event flag is not POSTed

and the task may hang up forever waiting for it.

5.2.9 SYstat [Task-ID]

The SYstat command, depending on whether an argument is specified,
prints either a general system status report or a status report in

greater detail on a single task. If no argument is specified, the

SYstat command prints a system status report. Each line of the report

describes an existent task in the system. For each task the report

prints the task number/priority, task name (if it has one), and what

blocking bits are on in its Task Flags Table entry. Each blocking bit

5-4



MONITOR CONSOLE ROUTINE

is printed as a one-letter code, preceded by a space. The one letter

codes and their meanings are:

Waiting for event flag
Waiting for a message

Waiting for an event flag or a message

Waiting to be REquested or RUN

Waiting to be swapped in

Disabled

USERWT bit set

Nonresident waitZGUUJ'JUOZM
In addition, an asterisk printed at the end of the line means the task

has messages waiting in its input queue.

A more detailed status report on a single task is obtained by

specifying the Task—ID of that task as an argument to the SYstat

command. The detailed report contains all the information in the

general status report, followed by five octal words:

WORD l The location of the Task State Table

entry containing words 2-5; this

word is followed by a colon

WORD 2 Task Link in sign bit, IF in bits 6-8,
DF in bits 9—11 (PDP-8/E and 8/A Flags
Register)

WORD 3 Task PC

WORD 4 Task AC

WORD 5 Task MQ

Examples:

A general SYstat command might produce the following sample output
line:

13 CARD E *

This line means task number 13, named CARD, is in Event Flag Wait and

has input messages pending. The command:

>SYSTAT CARD

might produce the single line:

13 CARD E * 1320: 0022 1741 0000 2525

This line indicates that CARD is stopped at location 21741 with its AC

and Link zero and 2525 in its MO.

The user can leave the SYstat facility out of the MCR assembly by
setting the system parameter MCRSYS to 0 in the RTS/8 parameter file.

Leaving it out saves one page of code.

5.2.10 OPen Address [,Count]

The OPen Address command displays the Count locations in octal

starting at Address on the console terminal in the form:

lllll/ cccc

The range of locations displayed may cross a field boundary. If Count

is not specified, it is assumed to be 1.

5-5



CHAPTER 6

ASSEMBLING AND LOADING TASKS FOR RTS/8

The user assembles RTS/8 tasks with parameter files, using the 08/8
PAL8 assembler. RTS/8 parameter files are all edited versions of a

master parameter file (PARAM.PA) that is included in the distributed

sources. Appendix A lists the RTS/8 source files. All definitions in

the master file which are to be supplied by the user are left blank in

the file. For example, a sample line in the file is:

PDP8E= /1 IF PDP 8/E OR PDP 8/A, ELSE 0

If this parameter is set to l, the specified machine is a PDP—8/E or a

PDP-8/A. If either machine is not used, this parameter is set to 0.

Thus, a unique parameter file is created for the particular RTS/8
environment, where environment is a combination of the available

hardware and the set of tasks being run.

The structure of the parameter file is discussed in the next section.

Other sections in this chapter describe 1) the 08/8 BITMAP program

which allows the user to construct a map showing the memory locations

used by given binary files, 2) a sample RTS/8 program 3) a general

procedure for creating an RTS/8 system, and 4) a listing of parameters
and their functions that affect the individual RTS/8 system tasks.

6.1 PARAMETER FILE STRUCTURE

The parameter file contains the parameters that the user must define

to specify a particular RTS/8 system configuration. A parameter file

that has been modified for the demonstration program is shown in

Section 8.1. This file also contains user—defined symbols for

DECNET/8. For further information on DECNET/8, see RTS/8 DECNET/8

Programmer's Guide and Reference Manual (DEC-08—LDPRA—A—D).

The parameter file is divided into the following five sections. These

sections are labeled as follows:

1. Executive Specifications

2. Task Definitions

3. System Task Specifications

4. System Wide Definitions

5. Task Setup



ASSEMBLING AND LOADING TASKS FOR RTS/8

6.1.1 Executive Specifications

The parameters in the Executive Specification section control the

assembly of the Executive, and therefore are essential to the RTS/8

system. The parameters in this section and their meaning are as

follows:

Symbol Meaning

PDP8E Set to 1 if PDP—8/E, PDP-8F, PDP—8M or PDP—8/A is

the machine being used; if not, this symbol must

be set to 0.

PDP12 Set to 1 if PDP12 is the machine being used; if 0

or undefined, the PDP—lZ is not being used.

EAE Set to 1 if the system should save contents of the

MO during an interrupt or task switching.

PWRFAL Set to 1 if power fail/restart is enabled in the

hardware.

KL8A Set to a nonzero if KL8—A support routines should

be loaded into system.

HGHFLD Set to a value designating the highest field used;
for example, HGHFLD = 30 specifies field 3 when

using a machine with 16K core memory.

NTASKS Set to an octal value that specifies the total

possible number of tasks in the system. It also

represents the highest number that can be assigned
to any task in the system. Not all possible task

numbers need be assigned to actual tasks; this

symbol merely sets the length of system tables.

CHECKP Set to 1 if any nonresident task is

checkpointable.

PARTNS Set to the number of memory partitions allocated

in the system. Set to zero if there are no memory

partitions defined in the system. For example,
PARTNS = 2 indicates that there are two memory

partitions defined, that is, partition number 0

and partition number 1.

6.1.2 Task Definitions

The Task Definitions section defines symbolic names for the various

system tasks. The names of all system tasks which are to be included

in the system are defined here. Any system task not included should

have the line which defines it deleted from this section. Perform

this deletion by inserting a slash (/) character at the beginning of

the line, which makes the entire line a comment. Symbolic definitions

of the user's own tasks can be added to this section. The user is

reminded that the assignment of task numbers in octal indicates task

priority, that is, the lower the number, the higher the priority of

the task.



ASSEMBLING AND LOADING TASKS FOR RTS/8

The Task Definitions section, as it initially appears to the user, is

shown below.

/COMMON TASK NUMBERS - EDITED BY USER

/IT IS ADVISABLE TO DEFINE ALL TASKS HERE. NAMES GIVEN BELOW

/ARE USED BY SOME SYSTEM TASKS AND SHOULD REMAIN COMMENTED OUT

/IF THE CORRESPONDING TASK IS NOT INCLUDED IN THE SYSTEM

/PWRF= /POWER FAIL HANDLING TASK

/CLOCK= /CLOCK HANDLER - SHOULD BE HIGH PRIORITY

/SWAPPER= /NONRESIDENT TASK SWAPPER TASK

/TTY= /TELETYPE DRIVER TASK

/LPT= /LINE PRINTER DRIVER TASK

/MCR= /MONITOR CONSOLE ROUTINE

/DTA= /DECTAPE DRIVER TASK

/LTA= /LINCTAPE DRIVER TASK

/RK8= /RK8 OR RK8E DISK DRIVER TASK

/RF08= /RF08 DISK DRIVER TASK

/DF32= /DF32 DISK DRIVER TASK

/CSA= /CASSETTE DRIVER TASK

/CSAF= /CASSETTE FILE SUPPORT TASK

/UDC= /UNIVERSAL DIGITAL CONTROLLER TASK

/RX8A= /FIRST FLOPPY CONTROLLER

/RXSB= /SECOND FLOPPY CONTROLLER

/RX8C= /THIRD FLOPPY CONTROLLER

/RX8D= /FOURTH FLOPPY CONTROLLER

/OS8= NTASKS /OS/8 SUPPORT — NORMALLY LOWEST PRIORITY

/088F= /OS/8 FILE SUPPORT

/DDCMP= /DDCMP TASK FOR DECNET

/NSP= /NETWORK SERVICES PROTOCOL TASK

/NIP= /NETWORK INFORMATION PROGRAM

/TLK= /NETw0RK TERMINAL COMMUNICATIONS TASK TRANSMITTER

/LSN= /NETWORK TERMINAL COMMUNICATIONS TASK RECEIVER

/NULL8A= /NULL JOB FOR PDP—8/A
/EXIT= /EXIT TASK

/DKC8A= /AUXILIARY DKC8A HANDLER

This section of the parameter file is shown in Section 8.1 after it

has been modified for the demonstration program. It also shows the

addition of the two nonresident tasks used in the demonstration

program.

6.1.3 System Task Specifications

The parameters in the System Task Specifications section control the

assemblies of the various RTS/8 system tasks. The set of parameters
controlling a specific task are all grouped together and assembled

conditionally only if that task name is defined in the Task

Definitions section of the parameter file. The user edits the

parameters in this section. The parameters and their meanings are

listed in Section 6.4.

6.1.4 System Wide Definitions

The System Wide Definitions section includes the definitions of the

symbols that RTS/8 uses to describe Executive Requests and Task Status

Flag bits. It also contains useful definitions such as instruction

equivalences, monitor call values, UDC/ICS functional values and

system locations. The user should not alter this section.

6—3



ASSEMBLING AND LOADING TASKS FOR RTS/8

6.1.5 Task Setup

The Task Setup section uses five symbols that the user defines in the

body of this task to initialize the RTS/8 table entries needed to put
that task in the system. These five symbols and their definitions

are:

TASK Defines the task number of the task by a statement

of the form:

TASK=symbol

where "symbol" is the symbolic name for the task

that the user has defined in the RTS/8 parameter
file.

CUR Defines the field of the task's starting address

in bits 6-8 (e.g., CUR=10).

NOTE

The user must place the task's starting
code in the field specified by CUR. This

is done by using the PAL8 assembler

pseudo—op FIELD.

For example, FIELD CUR%lO places the

task's starting code in field 1.

START Defines the task‘s starting address (not

necessarily the lowest address in the task)

INIWT Defines the initial wait bits in the Task Flags
Table entry for this task. For example, INIWT = 0

means the task is runnable when the system starts

up; INIWT = RUNWT (1000 octal) specifies that

this task is not runnable initially and is in a

Run Wait condition. This task becomes runnable

when another task issues a RUN ER or when the

operator types a Request command to the MCR. If

INIWT is undefined, the task starts up being
runnable.

VERS Defines the task's version number, this is an

optional parameter. By convention, the task's

version number becomes the task's initial MQ

value.

The user can define up to three tasks in one assembly. The

corresponding symbols for the other tasks are TASK2 and TASK3, CURZ

and CUR3, etc. The task setup section places its data into the RTS/8
tables by origining into them; no executable code is generated. If

desired, more than three tasks can be created in one assembly by
adding the code for any additional tasks at the end of the PARAM.PA

file. It should be noted that only one task is defined in the

demonstration program in Chapter 8.



ASSEMBLING AND LOADING TASKS FOR RTS/8

6.2 CREATING AN RTS/8 SYSTEM

An RTS/8 System can be created by using the general procedure that is

described in this section. It is assumed that the user has physically
mounted a copy of the distribution medium, and has bootstrapped the

development system. Although nonresident tasks are treated in this

procedure, greater detail on employing nonresident tasks is given in

Chapter 7.

The general procedure for creating an RTS/8 System is as follows:

1. Layout on paper the system and user tasks required for the

particular RTS/8 configuration to be employed. Utilize the

tables and memory map given in Appendix B that show the RTS/8

components, their sizes, and their default origins to

determine where the tasks are to be loaded into memory.

2. Assign task names and task priorities. If nonresident tasks

are used, assign the Swapper Task a higher priority than any

of the nonresident tasks. Remember that the lower the" value

assigned to a task, the higher its priority.

3. When large programs are involved, a documentation file should

be created as a user convenience to maintain a directory of

the system configuration. This file can contain information

such as the tasks employed in the system, task names, task

priorities, and control files.

4. Obtain a listing of the master parameter file (PARAM.PA).
Use the 08/8 command

.LIST PARAM.PA

to get a listing from a line printer, or

.TYPE PARAM.PA

to get a listing from a terminal.

5. Use an editor (EDIT or TECO under 08/8) to establish the

values of the parameters in the parameter file (PARAM.PA).
The structure of the parameter file is described in Section

6.1, and the parameters affecting the individual RTS/8 system
tasks are described in Section 6.6.

PARAM.PA should be read in as an input file, edited, and then

renamed as an output file. This procedure maintains the

integrity of DIGITAL—supplied sources.

6. Create and edit any control files that are used (See Section

6.5).

7. Assemble the tasks with the parameter file after all the

required parameters are defined. This can be accomplished by
individually assembling each task with the parameter file as

follows:

.PAL RTS8<PARAM,RTS8

or

.PAL PARAM-NB, RTS8



10.

ll.

ASSEMBLING AND LOADING TASKS FOR RTS/8

The CCL option —NB indicates that a binary file should not be

created. Shown is the assembly of the RTS/8 Executive. This

has to be done for every task that is included in the system.
Each control file used must also be assembled. Assemble the

control file with the parameter file, placing the control

file between the parameter file and the required module as

follows:

.PAL TTYl<PARAM,TTYCFl,TTY

An alternate and more efficient method that can be employed
is to use a Batch stream. The assembly, load and save

commands for the system are generated as a Batch job. The

OS/8 SUBMIT command is then used to run BATCH which will use

the Batch job commands as inputs and execute them. This

method can also be used for installing nonresident tasks into

the system.

The assembly of each task, preceded by the parameter file, is

required because there is no linking loader function with

RTS/8. The assembly process creates binary files from the

sources that are ready to be loaded and run. Each RTS/8
system task contains assembler code that assembles it for

loading into a specific area of core memory. The user can

assemble tasks to load into areas of memory not used by

system tasks, or edit the system tasks for loading into

specific areas. Page 0 locations and autoindex registers
used by system tasks can also be redefined by editing the

affected tasks.

Obtain a bitmap of RTS/8 tasks to determine if two or more

tasks are erroneously loaded into the same memory area or use

the same page 0 locations (See section 6.3).

Load the system after all the required tasks are assembled.

All required system tasks, user tasks, and control files can

be loaded at one time as follows:

.LOAD RT88,CLOCK,TTY,MCR,UT1,UT2

The RTS/8 Executive Task always must be loaded first. Also,

nonresident tasks are included in this step in order to load

their resident portions and executive table entries.

Save the system after it is loaded by using the following
command:

.SAVE SYS filename

If the system is saved, the user does not have to rebuild it

each time it is needed.

When using nonresident tasks, create a SAVE image file

(nonresident disk image) for each nonresident task from its

binary file as follows:

.LOAD TASKX

Then save the nonresident portion of the task on the swap

device:

.SAVE DSK TASKX Nl-NZ

where DSK is the swap device, N1 is the lowest address in the

partition, and N2 is the highest address in the partition.

6-6



ASSEMBLING AND LOADING TASKS FOR RTS/8

12. Start the system by using the following command:

.R filename

The following is applicable when using nonresident tasks.

When the system starts, it calls the 08/8 command decoder,

which types an asterisk on the console terminal. At this

time, initialize the block address of each nonresident task

core image as follows:

*DSK:TASKX=N

In this command line, DSK is the swap device and TASKX is the

core image file containing the nonresident portion of task N.

Repeat this procedure for each nonresident task, one task per

line, and terminate the last line with an ALTMODE. This

procedure automatically initializes and starts the real time

system.

An RTS/8 system created with the procedure just described has

a starting address of 00200. If an RTS/8 system was not

specifically configured for a PDP—8/E or PDP—12, it halts

initially to allow the operator to clear any stray device

flags by operating nonstandard hardware switches or by

pressing START. Press START to resume operation on a PUP-8,

8/I or 8/L.

6.3 USING THE OS/8 BITMAP PROGRAM

The OS/8 BITMAP program can be extremely useful in determining that no

two RTS/8 tasks are loading into the same area or using the same Page
0 locations. OS/8 BITMAP accepts a list of binary files as input and

produces as its output a map of core memory. Each location of core

memory is represented in this map by a single digit which has the

following meaning:

0 Nothing has been loaded into this location

1 Information has been loaded into this location

2 Information has been loaded into this location twice

3

Information
has been loaded into this location three or more

1mes

There are certain places in core memory where 2's are allowed to

appear in the bit map. These areas are the RTS/8 Executive Tables

(starting at location 01200), the MCR name table in the MCR, the power

fail action table, and nonresident task partitions (which may contain

2's and 3's). Appearance of a 3 or a 2 in an area other than these

three areas just mentioned in the bit map indicates that two or more

tasks are being loading into the same location.

6.4 SAMPLE RTS/8 TASK PROGRAM

The task that is used as an example in this section was selected for

its simplicity, and to show the basic concepts of RTS/8 operation.
The purpose of the task is simply to print "HELLO". The user requires
an RTS/8 system configuration that includes a console Terminal Handler

(TTY) and the Monitor Console Routine (MCR). It is assumed that the

6-7



ASSEMBLING AND LOADING TASKS FOR RTS/8

task will be running on a PUP-8 E/F/M/A with 8K of core memory and a

standard console terminal.

The program (SAMPLE.PA) listed below is complete, and when assembled

with the parameter file, will run as task 5 in a properly-configured
system. The task is initially in the Run Wait state. When requested
by the user through the Monitor Console Routine, the task prints
"HELLO" on the console terminal, and then suspends itself. If again
requested by the user, the same sequence will occur.

/SAMPLE RTS/8 PROGRAM

TASK=5 /GIVEN A PRIORITY OF 5

CUR=0 /IN FIELD 0

INIWT=RUNWT /SET TO RUN WAIT STATE

FIELD 0 /PLACED IN FIELD 0

*3000 /ANY AVAILABLE PAGE

START, CAL

SENDW /MUST BE DEFINED AS "START"

TTY /SEND AND WAIT

MSGl /THE TERMINAL

CAL /THE MESSAGE BLOCK

SUSPND /SUSPEND THE TASK

JMP START /RESUMES HERE IF REQUESTED

MSGl, ZBLOCK 3 /RTS/8 LINKAGE

o;0 /TERMINAL OPTIONS

TEXT /HELLO/ /TYPE HELLO

$

An edited version of PARAM.PA now is required for this configuration,
and it is named PARAMS.PA. To produce PARAMS.PA from PARAM.PA, the

following definitions are edited into the parameter file:

PDP8E=1

HGHFLD=10

NTASKS=10

TTY=4

MCR=3

NTASKS is the largest task number used with this system. It is

assigned any number greater than the values for MCR, TTY and the

sample task, and which is smaller than 100 octal. The task values for

SAMPLE, MCR and TTY were arbitrarily chosen in the range greater than

zero and less than NTASKS.

