
INTRongTION
PROGRAMMIN

PDP-8 Family Computers

Prepared by
The Software Writing Group

Programming Department
'

Digital Ewipment Corporation

SMALL COMPUTER HANDBOOK SERIES

First Printing, January 1969

Second Printing, July 1969

Copyright ©1968, 1969 by

Digital Equipment Corporation

PDP is a registered trademark

of Digital Equipment Corporation.

Foreword

The data processing industry has expanded so rapidly during the

past twenty years that there has always been a severe shortage of

trained’ personnel. Many new job openings are created each year be—

cause new ways for using the computer are continually being developed.

Consequently, the computer industry has a real problem training pro-

grammers and engineers fast enough to fill these new jobs.

Fortunately, this situation is improving, primarily because our uni—

versities, high schools and training schools have greatly expanded their

abilities and facilities to train students in data processing. We are espe—

cially heartened by the great strides being made at the secondary school

level. Computers are now an integral part of modern life; high school

students are using computers to learn to solve Algebra I problems;

engineers are using the computer as an “electronic slide rule”; chemists

are using the computer to aid in analysis and control of chemical pro-_

cesses; many businesses are using computersto process payroll records,

control inventories, and many other applications.
We anticipate that this book will be useful to both teachers and

students as a training text and reference handbook. For users of our

small computers, it will also be the basic programming reference source

for use in conjunction with the many small computer systems of the

PDP—8 family produced by DEC.
1

Introduction to Programming was prepared by the Software Writing

Group in the Programming Department at DEC, with the assistance

of many others, including instructorsin our Training Department, many

DEC and user programmers who have reviewed the manuscript, and

teachers who are presently using a PDP-S in their computer sciences

courses.

We are most grateful to everyone who has contributed.

Wfl%
Kenneth H. Olsen

'

President
'

Digital Equipment Corp.

iv

Preface

This textbook is an introduction to programming digital computers,

particularly Digital Equipment Corporation’s PDP-8 family of com—

puters (often referred to simply as PDP—81). Over 3,000 of these small,

general-purpose computers have proven their versatility in hundreds

of different applications.
Introduction to Programming can be used by students, programming

trainees, and experienced programmers. It otters two approaches to

learning computer programming: (1) learning to program in machine

language, that is, learning to write programs using the actual instruc—

tions that the computer was built to perform and (2) learning to pro-

gram in a common programming language that uses many English
words and standard mathematical notation. Although easier to learn,

common languages, such as FORTRAN, ALGOL or FOCAL, are not

as efficient as machine languages, in terms of program execution times

and core memory requirements Of course, machine language and com-

mon language programming are complementary, so it is useful to learn

both.

Teachers and programming students will find Chapters 1 through 5

useful as an introductory text to machine- language programming.
Chapters 6 through 9 are devoted to the descriptions, uses, and oper-

ating procedures for PDP-8 system software; this software has proven

its ability to simplify the tasks of writing, editing, assembling, compil-
ing, debugging, and running user programs

Chapter 6 describes PDP-8 system software and provides detailed

operating procedures for the Symbolic Editor, the assemblers, and other

commonly used software These operating procedures can be used by
the computer operator or programmer independent of the remainder

of the book.

Chapters 7 and 8 describe the Disk Monitor System and the TSS/S

Time-Sharing System.

1 PDP stands for Programmed Data Processors and is a trade mark of Digital
Equipment Corporation

Chapter 9 is a complete student’s text on the use of FOCAL

(FOrmula CALculator), a conversational interpreter for solving nu-

merical problems. FOCAL language consists of short, ‘easy—to-learn,

imperative English statements. FOCAL puts the full calculating power

and speed of the computer at the user’s fingertips, providing an easy

way of simulating mathematical models, plotting curves, handling sets

of simultaneous equations in n—dimensional arrays, and much more.

'

Scientific programming is explained in Chapter 10 along with a de—

tailed special program designed to gather physiological data.

After becoming familiar with PDP-8 programming, the user may

wish to join DECUS (Digital Equipment Computer Users Society).
DECUS is a user’s organization that exchanges ideas and programs;

it is described in Chapter 11 together with a list of programs available

from DECUS.

A detailed index/glossary, a summary of instructions, answers to

selected exercises, and tables of conversion codes are included at the

back of the book. More experienced programmers will find the book

and its index useful as a reference guide.

Preface to the Second Printing
The text is unchanged, except for the correction of minor errors.

Most of these errors were reported by diligent readers, to whom we

are most grateful. As we expect to improve this book in future re-

visions, all readers are earnestly requested to send corrections and

comments to:
‘

Manager, Software Documentation

Programming Department

Digital Equipment Corporation
Maynard, Mass. 01754

vi

.
Contents

Foreword .. iii

Preface v

Contents vii

Chapter 1 Computer Fundamentals 1-1

Introduction to PDP—8 Family Computers, Ap—

plications, Computer Number Systems and Arith—
metic and Logical Operations

Chapter 2 Programming Fundamentals 2-1

Memory Reference Instructions and Operate Mi-

croinstructions and the Way They Are Used in

Programming the PDP-8 Family Computers

Chapter 3
‘

Elementary Programming Techniques j—l

Phases of Program Preparation, Programming

Symbols and Conventions, Arithmetic Opera—

tions, Subroutines, Address Modification and

Auto-indexing, Program Looping and Branching

Chapter 4 System Description and Operation 4-1

Entering and Storing Information in Core Mem—z

cry with‘ the Operator’s Console and Teletype
Unit, followed by an Introduction to the More

Common Optional Equipment of the PDP—8

Family

Chapter 5 Input/Output Programming 5~1

I/O Transfer Instructions and I/O Programming
Techniques applied to the Teletype Unit Using the

ASCII Character Set, followed by Descriptions of

the Program Interrupt Facility and the Data Break

Option

Chapter 6 Operating the System Software 6—1

Descriptions of PDP-8 Family System Software

supplied by Digital Equipment Corporation and

Operating Procedures for the Symbolic Editor,

_
Assemblers, and Other Commonly Used Software

Chapter 7

Chapter 8

Chapter 9»

Chapter 10

Chapter 11

Appendix A

7

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Disk Monitor System .. 7—1

Description of the Disk Monitor System, which

includes a Keyboard-Oriented Monitor, a FOR—

TRAN Compiler, an Editor, a Peripheral Inter—

change Program, and a Dynamic Debugging

Program

Time-Sharing System .. 8-1

Description of the TSS/8 Time-Sharing System,
which includes a Monitor and a Comprehensive
Library with Facilities for Compiling, Assembling,

Editing, Loading, Calling, and Debugging User

Programs

FOCAL Programming .. 9—1

Complete student’s text on the Use of FOCAL

(FOrmula CALculator), a Conversational Inter-

preter for Solving Numerical Problems, including
several Examples and Methods for Obtaining Spe-
cific Problem Solutions

PDP-8 Family Computers in the Sciences 10-1

Discussion of several general Scientific Applica-
tions Using PDP-S Family Computers, followed by
a Detailed Description of a Special Program De-

signed to Gather Physiological Data

Digital Equipment Computer Users Society 11-1

Description of the Objectives and Functions of

DECUS, including the DECUS Program Library
and Catalog, DECUSCOPE, Activities, Member-
ship, and Policies and Administration

Answers to Selected Exercises A-l

Character Codes .. B-l

Flowchart Guide .. C-l

Tables of Instructions .. D-l

Legal Microinstruction Combinations E-l

Miscellaneous Tables .. F—1

Index]Glossary ~.

,
..

Index —1

viii

Chapterl
~

COmputer
Fundamentals

INTRODUCTION

During the past 20 years, the computer revolution has dramatically

changed our world, and it promises to bring about even greater changes
in the years ahead

The general purpose, digital computers being built today are much

faster, smaller and more reliable and can be produced at lower cost

than the earlier computers. But even more significant breakthroughs
have come in the many new ways we have learned to use computers.

The first big electroniccomputers were usually employed as super

calculators to solve complex mathematical problems that had been im-

possible to attack before. In recent years, computer programmers

have begun using computers for non-numerical operations, such as

control systems, communications, and data handling and processing.
In these operations, the computer system processes

vast quantities of

data at high speed.

The Computer Challenge
It has been said that a computer can be programmed to do any

problem that can be defined. The key word here is defined, which

means that the solutionof: the problem can be broken down into a

series of steps that can be written as a sequence of computer instruc-

tions. The definition of some problems, such as the translation of natu-

ral languages, has turned out to be very difficult. A few years ago it

was thought that computer programs could be written to translate

French into English, for example. As a matter of fact, it is quite easy

to translate a list of French words into English words with similar

meanings. However, it is very difficult to precisely translate sentences

because of the many shades of meanings associated with individual

words and word combinations. For this reason; it is not practical to

1-1

try to communicate with a computer using a conventional spoken lan-

guage.
While natural languages are impractical for computer use, program—

ming languages, such as FOCAL, ALGOL, and FORTRAN with their

precisely defined structure and syntax, greatly simplify communication

with a computer. Programming languages are problem oriented‘and

contain'familiar words and expressions; thus, by using a programming
language, it is possible to learn to write programs after a relatively
short training period. Since most computer manufacturers have adopted
standard programming languages and implemented the use of these

languages on their computers, a given program can be executed on a

large number of computers. PDP-8 programmers use FORTRAN and

ALGOL—8 for scientific and engineering problems and use FOCAL-8

and BASIC-8 for shorter numerical calculations. Computer languages
have been developed for programmed control of machine tools, com-

puter typesetting, music composition, data acquisition, and many other

applications. It is likely that there will be many more new programming

languages in the future. Each new language development will enable

the user to more easily apply the power of the computer to his partic-
ular problem or task.

Who can be a programmer? In the early days of computer program—

ming, most programmers were mathematicians. However, as this text

illustrates, most programming requires only an elementary ability to

handle arithmetic and logical operations. Perhaps the most basic re—

quirement for programming is the ability to reason logically.
The rapid expansion of the'computer field in the last decade has

made the resources of the computer available to hundreds of thousands
_

of people and has provided many new career opportunities. ,

Computer Applications
A computer, like any other machine, is used because it does certain

tasks better and more efficiently than humans. Specifically, it can re-

ceive more information and process it faster than a human. Often,

this speed means that weeks or months of pencil and paper work can

be replaced by a method requiring only minutes of computer time.