The program is then assembled as follows:

.R PALS

*SAMPLE.BN<PARAMS.PA,SAMPLE.PA

The system for the sample task requires the Executive Task RTSB plus
the TTY and MCR Task to run. This can be accomplished by using the

following Batch stream:

$JOB
.PAL PARAMS-NB,RT88
.PAL PARAMS-NB,MCR

.PAL PARAMS-NB,TTY

.PAL PARAMS-NB,SAMPLE

.LOAD RTS8,MCR,TTY,SAMPLE

.SAVE SYS:SAMP

SEND



ASSEMBLING AND LOADING TASKS FOR RTS/8

Assembly and loading of the tasks, including saving the program, is

now complete. The CCL option —NB indicates that PARAM is not to be

used as the name of the binary file being created.

The system now can be run as follows (user input is underlined):

.R SAMP /OS/8 RUN COMMAND

>RE 5($) /REQUEST SAMPLE FROM MCR

HELLO /TASK EXECUTES AND SAYS 'HELLO'

:9 /RETURNS CONTROL TO MCR

>SYSTAT /SYSTEM STATUS COMMAND

03 MCR /MCR TASK

04 TTY /TERMINAL TASK

05 R /TASK 5 WAITING TO BE RUN

>RE 5($) /RUN TASK AGAIN

HELLO /TASK SAYS 'HELLO' AGAIN

:9 /RETURN CONTROL TO MCR

>EXIT /RETURN TO OS/8
. /OS/8 MONITOR

NOTE

($) is the ALTMODE character; all other

input lines are terminated by a Carriage
Return.

6.5 USE OF CONTROL FILES UNDER RTS/8

There are times when a user may want to assemble a given source module

in more than one way and use the results under RTS/8. For example,
suppose there are three terminals that a user wants to service under

RTS/8. Each terminal has its own Characteristics, and each copy of

the TTY task needs to have its own set of parameters. The user must

load three copies of the TTY task into memory at different locations,
and possibly in different fields. This cannot be accomplished
efficiently when using a single parameter file. With a single
parameter file, three copies of the file TTY.PA must be made and each

one edited to produce three individual tailored copies of the TTY

task. This procedure is not convenient or modular.

A better way to do this is to use a control file that contains all the

equates necessary to define the parameters needed by a particular TTY

task. The control file then is assembled together with and placed
between the parameter file and the TTY module. For example,

.PAL TTYl <PARAM,TTYCF1,TTY

creates a binary file called TTYl from TTY.PA using a control file

called TTYCFl.

To facilitate using this procedure, a skeleton TTY control file is

supplied with the RTS/8 task sources. It contains all the parameters
that the user normally defines in the parameter file. Thus, a user

who wants to use multiple terminals, instead of editing the parameters
in the parameter file, can create a control file for each terminal

that is used, and then edit the control file to make multiple copies
as necessary.

An example of a TTY Control file after it has been edited by a user is

shown below.

6-9



ASSEMBLING AND LOADING TASKS FOR RTS/8

TASK=TTY1

/DEFAULT IS 'TTY'

/ TTDEV= /PRINTER DEVICE CODE — DEFAULT IS 04

/ KBDEV= /KEYBOARD DEVICE CODE — DEFAULT IS TTDEV-l

CONSOL=l

/ VT50= /l ENABLES CTRL/S AND CTRL/Q
SCOPE=l

/ FILL: /NUMBER OF FILL CHARACTERS, I.E. 4

/ WIDTH= /TTY LINE WIDTH (0 MEANS INFINITE), DEFAULT

/120

/ TAB: /1 IF TTY HAS HARDWARE TABS

OLDTTY=O

/ LSBOT= /l LISTS BOTH HANDLERS (DEFAULT 0)
TTFLD=20

TTLOC=3000

This example shows a TTY control file that has been edited for task

TTYl. This terminal handler task will be assembled for the console

terminal. Setting SCOPE=l causes RUBOUT to move the cursor left one

position, physically removing the character from the screen. The new

three-page handler is specified. It is placed in field 2, starting at

location 3000.

A skeleton control file is also supplied for the RXOl floppy. Users

can easily generate and use control files for other purposes.

6.6 RTS/8 SYSTEM TASK PARAMETERS

This section provides a convenient grouping of those parameters which

affect the individual RTS/8 system tasks. Given for each system task

is the parameter, its function and where applicable, an example. The

section or chapter where a detailed description of the task appears in

the text of this manual is noted after the task subhead.

6.6.1 Clock Handler Parameters (Section 4.1)

PARAMETER MEANING

CLKTYP Specifies selection of hardware clocks as follows:

0 = DK8—EA/DK8—EC
l = KW12

2 = PDP—8/A
3 = DK8-EP

CLKQLN Specifies minimum number of entry slots in the

clock queue (default is 20).

HERTZ Specifies number of hardware ticks per second.

HERTZ and SHERTZ are decimal values in that they
are preceded in the parameter file by the

pseudo-operator DECIMAL.

SHERTZ Specifies the number of system ticks per second.

This parameter is followed by the pseudo-operator
OCTAL, which resets the radix to its original
octal base.



ASSEMBLING AND LOADING TASKS FOR RTS/8

6.6.2 Swapper Parameters (Section 7.4)

SYS

SUNIT

Specifies the swap driver task; for example,
SYS = RK8 specifies the RK8 driver task.

Specifies the swap device physical drive unit;
SUNIT = 0 selects RKAO.

6.6.3 Terminal Handler Parameters (Section 4.2)

PARAMETER

TTDEV

KBDEV

MEANING

Is set to the proper printer device code; default

value is 4.

Is set to the proper keyboard device code;
default value is TTDEV-l.

The following parameters are available to the user to facilitate the

use of the TTY task.

VT50

CONSOL

WIDTH

SCOPE

TAB

Is set to l (default) to enable CTRL/S and CTRL/Q
functions. When set to 0, CTRL/S and CTRL/Q are

not treated as special characters. Typing CTRL/S
while data is being printed/displayed on the

screen stops the data presentation until the next

CTRL/Q is typed. This parameter must be set to 1

if the user's terminal is a VTSO or VT52. Both

CTRL/S and CTRL/Q turn off the echo flag.

Is set to l to specify that the handler is being
assembled for the console TTY (default). Set to 0

to specify that this handler should not wake up

the MCR when “C is typed.

Is set to an octal number that specifies the TTY

page width. TTY width is currently set to 120

(octal), that is, a page width of 80 decimal

characters. WIDTH = 60 sets the TTY page width to

48 decimal characters.

This option is used to determine the treatment of

the RUBOUT key as follows:

SCOPE=0 (default) provides the normal mode of

RUBOUT support.

SCOPE=1 causes RUBOUT to move the cursor left one

position, physically removing the character from

the screen. If the cursor is in column 1, RUBOUT

still works, but has no visible effect.

This option simulates tabs by the proper nUmber of

spaces. This is accomplished via the assembly
parameter TAB as follows:

TAB=0 (default) specifies that the hardware does

not support tabs. The software simulates tabs by
spaces.

TAB=1 specifies that the hardware does support
tabs.

6-ll



ASSEMBLING AND LOADING TASKS FOR RTS/8

FILL

OLDTTY

LSBOT

TTFLD

TTLOC

Several equates are

sending messages to

NOPACK=4000

NOCRLF=2000

IND=1000

NOLINE=400

ASSGN=200

KL8ALINE=100

Fill characters are supported via the assembly
parameter FILL as follows:

FILL=0 (default) does not provide any fill

characters.

FILL=n sends n fill characters (nulls) after a

line feed; n must be in the range 1—5. FILL=4 is

recommended for 2400 baud VTS's.

Is set to l to specify the use of the old 2—page
TTY handler. Set to 0 (default) to use the

standard 3—page handler. The old handler has

fewer features, but it is a page shorter. The

parameters VT50, WIDTH, SCOPE, TAB and FILL have

no effect when using the old handler.

Is set to l to list both the old 2-page and new

3-page handler. Set to 0(default) when only the

handler selected by OLDTTY is to be listed.

Is set to specify the field of TTY Task; for

example, 20 specifies field 2.

Is set to specify the location of TTY Task; for

example, 3000 specifies a starting location of

3000.

listed in the parameter file. They are useful for

TTY or LPT Tasks. These equates follow:

Used if the output message is not 6—bit ASCII.

Used if the output message should not be followed

by carriage return/line feed.

Used if OUTTXT points to the first word of the

output text.

Used if the output is in character mode.

Used to assign the device handler for use by only
this task.

Used with KL8—A support (see Section 4.13.2).

6.6.4 Monitor Console Routine Parameters (Chapter 5)

PARAMETER

MCRSYS

MCRCLK

MCRFLD

MEANING

Is set to 1 if the SYSTAT facility is desired for

printing system status reports of existent system
tasks.

Is set to 0 if the clock functions are not wanted

by the user.

Is set to the field in which it is desired to

locate MCR. MCRFLD = 30 places the MCR in field

3.



ASSEMBLING AND LOADING TASKS FOR RTS/8

MCRPRT

MCRORG

MCRCDV

6.6.5 08/8 Support

PARAMETER

OSFLDS

OSKBDV

OSTTDV

OSSYSD

OSFILL

Is set to the nUmber of the partition into which

the nonresident portion of the MCR will be

swapped. This parameter makes the MCR

nonresident; however, the first page of the MCR

is always resident.

Is set to specify the starting location of the

MCR. Default causes the MCR to load against the

end of the field.

Set to task name of task which is to be the MCR

console device. Default is TTY.

Task Parameters (Section 4.6)

MEANING

Is set to the number of fields allocated for 08/8.
OSFLDS = 2 specifies two fields or 8K of memory

for 08/8.

Is set to the device code that selects desired

OS/8 keyboard terminal. OSKBDV = 03 specifies the

use of the console terminal keyboard for 08/8.
Note: OS/8 requires its own dedicated terminal.

Is set to the device code which selects desired

OS/8 teleprinter. OSTTDV = 04 specifies the use

of the console teleprinter for 05/8.

Is set to select the 08/8 system device driver

task. OSSYSD = DTA specifies DTAO as the 08/8
system device.

Is set to the number of null characters that must

follow a line feed character on the 08/8 terminal.

OSFILL = 4 is specified when using a 2400-baud

VT05 terminal. Set to 0 when using standard

hard-copy terminals.

Note: A terminal device handler does not have to

be included for the 08/8 terminal device.

6.6.6 KL8-A Support Parameters (Section 4.13)

PARAMETER

KL8ADV

KL8ACT

MEANING

Specifies the device code for the first KL8-A.

Default is 40. If multiple KL8-A's are used, they
should have consecutive device codes.

Specifies the page for the KL8—A connect routine.

Default is 7400 (if KL8A=1). The KL8-A connect

routine must be located in field 0.



ASSEMBLING AND LOADING TASKS FOR RTS/8

6.6.7 Line Printer Handler Parameters (Section 4.3)

PARAMETER MEANING

LPTLOC Specifies the starting location of the Line

Printer Handler Task.

LPTFLD Specifies the field of the Line Printer Task.

6.6.8 DECtape Handler Parameters (Section 4.4)

PARAMETER MEANING

DTALOC Specifies the starting location of the DECtape
Handler Task.

DTAFLD Specifies the field of the DECtape Handler Task.

6.6.9 EXIT Task (Section 4.14)

PARAMETER MEANING

EXITFLD Specifies the field of the EXIT Task.

EXITLOC Specifies the starting location of the EXIT Task.



CHAPTER 7

NONRESIDENT TASKS

7.1 OVERVIEW

A nonresident task is a task or a portion of a task that resides on a

mass storage device during the time the task is not runnable. The

mass storage device is called the swap device. It can be any mass

storage medium (e.g., an RK8 cartridge disk or an RX8 floppy disk).
When a nonresident task becomes executable, the Executive posts a

residency request. The Executive then runs a special task called the

Swapper to load the nonresident or portion of the nonresident task

into memory. The loading process is called a swap. The memory area

into which or out of which the nonresident task is swapped is called a

partition. A partition is a contiguous block of memory that is used

for task execution; it is readable in a single mass storage call.

The use of nonresident tasks permits several tasks to share the same

areas of memory, optimizing the use of available memory.

Tasks can be either totally or partially nonresident. Very few tasks

are totally nonresident; in most applications, the nonresident

portion includes all, or nearly all, of the active locations. Active

locations are those that contain executable instructions or data that

are never accessed by other tasks. The resident portion of a task

includes messages, event flags, buffers and similar passive registers
that may be needed by other tasks.



NONRESIDENT TASKS

POP-8 MEMORY

SWAP DEVICE

OK (Disk, DECcassette, etc.)

REAL TIME PROGRAM AREA
C

_

ontains

Contains: nonresident
1. Resident tasks portion Of a

2. Resident portions of
task

non resident tasks

pK

PARTITION AREA

SWAPPER TASK

1. Contains non resident portion (SWAP-PA)

of nonresident task when that
1 Loads nonresident

task is being executed.
portion of task into

2. Allows multiple tasks of same 3162122; out non-
relative size to run in the residenftask onto
same memory area.

Swap Device

3. The characteristic of a partition :vvaglssaiitaejblerjnd
'5 as follows:

checkpointable tasks.

a) Has a starting address

b) Resides completely within a

single memory field

c) Length has to be an integral
number of pages

d) Cannot overlap another partition

nK

Figure 7-1 Nonresident Task Implementation

The process that swaps the nonresident portion of a task into memory
is similar to the overlay capability found in OS/8 FORTRAN IV and

related programs. However, swapping is much more powerful than

overlaying. Every nonresident task has two properties that establish

when and how it is swapped into or out of memory. These two

properties are "writeability" and "checkpointability".

A task is made "writeable" if its nonresident portion must be written

onto the swap device whenever it is swapped out to make room for

another task. A writeable task is any task that is

self—modifying — i.e., the task's code is changeable during task

execution, and any task that must initialize before it can start. The

writeability feature guarantees that the nonresident portion of a task

is always up to date by refreshing the swap device image of the

nonresident portion whenever the task is swapped out of memory.

A task is made "checkpointable" if it may be swapped out of memory

automatically, without its consent, to make room for a higher priority
task. A task that was checkpointed and swapped out of memory is

swapped back automatically as soon as all higher priority tasks have

relinquished the necessary memory space. Execution then continues at

the point where it was interrupted, and the task is not aware that it

was interrupted.



NONRESIDENT TASKS

Some nonresident tasks have both writeable and Checkpointable
characteristics. Writeable tasks are utilized when a task must modify
itself (for example, it includes JMS instructions or temporary

locations). Tasks suitable for checkpointing are those that are

l) fairly long—running, and 2) are required only occasionally.

7.1.1 Writeable Tasks

A writeable task is one that includes code that is self-modifying, or

code that must be initialized before execution. Before execution

begins, all nonresident tasks must reside as core image files )n the

swap device. The core images are created by loading each nonresident

task separately, and executing an OS/8 monitor SAVE command; this can

be done under BATCH. When a task is executed, its nonresident portion
is read from this core image file by the swapper. If a task is

writeable, its nonresident portion will be written into the same file

when it is swapped from memory. It is likely that a task, writeable

at execution start—up, would flag itself not writeable at some later

time when all initialization is completed. The nonresident portion of

a task is writeable if it must be saved on a mass storage device (swap
device) before overwriting it in memory with another task.

7.1.2 Checkpointable Tasks

Checkpointing is ideally suited for long—running tasks. The system
can run short tasks in the same area, swap them out of memory, and

swap the long running task back again.

7.1.3 Interaction Between Tasks

Resident tasks can interact with the resident portion of any

nonresident task. Two nonresident tasks that occupy overlapping
memory regions can interact with each other through their resident

partitions. For example, if a nonresident task is executing, it sends

a message and is then checkpointed. The message recipient can

acknowledge the sender's message even though the sender is not totally
resident. However, the message sent must be resident.

7.2 MEMORY PARTITIONS

The swappable portion of a nonresident task resides in a memory

partition. This partition is simply a contiguous block of memory
locations that is readable in one mass storage call. Every partition
has the following characteristics:

0 It is wholly contained in one memory field.

0 It has a starting address.

0 It has a length (size) that must divide evenly by 200 (octal)
since OS/8 file structured devices read and write in one—half

block (one page) increments.

o It normally begins at an address which is a multiple of 400.



NONRESIDENT TASKS

The user can set the parameters for establishing the partition either
in the parameter file or the source Of the Swapper Task. This

procedure is described in Section 7.4.

Partitions are mutually distinct, that is, one partition cannot

overlap another. Any number of partitions can be defined. The n

partitions are numbered in any order, from O tO n-l, with partition
number 0 being the first partition. They need not be adjacent.

Only one task can occupy a partition at any given time. The occupying
task owns the partition until that task executes a "free" command

(described in the next section), or (if the task is checkpointable) as

long as higher priority tasks that share the partition remain

nonexecutable.

It is most convenient if every partition begins on the first location

of even—numbered pages, that is, the starting address is a multiple Of

400 octal.

7.2.1 FREE Command

A free request can be appended to the function argument of some ER's

(for example, SEND, RECEIVE, etc.) as follows:

CAL /A CALL TO THE EXECUTIVE

CCMMAND+FREE /"COMMAND" IS ANY RTS/8 EXECUTIVE

/REQUEST. THE

/ISSUING TASK IS TO BE SWAPPED OUT OF

/MEMORY IF SOME OTHER TASK

/BECOMES EXECUTABLE AND REQUIRES THE

/PARTITION BEFORE THE FREEING TASK

/CANCELS THE FREE REQUEST.

A free request must be combined with some other executive request. If

the sequence:

CAL

FREE

is issued, it will be interpreted as:

CAL

SEND+FREE

Only nonresident tasks may issue free requests; other free requests
are ignored. A task may free its own partition, but never the

partition of another task.

A task normally frees its partition whenever it must wait for an

event. If any other task has a pending request for the partition, it

is swapped into the free partition immediately. If there is no

pending request for the partition, the freeing task continues to wait

in the free partition until some other occupant requests residency.
In either case, once the freeing task becomes executable again, it

must compete for the partition along with any other executable

Occupants. The freeing task may become executable before any other

task requests residency in the partition. In this case, the free

command is cancelled, and the freeing task retains possession of the

partition. NO read or write Operation is necessary to effect this

swap in this case. By freeing the partition whenever the occupying
task (which may or may not be writeable) must wait for an event, the

programmer is assured that the partition contains a running (i.e.,

7-4



NONRESIDENT TASKS

nonwaiting) task whenever possible. If there are no writeable- tasks

in the partition, no swap device 1/0 is involved in freeing the

partition.

7.3 NONRESIDENT TASK INITIALIZATION

The following procedure is recommended to implement any RTS/8 system

containing nonresident tasks.

1. Code and debug each nonresident task as a resident task.

During the debugging, load the task being debugged and only
the tasks required for execution of the task to be debugged.
Once the task executes correctly while resident, make it

nonresident. Making a task nonresident is described in the

sections that follow.

2. On a listing, mark the nonresident portion of each

nonresident task. Determine the size of each task's

nonresident portion. Then design the partitioning scheme and

allocate nonresident tasks to memory partitions by modifying
the parameter file as described in Section 7.4.

3. Re-origin each nonresident task so that its nonresident

portion lies within its partition. If necessary, ensure that

resident portions of nonresident tasks do not overlap into

another partition. BITMAP, an OS/8 utility program, is

useful for this since it allows the user to determine if two

or more tasks are erroneously being loaded into the same

memory section. The use of BITMAP is described in Section

6.3. A detailed description of BITMAP is given in Chapter 2

of the 08/8 Handbook. Execute the task as a resident task

once more to make sure it does not contain location dependent
code. Also, if any memory partition begins on an odd

numbered page, temporarily relocate each task that resides in

that partition. An example of starting a nonresident task at

an arbitrary boundary is given in Section 9.3.

7.3.1 Parameters for Nonresident Tasks

Several -assembly parameters must be initialized when employing
nonresident tasks. Five of the parameters are located in the

parameter file (PARAM.PA) and three must be included in the

nonresident task itself.

The parameter file (PARAM.PA) contains five parameters (PARTNS,
CHECKP, SWAPPER, SYS and SUNIT) which must be initialized when

employing nonresident tasking. These parameters are defined as

follows:

PARTNS is set to the number of memory partitions defined.

PARTNS is set to zero in the parameter file to indicate

that no memory partitions are defined in the system.

CHECKP is set to 1 if any nonresident task is checkpointable.

SWAPPER is the nonresident task swapper task; it must be

assigned a task number that is of higher priority than

the task it swaps, that is, a number lower in value

than that of any nonresident task in the system.



NONRESIDENT TASKS

SYS is set to designate the swap device driver task; for

example, SYS = RK8 specifies the disk driver task.

SUNIT is set to specify the swap device physical drive unit;
for example, SUNIT = 0 specifies the disk cartridge
drive.

Every nonresident task source must include the following three

parameters:

PARTNO= n, where n is the task's partition number (starting at 0)
CPABLE= 0, if the task is not checkpointable

1, if the task is checkpointable
WRITE: 0, if the task is not writeable

1, if the task is writeable

Failure to initialize these parameters correctly causes the program to

execute unpredictably. The presence of parameter PARTNO identifies a

task as a nonresident task. Hence, the variable name PARTNO should

not be used except in nonresident tasks.

A nonresident task is not appreciably different from a resident task.

However, buffers should not be in nonresident portions of a task since

the buffers will be out of memory when that task is not being
executed. There are no special coding restrictions. The nonresident

portion is always present in memory while a nonresident task is

executing. It is generally safe to assume that the nonresident

portion is never present when the task is not executing. There is a

slight structural difference between resident and nonresident tasks;
nonresident tasks have clearly defined resident and nonresident

portions that cannot be intermixed.

7.3.2 Assembling Nonresident Tasks

Each nonresident task is assembled separately. The nonresident task

must include the parameter TASK, but never the parameters TASK2 and

TASK3 (see Section 6.1.5, Task Setup).

The swap device file that contains the nonresident portion of the

nonresident task requires special treatment. This file must contain

the first word of the nonresident portion in the first location of

relative block 1, the second word of the nonresident portion in the

second location, and so on. This file must be a core image; however,
the 08/8 monitor requires that the first location of any core image
section load into a memory address that divides evenly by 400(octal).
If the lowest address in the partition also divides evenly by

400(octal), this condition is met. There is no problem because every

task can be assembled in the partition directly.

Modify~ the parameter file (PARAM.PA) to establish the desired

parameters. Then assemble the nonresident task and the parameter file

together.

7.3.3 Creating the SAVE Image File

Create a SAVE image file (nonresident disk image) from the binary

image file as follows:

.R ABSLDR

*TASKX.BN$
.SAVE DEV TASKX.SV Nl-NZ

7—6



NONRESIDENT TASKS

For each task, where DEV is the swap device, N1 is the lowest address

in the partition, and N2 is the highest address in the partition. The

resulting core images contain only the nonresident portions of each

task and meet all the requirements previously outlined. However, the

first block of the core image (relative block 0) is the core control

block, which is not used by the swapper. As stated previously, it is

strongly recommended that the partitions begin at a location that is a

multiple of 400(octal) since the 08/8 SAVE command only saves areas

starting at 400(octal) boundaries.

NOTE

SAVE image files can be constructed

under 08/8 BATCH. Also, the 08/8 CCL

command LOAD may be used to create the

SAVE image.

7.4 PARAMETER INITIALIZATION FOR PARTITIONS

The user must initialize certain parameters to define the partitioning
scheme. They can be set in either PARAM.PA or SWAP.PA. The following
three variables are required for each of the partitions:

MFLDnn= MEMORY FIELD OF PARTITION N

ADDRnn= MEMORY ADDRESS OF PARTITION N

SIZEnn= SIZE OF PARTITION N, SPECIFIED IN PAGES

The user can set up the parameter file to accept eight sets of

partition parameters. When more than eight partitions are defined,
the parameter table must be extended according to instructions

contained in source. Since adding extra partitions does not increase

system overhead, it is best to have as many partitions as possible.
This minimizes the number of tasks that must share a partition. Each

partition should have at least two occupants; otherwise, there is no

reason for making the task nonresident. The partitioning scheme can

also be defined by initializing the required parameters within the

swapper source.

7.4.1 General Information

The entire partition table appears on the swapper PAL or CREF output

listing. The user should check it carefully to ensure that all

partition parameters (MFLDnn, ADDRnn and SIZEnn for each partition)
were defined correctly. The parameter file generates the residency
table entry for each nonresident task and it appears on the PAL or

CREF output listing for that task. The user should examine word 1 of

this entry to verify that the nonresident task parameters PARTNO,

CPABLE, and WRITE were initialized correctly. Word 2 of the residency
table entry will be zero because the task's block address on the swap

device is unknown at assembly time. This location is initialized by
the 08/8 command decoder shortly after program startup, and it can be

examined anytime thereafter. In the usual case, where the file is a

core image, this location should contain M+l, where M is the block

address returned by the following command:

.DIR DEV:TASKX.SV/B



TASKX.SV

NONRESIDENT TASKS

is the core image on the swap device containing the

nonresident portion of the task.

7.5 NONRESIDENT TASK IMPLEMENTATION

Perform the following procedure to implement nonresident tasks.

1. Assemble every task that will be included in the program as

described in Section 7.3.2. Obtain PAL or CREF listings and

bitmaps. Finally, obtain a bitmap of the entire system and

verify that memory is allocated correctly. On the bitmap, 35

are legal only within partitions.

Create the SAVE image file as described in Section 7.3.3.

Load the binaries of the RTS/8 executive and each task,

including nonresident tasks. Always load the executive

first. Nonresident tasks are included in this operation in

order to load their resident portions and Executive table

entries. Either save the loaded program as a core image file

or start it from the keyboard.

Start the real—time program using the monitor R command.

This calls the 08/8 command decoder, which types an asterisk

on the console terminal. At this time, initialize the block

address of each nonresident task core image as follows:

*DEV:TASKX.SV=N

In this command line, DEV is the swap device and TASKX.SV is

the core image 'file* containing the nonresident portion of

task N. Repeat this procedure for each nonresident task, one

task per line, and terminate the last line with an ALTMODE.

This procedure automatically initializes and starts the

real-time program.

This initialization procedure may be executed automatically
under OS/8 BATCH control.

Example:

$JOB SYSTEM

/RUN "SYSTEM" AND INSTALL

/NONRESIDENT TASKS.

.RUN SYS SYSTEM

*TASK1=35 /TASK 35 IS "TASKl" SAVE IMAGE

*TASK2=36$ /TASK 36 IS "TASKZ" SAVE IMAGE

$END

Submitting SYSTEM.BI runs RTS/8 user system SYSTEM.SV,

installing its two nonresident tasks.

Debug the entire program. Accomplish this by selectively

placing HLT instructions (preceded by ICE, NOP, if

appropriate) and examining the memory once the HLT has been

executed. Use the MCR and/or the console switch register to

place and remove HLT instructions and to modify all

permanently resident areas. When using MCR, remember that

MCR output represents a snapshot of memory at some

undetermined point in time that is long past by the time the

MCR has output to the terminal.



CHAPTER 8

DEMONSTRATION PROGRAM

This chapter contains a demonstration of RTS/8 with nonresident tasks

executing in the foreground. Included is a listing of the modified

parameter file (PARAM.PA). In addition, there is an example of

nonresident tasks (Tasks NR20 and NR22) and the assembly and load

instructions required for implementing the demonstration program.

8.1 MODIFIED PARAMETER FILE (PARAM.PA)

[2.8 PARAMETERS FOR RTS/8 TASKS V£8+DECNET

LSTFLGIO ICHANGE a T0 1 TO PREVENT LISTING PARAM

XLIST LSTELG

COPYRIGHT (C) 1974,1975'1976 HY DIGITAL EQUIPMENT CORPORATION

\\\\\\\\\\\\\\\\\\\\
ITHE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE
IAND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT

/CORPORATIDN. DIGITAL EQUIPMENT CORPORATION ASSUMES NO RESPONSIBILITY
IFOR ANY ERRORS THAT MAY APPEAR IN THIS DOCUMENT.
/

/THE SOFTNARE DES§RIBED IN THIS DOCUMENT IS FURNISHED TO THE PURCHASER
IUNDER A LICENSE {OR USE ON A SINGLE COMPUTER SYSTEM AND CAN BE COPIED
IIWITH INCLUSION 0F DIGITAL'S COPYRIGHT NOTICE) ONLY FOR USE IN SUCH

ISYSTEM, EXCEPT AS MAY OTHERWISE BE PROVIDED IN WRITING BY DIGITAL.
/

IDIGITAL EQUIPMENT CORPORATION ASSUMES NO RESPONSIBILITY FOR THE USE
/OR RELIABILITY OE ITS SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY

IDIGITALo

\\\\\'\\\\\



DEMONSTRATION PROGRAM

IRTSB V2 EXEC PARAMETERS ~ EDITED BY USER
PDPBElt

PDPIEIO

EAEIG

PWRFAL'O

KLSAIO

HGHFLDISO

IFDEF

IFNZRO

NTASKSIEJ

CHECKPII

PARTNSII

INUMBER OF KLDA'S IN USE

II.E. 1 IF ONE KLSA (UP TO 4 LINES)

CUR <

HQHFLD-CURAHDDB ‘CURBIGI‘ERROR"’ IFLAG WARNING IF UNDEFINED FIELD SEEN

ISTHE N PARTITIONS ARE NUMUERED FROM O TO N'I)

ICDMMON TASK NUMBERS - EDITED BY USER

[IT IS ADVISABLE TO DEFINE ALL TASKS HERE. NAMES GIVEN BELOW
IARE USED BY SOME SYSTEM TASKS AND SHOULD REMAIN COMMENTED OUT

/IF THE CORRESPONDING TASK IS NOT INCLUDED IN THE SYSTEM

/PwRF-

CLOCK-1

SWAPPERIIS

TTYIE

LPTIS

MCRIA

/DTAI

ILTAI
RKSI?

IRFOB-

IDFSEI

ICSA-

ICSAFI

IUDCI

IRxaAI

IRXBBI

IRXBCI

IRXBD-

USS-NTASKS

osaF-1s

NRZDIZO

Naaa-aa

IDDCMPI

INSPI

INIPI

ITLK-

/LSNI

/NULL8AI

IEXITI

IDKCSAO

[ROWER FAIL HANDLING TASK

IDECTAPE DRIVER TASK

ILINCTAPE DRIVER TASK

IRFOS DISK DRIVER TASK

IDES? DISK DRIVER TASK

[CASSETTE DRIVER TASK

IQASSETTE FILE SUPPORT TASK

IUNIVERSAL DIGITAL CONTROLLER TASK

IEIRST FLOPPY CONTROLLER

ISECOND FLOPPY CONTROLLER

ITHIRD FLOPPY CONTROLLER

IEOURTH FLOPPY CONTROLLER

zDOOMF TASK FOR DECNET

INETMORK SERVICES PROTOCOL TASK

[NETWORK INFORMATION PROGRAM

/NETNORK TERMINAL COMMUNICATIONS TASK TRANSMITTER

INETWORK TERMINAL COMMUNICATIONS TASK RECEIVER

INULL JOB FOR PDP-S/A

/Lx1T TASK

IAUXILIARY DKCBA HANDLER

/SDFTNARE PARAMETERS - EDITED BY USER

xLIsT

IFDEF

XLIST

USFLDSIB

OSTTDVISI
OSKBDVIBD

DSSYSD'HKB

OSFILL'O

IOSBORGI

XLIST
IFDEF

XLIST

IMCRCLKI

MCRSYS'I

IMCRFLDI
IMCRORG-

/MCRPRTI

IMCRCDVI

XLIST
IFDEF

XLIST

CLKTYP'O

CLKDLNIZD

DECIHAL
HERTZIIOOO

1

058 <

LSTFLG

IDEFAULT IS OSTTDV-I

ISEG 4 FOR 2400 BAUD VTOSJ

IURIGIN (IN FIELD O)

1)

MCR <

LSTFLO
xu IF MCR T00 FACILITIES TO BE OMITTED (DEFAULT - l)

11 IF OEsIREO (DEFAULT)
IFIELD 0F MCR

ILOCATIDN OF MCR (DEFAULT IS END OF FIELD)

IPARTITION NUMBER OF MCR (IF NON.nEsIDENTJ

/OONsDLE TO BE usED av McR, E.O. TTY

IDEFAULT IS TTY

1)

CLOCK <

LSTFLG

IMAY BE CHANGED BY USER



DEMONSTRATION PROGRAM

SHERTZII

IFNZRO OLKTYPSI ¢HERTZIITSO> IFORCE DKSEP,KWIZ TO 1 KHZ

OCTAL

XLIST 1’

IFDEF LPT ¢

ILPTLOCI

ILPTFLDI
)

IFDEF DTA <

/DTALOCI

IOTAFLOI
>

TBLLSTI O ISET TO 'LSTFLG' IF YOU DON'T DESIRE

ITO SEE TABLES WHEN PARAMETER FILE IS

/NOT LISTED.

ISYSTEM LOCATIONS!

HSGTBL' 1230-2 ITASK MESSAGE TABLE
TSTABLI NTASKS+2‘2+MSGT8L-fl ITASK STATE TABLE - HOLDS

ITASK LINK,UM,DF,IF'PC,AC,MO
TFTABLI NTASK8¢2‘9*TSTABL-1 ITASK FLAGS TABLE ' fiOLDS

ITASK STATUS FLAGS

XLIST I

IFDEF SWAPPER 4

XLIST LSTPLG
SYSIRKO

SUNITIO

IFNDEF SUNIT <SUNITI n> IDEFAULT SNAP UNIT Is 0

FIELD-D
/

IPARTITION TABLE §PARTBLJ ENTRIES:

IMUST BE INITIALIZED BY USER AS EXPLAINEO IN THE COMMENTS

roo~rr roecer TO Remove LEADING "x" FROM LINES usau

/

RESTBLI TFTABL+NTASKS¢2 xneszoeucv TABLE

PARTBLI NTASKS-SWAPPER“2¢RESTBL¢3&7174 IPARTITION TABLE

lPARTBL

XLIST I

IFNZRO PARTNS ¢

xLIST TELLST

MFLDOOII

ADOROOIHOO

SIZEDOII

SIZEOO'10*MFLDOO'1D*GOOO
ADOROO

ZBLOCK 2

XLIST
IFNZRO PARTNS-x ¢

XLIST TBLLST
MFLDOII IMEMORY FIELD OF PARTITION 31
ADDROII ILOwEST ADDRESS IN PARTITION #1

sIZEOII /SIZE OF PARTITION #1 (CORE PAGES)
SIZEOI‘ID*MFLDDI'ID¢aDDD

ADDED!

ZBLOCK 2

XLIST
IFNZRO PARTNS-E ‘

XLIST TBLLST
MFLODEI IMENORY FIELD OF PARTITION A2

ADDRDZI ILONEST ADDRESS IN PARTITION A2

SIZED?! ISIZE OF PARTITION #2

SIZEflE‘IO*MFLDDZ'IO¢40aD
ADDROZ

ZBLOCK a

XLIST

IFNZRO PARTNS-3 ‘

XLIST TOLLST
MFLDOSI IPARTITION #3

ADDROSI

SIZED}-

SIZEOS‘IO*MFLDD3'ID¢40OD

ADDED:

ZBLOCK a

XLIST
IFNZRO PARTNS-a <

XLIST TBLLST
MFLDDa- IFARTITION an

ADDRDAI

SIZEOAI

SIZEOA‘IOSMFLDOG‘IO+AODO
ADDROa



ZBLDCA
XLIST

IFNZRO

XLIST

MFLDDSI

ADDROS'

SIZEOSI

DEMONSTRATION PROGRAM

2

PARTNs-S ¢

TULLST

/PARTITION v5

SIZEDS'IOTMFLDOSTIO#4DDD
ADDROS

ZBLDCK

XLIST
IFNZRO

XLIST
MFLDOS'

ADDRDSI

SIZEOSI

SIZEob'I

ADDROb

ZBLOCK

XLIST
IFNZRO

XLIST
MFLDETI

ADDROTI

512E07-

2

PARTNS-b ¢

TBLLST

/PARTITION #6

U’MFL006'10*4000

2

PARTNS-T ‘

TOLLST
IPARTITION #7

SIZEGT‘10*MFLDBTTIE*QODU
ADDRDT

ZBLOCK 2

XLIST 1>>>>>>>>

/

/AODITIONAL PARTITIUNS MAY BE DEFINED BY THE USER A8 SHONN ABOVE

’FURTHERHORE' THE PARTITION TABLE MAY RESIDE ANYWHERE IN FIELD ZERO

/

PRTEND'.