Therefore, computers are used when the time saved by using a com-

puter oflsets its cost. Further, because of its capacity to handle large

volumes of data in a very short time, a computer may be the only

means of resolving problems where time is of the essence. Because of

the advantages of high speed and high capacity, computers are being

used more and more in business, industry, and research. Most com-

puter applications can be classified as either busimss uses, which usually

1-2

rely. upon the computer’s capacity to store and quickly retrieve large
amounts of information, or scientific uses, which require accuracy

and speed in performing mathematical calculations. Both of these are

performed on general purpose computers. Some examples of computer

applications are given below.
‘

,

Solving Design Problems. The computer is a very useful calculating
tool for the design engineer. The wing design of a supersonic aircraft,
for example, depends upon many factors. The designer describes each

of these factors in the form of mathematical equations in a program-

ming language. The computer can then be used to solve these equations.

Scientific and Laboratory Experiments. In scientific and laboratory

experiments, computers are used to evaluate and store information

from numerous types of electronic sensing devices. Computers are par-

ticularly useful in such systems as telemetry where 'signals must be

quickly recorded or they are lost. These applications require rapid and

accurate processing for both fixed conditions and dynamic situations.

Automatic Processes. The computer is a useful tool for manufac—

turing and inspecting products automatically. A computer may be pro-

grammed to run and control milling machines, turret lathes, and many

other machine tools with more rapid and accurate response than is

humanly possible. It can be programmed to inspect a part as it is being
made and adjust the machine tool as needed If an incoming part is de—

fective, the computer may be programmed to reject it and start the

next part.

Training by Simulation. It is often expensive, dangerous and imprac—
tical to train a large group of men under actual conditions to fly a

commercial airplane, control a satellite, or operate a space vehicle. A

computer can simulate all of these conditions for a trainee, respond to

his actions, and report the results of the training. The trainee can there—

fore receive many hours of on-the-job training without risk to himself,

others, or the expensive equipment involved.

Applications, such as those given above and in Chapter 10, often

require the processing of both analog and digital information. Analog
information consists of continuous physical quantities that can be easily

generated and controlled, such as electrical voltages or shaft rotations.

Digital information, however, consists of discrete numerical values,

which represent the variables of a problem. Normally, analog values

are converted to equivalent digital values for arithmetic calculations

to solve problems. Some computers, such as the LINC-8, combine the

analog and digital characteristics in One computer system.

1-3

Computer Capabilities and Limitations

A computer is a machine and, as all machines, it must be directed

and controlled in order to perform a useful task. Until a program is
'

prepared and stored in the computer’s core memory, the computer
“knows” absolutely nothing, not even how to receive input. Thug, no

matter how good a particular computer may be, it must be “told”

what to do. The usefulness of a computer therefore can not be'fully
realized until the capabilities (and the limitations) of the computer
are recognized.

Repetitive operation—A computer can perform similar operations
thousands of times, without becoming bored, tired or careless.

Speed—A computer processes information atenormous speeds,
which are directly related to the ingenuity of the designer and the

programmer. Modern computers can solve problems millions of.

times faster then a skilled mathematician.

Flexibility—General purpose computers may be programmed to

solve many types of problems.

Accuracy—Computers may be programmed to calculate answers

with a desired level of accuracy as specified by the programmer.

Intuition—A computer has no intuition. It can only proceed as it

is directed. A'man may suddenly find the answers to a problem
without working-out the details, but a computer must proceed as

ordered.

The remainder of this chapter is devoted to the general organization
of the computer and the manner in which it handles data. Included are

the number systems used in programming together with the arithmetic

and logical operations of the computer. This information provides a

necessary background for all who desire a basic appreciation of com-

puters and their uses, and it is a prerequisite to machine—language

programming, covered in chapters 2 through 5.

NUMBER SYSTEM PRIMER

The concept of writing numbers, counting, and performing the basic

operations of addition, subtraction, multiplication, and division has

been directly developed by .man. Every person is introduced to these

concepts during his formal education. One of the most important
factors in scientific development was the invention of the decimal

numbering system. The system of counting in units of tens probably

developed because man has ten fingers. The use of the number 10 as

the base of our number system is not of prime importance; any stand—

ard unit would do as well. The main use of a number system in early
times was measuring quantities and keeping records, not performing

, mathematical calculations. As the sciences developed, old numbering

systems became more and more outdated. The lack of an adequate
numerical system greatly hampered the scientific development of early
civilizations.

Two basic concepts simplified the operations needed to manipulate
numbers; the concept of position, and the numeral zero The concept
of position consists of assigning to a number a value which depends
both on the symbol and on its position in the whole number. For

example, the digit 5 has a different valuein each of the three numbers

135,152, and504. In the first number, the digit 5 has its original
value 5; in the second, it has the value of. 50; and in the last number,
it has the value of 500, or 5 times .10 times 10'. Sometimes a position
in a number does not have a value between 1 and 9. If this position
were simply left. out, there would be no difference in notation between

709 and 79. This is where the numeral zero fills the gap. In the number

709, there are 7 hundreds, 0 tens and 9 units. Thus, by using the

concept of position and the numeral 0, arithmetic becomes quite easy.

A few basic definitions are needed before proceeding to see how

these concepts apply to digital computers.

L

Unit—The standard utilized in counting separate items is the unit,

Quantity—The absolute or physical amount of units.

Number—A number is a symbol used to represent a quantity.

Number System—A number system is a means of representing
quantities using a set of numbers. All modern number systems use

the zero to indicate no units, and other symbols to indicate quan-

tities The base or radix of a number system is the number of sym—

.

bols it contains, including zero. For example the decimal number

system is base or radix 10, because it contains 10 different sym-

bols (viz., 0,1,2,3,4,5,6,7,8, and 9).

1-5

Binary Number System

The fundamental requirement of a computer is the ability to physi-
cally represent numbers and to perform operations on the numbers

thus represented. Although computers which are based on other num-

ber systems have been built, modern digital computers are all based

on the binary (base 2) system. To represent ten different numbers

(0,1,2, . . .
, 9) the Computer must possess ten different states with

which to associate a digit value. However, most physical quantities have

only two states: a light bulb is on or oil; switches are on or off; holes

in paper tape or cards are punched or not punched; current is positive
or negative; material is magnetized or demagnetized; etc. Because it

can be represented by only two such physical states, the binary number

system is used in computers.

To understand the binary number system upon which the digital
computer operates, an analysis of the concepts underlying the deCimal

number system is beneficial.

POSITION COEFFICIENT

In the decimal numbering system (base 10), the value of a numeral

depends upon the numeral’s position in a number, for example:

347 : 3X100=300

4X 10: 40

7X 1: 7

'377‘

The value of each position in a number is known as its position coefii-

cz'ent. It is also called the digit position weighting value, weighting value,
or weight, for short. A sample decimal weighting table fellows:

. 103 102 101 100

and, as shown above,

347=3><102+4 x101+7><10°.

Weighting tables appear to serve no useful purpose in our familar deci-

mal numbering system, but their purpose becomes apparent when we

consider the binary or base 2 numbering system. In binary we have

only two digits, 0 and 1. In order to represent the numbers 1 to 10, we

must utilize a count—and-carry principle familar to us from the decimal

1—6

system (so familiar we are not always aware that we use it). To count

from 0 to 10 in decimal, we count as follows:

0

\OGOQONU‘l-QWNH
”

10 with a carry to the 101 column

Continuing the counting, when we reach 0 in the units column again,
we carry another 1 to the tens column. This process is continued until

the tens column becomes 0 and a 1 is carried into the hundreds column,
as shown below:

'

O 10 90

1 11 91

2 12 92

3 13 93

4 . 14 94
'2

5 15
'

95

6 16 96

7 17 97

8 18 98

9 19 99

10 one carry 20 one carry 100 two carries

COUNTING IN BINARY NUMBERS

In the binary number system, the carry principle is used with only
two digit symbols, namely 0 and 1. Thus, the numbers used in the

'

binary number system to count up to a decimal value of 10 are the

following.

Binary Decimal Binary Decimal

0 (0) 110 (6)
1 ,(1) 111 (7)

10 (2) , 1000 (8)
11 (3) 1001

‘

(9)
100 (4) 1010 (10)
101 (5)

When using more than one number system, it is customary to subscript
numbers with the applicable base (e.g., 1012:510);

1-7

A weighting table is used to convert binary numbers to the more

familiar decimal system.
24 23 22 21 20 (Weight Table)
1 0 l 0 1 (Binary Number) Position

l 1 Digit Coefficient

: 1 X 1 : 1

= 0 X 2 = 0

= 1 X 4 = 4

2 1 X 16 = 16

Decimal Number = 21

It should be obvious that the binary weighting table can be extended,
like the decimal table, as far as desired. In general, to find the value

of a binary number, multiply each digit by its position coefficient and

then add all of the products.

ARRANGEMENTS OF VALUES

By conVention, weighting values are always arranged in the same

manner; the highest on the extreme left and the lowest on the extreme

right. Therefore, the position coefficient begins at 1 and increases from

right to left. This convention has two very practical advantages. The

first advantage is that it allows the elimination of the weighting table,
as such. It is not necessary to label each binary number with weighting
values, as the digit on the extreme right is always multiplied by 1, the

digit to its left is always multiplied by 2, the next by 4, etc. The second

advantage is the elimination of some of the Os. Whether a 0 is to the

right or left, it will never add to the value of the binary number. Some

05 are required, however, as any OS to the right of the highest valued

1 are utilized as spaces or place keepers, tokeep the is in their correct

positions. The Os to the left, however, provide no information about

the number and may be discarded, thus the number 0001010111 =

10101 1 1.

The PDP-8 family computers operate upon 12-bit (binary digit)
numbers. This means that the numbers from 0 to 1 1 11 111 111112

(409510) can be directly represented.

SIGNIFICANT DIGITS

The “leftmost” 1 in a binary number is called the most significant

digit. This is abbreviated MSD. It is called the “most significant” in

that it is multiplied by the highest position coefficient. The least Sig—

nificant digit, or LSD, is the extreme right digit. It may be a 1 or 0,

and has the lowest weighting value, namely 1. The terms LSD and

1-8

MSD have the same meaning in the decimal system as in the binarysys-

tem, as shown below.