XLIST

IFDEF

XLIST
TTDEVI

KBDEVI

CONSOL'

VTSG'

SCOPE!

FILL-

NIDTHI

TAB.

DLDTTYI

LSBOTI

TTFLDI

TTLUCI\\\\\\\\\\\\
XLIST
IFNZRO

XLIST

IKLSADV'

IKLBACTI

XLIST
IFDEF

XLIST
[EXITFLD'

IEXITLOC'

XLIST

XLIST

IFNDEF

IFNDEF

IFNDEF

IFNDEF

IFNDEF

XLIST
IFDEF

XLIST
MAXCCB'

MAXNODI

NSPFLDI

NSPLOCI 2600

NDDNUMI

INOTE END OF PARTITION TABLE

1D

TTY <

LSTFLG
[PRINTER DEVICE CODE - DEFAULT IS a

IKEYBDARD DEVICE CODE - DEFAULT IS TTDEV-I

I1 MEANS CONSOLE TTY (DEFAULT)
II ENABLES CTRL/S AND CTRL/O

l1 MEANS TTY CAN DO A BACKSPACE

/NUMBER OF FILL CHARACTERS, 1.5. A

ITTY LINE WIDTH (D MEANS INFINITE). DEFAuLT IS 136

I1 IF TTY HAS HARDWARE TABS

(I TO USE OLD E'PAGE TTY HANDLER
/1 LISTS BOTH HANDLERS (DEFAULT a)
IFIELD OF TTY TASK (TIMES 10)

ILOCATION OF TTY TASK

1)

KLBA <

LSTFLG

IKLUA DEVICE CODE - DEFAULT IS AD

/KL8A CONNECT ROUTINE PAGE - DEFAULT IS 7466

1D

EXIT <

LSTFLG

IEIELD 0F EXIT TASK (TIMES 10)

ILOCATION OF EXIT TASK

1)

LSTFLG

PDPBE <PoPaE-1>

P9912 <PDP12ID>

EAE <EAEIO>

PWRFAL <PHRFALIO’

KLBA (ALBA-u»

1

NSF <

LSTFLG

[NUMBER or LOGICAL CHANNELS ccca'sa BEING USED

/E.C. 3 FOR 3 CHANNELS

/THESE ARE NUMBERED 1.2.3
INUMBER or NUDE NAMES IN NODE TABLE

IFIELD or NSF TASK AND MOST NETWORK TABLES (5.5. an)

IETABLES INCLUDE CCBTAB, LNKTAB, NODTAB AND NETTAB)
IURIGIN or NSP TASK. must aE .LE. 322a

ITHE DEFAULT IS CURRENTLY 329a

INODE NUMBER or THIS NDDE



DEMONSTRATION PROGRAM

[IMPORTANT RELATIVE ORIGINS WITHIN NETWORKS TASKS

DRLXITI NSPLOCPABOO [ADDRESS OF AST DE~OUEUER

CCBTABI DRLXIT*ZDO [ADDRESS OF GOD TABLE

NODTABI CCSTABOIOD [ADDRESS OF NODE TABLE

NETTABI NDDTASfibO [ADDRESS OF NETWORK 'INFORMATION' TABLE

[THE DEFAULT NETNURKS TASKS USE CORE AS FOLLOWS:

[DOCMP3 PAGE 0; 0200-3577 (1 LINE: 2 PAGE NODE POOL)

[NSP3 PAGE O; 32DO-7577

[NETWORK TASKS USE PAGE O AS FOLLOWS:

[ODCFLDT IO-Ia, 36-77

[NSPFLOB 15-17, 77-177

[NODE TABLE ENTRIES

[EACH ENTRY HAS TUE FORM

[WORDS 1-3 NODE NAME (b-OIT: O-PADDED)

[WORD 4 LINE NUMBER

[WORD 5 BIT 031 IF ADJACENT NODE

[ BITS 4'11 CONTAIN NODE NUMBER

IFDEF TASK ‘ IFZERO TASK-NSF ¢

FIELD NSPFLDXIO
*NODTAB

NODTAB, TEXT [NAMEI

O [LINE NUMBER

0 [NODE NUMBER

tNETTABoa

NODNUM [OUR NODE NUMBER

TEXT [NAME/ [OUR NODE NAME

FIELD 0

>>

>

XLIST 1

IPDEP DDCMP <

XLIST LSTFLG
HAXLIN- [NUMBER OF PHYSICAL LINEs BEING USED

[9.6. 3 FOR 3 LINES

/THESE ARE NUMBERED 0,1,2
MAXPKTI ea /SET TO NUHuER 0F NODE PDOL PACKETS To ALLOw

[THE NODE POOL EXISTS AT THE END OF DOOMP

[JUST BEFORE THE LCB TABLE (SIMILAR TO THE CLOCK OUEUE)

/EAcH PACKET REQUIRES 1a HORDS OCTAL. (ABOUT 10. PER PAGE)
ILTHE DEFAULT REOUIRES a PAGES CORE)

[KGBEI [SET TO IOT SKELETON IF KGBE IS PRESENT (E.G. 6110)

DDCFLDI [FIELD OF DOCMP TASKILCBTAB AND 'NODE POOL' tE.G. 20)
[THIS FIELD MUST BE DIFFERENT FROM NSPFLD

DDCLOCI OaOO [ORIGIN OP OOCHP TASK

[THE ABOVE MUST BE BELOW SODD-SIZE 0F NODE POOL AND LCBTAB

[THE DEFAULT Is CURRENTLY EOO

LOBSIZI 32 [ELOBAL DEFINITION OF LGB SIZE (00 NOT ALTER)

PKSIZEl 14 [GLOBAL DEFINITION OF PACKET SIZE (DO NOT ALTER)

DDCFNCI ODCLOC [ADDRESS OF ODGMP 'FUNCTION CALL' ROUTINE

HEAOPKI DOCLOCtSOZO [ADDRESS OF START OF PACKET FREELIST
LCBTABI HAXPKT'PKSIZEOHEADPK [ADDRESS OF LINE CONTROL BLOCK TABLE

[IMPORTANT NETWORKS PAGE 0 GLOBALS

DDCEFI 49 [DDCMP I[O EVENT FLAG

FREHD' 4? [LOCATION OF I[O PACKET FREELIST HEAD

DDCTL' 59 [POINTS TO TAIL OF DDCMP INPUT OUEUE

DDCHD' 5; [POINTS TO HEAD OF DDCHP INPUT QUEUE

ATNINP' 52 [POINTS TO TRANSMIT COMPLETE RING BUFFER

OHDRI 55 [LOCATION OF HEADER BUFFER FOR TRANSMITS

OCRCL' 65 [HEADER CRC FOR TRANSMITS

ODCRCLI 65 [DATA CRC FOR TRANSMITS

OUTCOFl 67 [DATA OESCRIPTOR FOR TRANSMITS

DDCUSRI NSP [DEFAULT USER OF DOOM? TASK

XLIST 1’

XLIST 1

IFDEF NIP ¢

XLIST LSTFLG
[NIPFLDt [FIELD OF NIP (TIMES 10)
[NIPLDCI [LOCATION OF NIP

[NIPART' [PARTITION FOR NIP

[SKIMPI [SET TO 1 TO GET SHORT NIP

8-5



DEMONSTRATION PROGRAM

/NIPLOG- IDEVICE NIP OUTPUTS T0

IDEFAULT IS LPT IF IT EXISTS (OTHERWISE TTY)
INIPRESI ILDCATION FOR RESIDENT PORTION OF NIP

IREOUIRED ONLY IF NIPART DEFINED

IDEFAULT Is NIPLoc-aaa

XLIST 1 >

IFDEF TLK <

XLIST LSTFLG

ITLKFLDI /FIELD OF TLK TASK

/TLKLOCI [START OF TLK TASK

TLKCHNI IECB CHANNL TO ASSIGN TO TLK TASK

XLIST 1 »

IFDEF LSN <

XLIST LSTFLG

ILSNFLDI IFIELD or LSN TASK (TIMES 1w)
/Ls~Loc= [START OF TLK TASK

LSNCHN: IECB CHANNL TD ASSIGN T0 LSN TASK

xLIST 1 >

XLIST LSTFLG

IEOUIVALENCESS

AC7776I

ACTTTSI

ACADODI

ACSTTTI

ACZDDDI

ACDDOZI

CLL STA RAL

cLL STA RIL
CLA STL RAR

CLL STA RAR

CLA STL RTR

CLA STL RTL

/MDNITOR CALL VALQES:

CALI

POSTDSI

wAITMI

SENDI

RECEIVI

wAITE-

RUN-

SUSPNDI

POSTl

SKPINSI

DERAIL'

BLKARGI

SENDWI

UNBARGI

RESCHD‘

wAITX:

FREE-

JMS 2U ICALL THE EXECUTIVE

JMP I 29 IDISMISS AN INTERRUPT

JHS I 25 IWAIT FOR MULTIPLE EVENTS

INOTE: "it" MEANS CRITICAL VALUE MAY NOT

IHE CHANGED WITHOUT MODIFYING SYSTEM CODE11

lsEND MESSAGED

1 [RECEIVE MESSAGE

2 [WAIT FOR EVENT FLAG
3 IEDNTINUE TASK EXECUTION
4 I§USPEND TASK EXECUTION
5 IPOST AN EVENT FLAG
6 IINSERT CODE INTO INTERRUPT SKIP CHAIN

T IINITIATE END-ACTION

1D [BLOCK TASK FOR REASON SPECIFIED IN ARG

11 ISEND MESSAGE AND WAIT

12 IPNBLOCK TASK FOR REASON SPECIFIED IN ARG

13 IEDRCE A RESCHEDULE

10 IWAIT FDR EXACTLY THIS EVENT FLAG

400D lftFREE PARTITION

XLIST I

IFDEF UDC <

XLIST LSTFLG
AO'OTDO'IIDIIEIGCISIECIAIRCIS
DClblECTITICSIIOIOCTIIIIAIIIZ

XLIST 1’

XLIST LSTFLG

ITASK stwus FLAGS:

NDNRNT'

EFNT'

RUNNTI

SHPNTI

EDRMWTI

USERNTI

ENABHTI

MSGNTI

NETWTI

,DNEWTI

TSNFLG'

TODL'
TDOHI

DATE'

MCREFI

none IiaNDNRESIDENT TASK WAIT

2000 IEVENT FLAG WAIT

1aa0 [SCHEDULE wAIT

maze xywswAPPER WAIT

maze /§va~r FLAG on MESSAGE WAIT

01oz xusen SPECIFIED WAIT

mean IENABLE WAIT

0020 IMESSAGE NAIT .

eaxz INETWDRK WAIT (RESERVED FOR POSSIBLE FUTURE use:

neat 1y.ooes NOT EXIST WAIT

IFNZRO KLaA «IFNDEF KLaACT «

KLUDI KLaA-1/3‘200
KLaACTI 1Qaz-KLUD>>

35 ITASK SH INHIBIT FLAG IN FIELD D

36 [LOW ORDER TIME OF DAV IN FIELD D

37 IHIGH ORDER TIME OF DAY IN FIELD 0

4% [DATE IN 086 FORMAT IN FIELD O

41 IMCR START EVENT FLAG IN FIELD D

8-6



DEMONSTRATION PROGRAM

ISOME USEFUL EOUAIES FOR TTY AND LPT MESSAGES:

NDPACK'ODUD

NoanF-aeua

IND-100D

NOLINEuaoU
AssGN-aon

KLSALINEIIUU

xLIST 1

IFDEF CLOCK

XLIST LSTFLG

[TEXT IS NOT PACKED IN b-BIT

IOUTPUT SHOULD NOT BE FOLLOWED BY CR/LF

IOUTTXT FTS T0 FIRST WORD OF TEXT

IINPUT IS IN CHARACTER MODE

IASSIGNS DEVICE

/USED TO SPECIFY A LINE OF A KLBA

¢

SOME USEFUL EOUATES FOR STANDARD CLOCK MESSAGES!

MARKTIMEI

SCHEDULE-

TIMOUTI

PERIODICALLY:

CANCELI

XLIST 1’

XLIST 1

IFDEF TASK

XLIST

0 IPOST EVENT FLAG AFTER SPECIFIED INTERVAL

1660 IRUN TASK AFTER SPECIFIED INTERVAL
2600 /DERAIL TASK AFTER SPECIFIED INTERVAL
200D [USED AS MODIFIER TO ‘SCHEDULE'

IRE'OUEUES RUN REQUEST AFTER SPECIFIED INTERVAL

IE.G. 'SCHEDULE FOO PERIODICALLY'

TUBE /DELETE ALL REQUESTS FROM SPECIFIED TASK FROM DUEUE

IFORCE LISTING OFF
<

ITASK TABLE SETUP O "TASK", "CUR","ININT"9 AND "START"

IHUST BE DEFINED BY TASK!

IPNDEF I~1wr

IFNDEF ININTE

IFNDEF ININTS

iTASK'a+MSGTBL
ZBLDCK 2

tTASK‘AwTSTABL
CURX16+CUR
START

B

XLISTI IEDEF
XLIST

VERS

XLIST >

XLIST

*TASKfiTFTABL

INIWT

XLIST
>

IFDEF TASK?

XLIST

iTASK2‘2+HSGTBL

ZBLDCK 2

iTASK2‘4+TSTABL

cuRax1o+cpaa
STARTE

O

XLISTI IfOEF
XLIST

VERSE

XLIST >

XLIST

tTASKa+TFTABL
INIuTa

XLIST
>

IFDEF TASK}

XL151

iTASKS‘EtMSGTBL

ZBLOCK 2

*TASK3‘4+TSTABL
CURIX10+CUR5
START}

0

XLISTI ItDEF
XLIST

VERSS

XLIST >

XLIST

*TASKStTFIABL
ININTS

XLIST
>

<ININTID?

¢ININTZIO>

<1NIHT3ID>

IMESSAGE BUFFER INITIALLY CLEAR

IINITIAL FLAGS

[INITIAL AC 0

VERS <

IINITIAL MD

IMESSAGE BUFFER INITIALLY CLEAR

IINITIAL FLAGS?

IINITIAL AC D

VERSE <

IINITIAL MD

A

IMESSAGE BUFFER INITIALLY CLEAR

IINITIAL FLAGS}

IINITIAL AC 0

VERS3 <

IINITIAL MO



DEMONSTRATION PROGRAM

IFDEF TASK ¢

IFOEF PARTNO <

XLIST

IRESIDENCY TABLE (RESTBLJ ENTRY!

IINITIALIZED FOR NONRESIDENT TAsns ONLY

*TASK-SNAPPER-l‘éfiRESTBL
PARTNO‘QOPARTBLtCPABLE‘CPABLE+HRITE
xLIST

IFNDEF SNAPPER tNOSWAPp‘ERROR‘> ISNAPPER MISSING

IFNZRO TASK-SNAPPERI4666 (SWPRIO,‘ERROR‘thON'RESIDENT TASK

IHAS PRIORITY HIGHER THAN SNAPPER

>>

IFDEF P‘RTNO <

IFNDEF TASK £NOTASK,‘ERROR*’ IPARTITION BUT NO TASK

IFNDEF SWAPPER <N05WAP9.ERR0R‘> IPARTITION BUT NO SKIPPER

IFNDEF PARTNS <NOPARTp‘ERROR‘> IMISSING PARTITIONS

IFZERO PARTNO'PARTN8&4666 <PRTERR,‘ERROR‘> [PARTNO.GE.PARTNS
)

XLIST 6

8.2 NONRESIDENT TASK LISTINGS

The following are listings of nonresident tasks (NR20 and NR22):

8.2.1 Nonresident Task NRZO

TASKI26

6626 TASK'26

6626 TASKte6

6466 STARTI466

6661 WRITEll

6661 CPABLE=1

6616 CUR‘16

5666 INIWTtRUNWT+NONRwT

6666 PARTN0I6

6661 FIELD CURX16

6666 *466

16466 4626 CAL

16461 4611 SENDwoFREE

16462 6661 CLOCK

16463 6666 SLPMSG

1646a 4626 CAL

16465 4611 SENDW+FREE

16466 6663 LPT

16467 6666 LPTMSG

16416 5266 JMP START

6666 *666

16666 6666 SLPMSG: ZBLOCK 3

16663 6666 6

16664 6666 638HERTZ

16665 6661

16666 6666 LPTMSGo ZBLOCK 3

16611 6666 6

16612 6666 6

16613 2461 TEXT /TASK Z6 RUNNING/

16614 2313

16615 4662

16616 6646

16617 2225

16626 1616

166e1 1116

16622 6766



8.2.2

DEMONSTRATION PROGRAM

Nonresident Task NR22

TASKIZ2

10400

10401

10402

10403

10404

10405

10406

10407

10410

10630

10633

10634

10635

10636

10641

10642

10643

10644

10645

10646

10647

10650

10651

10652

0022

0022

0400

0001

0001

0010

5000

0000

0001

0400

4020

4011

0001

0630

4020

4011
0003

0636

5200

0630

0000

0000

0000

0001

0000

0000

0000

2401

2313
4062

6240

2225

1616

1116

0700

TASK'22

SLPMSG'

LPTMSG;

TASK:22

START-400

wRITEI1

CPABLEII

CURIIE

INIWTIRUNWT+N0NRNT

PARTN0I0

FIELD CURXlE

t400

CAL
SENDW+FREE

CLOCK

SLPMSG

CAL
SENDw+PREE

LPT

LPTMSG

JMP START

*630

ZBLOCK 3

0

GISHERTZ

ZBLDCK 3

0

0

TEXT ITASK 22 RUNNING/



DEMONSTRATION PROGRAM

8.3 ASSEMBLY AND LOAD PROCEDURE

The assembly and load procedure for the demonstration program is as

follows:

+PAL RTEEBEF‘ARAMT'RTSB~
ERRORS DETECTED: 0

LINKS GENERQTED: 0

.RfiL CLDCKiRfiRfiMyCLOCK

ERRORS DETECTED: 0

LINKS GENERATED: 0

.RNL HflRiRfiRfiMyMCR

ERRORS DETECTED: 0

LINKS GENERQTED: 0

.RfiL USRSURiRflRfiMyUSSSUR

ERRORS DETECTED: O

LINKS BENERATED: 0

.PAL TTYfiPARflMaTTY

ERRUR$ DETECTED: o

LINKS GENERnTfin: o

.RQL LRTfiRQRfiMyLRT

ERRORS DETECTED: 0

LINKS GENERATEDE Q

.RfiL RESEiRfiRfiMyRKBE

ERRORS DETECTED: 0

LINKS GENERATEDX O

.RAL NREOiRfiRfiNvNREO

ERRORS DETECTEDE 0

LINKS GENERQTED: 0

.RAL NRRRfiRflRfiMvNRBR

ERRORS DETECTED: 0

LINKS GENERfiTEDZ O

.RNL swnprhnmnmyswnw

ERRORS DETECTED: 0

LINKS GENERRTED: D

.R ABSLDR

*NR20$

.Sfi SYS NRBO 10400W10fi?7

.R fiDSLDR

*NRQR$

.SA SYS NR2? 10400W105??

.R RBSLDR

*RTSBvMCRyCLOCKyRKBEyTTYyLRTyOSSSUR

*SNARyNRROrNRRQ$

.SA 8Y8 RTSSUB

This example shows the assembly of the parameter file and the source

task itself. The binaries of each nonresident task are then loaded

into memory, and their nonresident portions saved on the swap device.

All tasks are then loaded using the ABSLDR with the RTS/8 Executive

being loaded first. Finally, the core image of all the tasks in

memory is saved using the 08/8 SAVE command.

8—10



DEMONSTRATION PROGRAM

8.4 NONRESIDENT TASK ASSIGNMENT AND EXECUTION

The following is the execution of RTS/8 showing the assignment of

tasks NR20 and NR22 to the system.

.R RTSBUQ

*NRROWQO

*NRERmRE

*$}SY

01 CLCK 0

02 TTY M

03 LPT M

04 MON

07 HRS M

15 USSF M

16 SNAP R

20 H N

22 R N

23 038 E

}RE 20

PER 22

PEXIT

O

In the above example, the user terminates the installation of

nonresident tasks with an ALTMODE, and returns to the MCR. A SYstat

command is executed which prints a system status report (see Section

6.2.9). The REquest command is then used to run tasks NR20 and NR22.

Shown below is output from tasks NR20 and NR22 on the line printer.

TASK 20 RUNNING

TASK 20 RUNNING

TASK 20 RUNNING

TASK 20 RUNNING

TASK 22 RUNNING
TASK 2% RUNNING

TASK 22 RUNNING

TASK 20 RUNNING

The EXIT command is typed to terminate RTS/8 execution and return to

the 08/8 monitor.



CHAPTER 9

ADVANCED RTS/8 PROGRAMMING TECHNIQUES

9.1 PERFORMING A RESCHEDULE

9.1.1 Writing Delicate Code

Frequently, a task needs to manipulate data in another task or a

common area. Since tasks are running 'simultaneously', problems will

arise if two tasks want to access the same data at the same time.

Consequently, delicate code wants to run with interrupts disabled

while accessing data in another task.

NOTE

Interrupts may be disabled temporarily
using either a IOF/ION pair or, on

machines with memory extension, a CIF

instruction which inhibits interrupts
until the execution of the next JMP or

JMS instruction.

For example, suppose Task A increments location COUNT occasionally and

Task B decrements location COUNT from time to time during program
execution. The code might look like the following:

/TASK A

LOOPA, .

x, ISZ COUNT

JMP LOOPA

COUNT, 0

/TASK B

LOOPB, .

STA

Y, TAD COUNT

z, DCA COUNT



ADVANCED RTS/8 PROGRAMMING TECHNIQUES

JMP LOOPB

If Task A increments COUNT the same number of times that Task B

decrements COUNT, it would be assumed that COUNT would be 0 at the end

of the program. However, this is not necessarily so since a race

condition can occur.

Suppose that Task A has a higher priority than Task B, and Task A is

waiting for an event to occur with COUNT currently containing a 6.

Task B is ready to decrement COUNT. However, an interrupt occurs

after location Y has been executed. The AC contains a 5 and Task B is

ready to store a 5 back into COUNT. The interrupt service routine,

noting that the event Task A was waiting for has just occurred, now

suspends Task B and resumes Task A. Task A now bumps COUNT from 6 to

7, and then goes back to sleep. Task B then resumes with the AC

containing a 5 and stores a 5 into COUNT which is incorrect for proper

program execution.

This situation is prevented from happening by disabling interrupts
around the delicate code. Either of the following two solutions can

be employed:

Solution 1 Solution 2

/TASK B /TASK B

LOOPB, . LOOPB,

STA CIF CUR

IOF STA

Y, TAD COUNT Y, TAD COUNT

Z, DCA COUNT Z, DCA COUNT

ION ,

JMP LOOPB JMP LOOPB

Solution 2 (only usable on machines with memory extension) uses the

CIF instruction since it temporarily inhibits interrupts until the

next JMP or JMS instruction is executed.

9.1.2 Inhibiting Task Switching

Although the procedure in the previous section can be used, it at

times can be very inefficient. If it is desired to perform a lot of

manipulation on data which could be accessed by other tasks, it may be

inappropriate to turn off interrupts. Inhibiting interrupts for long
periods of time could affect other portions of the system where timed

events are very important. Also, an interrupt can be lost (for

example, clock interrupts) if interrupts are turned off for a

significant amount of time.

For this case, another solution is possible. A task can inform the

RTS/8 Executive that it wants to continue to run, and that while it is

executing a certain piece of code, no other task should run even if a

task of higher priority becomes runnable. This process is known as

inhibiting task switching.



ADVANCED RTS/8 PROGRAMMING TECHNIQUES

Task switching should be inhibited only under unusual circumstances

and performed with care. While task switching is inhibited,

interrupts may still occur and the interrupt service routine will get
control. However, if task switching is inhibited, the interrupt
service routine will always return control to the interrupted task

after the interrupt has been serviced even if higher priority tasks

are now runnable.

NOTE

If the user wishes to manipulate data

which is accessed by an interrupt—level
routine, interrupts must be inhibited

since inhibiting task switching alone

will not be sufficient in this case.

There are two methods of inhibiting task switching which are as

follows:

Method 1: Task switching is automatically inhibited whenever a task's

PC is less than 100. Thus, delicate code could be placed in the

bottom of page 0 of any field.

Method 2: A task may inhibit task switching by zeroing location 35 in

field 0. This location is symbolically referred to as TSWFLG (task

switching flag) and is defined as such in the parameter file. In

either case, after the task is through with its delicate code, it may

not be sufficient for the task to reset TSWFLG to its original
value(l). This is due to the fact that there may be some other

higher—priority task that is entitled to run but did not run because

task switching was inhibited. The user can find this out by

interrogating location TSWFLG. If another task became runnable while

task switching was inhibited, the RTS/8 executive sets the task

switching flag to -1. When a task is ready to allow task switching
again, it must examine this flag before resetting it to 1. If it was

-1, the task returns control to the RTS/8 scheduler. This is

performed by using the RESCHD ER as follows:

CAL

RESCHD

This ER causes RTS/8 to perform a reschedule that allows the runnable

task of highest priority to be executed. If a user does not perform a

RESCHD after re—enabling task switching, then a higher priority task

which is entitled to run might not run until the next interrupt
occurs. The interrupt may never occur, or if it does, it may be too

late for proper program execution.

The preferred code for inhibiting task switching for Task B which was

described previously is shown below:

/TASK B

LOOPB, .

CDF 0

DCA I (TSWFLG /INHIBIT TASK SWITCHING

STA

y, TAD COUNT

z, DCA COUNT

ISZ I (TSWFLG /ALLOW TASK SWITCHING

9—3



ADVANCED RTS/B PROGRAMMING TECHNIQUES

JMP .+3 /SHOULD WE RESCHEDULE?
CAL /YES
RESCHD

CDF CUR /NO

dMP LOOPB

NOTE

Interrupt level routines should not look

at or set the TSWFLG.

A summary of TSWFLG states is shown in Table 9-1.

Table 9-1

Summary of Task Switching Flag (TSWFLG) States

TSWFLG State Value

Task switching allowed 1

Task switching inhibited 0

Task switching inhibited;
reschedule as soon as possible —1

9.2 EXECUTIVE REQUESTS FOR ADVANCED APPLICATIONS

9.2.1 WAITM - Waiting for Multiple Event Flags

Sometimes it is desirable to wait for a logical combination (AND or

OR) of Event Flags. Waiting for the logical AND of two Event Flags is

quite simple. The sequence:

CAL

WAITE

A /WAIT FOR EVENT FLAG A

CAL

WAITE

B /AND THEN WAIT FOR EVENT FLAG B

waits until both A and B have been POSTed.

Waiting for the logical OR of several event flags is more difficult

since there is a possible race condition between the various tests and

the interrupts (or task executions) which POST the Event Flags
involved. The key to waiting for an OR of several Event Flags

successfully is not to allow any interrupts to occur between the

testing of the first Event Flag and the placing of the task in a Wait

state if none of the flags were POSTed.



ADVANCED RTS/8 PROGRAMMING TECHNIQUES

This is accomplished by using a special sequence of instructions and a

special RTS/8 call named WAITM. WAITM is defined as JMS I 25. It

must be executed with interrupts off, the Instruction Field set to 0

and the Data Field set to the current field, and it must be followed

by a word containing the blocking bit(s) to be set in the Task Flags
Table. The action of WAITM is equivalent to the action of the RTS/8
BLKARG ER except that a fast path through the RTS/8 Executive is taken

and interrupts remain off until the blocking bits are on in the Task

Flags Table.

For an example of the use of WAITM, assume that a task "TASK" wants to

test two Event Flags A and B. If A is POSTed, control should go to

location ADONE; if B is POSTed control should go to location BDONE.

If neither is POSTed, the task must wait until one of them is POSTed.

The code to perform this function is:

TESTAB, IOF /INTERRUPTS OFF - DELICATE CODE

TAD A

SNA CLA

JMP ADONE /ADONE MUST TURN INTERRUPTS ON

TAD (4000+TASK /SET A TO "WAITING" STATE

/INDICATING
DCA A /THAT THIS TASK IS WAITING ON IT

TAD B

SNA CLA

JMP BDONE /BDONE MUST TURN INTERRUPTS ON

TAD (4000+TASK /SET B To "WAITING" STATE

/INDICATING
DCA B /THAT THIS TASK IS WAITING ON IT

CIF 0

GDP CUR

WAITM

EFWT /BLOCK TASK ON EVENT FLAG WAIT

JMP TESTAB /WE'RE BACK — ONE OF THE TWO

/EVENT FLAGS HAS BEEN POSTED.

/GO BACK TO FIND OUT WHICH ONE

9.2.2 WAITX - Wait for Exactly This Event Flag

The WAITX ER is similar to the WAITE ER. The exception is that if the

Event Flag is not FINISHED, the task goes into EORMWT (instead of

EFWT), and the task's PC in the TSTBL points back to the location

containing the CAL of this ER. Thus, when the task resumes execution,
it will re-execute the WAITX. If the EORMWT bit was cleared for some

reason other than the Posting of the Event Flag in question, the task

will immediately go back into EORMWT.

Consequently, control will never flow past this ER unless the Event

Flag specified is actually posted (see discussion of DERAIL, Section

9.2.3). If a WAITE had been used and if the task was waiting on

multiple Event Flags (which can happen using WAITM), then control

conceivably could start up after the WAITE ER because some other Event

Flag, and one that is no longer cared about, was posted. This

situation can not occur with a WAITX.

9.2.3 DERAIL - Derail a Task's Execution

The DERAIL ER modifies the execution of a specified task and transfers

control to a special subroutine of the task to process some

exceptional condition. It does not cause any wait bits to get set or

cleared.

9-5



ADVANCED RTS/8 PROGRAMMING TECHNIQUES

Format: TAD TASKNUM

CAL

DERAIL

ADDR

This ER simulates a "JMS ADDR" for the task whose number is contained

in TASKNUM (the "derailed" task). ADDR is assumed to be in the same

field in which the derailed task is executing. The derailed task‘s PC

(from its Task State Table entry) is stored in ADDR; the PC entry in

its Task State Table entry is then set to ADDR+1. Two important
points concerning the operation of the DERAIL ER are as follows:

1. The derailed task's AC, Link, and Data Field settings are not

saved by the DERAIL ER; therefore they must be saved and

restored by the derail subroutine. In this sense, a derail

subroutine is very much like an interrupt at the task level.

2. The contents of the derailed task's Task Flags word are not

affected by the DERAIL ER. If the derailed task is not

runnable, the derail subroutine will not be executed until

the task becomes runnable.

The DERAIL ER is generally used by a high priority task to signal an

emergency condition to lower priority tasks. An example would be a

process—control environment where it is sometimes necessary to abort

all operations if the room temperature exceeds some critical value.

This can be checked by a task which measures room temperature every 10

seconds. It is inefficient and unmodular to include shutdown code in

this "watchdog task" for all machinery being controlled. A better

solution is to provide a location to which each equipment-controlling
task can be DERAILED in order to shut down its own piece Of equipment.
The RTS/8 Power—Fail task uses the DERAIL ER to provide a similar

facility on power—fail recovery (see Section 4.5), which can be used

to reinitialize a task.

Example:

An example of a DERAIL routine is as follows:

DENTRY, 0 /DERAIL ROUTINE ENTRY POINT

DCA SAVAC /SAVE AC

RAR

DCA SAVLNK /SAVE LINK

RDF

TAD (CDF
DCA DFRESET /SAVE DATA FIELD

CDF CUR

. /HANDLE EMERGENCY CONDITION

. /BRANCH TO 'RESUME' IF YOU WANT

. /TO RESUME WHERE YOU LEFT OFF

. /BRANCH TO 'NORESUME' IF NOT

RESUME, TAD SAVLNK /RESTORE LINK

CLL RAL

TAD SAVAC /RESTORE AC

DFRESET, HLT /RESTORE DF

JMP I DENTRY /RESUME (SAME FIELD)

NORESUME, CLA CLL

CDF CUR

JMP RESTART /RESTART TASK

SAVAC, 0

SAVLNK, 0



ADVANCED RTS/8 PROGRAMMING TECHNIQUES

9.2.3.1 Dangers of DERAIL - A task can get into serious trouble if

it is derailed while already in a derail routine. If this happens,
the original PC, AC, link, etc., will be lost. There is no simple
solution. Turning off interrupts in the derail routine may be too

late to prevent this - the second derail could have already occurred

before the derail routine was even entered the first time.

Consequently, a user doing a DERAIL should make sure that not more

than one DERAL is done at a time. Alternatively, before doing a

DERAIL, a task can check an interlock flag (which it must maintain) to

see whether the target task has been derailed or not. The test and

set of such a flag should be performed with interrupts inhibited.

9.2.3.2 Restrictions Using DERAIL — If a task is not runnable,

derailing it will not make it runnable. If the task is in Event Flag
Wait, it will remain in Event Flag Wait until the event occurs. When

the Event Flag is POSTed, the task will wake up and begin to run in

its derail routine rather than in the mainline routine. Thus,

derailing a task to get it to perform some important job immediately

may not always work. The task might be in one of the Wait states and

may not be able to run for some time. For example, if the task were

in Receive Wait at the time, the derail routine would not run until a

message came in for that task.

A partial solution around this restriction is to code the task to be

derailed so that it always waits on events using WAITX instead of

WAITE. Then, if the user wants to derail this task, the task is first

taken out of MSGWT or EORMWT and then derailed.

An example of the code for this situation is as follows:

TAD TASKNUM

CAL

UNBARG /UNBLOCK THE TASK

MSGWTlEORMWT /FROM MESSAGE-RELATED WAITS

TAD TASKNUM

CAL

DERAIL

DENTRY

This will work because both the RECEIVE and the WAITX Executive

Requests bump the PC back to the CAL before going into a Wait state.

Thus, no harm is done if the task is taken out of that wait state for

an incorrect reason. When the task resumes running at that point, it

will re-execute the CAL (RECEIVE or WAITX) and go back into the Wait

state as necessary. This method will not work if the task was in EFWT

due to a WAITE ER because the task would resume running thinking the

Event Flag had been posted when in fact it had not. A way to

circumvent this (other than WAITX) is for the task to do WAITM instead

of a WAITE, and poll the Event Flag upon waking up.

9.3 STARTING PARTITIONS AT AN ARBITRARY BOUNDARY

The advanced user can start a partition at an arbitrary boundary by
using the following assembly and loading proCedure. The example given
assumes that the partition in which the user writes the nonresident

portion of the task to run is three pages long (11200-11777). The

PAL8 pseudo-operators FIELD and RELOC are used, and described in

detail in the 05/8 handbook.



ADVANCED RTS/8 PROGRAMMING TECHNIQUES

/TASKX
FIELD 1 /SET FIELD

*1000 /LOAD THIS CODE AT 11000—11577

RELOC 1200 /BUT ASSEMBLE IT TO RUN AT 11200—11777

<CODE>

PAGE

<CODE>

RELOC

The assembly, load and save procedures for the code are:

.R PAL8

*TASKX<PARAM.PA,TASKX.PA (ASSEMBLY OF TASK)

.R ABSLDR

*TASKX$ (LOADING OF TASK INTO 11000)

.SAVE DEV TASKX 11000-11577 (SAVING OF TASK-THREE PAGES OF

CODE)

The swapper, upon loading this task, places it into the partition at

11200, which is where it was assembled to run.