-

10110101
-’

MSD. 100101020>LSD459719

CONVERSION OF DECIMAL TO BINARY

There are two commonly used methods for converting decimal num—

bers to binary equivalents. The reader may choose whichever method

he finds easier to use.
.

1. Subtraction of Powers Method—4T0” convert any decimal number

to-its binary equivalent by the subtraction of powers method, proceed
as follows.

7

.

Subtract the highest possible power of two from the decimal number,
and place a “1” in the appropriate weighting position of the partially
completed binary number. Continue this procedure until the decimal

number is reduced to 0. If, after the first subtraction, the next lower

power of 2 cannot be subtracted, place a 0 in the appropriate weight-
ing position. Example:

42m = ? binary
42 10' 2

—32 —— 8 —2

10 2
4

0

25 24 23 22 21 20 Power

3 2 16 8- 4 2 1 Value

1 0 1 O 1 0 Binary

Therefore, 42m '= 101010;. »

2. Division Method—To convert a decimal number to binary by
the division method, proceed as follows.

Divide the decimal number by 2. If there is a remainder, put a l in the

LSD of the partially formed binary number; if there is no remainder,
put a 0 in the LSD of the binary number. Divide the quotient from the

first division by 2, and repeat the process. If there is a remainder,

1-9

record a 1; if there is no remainder, record a 0. Continue until the

quotient has been reduced to 0. Example:

Therefore, 4710 = 1011 112.

471., = ? Binary

NNNNNN HEMP-133
EXERCISES

a. Decimal-to—Binary Conversion +- Convert the following decimal

numbers to their binary equivalents.

.._. Plofxflg‘fflf‘PNT‘
1510

1810

4210

10010
23 51.,

110

294m
l 1710

86m

4090,.)

H

Quotient Remainder

23 1

1 1 1

5 1

2 1

1 0

O 1 I

409510

1502m

37710

50110

828m

907m

4-00010
345610

227810
1 96710

b. ‘Binary to Decimal Conversion —— Convert the following binary
numbers to their decimal equivalents.

Wflg‘f-ner’NE"
110,

1012

11101102

10111105

01101102

11111.;

10102

1101112

110110111012

1110001110012

1110101101002

1111111101112

1010110101012

1111112

0001010012

1111111111112

1—10

Octal Number System
It is probably quite evident at this time that the binary number

system, although quite nice for computers, is a little cumbersome for

human usage. It is very easy for humans to make errors in reading and

writing quantities of large binary numbers.‘The octal or base 8 num-

bering system helps to alleviate this problem. The base 8 or octal num-

ber system utilizes the digits 0 through 7 in forming numbers. The

count-and-carry method mentioned earlier applies here also. Table 1-1

shows the octal numbers with their decimal and binary equivalents.

Table 1-1. Decimal-Octal—Binary Equivalents

Decimal Octal Binary Decimal Octal Binary

O 0 0 7 7 1 1 1

l .1 1
'

8 10 1000

2 ‘2 10
'

9 1 1
p

1001

3 3 1 1 10 12 1010

4 4 100 1 1 13 1011

5 5' 101 12 14 1 1 00

6 6 1 10 13 15 1101

The octal number system eliminates many of the problems involved

in handling the binary number system used by a computer. To make the

12-bit numbers of the PDP—S computers easier to handle, they are

often separated into four 3-bit groups. These 3-bit groups can be rep-

resented by one octal digit using the previous table of equivalents as

seen below.

A binary number 11010111101

is separated into 3—bit groups by starting with the LSD end of the

number and supplying leading zeros if necessary:

011010111 101

The binary groups are then replaced by their. octal equivalents:

0112: '33

0102: 2s

1112: 75

1012: 5.
p

and the binary number is converted to its octal equivalent:

3 2 7 5.

Conversely, an octal number can be expanded to a binary num—

ber using the same table of equivalents.

5307.: 101 011 000 ‘111.

1-11

OCTAL—TO-DECIMAL CONVERSION

Octal numbers may be converted to decimal by multiplying each

digit by its Weight or position coefficient and then adding the resulting
products. The position coefficients in this case are powers of 8, which

is the base of the octal number system. Example:

2167a: ? decimal

2167.: 7X80:7X 1=' 7

+6X81:6'>< 8: 48

+1><82=1>< 64: 64

+2><s3=2><512= +1024

1143

Therefore, 21678 :: 1 14310.

DECIMAL-TO—OCTAL CONVERSION

There are two commonly used methods for converting decimal num-

bers to their octal equivalents. The reader may choose the method

which he prefers.
'

SUBTRACTION OF POWERS METHOD. The folloWing procedure
is follovyed to convert a decimal number to its octal’equivalent. Sub—

tract from the decimal number the highest possible value of the form

a8“, where a is a number between 1 and 7, and n is an integer. Record

the value of (1. Continue to subtract decreasing powers of 8 (recording
the value of a each time) until the decimal number is reduced to zero.
Record a value of 0:0 for all powers of 8 which could not be subtrac-

ted. Table 1-2 may be used to convert any number which can be rep-

resented by 12—bits (409510 or less). Appendix F contains a similar

table for converting larger numbers. Example:

2591“, : ? octal

,259l l‘”‘—"—_‘—__'_'Qv

—2560=5X83=5X5l2 5 0 ‘3 7

31
—- 0:0X8220X64

31
’

—24=3X8]=3X 8

7 I
— 7:7X8027X'1

0
.

Therefore, 259110 2: 50373.

1-12

Table 1-2. Octal-Decimal ConVersion

Octal
Position Coefficients

Digit
(Multlpliers)

Position/

8“ 0 1 2 3 4 5 6 7

1‘st (80) 0 1 2 3 4 5 6 7

2nd (8?) o 8 16 24 «32 4o 48 56

3rd (82) 0 64 128 192 256: 320 384 448

4th (83) 0 512 1,024 1,536 2,048 2,560 3,072 3,584

DIVISION METHOD. A second method for converting ardecimal

number to its octal equivalent is by successive division by 8. Divide the

decimal number by 8 and record the remainder as the least significant
‘

digit of the octal equivalent. Continue dividing by 8, recording the re—

mainders as the successively higher significant digits until the quotient
is reduced to zero. Example:

'

'

137610 = ? OCtal

Quotient Remainder

8 51376 172 0,

8 5177' 21 4

8 SET 2 , 52

857 .

,0 2___J,l
2 5 4 0

Therefore, 1376'10 : 2540;.

1-13

EXERCISES

a. Convert the following binary numbers to their octal equivalents.

1. 1110 9. 10111111

2. 0110 10. 111111111111

3. 111 11. 010110101011

4. 101111101 12. 111110110100

5. 110111110 13. 010100001011

6. 100000 14. 000010101101

7. 11000111 15. 110100100100 -

8. 011000 16. 010011111010

b. Convert the following octal numbers to their binary equivalents.

1. 354 9. 70

2. 736 10. 64

3. 15 11. 7777

4. 10 12. 7765

5. 7 13. 3214

6. 5424 14. 4532

7. 307 , 15. 7033

8. 1101 16. 1243

c. Convert the following decimal numbers to their oetal equivalents.

1. 796 7. 1080

2. 32 8. 1344

3. 4037 9. 1512

4. 580 10. 3077

5. 1000 1 1. 4056

6. 3 12. 4095

d. Convei‘t the following octal numbers to their decimal equivalents.

1. 17 7. 7773

2. 37 8. 7777

3. 734 9. 3257

4. 1000 10. 4577

5. 1200 - 11. 0012

6. 742 12. 0256

1-14

'

Fractions

The binary and octal number systems represent fractional parts of

numbers in a similar manner to the decimal system. Furthermore, frac—

tions may be converted from one number system to another by the

same techniques developed for converting whole numbers.

Before investigating the mechanics of traction conversion, consider

what a fraction is. A fraction is a number between 0 and 1, or a num-

ber less than a unit. Until now only whole numbers in the following
three systems have been considered: decimal, binary, and octal. In

each of these systems, the position of the symbol in the number denotes

its power, and the symbol is the coefficient of that power. These are

positive powers. For example, in the decimal system the number 598,
5 is the coeflicient of 102, 9'is the coefficient of 101, and 8 is the coeffi-

cient of 10°. In binary and octal the same rule applies to using the

powers of the base of the system.

When working with fractions, an important point to keep in mind

is that fractions contain coefficients of negative powers, with the radix

point being the dividing line between the nonLnegative and negative
powers of the number system being used. Any number to the im—

'mediate right of the radix. point has a power of negative (minus) 1.

The first digit of the fractional number is the MSD. Forexample, in

the decimal fraction .637; 6 is the coefficient of 101, 3 is the coeffi-

cient of 10-2, and 7 is the coefficient of 10"“: The coefl‘icient of a nega-

tive power of the base is actually the numerator of a proper fraction

whose denominator is the positive power of that'base. For example,
.610 (6 x 104) is equivalent to 6 divided by 101 or 6/10, and also

.38 (3 X 8-1) is equivalent to 3 divided by 81 or 3/8. It should be ap—

parent that'this general rule applies to any base that may be considered.

Table 1—3 contains proper fractions which have been changed to"deci-

mal, binary, and octal for comparison purposes.

CONVERTING DECIMAL FRACTIONS TO

BINARY AND OCTAL FRACTIONS

SUBTRACTION OF POWERS METHOD. One method of converting
a decimal fraction to a different number system is the subtraction of

powers method. In this method, subtractions of the highest possible

negative power of anumber in another system that is contained in the

decimal fraction, are performed. In each subtraction, recording the

power and its coefficient gives the equivalent number in the other sys-

tem. When no subtraction is possible, a 0 is recorded. To convert a

decimal fraction to a binary fraction, the powers of 2 are associated

1~15

Table 1-3. Fraction Equivalents

Proper Decimal
,

Octal Binary
Fraction Equivalent Equivalent Equivalent

1/ 2 .5 .4 .1

l/ 4 .25 .20 .01

1 / 8 .125 .10 .001

1/ 16 .0625 .04 .0001

1/32 .03125 .02 .00001

1/64 .. .015625 .01 .000001

1/ 128 .0078125 .004 .0000001

1 / 256 .00390625 .002 .00000001

1/ 512 .001953125 .001 .000000001

1 / l 024 .0009765625 .0004 0000000001

with coefficients of 0 or 1, since they are the only coefficients used in

this system. In the octal system, the coefficients 0 through 7 are used.
The. following example and explanation will show the conversion of

the decimal fraction .5625 to binary.