9.4 DIRECT REFERENCES TO SYSTEM TABLES

A task may directly interrogate locations in the RTS/8 Executive

tables to obtain information about itself or any other task, as long
as the following two restrictions are observed:

1. Due to the interrupt-driven nature of the system, these table

entries may change at any time; therefore, interrupts should

be inhibited between the time these entries are tested and

the time that processing which depends on the testing is

completed. For example, testing the Message Queue Header for

a task may show no messages, but an I/O interrupt occurring
immediately after the test might allow a higher priority task

to run. This task might send a message, invalidating the

result of the test. To prevent this, interrupts should be

turned off during and after the test.

2. System table entries may be changed only through RTS/8
Executive Requests.

Symbols have been defined in the system parameter table that permit
symbolic references to be made into these tables symbolically. The

symbolic expressions which yield the address of the system table

entries for task N are:

N+TFTABL Task Flags Table entry for task

N; if zero, task N is runnable.

N“2+MSGTBL Input Message Queue Header for

task N; if zero, task N has no

messages in its queue.



ADVANCED RTS/8 PROGRAMMING TECHNIQUES

N“4+TSTABL First word of Task State Table

Entry for task N.

N“2+RESTBL First word of Residency Table

entry for nonresident task N.

For example, for a task to determine whether it had messages in its

input queue without issuing a RECEIVE request, the code would be:

CDF o /EXEC TABLES IN FIELD 0

ICE /TURN INTERRUPTS OFF

TAD I (TASK"2+MSGTBL
SNA CLA /ANY MESSAGES?

JMP NONE /NO
ION /YES

The code at NONE must eventually turn interrupts back on.



The RTS/8 source files

File Name

PARAM.PA

RTS8.PA

MCR.PA

MCR.PA

OS8SUP.PA

OSBSUP.PA

PWRF.PA

CLOCK.PA

TTY.PA

LPT.PA

DTA.PA

RK8.PA

RK8E.PA

RF08.PA

CSA.PA

CSAF.PA

UDCICS.PA

RXOlRT.PA

RXOlRT.PA

RXOlRT.PA

RXOlRT.PA

LTA.PA

SWAP.PA

NULL8A.PA

EXIT.PA

APPENDIX A

RTS/8 DISTRIBUTED SOURCE FILES

Task Name

MCR

null task

088

OSBF

PWRF

CLOCK

TTY

LPT

DTA

RK8

RK8

RFO8/DF32

CSA

CSAF

UDC/ICS

RX8A

RXBB

RX8C

RX8D

LTA

SWAPPER

NULL8A

EXIT

included on the distributed tape are:

Task Function

System parameter file with all equates blank.

Appropriate values should be inserted to create

specific parameter files.

RTS/8 Executive

Monitor Console Routine

Null task

08/8 Support Task

OS/8 File Support Task

Power Fail Task

Clock Handler Task

Terminal Driver Task

Line Printer Driver Task

TC08 DECtape Driver Task

RK8 Disk Driver Task

RK8E Disk Driver Task

RF08/DF32 Fixed-Head Disk Driver

Task

Cassette Driver Task

Cassette File Support Task

Universal Digital Controller/
Industrial Controller Subsystem
Handler Task

Floppy Disk Handler

Floppy Disk Handler

Floppy Disk Handler

Floppy Disk Handler

LINCtape Driver Task

Nonresident Task Swapper
Null Task for PDP-8A

Exit Task

(lst controller)

(2nd controller)

(3rd controller)

(4th controller)



The following table gives the approximate size and default origins

componenteach

APPENDIX B

RTS/8 COMPONENT SIZES

of the RTS/8 system.
default memory allocation is shown in Figure B—l.

placed anywhere
CLOCK and SWAP.

in

indicated in the tables.

The following

of

An RTS/8 memory map showing
The modules may be

memory at the user's discretion except for RTSS,

Also, certain modules must be placed in field 0 where

parameters, which are used in Table B—1, are defined as

follows:

NTASKS = Number of tasks in system

CLKQLN = Number of entries in clock queue

MCRSYS = 1 if MCR SYSTAT function desired, else 0

MCRCLK = 1 if MCR CLOCK functions desired, else 0

KLINES = Number of physical KL8—A lines

Any fractions from divides should be dropped.

Table B—1

RTS/8 Component Sizes

Number of Pages
Software Default Required (1 page

Component Origin =128 words) Comments

RTS/8 00200 5+NTASKS/18 Must be in

Executive locations 00200-

01200. Uses page
0 locations 0-3

and 20-47 and

auto-index

register 17.

Clock Module lst page 3+CLKQLN/22 Must be in field

after end of 0. Uses

RTS/8 Executive auto-index

(or SWAPPER) register 10.

New 03400 3

Terminal

Module, V2

Old 03400 2

Terminal

Module, Vl

(Continued on next page)



RTS/8 COMPONENT SIZES

Table B-1 (Cont.)
RTS/8 Component Sizes

Number of Pages
Software Default Required (1 page

Component Origin =128 words) Comments

Line Printer 14400 1

Module

TC08 DECtape 14600 2

Module

RK8E Disk 04200 2

Module

DF32/RF08 04400 1

Module

LINCtape 15000 2

RK8 Disk 04200 1

Module

Power Fail 10200 1+NTASKS/32
Module

UDC Module 10600 7—11 depending Uses page 0

on table space locations 130—144

desired.

Cassette 13600 3

Module

Cassette Label 13000 3 Requires cassette

Support Module handler.

OS/8 File 04600 if 08/8 6 Requires a mass

Support Module support present, storage handler.

otherwise 062001 Must run in field

0.

08/8 Support 06200* 6 Must run in field

Task 0 — requires 8K

for 08/8 plus a

mass storage
handler. Uses

page 0 locations

164—177.

Monitor Console 17600 minus 5+3xMCRCLK+ Requires "console"

Routine Task length (15200 MCRSYS + terminal handler

with all (NTASKS+40)/64. and page 0

options and

no KL8A support)

locations 100-117.

See Table B-2 for

more details.

1Moves down by length of KL8A support code if KL8A support present.

(Continued on next page)



RTS/8 COMPONENT SIZES

Table B-1 (Cont.)

RTS/8 Component Sizes

Number of Pages
Software Default Required (1 page

Component Origin =128 words) Comments

RXOl 13200 2

SWAPPER lst page after 2 Must be in

end of RTS/8 field 0

executive

EXIT 15000 1/2 May relocate

within a page

NULL8A 13600 1

KL8A Support 17600 minus 1+KLINES+1 Must be

length 3 in field 0.



RTS/8 COMPONENT SIZES

HTS/8 SYSTEM MEMORY MAP (Default Memory Allocation)

PAGES HELDO HELDl

0
200 —

1-
"

IPWRF

400L ‘

RTSB

600 "’

(20 tasks)
—

T-

mm

p L uomcs

i

2000
_ SWAP —

_ _ l

l—-

CLOCK

3000 l
CSAF

l. l— RXOlRT

P _

TTY,V2 TTY,V1 INULL8A J—CSA
4000 J_

IRKB
l—

ILPT—

RK8E

I
_

_
RF08

_

l ImA
5000

l_ IEXIT
—

GA

—

OSBF

..

6000

Lar e
h g

r
MCR

_ _ 3mm
OSBSUP

MCR

7000
__

iKL8ASR -L

KEY:

RTS/8 modules may vary in size and placement in memory depending upon the chosen system configuration.

The following symbology has been chosen to show component default allocation in memory.

Fixed Expandable Relocatable Relocatable

and Expandable

Figure B—l RTS/8 System Memory Map (Default Memory Allocation)



RTS/8 COMPONENT SIZES

Table B—2

MCR Component Size

If less than 34(octal) tasks If 34(octal) or more tasks

NO SYSTAT

NO CLOCK

SYSTAT

NO CLOCK

CLOCK

NO SYSTAT

SYSTAT

CLOCK

LENGTH:

DEF ORIG:

IF NONRS:

PART:

LENGTH:

ORIG:

IF NONRS:

PART:

LENGTH:

ORIG:

IF NONRS:

PART:

LENGTH:

ORIG:

IF NONRS:

PART:

5 pages
6400

6200

6400-7377

6 pages
6200

6200

6400—7577

10 pages

5600

5600

6000-7577

11 pages

5400

5200

5400-7377

LENGTH:

ORIG:

IF NONRS:

PART:

LENGTH:

ORIG:

IF NONRS:

PART:

LENGTH:

ORIG:

IF NONRS:

PART:

LENGTH:

DEF ORIG:

IF NONRS:

PART:

6 pages

6200

6200

6400-7577

7 pages

6000

5600

6000-7377

11 pages

5400

5200

5400—7377

12 pages

5200

5200

5400-7577



APPENDIX C

RTS/8 FLOWCHARTS

This appendix contains RTS/8 flowcharts that graphically show RTS/8

system operation.



RTS/8 FLOWCHARTS

Calling Sequence:

p4 TAD VAL

p CAL

p+1 FUNCTION CODE

p+2 ARG1

p+3 AGR2 (or return)

SAVE AC IN
”+4 RETURN

RACA G
CAL = JMS 2O

Thru Current Field:

20 0

21 CDF CUR

22 CIF 0

23 CMP CALIOF (field 0)

24 DSPOST

TASK-
2

25 XWAITM

SWITCHING TSWF4‘: .

ALLOWED
’

0'

?
Rescan

'

ASAP

II

INHIBIT TASK-

SWITCHING.

CLEAR RESCAN EXECUTE

FLAG DISPATCH JUMP

THRU COMMAND

4 TABLE. IGNORE

w FREE BIT

ION
Function

Code
’

‘
JMP I .+FUNC+I

0 XSEND Pg. 04
SAVE CALLING

FIELD

1 XRECEIV Pg. 011

‘
2 XWAITE Pg. 07

SAVE RETURN
3 XRUN Pg' (3‘20

ADDRESS

4 XSUSPND Pg. 020

‘
5 XPOST Pg. 014

GET FUNCTION
6 XSKPINS Pg. 0-15

CODE

7 XDERAL Pg. 016

‘
10 XBLKARG Pg. 013

SAVE
11 XSENDW Pg. 04

COMMAND

12 XUNBARG Pg.C-12

SW
13 XTSTOP Pg. o8

SW designates an operation that is performed

only when usmg nonresrdent operations.
14 XWAITX Pg. 07

EAE designates an operation that is performed

only when the Extended Arithmetic Element

is used.



Cannot

Happen

TSWFLG=1

RTS/ 8 FLOWC HARTS

SET UP

RETURN FIELD

Yes

TSWFLG = —1
TASKSWITCHING

NEEDS RESCAN

_7

KEEP TASK-

SWITCHING

INHIBITED

TSWFLG=0

No

ALLOW TASK-

SWITCHING

JMP I 20

RETURN TO

CALLING TASK

Pg. C-8



SEND

SENDW

RTS/8 FLOWCHARTS

BACKUP RETURN

TO CAL

ADDRESS

AC:

MESSAGE

ADDR ESS

Pg. C-7

Calling Sequence:

SET CLEAR
p CAL

WAIT FLAG WAIT FLAG
p+1 SEND (W)

p+2 TASK It (Sending to)

L AJ p+3 MSGADR

‘
P+4 RETURN

GET TASK

NUMBER TO

SEND MSG TO

Initial Values Becqmes
p MSGADR, 0000 Sending Task =2

L
p+1 0000 CDF to next

msg, if any

GET MESSAGE

AENDRESS
p+2 0000 Addrofnext

msg (0 if none)

p+3 Start of Message

MESSAGE

ALREADY IN QUEUE

(FIRST WORD OF MESSAGE

=0)

.7

No

BUMP RETURN

TO

CAL+4

I

FIND RECEIV-

ING TASK 2's

ENTRY IN

MSGTBL

I

GET DATA

FIELD OF

MESSAGE

ADDTOQ %.08



9-3369d01

1

Oi39VSS3W

GN3SO.L

#)ISVi139

:JOI

SCIHOM30300

O_LN|DSW

:100dGNV93W

01303.L0d

59A
4:

0300N3
\
fl

90'BdOOLCICIV

c

SSW30300

SIHJ.NIH38WON

)lSVJ.NVH_L8831H38WON

>|SV_LDNICIN3S

SI

30300

NI39VSS3W

J_X3NCIN|:|
oN

3DVSS3W

.LX3N

O_LN|3CD

59A

(J.X3NOJ.3013)

080M30300

iSlel139

OOLGGV

SLHVHQMOqa8/SLH



OD

KZ‘I—

IOCO—I

—IOZ

Z—

CD—I—I

I'T'IUOO

Link indicates whether

a new task should be

run or not.

The link status will be

checked later on in

POSTEX.

RTS/ 8 FLOWCHARTS

I from page 05 I

I

FREE MSG WAIT

AND/OR EVENT

WAIT BITS IN

STATUS TABLE

I

L21 IF RECEIV-

ING TASK IS

RUNNABLE &OF

HIGHER PRIORITY

THAN SENDER;
L=0 IF NOT

I

STORE SENDING

TASK NUMBER

IN MSG HEADER

I

STORE CDF TO

NEXT MSG IN

MSGHDR

I

STORE PC OF

NEXT MSG IN

MSGHDR

CAL WAS

SENDW

Via call to FREEJ

This will be tested if

this CAL was a SEND and

not a SENDW.

=0 if none

=0 if none Message is now

linked into the

message queue.

Pg. C-12



RTS/8 FLOWCHARTS

WAITE

WAITX

Calling Sequence:

CLEAR SET ACARG

ACARG TO —1 9 CAL

p+1 WAITE

p+2 EVENT FLAG ADDR

I p+3 RETURN

Enter Here From GET ADDRESS

SEND or SENDW OF EVENT

FLAG

WAlTS
7"

SAVE ADDRESS

ACARG ¢ —1 OF EVENT FLAG

ll

lOF

Yes Restart caller if

TASKSW allows

Pgt C-3

No

EVTFLG :

4000 + TASK NO Give it waiting status

PUSH PC BACK

TO POINT

L
TO CAL

Store Event Flag Wait

‘
AC=EFWT

in Flag Table

AC=EORMWT

Jump with link clear
ll (tested at TSTOP)

Pg. C-8
TSWAIT Pg. 08



RTS/ 8 FLOWCHARTS

Wait for message.

Enter here from RECEIVE.

BACKUP

CALLING PC

TO DO CALX

AGAIN

SET LINK
Message Wait Status

AC = MSGWT

A

SAVE AC

IN MASK

TSWATX

I

STORE IN

TASK #’s

FLAG TABLE

ENTRY

Interrupts were off here
'ON if we came from XWAITE.

No

CLEAR TASK AC

SAVE AC IN

ACARG

V

I

GET TASK

NUMBER’S

ENTRY IN

STATUS TABLE

to page 0-9



Schedule next

runnable task

(start scan

from top)

FINDJL

RTS/8 FLOWCHARTS

I from page 08 I

II

SAVE RESTART

FLAGS, PC, AC

SAVE MO

EAE

II

FREE PARTITION

IN FREE BIT

WAS SET IN

COMMAND

SW

TASK #=1

ENABLE

TASKSWITCHING

I

SET ’MACHINE

STATUS UNIM-

PORTANT'

FLAG

l

GET TASK #‘s

ENTRY IN

FLAG TABLE

FLAGS=0

(RUNNABLE)
.7

BUMP TASK

NUMBER

FINDJ RTS/8 Scheduler

Interrupts temporarily

inhibited here.

Pg. 010

Note no end of table

check - there must be

a runnable task. (Null

task is always runnable.)



RTS/8 FLOWCHARTS

Here from FINDJ (Scheduler)

Found a runnable task

ION

I

GET TASK #'s

ENTRY IN

STATUS TABLE

IOF

Ir
SAVE OLD

STATUS IN TEMP

LOCS OF INTER»

RUPT ROUTINE

Interrupt

Dismiss

Code

This is tested on an

8/E or 8/A only
PENDING

INTERRUPTS

7

Pg. C-I7

SWEEP OLD

STATUS INTO

DF, IF, AC, PC,

ETC.

RESTORE MO

EAE

ION

JMP I 0

RETURN FROM

INTERRUPT



RTS/ 8 FLOWCHARTS

ADVANCE TO

NEXT MESSAGE

ON THE QUEUE

No

GET ENTRY

IN MESSAGE

QUEUE

II

GET FIRST

WORD OF

QUEUE ENTRY

Calling Sequence:

p-1 TAD ARG

p CAL

p+1 RECEIV

p+2 MADDR, 0

p+3 RETURN

RECEIV

Pg. 08

SENDING

TASK OF MSG

=ARG

2

C-ll

UNLINK THIS

MESSAGE FROM

THE QUEUE

II

STORE ADDR OF

MESSAGE |N

CAL + 2

I

AC = CDF

TO MESSAGE

Pg. C-3



UNBARG

RTS/8 FLOWCHARTS

XUNBARG

GET BIT MASK

FROM ARG.

LIST

I

IOF

I

CLEAR MASK

BITS IN FLAG Call FREEJ
TABLE

LII if clearing mask

bits makes task

II runnable and it is

higher priority; L=0

ION otherwise.

Pg. C-3



RTS/8 FLOWCHARTS

BLKARG

XBLKARG p—1 TAD TASK#

p CAL

p+1 BLKARG

p+2 WAITBITS

p+3 RETURN

GET WAIT BITS

FROM ARG.