.5625 .0625

_. .5000:2’1 —.0625:24

.0625 .0000

Negative Powers of 2 2"1 2-2 2“3 2*4

.5000 .2500 .1250 .0625

*1 = .1001

Decimal Equivalents

Bit Values of Answer 1 0 0

The largest negative power of 2 contained in the decimal fraction .5 625

is 2", which is equivalent to decimal .5000; subtract .500010 from

.5625". and record a 1 in the 2'1 Eolumn. It is not possible to subtract

2‘2 from the remainder. so record a 0 in the 2'2 column, 2‘3 cannot be

subtracted from the remainder, so record a 0 in the 2'3 column; 2‘4

can be subtracted from the remainder, so record a 1 in the 2‘4 column.

Thus, the binary equivalent of a decimal .5625 is .10012.

Conversion to octal fractions follows the same procedure, but more

'

than one subtraction of a given power of the base is possible. The

number of times this subtraction is possible yields the coefficient of that

particular power of the base. This method will not be demonstrated

here, since it is very cumbersome, and easier methods are available.

1-16

MULTIPLICATION METHOD. This method of, conversion is fre—

quently used to change from a decimal fraction to another base. To

convert, the decimal fraction is multiplied through by the base of the

system being converted to. For example, convert decimal fraction .5625

to binary. Multiply the decimal fraction by 2. Since a whole number is

obtained, record a l in the 2'1 column, discard the whole number por-

tion of the number, and multiply the remainder by 2 again. No whole

number is obtained, so record a 0 in the 2‘2 column, and multiply the

result by 2. No whole number is obtained, so record a 0 in the 2'3

column, and multiply by 2 again. Awhole number is obtained, so record

a 1 in the 2‘4 column. The remainder, now reduced to O, completes the

conversion, and .562510 is .10012. The following examples show the con-

version just described, and the same decimal fraction converted to octal.

Decimal to Binary Decimal to Octal

.5625 .5625

2 8

1.1250 ' 4.5000

2
'

l 8

0.2500 .44 (—- 4.0000

2

0.5000

l 2

.1001 (———-— 1.0000

CONVERTING BINARY AND OCTAL TO DECIMAL

FRACTIONS
EXPANSION METHOD. This method can be used in converting frac—

tions from any base to a decimal fraction. Remember that the MSD is

the first digit to the right of the radix point in a fractional number, and

that it is multiplied by the base to the -—1 power. The second digit is

that digit multiplied by the base to the ——2 power, etc. For example, to

convert the binary fraction .10001 to decimal, proceed, as fOIIOWs. The

MSD is 1 X (2'1) or 1/2, the second digit is 0 X (2‘2) or 0, the third

digit iS'O X (2‘3) or 0, the fourth digit is 0 X (24) or 0, and the

fifth digit is 1 X (2'5) or 1 X32. The binary numbers are multiplied by
the respective powers and added together to get the answer. Thus

1/2 + 1/32 which is 16/32 + 1/32 equals 17/32 or .5312510.

1-17

The octal fraction .42 can be converted in the same manner, as fol—

lows. The MSD is 4 X (8‘1) or 4/8 and 2 X (8‘2) or 2/64. The frac—

tions are now added together to get the result; 4/8 + 2/64 or

16/32 + 1/32 2 17/32 or .5312510. If you look carefully at the

binary fraction .100012 and divide it into groups of 3 to convert to

octal, you can see that .100012 does equal .423. Zeros may be added

to the right of a fraction without changing the value.

“SHORT CUT” METHOD. This is another method of converting frac-

tions from another base to decimal. In this method, start at the LSD of

the fraction and proceed to the MSD of the fraction, counting the

powers of the base, the next higher power of the base will be utilized

as a common denominator. The number is assumed to be a whole num—

ber for counting purposes. The number .100012 would be converted

as follows:

.1 0 0 0 l

24 23 22 21 2°

The MSD is 24 or 16, so the common denominator is the next higher
power of 2, or 32. The numerator is converted as if it were a whole

number. The result is then 17/32 which is .5312510. The same method

with the octal fraction .42 should yield the same result.

.4 2

81 8°

The MSD is 81, or 8, so the common denominator is the next higher
power of 8, or 64. Multiplying the digit values by the powers of the

base and adding the products gives us the value of the numerator; thus,
4 X (81) + 2 X (8") = 34, and the fraCtion 34/64 equals 5312510.

Arithmetic Operations with Binary and Octal Numbers

Now that the reader understands the conversion techniques between

the familiar decimal number system and the binary and octal number

systems, arithmetic operations with binary and octal numbers will be

described. The reader should remember that the binary numbers are

used in the computer and that the octal numbers are used as a means

of representing the binary numbers conveniently.

BINARY ADDITION

Addition of binary numbers follows the same rules as decimal or

other bases. In adding decimal 1 + 8 we have a sum of 9. This is the

highest value digit. Adding one more requires the least significant digit

‘l-18

to become a 0 with a carry of 1 to the next place in the number. Simil-

arly, adding binary 0 + 1 we reach the highest value a single digit can

have in the binary system, and adding one more (1 + 1) requires a

carry to the next higher power (1 + 1 = 10). Take the binary numbers

101+10(5 +2).
‘

101 = 510

+010 =

‘

2...

111 = 710

O + 1 = 1,1 + 0 =1, and O +1:1withno carries required. The
'

« answer is 111, which is 7. Suppose we add 111 to 101.

1 1 €—— carries

111 = 710

+101 :: 5m

1100 = 1210

Now 1 + 1 = 0 plus a carry of 1. In the second column, 1 plus the'

carry 1 = 0, plus another carry. The third column is l + 1 : 0 with
‘

a carry, plus the previous carry, or 1+ 1. + 1 = 11. Our answer 1100

is eq al to 1 X 23 + 1 X 22 or 8 + 4 z: 12, which is the correct

solution for 7 + 5.
’

OCTAL ADDITION

Addition for octal numbers should be no problem if we keep in mind

the following basic rules for addition.

1. If the sum of any column is equal to or greater than the base

of the system being used, the base must be subtracted from the

sum to obtain the final result of the column.

2. If the sum of any column is equal to or greater than the base,

there will be'a carry to the next column equal to the number

of times the base was subtracted.
’

3. If the result of any column is less than the base, the base is
‘

not subtracted and no carry will be generated. Examples:

53 = 510 3 58 :' 2910
+ 33 = 310 6 33 = 5110

‘5'? 1 10—?
— 8 4-43

108 = 81., . 1 2 0.“ = 80...

1-19

Negative Numbers and‘Subtraction

Up to this point only positive numbers have been considered. Neg-
ative numbers and subtraction can be handled in the binary system in

either of two ways: direct binary subtraction or by the two’s comple-
ment method.

BINARY SUBTRACTION (DIRECT)

Binary numbers may be directly subtracted in a manner similar to

decimal subtraction. The essential difference is that if a borrow is re-

quired, it is equal to the base of the system or 2.

110 = 61°
~101 = 51.,

001 = 110

To subtract 1 from 0 in the first column, a borrow of 1 was made from

the second column which effectively added 2 to the first column. After

the borrow, 2 — 1 z 1 in the first column; in the second column
O —— O : O; and in the third column 1 —- 1 = 0. The same numbers

which were subtracted using the twos complement method are sub-

tracted directly in the following example.

011 001 100 010 B

010 010 010 111 A

000 111 001 011 B-A

TWO’S COMPLEMENT ARITHMETIC

To see how negative numbers are handled in the computer, consider

a mechanical register, such as a car mileage indicator, being rotated

backwards. A 5—digit register approaching and passing through zero

would read the following.

00005

00004

00003

00002

00001

00000

99999

99998

me.

1-20

It should be clear that the number 99998 corresponds to —-2. Fur-

ther, if we add

00005

9999 8

1 00003

andignore the carry to the left, we have effectively performed the

operation of subtracting

5—223

The number 99998 in this example is described as the ten’s complement
of 2. Thus in the decimal number system, subtraction may be per-

formed by adding the ten’s complement of the number to be subtracted.

If a system of complements were to be used for representing negative

numbers,-the minus sign could be omitted in negative numbers. Thus

all numbers could be represented with five digits; 2 represented as

00002, and ——2 represented as 99998. Using such a system requires
that a convention be established as to what is and is not a negative
number. For example, if the mileage indicator is turned back to 48732,

is it a negative 51268, or a positive 48732? With an ability to represent
a total of 100,000 difi’erent numbers (0 to 99999),.it would seem

reasonable to use half for positive numbers and half for negative num—

bers. Thus, in this situation, 0 to 49999 would be regarded as positive,
and 50000 to 99999 would be regarded as negative.

In this same manner, the two’s complement of binary numbers are

used to represent negative numbers, and to carry out binary subtraction,
in the PDP—S computer. In octal notation, numbers from 0000 to 3777

are regarded as positiVe and the numbers from 4000 to 7777 are re—

garded as negative.
,

The two’s complement of a number is defined as that number which

when added to the original number will result in a sum of unity. The

binary number 110110110110 has a two’3 complement equal
to

001001001010 as shown1n the following addition.

110110110110

001 001 001 010

1 000 000 000 000

The easiest method of finding a two’s complement is to first obtain the

one’s complement, which is formed by setting each bit to the opposite
value

101 000 110 111 Number
‘

010 111 001 000 One’s complement of the number

1-21

The two’s complement of the number is then obtained by adding 1 t0

the one’s complement.
‘

110 001 110 010 Number

001 110 001 101 One’s complement of the number

+1 Add 1

001 110 001 110 Two’s complement of the number

Subtraction in the PDP—8 is performed using the two’s complement
method. That is, to subtract A from B, A must be expressed as its two’s

complement and then the value of B is added to it. Example:

010 010 010 111 A

101 101 101 001 Two’s complement ofA

(carry is
011 001 100 010 B

ignored) '1 000 111 001 011 B-A

OCTAL SUBTRACI‘ION

Subtraction is performed in the octal number system in two ways

which are directly related to the subtractions in the binary system. Sub—

traction may be performed directly or by the radix (base) complement
method.

OCTAL SUBTRACTION (DIRECT). Octal subtraction can, be per—

formed directly as illustrated in the following examples.

3567—2533: 7 2022—1234:: ?

3567 2022

—2533 —1234

1034 . 0566

Whenever a borrow is needed in octal subtraction, an 8 is borrowed as

in the second example above. In the first column, an 8 is borrowed

which is added to the 2 already in the first column and the 4 is sub-

tracted from the resulting 10. In the second column, an 8 is borrowed

and added to the 1 which is already in the column (after the previous
borrow) and the 3 is subtracted from the resulting 9. In the third

column the 2 is subtracted from a borrowed I (originally a borrowed

8), and in the last column 1—120.

EIGHT’S COMPLEMENT ARITI-IMETIC. Octal subtraction may be

performed by adding the eight’s complement of the subtrahend to the

minuend. The eight’s complement is obtained in the following manner.

3042 Number ’

4735 Seven's complement of the number

+1 Add 1 to seven’s complement to obtain

4736 Eight's complement

1-22

The seven’s complement of the number is obtained by setting each digit
of the complement to the value of 7 minus the digit of the number, as

seen above. The eight’s complement of the number is then obtained by

adding 1 to the seven’s complement. To prove that the complement is

in fact a complement, the number is added to the complement and a re—

sult of zero and an overflowvof 1 is obtained.
A

3042

+4736

1 0000

The following example uses the eight’s complement to subtract a

number.
‘

3567—2533: ?

-2533 - Number

5244 Seven’s complement
+1

5245 Eight’s complement.
3567 Minuend

V

(carry is
\ +5245 Eight’s complement of subtrahend

ignored)-—-)l 1034 Difference

Multiplication and Division in Binary and Octal Numbers

Though multiplication in computers is usually achieved by means

other-than formal multiplication, a formal method will bedemonstrated

as a teaching vehicle.

BINARY MULTIPLICATION
‘

In binary multiplication, the partial product is moved one position to

the left as each successive multiplier is used. This is done in the same

manner as in decimal multiplication. If the multiplier is a 0, the partial

product can be a series of 0s as in example 2, or the next partial product
can be moved two places to the left as in eXample 3, or three places as

in example 4.
'

Example 1; 46210 Multiplicand
1271., Multiplier

3234 First partial product
924 Second partial product

462
‘

Third partial product

58674 Product

1-23

Example 2. 11101102

10112

1110110

1110110

0000000

1110110

101000100102

Example 3. 11101102

10112

1110110

1110110

1110110

101000100102

Example 4. 110011102

110012

11001110

11001110

11001110

10100000111102

Because of the difficult binary additions resulting from multiplies-
tions such as the previous examples, octal multiplication of the octal

equivalents of binary numbers is often substituted.

OCTAL MULTIPLICATION
‘

-

Multiplication of octal numbers is the same as multiplication of

decimal numbers as long as the result is less than 108. Obviously this

could be a problem if it weren’t for the fact that an octal multiplication
table can be set up, similar to the decimal multiplication table, to make

the job of multiplication of octal numbers quite simple. Table 1—4

is a partially completed octal multiplication table that will be quite use—

ful once you have filled in the blank squares.

'

Using the completed octal multiplication table, the following prob-
lems may be solved.

2263 X 12.1 = ?

2265
X 128

454

226

27345

1-24

1247,, v>< 3053 = '1

1:247a
x305s

6503

0000

3765

405203a

Table 1-4. Octal Multiplication Table

1 2 3 4 a 7

0 O 0

3 4 5 7

6 10

14

dam-tht-Io 0 7 16

/

BINARY DIVISION

Once the reader has mastered binary subtraction and multiplication,

binary division is easily learned. The foflowing'problem solutions illus—

trate binary division.
'

Divide 10010,

102

1001 100102 1810
= = 1001 = 9

10 510010 102 210
2 1°

10
'

00

00

01

00

10

10

0

1—25

Divide 11102 - 14m

11.1

100511100
'

4 11.12 = 3.51,,_
100

71—0
100

760
100

O

OCTAL DIVISION

Octal division uses the same principles as decimal division. All mul-

tiplication and subtraction must however be done in octal. (Refer to the

octal multiplication table.) The following problem solutions illustrate

octal division.

62.
_

50..., 1714.

2..
_

2.. 22a

31 = 31. = 25...
_

66

2)‘62 22)1714

6 154

'62 154

2 154

’0 "—6

EXERCISES

a. Perform the following binary additions.

1. 10110 6. 101 10. 100111

+101 1 111001
--—

+110 +101101

2. 100
——

—---

+10 7. 1110 11. 11011001
‘“

100 10010011 ,

3. 11011 +11 +11100011

+0010
8. 1111 12. 11011011

4. 10110111 101 10111011

+ 1 +1000 00101011
“'—

01010111

5. 1101 9. 110111
‘

+01111101
101 100100

—“'—'

+11
'

+110001

1—26

b. Find the ’one’s complement and the two’s complement of the fol- »

lowing numbers.
'

1. 011 100 110 010 7. 000 000 000 111

2. 010 111 011 111 8. 100 000 000 000

3. 011 110 000 000 9. 100 000 010 010

4. 000 000 000 000 10. 10,0 001 100 110

5. 000 000 000 001 11. 111 111 111 110

6. 000100100100 12. 111 111 111 111

c. Subtract the following binary numbers directly.
1. 101000001 .3. 101011010111

010111101 011111111101

2. 1010111010 4. 101111100111

0101110101
V

010101110010

(1. Perform the following subtractions by the two’s complement
method. Check your work by direct subtraction. Show all work.

011011011011— 001 111010 110

000111 111 111— 000 001 001 101

011 111 111 101— 010101 100 011

001 101 111 110 — 001 100 101 011

011 111 111 111—010101-101 1019‘95”“)?
e. Multiply the following binary numbers.

1. 11011 2. 1011101 3. 101011101011

X110 X101 - X10000

f. Divide the following binary numbers.

1. 100

'

2. 10000 3. 1100100

T6 100 10100

~1-27

g. Add the following octal numbers.

1. 42 6. 127 7. 777

+53 256 543
“‘

+724 1 +612

2' 45
4. 77 8. 437

:23 +11'
'

426
—-

. 772

3. 34 5. 3357 747

+76 +562 +575
—.. —

h. Subtract the following octal numbers directly.

1. 42 4. 53 7. 2543

—23 —44 ,_2174

2. 76 5. 7474 s. 7500

—34 +4777
5

—6373

3. 77 6. 700.0

—11 —-6573

i. Perform the following octal subtractions by the eight’s comple-
ment method. Check your work by subtracting directly. Show all

work. .

1. 0377 —- 0233 5. 2311 — 2277

2. 2345 ~— 1456 6. 0044 - 0017

3. 1144 —— 1046 7. 3234 — 2777

4. 3000 4—- 0011 8. 1111 ._ 0777‘

j. Multiply the following octal numbers.

1. 65 3. 77 5. 425

X4 X65 X377'

2. 14 4. 716 6. 571

X13 X472 X246
—. _ ——

k. Prove the answers to the problems in (j) by division, as follows:

Multiplicand
X Multiplier Multiplicand
Product Multiplier) Product

1-28

LOGIC OPERATION PRIMER

Computers use logic operations in addition to arithmetic operations
to solve problems. The logic operations have a direct relationship with

the algebraic system to represent logic statements known as Boolean

algebra. In logic, there are two basic connectives that are used to ex-

press the relationship between two statements. These are the AND and

the OR.

The AND Operation

_

The following simple circuit with two switches illustrates the AND

operation. If current is allowed to flow through a switch, the switch. is

said to have a value of 1. If the switch is open and current cannot flow,

the switch has a value of 0. If the whole circuit is considered, it will
have a value of 1 (i.e., current may flow through it) whenever both A

and B are 1. This is the AND operation.

Ho———————dO————O

The AND operation is often stated A 0 B = F. The multiplication sym-

bol (-) is used to represent the AND connective. The relationship be—

tween the variables and the resulting value of F is summarized in the
'

following table.

Hr-‘oo
3’

HOBO
w

HOOO
When the AND operation is applied to binary numbers, a binary 1 will

appear in the result if a binary I appeared in the cerresponding position
of the two numbers.

The AND operation can be used to mask out a portion of a 12~bit

number.
i

To Be To Be Retained

Masked for Subsequent
Out Operation

r-———-——m-——*———\.

.

010 101 010 101 (lZ-bitnumber)
000 000 111 111 (mask)
000 000 010 101 (result)

1-29

The OR Operation
A second logic operation is the OR (sometimes called the inclusive

OR). Statements which are combined using the OR connective are

illustrated by the following circuit diagram.

____/O

0

Current in the above diagram may flow whenever either A or 13 (or
both) is closed (F=1 if A21, or B=1, or A21 and B: 1). This opera,-
tion is expressed by the plus (+) sign; thus A+B:F. Thefollowing’
table shows the resulting value of F for changing values of A and B.

B

Thus, if A and B are the 12-bit numbers shown below, A+B is eval-
'

uated as follows.

A = 011010 011 111

B = 100110 010 011

A+B =111110 011111

Remember that the “+” in the above example means “inclusive 0 ”,
not “add.”

The Exclusive 0R Operation
The third and last logic operation is the exclusive OR. The exclusive

OR is similar to the inclusive 0R with the exception that one set of

conditions for A and B are excluded. This exclusion can be symbolized
in the circuit diagram by connecting the two switches mechanically to-

gether. This connection makes it impossible for the switches to be closed

1-30

simultaneously, although they may be open simultaneously or individu-

‘

ally.

Thus, the circuit is completed when A21 and B20, and when A20

and B21. The results of the exclusive OR operation are summarized

in the table below.

The exclusive OR of two 12—bit numbers is evaluated and labeled F,
in the following operation.

‘

A: 011 010 011 I'll

B = 100110 010 011

F .—-._ 111 100 ”001 100

GENERAL ORGANIZATION OF THE PDP—8

Almost every general purpose digital computer has the basic units

shown in Figure 1-1, on the following page.
If a machine is to be called a computer, it must have the capability of.

performing some types of arithmetic operations. The element of a digital
computer that meets this requirement is called the arithmetic unit. In

order for the arithmetic unit to be able to do its required task, it must

be told what, to do. Therefore, a control unit is necessary.