LIST

BLOK t

CALLING

TASK TO BE BLOCKED

(TASK # = 0)

SET MASK BITS

IN FLAG TABLE

ENTRY OF SPEC-

IFIED TASK

Pg. C-3



POST

RTS/8 FLOWCHARTS

Calling Sequence:

p—1 TAD EFPTR

SAVE ORIGINAL
p CAL

EVENT FLAG p+1 POST

p+2 ECDF,CDF EFFLD

p+3 RETURN

I

CLEAR EVENT

FLAG

WAS

SOMEONE

WAITING FOR THIS TO

HAPPEN (OLD FLAG

NEGATIVE)

Pg. C-3

GET WAITING

TASK’S 3 FROM

LOW ORDER BITS

OF THE OLD

FLAG

CLEAR BOTH

EVENT FLAG

WAIT AND

EVENT OR MSG

WAIT

Pg. 012



RTS/8 FLOWCHARTS

SKPINS

Calling Sequence:

p CAL

p+1 SKPINS

p+2 MODULE ADDR

p+3 RETURN

GET FIRST

MODULE WORD

No
ALREADY IN

THE SKIP

CHAIN!!!

PUT mswns

ROUTINE ADDR Pg- 03

IN 1st WORD

II

PUT CDF, CIF

OF DISMIS IN

2nd WORD

I

PUT MODULE

ADDRESS AND

CDF, CIF IN

LAST MODULE

OF INTERRUPT

SKIP CHAIN

Pg. 03
,

, ,



DERAH.

RTS/8 FLOWCHARTS

GETTASK#%

STATUSTABLE p—1

POINTER p

n+1

n+2

‘ 9+3

STORE

RESTARTPC

INSUBR

!

STORE SUBR+1

IN RESTART

PC

Pg. C-3

Calling Sequence:

TAD TASK#

CAL

DERAIL

SUBROUTINE

RETURN



RTS/8 FLOWCHARTS

INTERRUPT

ROUTINE

TIME~ GO TO

SHARING OS/8 If present
INTERRUPT SUPPORT

SAVE THE

MACHINE

STATUS

USERSK
I

USER-INSERTED

SKWSFORANY ig;%g;ggo
CRUCIAL DEVICES

FAIL RESTART

GO TO
A

APPROPRIATE .NTEEgUPT ”ALT
\

INTERRUPT
7 \

MODULE
~

/

POWER-UP

RESTART

POWER

FAILURE

AC = POWER-UP

EVENT FLAG

ADDRESS

GO TO

CLOCK

HANDLER

Pg. 018

If present

GO TO FIRST

USER INTER-

RUPT MODULE



POSTDS

RTS/8 FLOWCHARTS

YES

Pg. 01 0 No

SAVE THE OLD

EVENT FLAG

VALUE

II

ZERO EVENT

FLAG

WAS A

TASK WAITING

ON THIS FLAG? (OLD

VALUE NEGATIVE?)

CLEAR EVENT

FLAG AND EVENT

OR MESSAGE

WAIT BITS IN

TABLE ENTRY

OF WAIT TASK

Run the waiting task if

its flag word is now zero

and it is higher priority

than the current user.

to page 0-19

Come here from user

issuing POSTDS

CDF EFFLD

TAD EFPTR

CIF O

POSTDS

HMO.)
p—

p—

p—

[1

Pg. 010

Call FREEJ

Pg. 010



RTS/8

from page 0-18

TASK

SWITCHING

INHIBITED

IS

SAVE STATE

FLAG—1

7

FLOWCHARTS

SAVE CURRENT

TASK'S PC, AC

IN ITS STATUS

TABLE ENTRY

SAVE

TASK'S MO

EAE

ION

V

PREPARE TO

START NEW

TASK

STA RTJ

SET RESCAN

FLAG

CTSWF LG = —1

Start Swapper

Pg‘ 010

Pg. C-9



RUN

RTS/8 FLOWCHARTS

Q

SUSPND

p-1

p
AC = RUNWT

p+1

Run Wait p+2

Pg. 012

Go and set

the flag bits

p—1

AC = RUNWT p

m1

m2

‘ Pg. 013

Calling Sequence:

TAD TASK:

CAL

RUN

RETURN

Calling Sequence:

TAD TASK:

CAL

SUSPND

RETU RN



RTS/8 FLOWCHARTS

XWAITM

SAVE AC

IN 'COMMAND'

SW

CLEAR AC, L

FAKE A CAL

DISABLE

TASK

SWITCHING

I

PUT WAIT

BITS IN AC

TSWAIT Pg. C-8

WAITM



ZZ-D

39Vd.LX3N

aflNllNOO

&

.LMHN

NVHJ.HBHiOS_Ll8

DN|)|0018

ANV

89V"!:4>|SV.L

.LSD

:lOl

)ISVi.LXEN

OidWDS

4

NOI

DVTdHLVLS

EAVSOHBZ

l

)lSVJ.lSHH

EINIWVXE]

OJ..133.139

DNIHOlIMS

)ISVJ.

318VN3

ma0;)iSViVGNH
FC‘NH

aamaaHos8/818

smavaaMoqa8/SLH



RTS/ 8 FLOWCHARTS

FROM

PREVIOUS PAGE

IS

TASK

RESIDENT
STARTS

Start task

PUT TASK

INTO SWPWT

SW

TAKE SWAPPER

OUT OF RUNWT

SW

FINDJ



APPENDIX D

RTS/8 ASSEMBLY ERROR MESSAGES

Certain user errors are caught at assembly time. They produce
standard PAL8 error diagnostics on the terminal of the form

IC

US tag
IC

where the tag specified indicates the type of error as described

below.

Tag Module Possible Error

MCRBLK MCR.PA MCR was declared nonresident (MCRPRT

defined) and MCR origin was incorrectly
a multiple of 400. Nonresident portion
of MCR is second page which must start

on a block boundary.

Fix: Redefine MCRORG.

SYSERR several System error; should not occur unless

user modified RTS/8 sources.

Fix: See comments on source line

which generated the error.

TBLERR RTS8.PA Internal Executive tables were generated
incorrectly. See source.

CURBIG PARAM.PA User task specified a value for CUR

which was larger than HGHFLD.

Fix: Redefine CUR.

RATERR CLOCK.PA HERTZ is not a multiple Of SHERTZ.

Fix: Redefine HERTZ or SHERTZ in

parameter file.

TODERR CLOCK.PA SHERTZ is too large. SHERTZ must be

less than 192 (decimal).

Fix: Redefine SHERTZ in

parameter file.

D-l



Tag

NOKL8A

KLOERR.

HITMON.

NOSWAP

SWPRIO

FLDERR

CURERR

RTS/8 ASSEMBLY ERROR MESSAGES

Module

KL8ASR.PA

KL8ASR.PA

KL8ASR.PA

PARAM.PA

PARAM.PA

PARAM.PA

PARAM.PA

Possible Error

The symbol KL8A was not defined in the

parameter file.

Fix: Set symbol KL8A in parameter file

equal to number of physical
KL8-A's present.

The symbol KL8A was set equal to 0 yet
the file KL8ASR.PA was assembled.

Fix: Do not assemble KL8ASR.PA if KL8—A

support is not desired or redefine

KL8A in the parameter file.

The KL8-A service overlaid location 7600

in field 0. Ignore this error if you do

not want to preserve OS/8 resident code.

Fix: Redefine KL8ACT in parameter file.

A nonresident task was assembled in a

system with no swapper.

Fix: Define SWAPPER in parameter file

or undefine PARTNO in user task.

A nonresident task was given higher
priority than the swapper.

Fix: Change priority of swapper or user

task.

Some parameter representing a field

number times 10 was not in the correct

form (e.g. HGHFLD, MCRFLD, etc.)

Fix: Correct value of parameter in

parameter file.

One of the symbols CUR, CUR2, or CUR3

was not of the proper form.

Fix: Correct value in user task to 10

times field of task.



APPENDIX E

EXECUTIVE INTERNAL TASK TABLES

The Executive uses five internal tables to maintain information about

the tasks in the system. Each task's task number is used as an index

into the first four tables to retrieve and update information for that

task. The internal tables are as follows:

1. The Task State Table (TSTABL) - contains 4—word entries

holding the most recent contents of CPU registers for each

task as follows:

Word 1 - contains the link (bit 0)
the Greater Than Flag (bit 1) —if flag
exists on machine being used

the User Mode Flag (bit 5) -if flag
exists on machine being used

the Instruction Field (bits 6-8)
the Data Field (bits 9-11)

Word 2 — contains the contents of the Program Counter

(PC)

Word 3 — contains the Contents of the Accumulator (AC)

Word 4 — contains the contents of the Multiplier
Quotient (MQ) register if the system has been

assembled to save the MQ.

Whenever the system executes a task, it loads the contents of

the task's Task State Table entries into the corresponding
CPU registers. Whenever a task stops executing, its Task

State Table entries are set to the new contents of these

registers. The Task State Table is located after the Message
Table, that is, at location NTASKS+2"2+MSGTBL—4 in field 0.

Example:

Consider the following TSTABL entries for a task.

4012

3376

1234

0211

The task is interrupted just as it is about to execute the

instruction at location 3376 (entry 2) of field 1 (bits 6—8

of entry 1). At this point, the contents of the CPU

registers for this task are entered in the TSTABL. The AC is

1234 (entry 3), and the M0 is 0211 (entry 4). The link is

set (bit 0 of entry 1), and the data field is 2 (bits 9-11 of

entry 1).



Octa

4000

2000

1000

0400

0200

0100

0040

0020

0010

0001

0000

EXECUTIVE INTERNAL TASK TABLES

The Task Flags Table (TFTABL) — contains l—word entries

holding various flags (bits) for each task to determine

whether the task is runnable. A task is runnable only if its

Task Flags Table entry contains zero. Each flag (bit) which

is set in a nonzero word indicates a reason why the task

cannot run. The currently defined flags, if set, and their

meanings are as follows:

1 Symbolic Meaning

NONRWT Nonresident Wait - This task cannot run

because it is not in memory.

EFWT Event Flag Wait - This task is waiting for an

Event Flag (which contains a WAITING value

corresponding to this task) to be POSTed.

RUNWT Run Wait - This task is waiting for a RUN ER

to be executed with its number in the AC, or

for the operator to type "REquest task" to

the Monitor Console Routine (see Chapter 6).

SWPWT Swap Wait — This task cannot run because it

is in the process of being brought into

memory.

EORMWT Event or Message Wait - This task is waiting
for an Event Flag to be set or a message to

arrive, whichever happens first.

USERWT User Wait - This bit is reserved for use by
user-written tasks. RTS/8 does not use this

bit.

ENABWT Enable Wait — This task is waiting to be

Enabled. Use of this bit is restricted to

the Monitor Console Routine for the "ENable

task" and "DIsable task" commands. (See

Chapter 6).

MSGWT Message Wait - This task is waiting to be

sent a message.

NETWT Reserved for future use.

DNEWT Does Not Exist Wait — This task cannot run

because it is nonexistent.

— Task is runnable.

The Task Flags Table is located after the Task State Table,

that is, at location NTASKS+2A4+TSTABL—l in field 0.

Examples:

1. If the TFTABL entry for a task is

1000

the task is waiting to run.



EXECUTIVE INTERNAL TASK TABLES

2. If the TFTABL entry for a task is

0440

the task was disabled from running by the operator at the

MCR terminal while the nonresident portion of the task

was waiting to be swapped in.

3. If the TFTABL for a task is

0000

the task is runnable. However, this task may not run if

a task of higher priority has precedence.

The Task Input Message Queue Header Table (MSGTBL)
- contains

2-word entries that represent the "head" (start) of the input

message queue for each task:

Word 1 — if zero, there are no messages in the queue;

if non—zero, the word is a CDF to the field of

the first message in the queue.

Word 2 — if word 1 was not zero, this word is a pointer
to the address of the first message in the

queue.

The Message Table is located at the end of the RTS/8
Executive in field 0.

Example:

Consider the following MSGTBL entries for a task.

6211

2044

Since the first entry is a nonzero, there are messages in the

input queue waiting for this task to receive them. The first

entry is a CDF instruction to field 1. The second entry is a

pointer indicating that the first message begins at location

2044 in field 1.

The Residency Table (RESTBL) — contains 2-word entries for

each nonresident task.

Word 1 - contains a pointer to the task's Partition

Table entry in bits 0 through 9. Bit 10 is set

if a task is checkpointable, and bit 11 is set

if a task is writeable. Checkpointable and

writeable tasks are defined in Section 5.1.

Word 2 - contains the absolute block address (plus 1 to

allow for the core control block) of the task's

core image on the swap device.

The Residency Table is located after the Task Flags Table,
that is, at location TFTABL+NTASKS+2 in field 0.



EXECUTIVE INTERNAL TASK TABLES

Example:

Consider the following RESTBL entries for a task.

1611

0124

This task has a nonresident portion. The 4-word partition
table entry used by this task begins at location 1610. The
task is not checkpointable (bit 10 of entry 1 is a 0), but it
is writeable (bit 11 of entry 1 is a l).

The disk—resident portion of this task begins at block 124 on

the swap device. (The save image begins at block 123.)

5. The Partition Table (PARTBL) — contains a 4—word entry for
each partition. It is indexed into via a partition number.

Word 1 — contains the length (size) in bits l-5 and

field (bits 6—8) argument of the mass storage
device driver call that reads an occupant into

the partition with the "WRITE" bit set. Bit ll

of this word is the partition busy flag.

Word 2 contains the memory address of the partition.

Word 3 contains a pointer to word 1 of the occupant's
RESTBL entry.

Word 4 - unused

The Partition Table must begin at an address that is a

multiple of four. It is located after the Residency Table,
i.e., at location NTASKS—SWAPPER“2+RESTBL+3&7774 in field 0.

Example:

Consider the following PARTBL entries for a particular
partition.

5421

1400

1553

0000

This partition is currently in use (bit 11 of entry 1 is a l)
by a task whose 2-word RESTBL entry begins at location 1553

(entry 3). The partition begins at location 1400 (entry 2)
of field 2 (bits 6-8 of entry 1). The partition is 14

(octal) pages long (bits 1-5 of entry 1).

Figure E—l summarizes the internal task table structure of the

Executive. The Residency Table and Partition Table are optional in

that they are used only when nonresident tasks are employed. The

exact location of these tables in memory depends on the number of

tasks and other parameters in the parameter file. They can be found

for a particular assembly under the "System Locationsz" heading at the

end of the parameter file assembly listing.



Word 1

Word 2

Word 3

Word 4

TASK STATE

TABLE (TSTABL)

TASK FLAGS

TABLE (TFTABL)

TASK INPUT MESSAGE

OUEUE HEADER (MSGTBL)

RESIDENCY

TABLE (RESTBLI

PARTITION

TABLE (PARTBL)

Instruction Data

Field Field

Link GT UM (IF) (DF)

0 1 5 6-8 9—11

Bits determine if task is

runnable

If zero, no messages in queue, if

nonzero, word is CDF to the field

of first message

Contains pointer to task PARTBL

entry in bits 0-9; bit 10 check-

pointable; bit 11 - writeable

Contains the Length (size) and

Field argument (bits 1-8) of the

mass storage device driver call

that reads occupant into partition

with 'write' bit set (bit 0).

Contents of Program

Counter (PC)

Contents of Accumulator

(AC)

Contents of Multiplier

Quotient (MO)

0 Upon task execution, TSTABL

loaded into corresponding CPU

registers

- Upon task interruption, TSTABL

entry set to new contents of CPU

registers

0 Task runnable if entry

contains zero

Figure E—l

If nonzero, this word is pointer

to the first message in the queue

Block address plus 1 of the task’s

core image on swap device

Contains starting address of

the partition

o Represents the "head" of the

input message queue for each

task

0 Bit 10 of word 1 is set if task

checkpointable

0 Bit 11 of word 1 is set if task

writable

Executive Internal Task Table Structure

Contains pointer to word 1 of

the occupant’s RESTBL entry

Unused

0 Bit 0 is always set (write)

0 Bit 11 of word 1 is the

partition memory flag SETHVL
XSVL

TVNXELNI
HAILDDHXB



Accumulator

Analog

Analog Channel

Argument

Assembler

Auto—index register

Auto-restart

Baud

Bit

Bit Map

Block

Block Gap

Blocking Bits

Byte

Cassette

GLOSSARY

The register in which the arithmetic

operations are performed (abbreviated AC).

Representation of information by continuous

variables.

An UDC/ICS functional device.

A variable or constant which is given in the

call of a subroutine as information to it; a

variable upon whose value the value of a

function depends; the known reference factor

necessary to find an item in a table or array

(i.e. the index).

A program which translates symbolic op-codes
into machine language and assigns memory

locations for variables and constants.

Whenever one of the absolute locations from

0010 through 0017 in any memory field is

addressed indirectly, the contents of that

location is incremented by one, rewritten in

the same location, and used as the effective

address of the current instruction.

The ability to start the CPU automatically on

power—up.

A unit of measure of data flow (one bit per

second).

A binary digit (each PDP—8 word is composed
of 12 bits).

A method of keeping track of used and unused

entities by assigning one bit in a table to

each entity.

A set of consecutive machine words,
characters or digits handled as a unit,

particularly with reference to input and

output; an OS/8 block is 400 octal

contiguous words; also to inhibit a process

from continuing.

The blank space between blocks on a recording
medium.

Bits in an RTS/8 Monitor Table which specify
why a given task is blocked.

A group of binary digits usually operated
upon as a unit.

A magnetic tape device used for program and

data storage.

Glossary—l



Central Processing Unit

Checkpointable Task

Clear

Clock

Communication Region

Compute Bound

Configuration

Contact Channel

Contiguous

Controller

Core Image File

Core Storage

Counter Channel

CPU Registers

Data

Data Field

Debug

The unit of a computing system that includes

the circuits controlling the interpretation
and execution of instructions (abbreviated
CPU).

A task is checkpointable if it may be swapped
out of memory automatically, without its

consent, to make room for higher priority
tasks.

To erase the contents of a storage location

by replacing the contents, normally with

zeros.

A time keeping or measuring device within the

computer system; provides periodic
interrupts.

Locations 20—27 of every field, used to

simplify passing executive request across

field boundaries.

Requiring extensive (or total) use of the CPU

relative to other hardware elements (such as

I/O devices).

The number and types of hardware present on a

system.

A UDC/ICS functional device.

Code which resides in memory immediately
adjacent to other sections of code.

The circuitry that controls a device.

A file in core image format (i.e., a

'picture' of core); also known as SAVE file.