Since mathematical operations are performed by the arithmetic unit,
it may be necessary to store a partial answer while the unit is computing
another part of the problem. This stored partial answer can then be used

to solve other parts of the problem. It is also helpful for the control unit

and arithmetic unit to have information immediately available for their

use, and for the use of other units within the computer. This require—
ment is met by the portion of the computer designated as the memory

unit, or core-storage unit.

1—31

_
__ _ __ _

CONTROL
__ _ __.

f" r...
UNIT ‘1

I I I l
l I l 4

INPUT '
INTERNAL OUTPUT—. 1

UNIT

l STORAGE UNIT
H

l

I
I

L, ARITHMETIC

UNIT

Figure 1-1. PDP-S General Organization

The prime purpose of a digital computer is to serve humans in some

manner. In order to do this there must be a method of transmitting our

wants to the computer, and a means of receiving the results of. the com-

puter’s calculations. The portions of the computer that carry out these

functions are the input and output units.

Arithmetic Unit

The arithmetic unit of a digital computer performs the actual Work

of computation and calculation. It carries out its job by counting series

of pulses or by the use of logic circuits. Modern computers use com-

ponents such as transistors and integrated circuits- Switches and relays
were used previously, and were acceptable as far as their ability to per-

form computations was concerned. Modern computers, however, be-
cause of the speed desired, make use of smaller electromc components
whenever possible.

The arithmetic unit of the PDP-8 has, as its major component, a

12-bit accumulator, which is simply a register capable of storing a num-

ber of 12 binary digits. It is called the accumulator because it. accumu-

lates partial sums during the operation of the PDP-S. All arithmetic

operations are performed in the accumulator of the PDP-8.

Control Unit
The control unit- of a digital computer is an administrative or switch-

ing section. It receives information entering the machine and decides

how and when to perform operations. It tells the arithmetic unit what

to do and where to get the necessary information. It knows when the

arithmetic unit has completed a calculation and it tells the arithmetic

unit what to do with the results, and what to do next.

1-32

The control unit itself knows what to tell the arithmetic unit to do by

interpreting a set of instructions. This set of instructions for the control

unit is called a program and is stored in the computer memory.

Memory Unit

The memory unit, sometimes called the core storage unit, contains

information for the control unit (instructions) and for the arithmetic

unit (data). The terms core storage and memory may be used inter—

changeably. Some computer texts refer to external units as storage, such

as magnetic tapes and disks; and to internal units as memory, such as

magnetic cores. The requirements of the internal storage units may vary

greatly from computer to computer.
The PDP—8 memory unit is composed of magnetic cores which are

often compared to tiny doughnuts. These magnetic cores record binary
information by the direction in which they are magnetized (clockwise
or counterclockwise). The memory unit is arranged in such a way that

it can store 4096 “words” of binary information. These words are each

12-bits in length. Each core storage location has an address, which is a

unique number used by the control unit to specify that location. Storage
of this type in which each location can be specified and reached as easily
as any other is referred to as random-access storage. The other type of

storage is sequential storage such as magnetic tape, in which case some

locations (those at the beginning of the tape) are easier to reach than

others (those at the end of the tape).

Input Unit

Input devices are used to supply the values needed by the computer
and the instructions to tell the computer ,how to operate on the values.

. Input unit requirements vary greatly from machine to machine. A

manually operated keyboard may be. sufficient for a small computer.
Other computers requiring fasterinput use punched cards for data in-

puts. Some systems utilize removable plugboards that can be pre-wired
to perform certain instructions. Input may also be via punched paper

tape or magnetic tape, two forms of input common in PDP—8 systems.

Output Unit

Output devices record the results of the computer operations. These

.results may be recorded in a permanent form (e. g., as a‘printout on the

teleprinter) or they may be used to initiate a physical action (e.g., to

adjust a pressure valve setting). Many of the media used for input, such

as paper tape, punched cards, andmagnetic tape, can also be used for

output.
»

1-33

COMPUTER DATA FORMATS

The PDP-8 uses 12-bit words to represent data. Some of the formats

in which this data is represented are described in the following para-

graphs.

Alphabetic Characters

Computers are designed to operate upon the binary numbers which

it conveniently represents with electronic components. There are occa-

sions however when it is desirable to have the computer represent
characters of the alphabet and punctuation marks. Binary codes are

used to represent such characters. For example, the reader is familiar

with punched cards, which use a system of punched holes to represent
information. Each of these codes associates some character with a par-

ticular binary number. The computer can store the binary number (not
the character) in its memory. When so directed, the computer will out—

put the binary code to a device which will interpret the code and print
the character. Some specific binary codes used to represent alpha—
numeric information (letters, numbers, and punctuation symbols) are

presented in Appendix B.

Number Representations
The PDP—S operates upon 12-bit words (namely 0 to 111 111 111

1112, or 0 to 7777s). By convention, one half of the numbers are con-

sidered positive (0 to 011 111 111 1112, or O to 37778), and one

half (100 000 000 0002 to 111 111 111 1112 or 40008 to 77778) are

considered negative. Therefore the PDP-8 can directly represent the

portion of the number line shown in Figure 1—2.

4000.,

400.9 60009 0\ 2000., 3777,

(-3777,) t-20009) 777.,

(—1)

Figure 1—2. PDP—8 Octal Number Line

Notice that the first digit of the 12-bit binary numbers is in effect a

“sign bit.” That is, bit 0 (the first bit) specifies the Sign of the number

by the following rule. If bit 0 is a 0, the number is positive; if. bit 0 is

a 1, the number is negative. This is the means by which the computer

1-34

tests for positive and negative numbers. Thus, the zero’is considered

positive. In figure 1-2 it should be noted that the number 4000 is

peculiar in that it has no positive counterpart. (Expressed in octal, the

“two’s complement” of 3776 is 4002; of "3777 is 4001; of 4000 is

4000.)
When the octal to decimal conversions are performed, the number

line of Figure 1—2 is converted to the number line of Figure 1-3. Thus

the PDP—S can represent directly the numbers between ~—2048m and

+2047}... Thiswould seem to be a serious restriction. Through two

techniques however this limitation is overcome.

-———T 1‘ F---
0-2048 +2047

Figure 1-3. PDP-S Decimal Number Line

DOUBLE PRECISION NUMBERS

‘

The PDP—S memory is made up of 12—bit storage locations. Suppose
however that a number larger than 12-bits were to be stored. By using
two 12-bit storage locations, numbers between —8,388,60810 and

8,388,60710 may be represented directly. This method of representation
is appropriately called double precision. The method could be extended

to triple precision and further if necessary.
.

It should be noted that to add double precision numbers, two addi-

tions are needed. Double precision arithmetic is described in Chapter 3.

FLOATING POINT NUMBERS

Another method of representing numbers in the PDP-S with more

than one 12-bit word is floating point notation. In this notation, a

number is divided into twopparts, namely a mantissa (number part)
and an exponent (to some base). In the decimal number system for

example, the number 12 can be written in the following'ways.
‘

MANTISSA' EXPONENT.

.12 X 102

1.2 X 101

12. X 100

120. X 10—1

1200. X 10-2
'

PDP—S floating point notation makes use of a representation similar to the

above with the exception that the exponent and the. mantissa are binary

1-35

numbers. The binary mantissa (number part) is stored in two locations

and a third location stores the exponent. The exponent is selected such

that the mantissa has no leading zeros, thereby retaining the maximum

number of significant digits. Further description of the floating point
system is contained in Chapter 6.

1—36

Chapter 2

‘ Programming
Fundamentals

This chapter describes the three general types of computer instruc—

tions and the way in which they are used in computer programs. The

first type of instruction is distinguished by the fact that it operates upon

data that is stored in some memory location and must tell the com-

puter where the data is located in core so that the computer can

find it. This type of instruction is said to reference a location in core

memory; therefore, these instructions are often called memory reference

instructions (MRI).
When speaking of memory locations, it is very important that a clear

distinction is made between the address of a location and the contents

of that location. A memory reference instruction refers to a location by
a 12-bit address; however, the instruction causes the-computer to take

some specified action with the content of the location. Thus, although
the address of a specific location in memory remains the same, the con—

tent of the location is subject to change. In summary, a memory refer-

ence instruction uses a 12—bit address value to refer to a memory

location, and it operates on the, 12-bit binary number stored in the

referenced memory location.

The second type of instructions are the operate microinstructions,
which perform a variety of program operations without any need for

reference to a memory location. Instructions of this type are used to

perform the following operations: clear the accumulator, test for neg-

ative accumulator, halt program execution, etc. Many of these operate
microinstructions can be combined (microprogrammed) to increase the

operating efficiency of the computer.
The third general type of instructions are the input/output transfer

(IOT) instructions. These instructions perform the transfer of infor-

mation between a peripheral device and the computer memory. IOT

instructions are discussed in Chapter 5.

2—1

PROGRAM CODING

Binary numbers are the only language which the computer is able

to understand. It stores numbers in binary and does all its arithmetic

operations in binary. What is more important to the programmer, how-

ever, is that in order for the computer to understand an instruction it

must be represented in binary. The computer can not understand in-

structions which use English language words. All instructions must be in

the form of binary numbers (binary code).

Binary Coding

The computer has a set of instructions in binary code which it “un-

derstands”. In other words, the circuitry of the machine is wired toreact

to these binary numbers in a certain manner. These instructions-have

the same appearance as any other binary number; the computer can

interpret the same binary configuration of 0’s and 1’s as data or as, an

instruction. The programmer tells the computer whether to interpret

,

the binary configuration as an instruction or as data by the Way in which
the configurationis encounteredin the program.

Suppose the computer has the following binary instruction set

Instruction A 001 000 010 010 This binary number instructs the

computer to add the contents of

location 000 000 010 010 to the

accumulator.

Instruction B 001 000 010 111 This binary number instructs the

computer to add the contents of

location 000 000 010. 111 to the

accumulator.

It instruction B is contained in a core memory location with an

address of 000 000 010 010 and the binary number 000 111 111 111

is stored in a location with an address of 000 000 010 111, the follow-

ing program could be written:

Location
"

Content

000 000 010 010 001 000 010 111

000 000 010111
'

000 111 111 111

If this program were to be executed, the number 000 111 111 111

would be added to the accumulator.

Octal Coding
,

If binary configurations appear cumbersome and confusing, the

reader will now understand why most programmers seldom use the

binary number system in actual practice. Instead, they substitute the

1

2—2

octal number system which was discussed in Chapter 1. The reader

should not proceed until he understands these two number systems
and the conversions between them.

Henceforth, octal numbers will be used to represent the binary numv

bers which the computer uses. Although the programmer may use octal

numbers to describe the binary numbers within the computer, it should

be remembered that the octal representation itself does not exist within

the computer.

When the conversion to octal is performed, Instruction B becomes

10278 and the previous program becomes.

Location Content

0022,. .

'

1 0278

0027., 07773

To demonstrate that a computer cannot distinguish between a num— .

ber and an instruction, consider the following program.

Location Content

0021 ~ 1022 (Instruction A)
0022

.

1027 (Instruction B)

0027 0777 (The number 7778)

Instruction A, which adds the contents of location 0022 to the accu—
.

mulator, has been combined with the previous program. Upon execu—

tion of the program (assuming the initial accumulator value:0), the

computer will execute instruction A and add 10278 as a number to the

accumulator obtaining a result of 10273. The computer will then execute

the next instruction, which is 1027,.causing the computer to add the

contents of 0027 to the accumulator. After the execution of the two

instructions the number 20268 is in the accumulator. Thus, the above

program caused the number 10278 to be used as an instruction and as

a number by the computer.

Mnemonic Coding
Coding a program in octal numbers, although an improvement upon

binary coding, is nevertheless very inconvenient. The programmer must

learn a complete set of octal numbers which have no logical con—

nection with the operations they represent. The coding is difficult. for

the programmer when he is writing the program, and this difficulty is

compounded when he is trying to debug or correct a program. There is

no easy way to remember the correspondence between an octal number

and a computer operation.

2-3

To simplify the process of Writing or reading a program, each in

struction is often represented by a simple 3— or 4-letter mnemonic

symbol. These mnemonic symbols are considerably easier to relate to a

computer operation because the letters-often suggest the definition of 3

the instruction. The programmer is now able to write a program in a

language of letters and numbers which suggests the meaning of each

instruction.

The computer still does not understand any language except binary
numbers. Now, however, a program can be written in a symbolic lan-

guage and translated into the binary code of the computer because of

the one—to—one correspondence between the binary instructions and the

mnemonics. This translation could be done by hand, defeating the pur-

pose of mnemonic instructions, or the computer could be used to do the

translating for the programmer. Using a binary code to represent alpha-
betic characters as described in Chapter 1, the programmer is able to

store alphabetic information in the computer memory. By instructing
the computer to perform a translation, substituting binary numbers for

the alphabetic characters, a program is generated in the binary code

of the computer. This process of translation is called “assembling” a

program. The program that, performs the translation is called an

assembler.
’

Although the assembler is described in detail in Chapter 6, it is well

to make some observations abOut the assembler at this point.
1. The assembler itself must be written in binary code, not

mnemonics.

2. It performs a one—to~0ne translation of mnemonic codes into

binary numbers.

3. It allows programs to be written in a symbolic language which

is easier for the programmer to understand and remember. .

A specific mnemonic language for the PDP‘-8, called PAL (Program

Assembly Language), is introduced later in this chapter. The next sec-

tion describes the general PDP¢8 characteristics and components. This

information is necessary to an understanding of the PDP-8 instructions

and their uses within a program.

PDP-S ORGANIZATION AND STRUCTURE

The PDP~8 is a high-speed, general purpose digital computer which

operates on 12-bit binary numbers. It is a single—address parallel
machine using two’s complement arithmetic. It is composed of the five

basic computer units which were discussed in Chapter 1. The com--

2-4

ponents of the five units and their interrelationships are shown in

Figure 2—1. ,For simplicity, the input, and output units have been

combined.

INPUT! : ARITHMETIC
I

CONTROL
I

MEMORY

OUTPUT, UNIT I UNIT I
. UNIT

,

UNITS. I I I
I

I I I
MEMORY

CONSOLE
I I PROGRAM I ADDRESS

,

COUNTER I -—> REGISTER

: , LINK :
I

MEMORY

INPUT/
1 .

BUFFER

OUTPUT I . . ',REGISTER
DEVICES ACCUM- I I

1
”LAW“

I INSTRUCTION ;

TELE— I I REGISTER 5
TYPE,
nusx, I I

I
I -

DECTAPE. | I | !

TC.E
I I $3: I CORE MEMORY

: I GENERATOR :
4096 lz-BIT worms

Figure 2~1. Block Diagram of the PDP-8

Input and Output Units
_

The input and output units are combined in Figure 2-1 because in’

many cases the same device acts as both an input and an output unit.

The Teletype console, for example, can be used to input information

which will be accepted by the computer, or it can accept processed in-

formation and print it as output. Thus, the two units of input and output
are very often joined and referred to as input/output or simply I/O.

Chapter 5 describes the methods of transmitting data as either input or

output; but for the present, the reader can assume that the computer is

_

able‘to accept information from devices such as those listed in the block

diagram and to return output information to the devices. The PDP—8

console allows the programmer direct access to core memory and the

program counter by setting a series of switches, as described in detail

in Chapter 4.

Arithmetic Unit

The second unit contained in the PDP—S block diagram is the arith—

metic unit. This unit, as shown in the diagram, accepts data from input
devices and transmits processed data to the output devices as well. Pri-

marily, however, the unit performs calculations under the direction of

the control unit. The Arithmetic Unit in the PDP—8 consists of an

accumulator and a link bit.

2-5

ACCUMULATOR (AC)
The prime component of the arithmetic unit is a 12—bit register called

the accumulator. It is surrounded by the electronic circuits which per-

formpthe binary operations under the direction of the control unit. Its

name comes from the fact that it accumulates partial sums during the

executionof a program. Because the accumulator is only twelve bits in

length, whenever a binary addition causes a carry out of the most sig-
nificant bit, the carry is lost from the accumulator. This carry is-‘re-

corded by the link bit.

LINK (L)
Attached logically to the accumulator is a 1-bit register, called the

link, which is complemented by any carry out of the accumulator. In

other words, if a carry results from an addition of the most significant
bit in the accumulator, this carry results in a link value change from 0

to 1, or 1 to 0, depending upon the original state of the link.
‘

.

Below is a diagram of the accumulator and link. The twelve bits of

the accumulator are numbered 0 to 11, with bit 0 being the most sig-
nificant bit. The bits of the AC and L can be either binary 0’s or 1’s as

shown below.

UNK
, ACCUMULATOR

4 5 s 7 s 9 l0 Hv2‘3

%
oooooooooooo

llllllllllll

MOST SlGNlFICANT BIT LEAST SlGNlFlCANT BIT

Control Unit

The instruction register, major state generator, and program counter

can be identified as part of the control unit. These registers keep track

of what the computer is now doing and what it will do next, thus

specifying the flow of the program from beginning to end.

PROGRAM COUNTER (PC) ,

‘

The program counter is used by the PDP—8 control unit to record

the locations in memory (addresses) of the instructions to be executed.

The PC always contains the address of the next instruction to be exe—

cuted. Ordinarily, instructions are stored in numerically consecutive

locations and the program counter is set to the address of the next in—

struction to be executed merely by increasing itself by l with each

successive instruction. When an instruction causing transfer of command

lto another portion of the stored program is encountered, the PC is set

2-6

to the appropriate address. The PC must be initially set-by input to

specify the starting address of a program, but further actions are con—

trolled by program instructions.

INSTRUCTION REGISTER (IR)
The 3-bit instruction register is used by the control unit to specify

the main characteristics of the instruction being executed. The three

most significant bits of the current instruction are loaded into the IR

each time an instruction is loaded into the memory buffer register from

core memory. These three bits contain the operation code which

specifies the main characteristics of an instruction. The: other details

are specified by the

remaining
nine bits (called the operand) of the

instruction.

MAJOR STATE GENERATOR

The major state generator establishes the proper states in sequence

for the instruction being executed. One or more of the following th1ee

major states are entered serially to execute each programmed instruc—

tion. During a Fetch state, an instruction is loaded from core memory,

at the address specified by the] program counter, into the memory

buffer register. The Defer state is used in conjunction with indirect ad-

dressing to obtain the effective address, as discussed under “Indirect

Addressing” later in this chapter. During the Execute state, the instruc-

tion in the memory butter register is performed.

Memory Unit

The PDP-8 basic memory unit consists of 4,096 12-bit words of

magnetic core memory, a 12-bit memory address register, and a 12~bit

memory bufier register. The memory unit may be expanded in units of

4,096 words up to a maximum of 32,768 wOrds;

CORE MEMORY

The core memory provides storage for the instructions to be per—

formed and information to be processed; It is a form of random access

storage, meaning that any specific location can be reached in memory

as readily as any other. The basic PDP-S memory contains 4,096 12-bit

magnetic core words These 4,096 words require that 12—bit addresses

be used to specify the address for each location uniquely.
MEMORY BUFFER REGISTER (MB)

All transfers of instructions or information between core memory and

the processor registers (AC, PC, and IR) are temporarily held in the

memory buffer» register. Thus, the MB holds all words that go into and

out of memory, updates the program counter, sets the instruction

register, sets the memoryladdress register, and accepts information

from or provides information to the accumulator.

2-7

MEMORY ADDRESS REGISTER (MA)
The address specified by a memory reference instruction is held in

7

the memory address register. It is also used to specify the address of the

next instruction to be brought out of memory and performed. It can be

used to directly address all of core memory. The MA can be set by
the membry buffer register, or by input through the program counter

register, or by the program counter itself.

MEMORY REFERENCE INSTRUCTIONS

The standard set of instructions for the PDP-S includes eight basic

instructions. The first six of these instructions are introduced in the

following paragraphs and are presented in both octal and. mnemonic

form with a description of the action of each instruction.

The memory reference instructions (MRI) require an operand to

specify the address of the location to which the instruction refers. The

manner in which locations are specified for the PDP-S is discussed in

detail‘undcr “Page Addressing” later in this chapter. In the'following
discussion, the first three bits (the first octal digit) of an MRI are used

to specify the instruction to be performed. (The last nine bits, three

octal digits, of the 12—bit word are used to specify the address of the

referenced location~that is, the operand.)
The six memory reference instructions are listed below with their

mnemonic and octal equivalents as well as their memory cycle times.