The main high—speed storage of a computer in

which binary data is represented by the

switching polarity of magnetic cores.

A UDC/ICS functional device.

High—speed circuitry used to store

information affecting the operation of the

CPU (e.g., PC, IF, DF).

A general term used to denote any or all

facts, numbers, letters and symbols. It

connotes basic elements of information which

can be processed or produced by computer.

A 3—bit register which determines the memory

field from which operands are taken in

indirectly addressed instructions

(abbreviated DF).

To detect, locate and correct mistakes in a

program.

Glossary-2



Deferred Actions

Deferred Requests

Derail

Device Codes

Device Status Register

Digital

Digital Channel

Driver

Dynamic

Entry Point

Event Flag

Executive

Executive Requests

Field

File Gap

Functional Devices

Gain

Generic Codes

Handler

I/O Bound

Actions which are considered low-priority and

are not performed until higher—priority
actions are serviced.

Requests which are considered low-priority
and are serviced after high-priority
requests.

To transfer control or execution of a

specified task to a subroutine.

Numbers each device in the

system.

assigned to

A register which contains the current status

of a device.

Representation of information

units.

by discrete

A UDC/ICS functional device.

See Handler.

Pertaining to a quantity that is affected by
some condition (such as time) and is

therefore relative to the condition; also

refers to features at system run-time.

The location in a routine to which control

can be transferred and execution begun.

The location which contains the status of an

event (event being either a result of some

operation, or a physical occurrence).

The program which controls the execution of

other programs or routines.

Means of communication between tasks and the

RTS/8 Executive.

A division of memory on a PDP—8

referring to a 4K section of memory.

computer

A fixed length of blank tape separating files

on a recording medium; generally several

times the size of a block gap.

The devices available for use under the

UDC/ICS handler.

An increase in signal power.

Codes used to identify which type of UDC/ICS
functional device caused an interrupt and to

direct program control to service routines.

A routine which is designed to control the

operation of a device.

A condition in which a process is performing
much I/O but using very little CPU time.

Glossary-3



Indirect Address

Initialization Code

Input Buffer

Instruction Field

Interactive

Interface

Interlock Scheme

Interrupt

An address in a computer instruction which

indicates a location where the address of the

referenced operand is to be found.

Code which sets counters, switches, and

addresses to zero or other starting values at

the beginning of or at prescribed points in a

computer routine.

A section of memory used for storage of input
data.

A register which holds the contents

determining from which field the operand of a

directly addressed instruction should be

taken (abbreviated IF).

Highly responsive to real—world inputs.

The common hardware and/or software boundary
between two devices or systems.

Arranging the control of devices so that

their operation is interdependent.

A break in execution caused by some external

event; execution is usually resumed at a

later time.

Interrupt Processing Module

Interval Queue

Line-frequency Clock

Link

Logical OR

Loop

Mass Storage Device

Master Parameter File

Memory Address

A routine which acts upon the external event

which caused an interrupt.

A list of actions to perform, each

accompanied by the interval of time which is

to elapse from the previous action to the

current one.

A clock whose ticking occurs at a multiple of

the power line frequency.

A one—bit register in the PUP-8; an address

pointer generated automatically by the PAL8

assembler to indirectly address an off-page
symbol.

A logical function of two or more inputs
which is true whenever either input is true.

A sequence of instructions that is executed

repeatedly until a terminal condition

prevails.

A device such as disk or DECtape which stores

large amounts of data readily accessible to

the central processing unit.

A file included in the distributed sources of

RTS/8 which the user can edit to indicate

parameters specific to his system

configuration.

A register which holds the address specified
by a memory reference instruction.

Glossary-4



Message

Message—driven

Mnemonic

Module

Monitor Console Routine

Multiplier Quotient

Multi-programming

Nonresident Task

No-op

Null Characters

Overflow

Pack

Page

Parameter file

Parity Bit

Pointer

POSt

Posted

A contiguous area of memory which contains

information about execution of tasks.

An RTS/8 task is called message—driven if it

only executes in response to messages

received from other tasks.

Alphabetic representation of a function or

octal machine instruction.

handles aA routine which

function.
particular

The Monitor routine which provides the user

with functions which allow him to control,

inspect, and debug his system.

A 12—bit register used in conjunction with

the accumulator to perform mathematical

operations (abbreviated MQ).

Two or more programs (tasks) in memory at the

same time which execute alternately depending
on the current state of the system.

A nonresident task is a task or a portion of

a task that is swapped into memory when it

becomes executable.

No operation occurs; control proceeds to the

next instruction in sequence.

Characters with ASCII code 000.

A condition that occurs when a mathematical

operation yields a result whose magnitude is

greater than the data presentation is capable
of storing.

To conserve memory by combining information.

PDP—8 core

address which is a

A 128fword (decimal) section of

memory beginning at an

multiple of 200(octal).

A file used to record arguments which may be

assigned different values.

A bit which indicates whether the total

number of binary one digits in a word is even

or odd.

A word containing the address of another word

in memory.

To post an Event Flag means to set it to a

FINISHED state via an RTS/8 Executive

Request.

One of the states of an event flag,
indicating that the event is complete;
as "FINISHED".

same

Glossary-5



Power—fail

Priority Scheme

Program Counter

Promptinq Character

Queue

Ready Flag

Real—time System

Receiver

Record

Record Header Area

Ring—buffer

Scheduling

Sender

Sign Bit

Simulate

Skip Chain

State

Status

An interruption of power to the computer.

A scheme by which certain operations or the

execution of a set of instructions is given
preference over other operations.

A register which contains the address of the

next instruction to be executed (abbreviated
PC).

A character which prints on the console

terminal and cues the user to perform some

action.

A waiting list (e.g., a queue of programs

waiting for processing time).

A bit which a device controller sets when it

is ready to accept commands from the CPU.

A system in which computation is performed
while a related physical process is occurring
so that the results of the computation can be

used in guiding or measuring the physical
process.

The task which has received a message from

another task (sender).

A collection of related items of data treated

as a unit.

An area of at least 40(octal) words in length
which contains information necessary to

perform cassette operations.

A storage area for data accessed on a

first—in, first-out basis. Similar to Queue,

but usually involves storage of character

codes.

The operation of sharing resources among

computing tasks.

The task which has sent a message to another

task (receiver).

The bit which contains the sign of a number.

To represent the function of a device, system
or program with another device, system or

program.

An instruction sequence which determines the

source ~of an interrupt request on a PDP-8;

contains one or more tests for each possible

(hardware) interrupt condition.

A complete description of the condition of a

piece of hardware or of a task.

That portion of the state which other devices

or tasks might be interested in.

Glossary-6



Subchannel

Suspend

Symbols

Synchronization

System Ticks

Task

Task Flags Table

Task Input Message Queue
Header Table

Task Number

Task State Table

Task Switching

Terminal

Utilities

Word

One of the 4 channels of a UDC/ICS analog
functional device.

To temporarily halt execution of a task while

another task of higher priority runs.

Names which can be assigned values or which

can be used to indicate specific locations in

a program.

A means of coordinating tasks (through event

flags) so that one task executes while others

wait.

An RTS/8 convention designed to obviate the

tasks in the system from knowing the

frequency of the clock.

A task is a routine which performs a specific
function. A task may be "resident" or

"nonresident". A resident task is

permanently located in memory. A nonresident

task is loaded into memory as it is needed

and can be overlaid after its completion.

A table of l—word entries in the RTS/8
Executive whose contents determine whether or

not a task is runnable.

A table of 2-word entries which represent the

head of the input message queue for each

task.

A unique number between 1 and 63 (decimal)

assigned to each task in an RTS/8 system.

A table of 4—word entries which contains the

ost recent contents of CPU registers for

-ach task.

The act of stopping execution of one task and

ontinuing execution of another from the

point that it was last stopped.

A peripheral device in a system through which

data can enter or leave the computer.

Routines to perform non—Monitor related

functions.

In the PDP—8, a 12-bit unit of data which may

be stored in one addressable location.

Glossary—7



ALTMODE, 4-4, 5-1

Analog input UDC/ICS operation,
4-26

Analog output UDC/ICS operation,
4-25

Arbitrary boundaries, 9—7

Assembling nonresident tasks,
7-6

Assembling tasks, 6-5, 8-11

Assembly,
nonresident tasks, 7-8

Assembly error messages, D-l

Assembly parameters, UDC/ICS,
4—31

Batch control,
nonresident tasks, 7—8

Batch stream, 6-6, 6-8

BLKARG ER, 3-6

Buffers, 7-6

CAL instruction, 3—1

CAncel command, 5—4

Cassette file support handler,
4—35

Cassette file support system
tasks, 4—35

'

Cassette handler, 4—32

Change of state UDC/ICS opera—

tion, 4—30

Character mode, 4—4

Checkpointable tasks,
Clock handler, 4-2

Clock handler system parameters,
6-10

CTRL/C, 4—5, 5—1

Communication region,
Component sizes, B—l

Control files,
use of, 6-9

Core image, 7-6, 7—7

Creating an RTS/8 system,

Creating SAVE image file,
7-6

7-3

3-1

6-5

6-6 I

DAte command, 5-2

Debugging,
nonresident task, 7—8

INDEX

DECtape handler system parameters,
6-14

Demonstration program,

DEposit command, 5—6

DERAIL ER, 9-5

_Digital input UDC/ICS operation,
4-27

8—1

Digital output UDC/ICS operation,
4—27

DIsable command, 5—4

Disable contacts UDC/ICS operation,
4-30

Disable counter UDC/ICS operation,
4—29

Distributed source files, A-l

Editing parameter file, 6—5, 6-8

ENable command, 5—4

Enable contacts UDC/ICS operation,
4—29

Enable counter UDC/ICS operation,
4-28

Error conditions,
UDC/ICS, 4-31

Event flag states summary,

Event flags, 2-2

EXamine command, 5-6

Executive internal task tables,

2—5, E-l

Executive KL8—A support, 4-37

Executive request wait states,

3-12

Executive

BLKARG, 3-6

DERAIL, 9-5

POST, 3—4

RECEIVE,

RUN, 3-8

SEND, 3-2

SENDW, 3-3

SKPINS,

SUSPND,

UNBARG,

WAITE, 3-3

WAITX, 9-5

EXIT command, 5-6

EXIT task, 4-39

EXIT task system parameters,

2—3

requests,

3-3

3-9

3-8

3 8

6-14

Field mapping, 4—20

FINISHED state, 2-2

Floppy disk control file,

Floppy disk handler, 4-13

Flowcharts, C-l

FREE command, 7—4

6-10

Generic code UDC/ICS operation,
4-27

Inhibiting task switching, 9~2

Instructions,
CAL, 3—1

POSTDS, 3-10

Index-l



INDEX (CONT.)

Instructions (cont.),

WAITM, 9-4

Interrupt module restrictions,
3-10

Interrupt skip chain, 3-9

Intertask messages, 2-3

KL8—A support system parameters,
6-13

08/8 support task, 4-38

TTY task, 4-38

User task, 4—39

LINCtape handler, 4—16

Line mode, 4-4 \

Line printer handler, 4—10

Line printer system parameters,
6-14

Loading,
nonresident tasks, 7—8

Loading tasks, 6-6, 8-11

Mass storage handlers, 4-11

MCR command arguments,

address, 5-1

comma, 5-1

single space, 5-1

task-ID, 5-1

time-of-day, 5-1

word, 5-1

MCR commands,

CAncel, 5—4

DAte, 5-2

DEposit address, 5—6

DIsable, 5-4

ENable, 5—4

EXamine address, 5-6

EXIT, 5-6

NAme, 5-2

OPen address, 5—5

POst address, 5-6

REquest, 5-3

STop, 5—4

SYStat, 5—4

TIme, 5—2

MCR component size, B-5

MCR error messages, 5-6

MCR system parameters, 6—12

Memory partitions, 7-3

Message header, 2—3

Message table, E-3

NAme command, 5-2

Nonresident MCR, 5-6

Nonresident task debugging, 7—8

Nonresident task implementation,
7—8

Nonresident task initialization,
7-5

Index—2

Nonresident task parameters, 7—5

Nonresident tasks, 7-1

Nonresident tasks,

assembly, 7—8

batch control, 7—8

loading, 7-8

SAVE image file, 7-8

starting, 7-8

Obtaining listings, 6—5

OPen command, 5-5

OS/8 file support task, 4—23

OS/8 operating system, 4-19

08/8 support task, 4-19

08/8 support task system param—

eters, 6—13

OS/8-RTS/8 communication, 4u21

Parameter file,
task definitions, 6—2

task setup, 6-4

task specifications, 6-3

Parameter file structure, 6-1

Partition parameter initializa-

tion, 7-7

Partition table, E—4

PDP—8A null task, 4-37

PENDING state, 2-2

Performing a reschedule, 9—l

POst address command, 5-6

POST ER, 3-4

POSTDS instruction, 3-10

Power fail task, 4—18

Read counter UDC/ICS operation,
4-29

Real-time system operation, 1—2

RECEIVE ER, 3-3

REquest command, 5-3

Residency table, E-3

RTS/8 description, l-l

RTS/8 task structure, 2—1

RUBOUT, 4-4

RUN ER, 3-8

Sample task program, 6-7

SAVE image file,

creating, 6-6, 7-6

nonresident tasks, 7-8

Saving the system, 6-6, 8-11

SEND ER, 3-2

SENDW ER, 3-3

SKPINS ER, 3-9

Starting,
nonresident tasks, 7—8

STop command, 5-4

SUSPND ER, 3-8

Swap device, 7—1, 7-6



INDEX (CONT.)

Swapper system parameters, 6-11

Syntactic constructions, 5-1

SYstat command, 5-4

System parameters,
clock handler, 6—10

DECtape handler, 6-14

EXIT task, 6-14

KL8-A support, 6—13

line printer, 6-14

MCR, 6—12

08/8 support task, 6—13

swapper, 6-11

terminal handler, 6-11

System status report code, 5-5

System tables direct references,

9-8

System task summary, 4-1

System tasks,
cassette file support, 4—35

cassette handler, 4—32

clock handler, 4—2

EXIT, 4-39

floppy disk handler, 4-13

LINCtape handler, 4—16

Line printer handler, 4-10

mass storage handler, 4-11

OS/8 file support, 4-23

08/8 support, 4—18

PDP-8A null, 4—37

power fail, 4-18

terminal handler, 4—2

UDC/ICS handler, 4—24

Task communication, 2-1

Task flags table, E—Z

Task number, 2-1

Task state table, E-l

Task status report, 5-5

Task synchronization, 2-2

Terminal handler, 4—4

Terminal handler system param-

eters, 6—11

,

Terminal parameter default values,

4—9

TIme command, 5—2

Timeshare function disabled, 4-19

TTY control file, 6—9

TTY task KL8-A support, 4—38

UDC/ICS assembly parameters, 4-31

UDC/ICS error conditions, 4-31

UDC/ICS handler, 4-24

UDC/ICS handler system tasks, 4-24

UDC/ICS operation,
analog input, 4-26

analog output, 4-25

change of state, 4—30

digital input, 4-27

digital output, 4-27

disable contacts, 4-30

disable counter, 4~29

enable contacts, 4—29

enable counter, 4—28

generic code, 4—27

read counter, 4—29

UNBARG ER, 3-8

Use of control files, 6-9

User task KL8-A support, 4-39

Using BITMAP program, 6-7, 7—5

Using interrupts, 3—9

WAITBITS symbolic names, 3—7

WAITE ER, 3-3

WAITING state, 2-2

WAITM instruction, 9-4

WAITX ER, 9-5

Writeable tasks, 7—3

Writing delicate code, 9-1

Index-3



0

fine

m
a

Please
cut

alo

NOTE:

RTS/8 User's Manual

DEC-08-ORTMA-C-D

READER'S COMMENTS

This form is for document comments only. DIGITAL will

use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you

require a written reply and are eligible to receive

one under SPR service, submit your comments on an SPR

form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs

required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

DDDDDD
Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

Non-programmer interested in computer concepts and capabilities

Name Date

Organization

Street

City State____________zip Code
or

Country



Fold Here ____

Do Not Tear - Fold Here and Staple

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

BUSINESS REPLY MAIL —

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES _

_

—

Postage will be paid by:
III-IIIIIIIIIII

Ill-IIIIIIIIIII

Ill-IIIIIIIIIII

III-IIIIIII-III

IIIIIIIIIIIIIIII

Software Documentation —

146 Main Street ML5-5/E39 —

Maynard , Massachusetts 01 7 5 4



RW

PAGES

FIELD

BUFADD

BLOKNO

STATUS

.4000

RTS/8 SYSTEM TASKS

Read data from floppy disk.

Write data to floppy disk.

Specifies the number of pages to transfer (times
100 octal). Pages = 0 transfers 40 pages (a full

field). This value takes the range 0-37 in bits

1—5 of this word. PAGES is ignored if CODE =

4000. In that case, either 100 (Octal) 12—bit

words or 200 8-bit bytes (from 200 words) are

transferred depending on MODE.

Specifies the field of buffer (times 10 octal).
Bits 6-8 of this word have the range 0-7.

Specifies the address of the first word of the

buffer containing data. Field of buffer is

determined by FIELD. Length of buffer depends on

PAGES if CODE = 0 or on MODE if CODE = 4000.

Represents first logical OS/8 block to transfer if

CODE = 0. Each OS/8 block consists of 4 sectors.

Track 0 is ignored and a 2—to—1 interleave scheme

is ‘employed. If CODE'== 4000, this word contains

physical track and sector numbers in the format

TTTTTTTSSSSS.

Receives‘ the status of the operation upon

completion. If negative, a hard error has

occurred. If 0, no error has occurred. This word

may be positive nonzero only if DEL = 2000.

The meaning of the STATUS bits is as follows:

Bit 'Meaning if 1

0 Hard error

1—3 Not used by controller

4 Not used by RTS/8
5 Deleted data indication

6-7 Not used by controller

8 Reserved for future use by
controller

9 INIT done (can occur after

temporary power failure to

controller)
10 Parity error

11 CRC error

NOTE

On power fail restart, the INIT error

might occur. When this error occurs,

the calling task should send the I/O

message again.