Octal Memory

Instruction Mnemonie2 Value Cycles1

Logical AND AND Onnn 2

Two’s Complement Add TAD lnnn 2

Deposit and Clear the Accumulator DCA 3nnn 2

Jump
'

JMP Snnn 1

Increment and Skip if Zero ISZ lnnn 2

Jump to Subroutine JMS 4nnn 2

17 Memory cycle time for the PDP-8 and —8/I is 1.5 microseconds; for the PDP-

8/L, it is 1.6; for the PDP—S/S, it is 8 microseconds. (Indirect addressmg re—

quires an additional memory cycle.)

2The mnemonic code is meaningful to and translated by an assembler into

binary code.

2-8

AND (01111118)
The AND instruction causes a bit——by-bit Boolean AND operation

between the contents of the accumulator and the data word specified

by the instruction. The result is left in the accumulator as illustrated

below.

LINK. Lflelulelilelej IIHIr¢I¢1AC

mltljlalfllflll!|id¢l¢l¢1DATAWOBD

UNK- mamamam.Maylflicmgsum

The following points should be noted with respect to the AND

instruction:

1. A 1 appears in the AC only when a 1 is present in both the AC

and the data word (The data word is often referred to as a

mask);
2. The state of the link bitis not affected by the AND instruction;

and
‘

3. The data word in the referenced location is not altered.

TAD (lnnng)
The TAD instruction performs a binary addition between the speci-

fied data word and the contents of the accumulator, leaving the result

of the addition in the accumulator. If a carry out of the most significant
bit of the accumulator should occur, the state of the link bit is comple—
mented. The add instruction is called a Two’s Complement Add to re-

mind the programmer that negative numbers must be expressed as the

two’s complement of the positive «value. The following figure illustrates

the operation of the TAD instruction.

WEI Lalwlwlwlaldwlal'lwl'lms

lili[lTlhllltLtllll [Q'IIIDATAWORDI-B

’

LINK [as] eIeTeTelfleMi ¢j¢| ITfl AC(RESULT)Z+2

2-9

The following points should be remembered when using the TAD

instruction:

1. Negative numbers must be expressed as a two’s complement of

the positive value of the number;
2. A carry out of the accumulator will complement the link; and

3. The data word1n the referenced location isvnot affected.

DCA (31min)

The DCA instruction stores the contents of the AC in the referenced

location, destroying the original contents of the location. The AC is

then set to all zeroes. The following example shows the contents of the

accumulator, link; and location 225 before and after executing the in-

struction DCA 225.

DCA 225

AC Link Loc. 225

’
Before Execution 1234 1 7654

After Execution 0000 1 1234

The following facts should be keptin mind when using the DCAin-

struction:

1. The state of the link bit18 not altered;
2. The AC is cleared; and

3. The original contents of the addressed location are replaced by
the value of the AC.

JMP (Snnng)
The IMF instruction loads the effective address of the instruction

into the program counter, thereby changing the program sequence since

the PC specifies the nextinstruction to be performed. In the following

example, execution of the instruction in location 250 (JMP 300) causes

the program to jump over the instructions in locations 251 through 277

and immediately transfer control to the instruction in location 300.

Location Content
‘

250 JMP 300 (This instruction transfers program
. . control to location 300.)

300 DCA 330

NOTE: The IMF instruction does not afiect the contents of

the AC or link.

ISZ (21111113) .

The ISZ instruction adds a 1 to the referenced data word and then
‘

examines the result of the addition. If a zero result occurs, the instruc-

tion following the ISZ is skipped. If the result is not zero, the instruction

2-10

following the ISZ is performed. In either case, the result of the addition

replaces the original data word in memory. The example in Figure 2-2

illustrates one method of adding the contents of a given location to the

AC a specified number of times (multiplying) by using an ISZ instruc—

tion to increment a tally. The effect of this example is to multiply the

contents of location 275 by 2. (Tovadd the contents of a given location

to the AC twice, using the 152100;), as shown in Figure 2-2, requires
more instructions than merely repeating the TAD instruction. However,
when adding the contents four or more times, use of the ISZ loop re-

quires fewer instructions.) In the first pass of the example, execution of

ISZ 250 increments the contents of location 250 from 7776 to 7777

and then transfers control to the following instruction (JMP 200). In

the second pass, execution of ISZ 250 increments the contents of loca-

tion 250 from 7777 to 0000 and transferscontro‘l to the instruction in

location 203, skipping over location 202.

. CODING FOR ISZ LOOP

Location Content

200 TAD 275

201 ISZ 250

202 J MP 200

203 DCA 276

250 7776.

275 0100

276 0000

SEQUENCE OF EXECUTION FOR ISZ LOOP

Content After Instruction Execution

Location Content AC 250 275 276

FIRST PASS
0

‘

200 TAD 275 0100
'

7776 0100 0000

201 ISZ 250 0100 7777 0100 0000

202 JMP 200 0100 7777 0100 0000

SECOND PASS

200
‘

TAD 275 0200 7777 0100 0000

201 ISZ 250 0200 0000 0100 0000

202 JMP 200 (Skipped during second pass)
203 DCA 276 0000 0000 0100 0200

Figure 2~2. ISZ Instruction Incrementing a Tally

2—11

The following points should be kept in mind when using the ISZ

instruction:

1. The contents of the AC and link are not disturbed;
2. The original word is replaced in main memory by the incre-

mented value;
3. When using the ISZ for looping a specified number of times,

the tally must be set to the negative of the desired number; and

4. The ISZ performs the incrementation first and then checks for

a zero result.

JMS 01me

A program written to perform a specific operation often includes sets

of instructions which perform intermediate tasks. These intermediate

tasks may be finding a'square root,‘ or typing a character on a keyboard.
Such operations are often performed many times in the running ofrone

program and may be coded as subroutines. To eliminate the need of

writing the complete set of instructions each time the operation must be

performed, the IMS (jump to subroutine) instruction is used. The JMS
instruction stores a pointer address in the first location of the subroutine

and transfers control to the second location of the subroutine. After the

subroutine is executed, the pointer address identifies the next instruc—

tion to be executed. Thus, the programmer has at his disposal a simple
means of exiting from the normal flow of his program to perform an

intermediate task and a means of return to the correct location upon

completion of the task. (This return is accomplished using indirect ad—

dressing, which is discussed later in this chapter.) The following exam-

ple illustrates the action of the JMS instruction.

Location Content

PROGRAM

200 JMS 350 (This instruction stores 0201 in loca-

tion 350 and transfers program control

to location 351.)
201 DCA 270 (This instruction stores the contents of

the AC in location 270 upon return
from the subroutine.)

2-12

SUBROUTINE
350 0000 (This location is assumed to have an

/

initial value of 0000; after IMS 350 is

executed, it is 0201.)
351 iii (First instruction of subroutine)

375 JMP I 350 (Last instruction of subroutine)

The following should be kept in mind when using the JMS:

1. The value of the PC (the address of the JMS instruction +1)
is always stored in the first location of the subroutine, replacing
the original contents;

2. Program control is always transferred to the location designated »

by the operand +1 (second location of the subroutine);

3. The normal return. from a subroutine is made by using an in—

direct JMP to the first location of the subroutine (JM-P I 350

in the above example); (Indirect addressing, as discussed later

in this chapter, effectively transfers control to location 201.);

4. When the results of the subroutine processing are contained in

the AC and are to be used in the main program, they must be

stored upon return from the subroutine before further calcula-

tions are performed. (In the above example, the results of the

subroutine processing are stored in location 270.)

ADDRESSING

When the memory reference instructions were introduced, it was

stated that nine bits are allocated to specify the operand (the address

referenced by the instruction). The method used to reference a memory

location using these nine bitswill now be discussed.

, PDP-8 Memory Pages

As previously described, the format of an MRI is three bits (0,1,
and 2) for the operation code and the remaining nine hits the operand.
However, a full twelve bits are needed to uniquely address the 4,096

(10,000 octal) locations that are contained in the PDP-8 memory unit.

To make the best use of the available nine bits, the PDP-8 utilizes a

logical division of memory into blocks (pages) of 2008 locations each,

as shown in the following table.
1

2-13

Memory Memor
Page

Locations Page Locating;
0 0—177 20 4000-4177
1 200-377 21 , 4200-4377
2 400-577 22 4400—4577
3 600-777 23 4600-4777
4 1000-1177 24 5000-5177
5 1200-1377 25 52005377
6 1400-1577 26 5400-5577
7 1600-1777 27 5600-5777

10 2000-2177 30 6000-6177
11 2200-23 77 31

‘

6200-6377
12 2400-2577 32 6400-6577
13 2600-2777 33 6600-6777
14 3000-3177 34 7000-7177
15 3200-3377 35 . 7200-7377
16 3400-3577 36 7400—7577 .

17 3600-3 777 37 7600-7777

Since there are 2003 locations on arpage and seven bits can represent

2008 different numbers, seven bits (5 through 11 of the MRI) are used

to specify the page address. Before discussing the use of the page ad-

dressing convention by an MRI, it should be emphasized that memory

does not contain any physical page separations. The computer recog—

nizes only absolute addresses and does not know what page it is on, or

when it enters a different page. But, as will be seen, page addressing
allows the programmer to reference all of the 4,09610 locations of

memory using only the nine available bits of an MRI. The format of an

MRI is shown in Figure 2-3.

OPERAND

BIT I .

‘
,

POSITION o I 2 3 4 5 6 7 e 9 ID II

o o o o o o o o o o o 0

EACH 3” IS
I I I I I ,I I I I I I I

EITHER o I

i
I ‘

I

I
I

OR ‘
OPERATION PAGE ADDRESS BITS

CODE
‘

(o Ton-18)

ADDRESS MODE BIT CURRENT PAGE 0R PAGE 0 BIT

D: DIRECT ADDRESSING 0: PAGE 0

I : INDIRECT ADDRESSING I: CURRENT PAGE

Figure 2—3. Format of a Memory Reference Instruction

2-14

As previously stated, bits 0 through 2 are the operation code for the

MRI. Bits 5 through 11 identify a specific location on a given page, but

they do not identify the page itself. The page is specified by bit 4, often

called the current pageor page 0 bit. If bit 4 is a 0, the page address is

interpreted as a location on page 0. It hit 4 is a 1, the page address

specified is interpreted to be on the current page (the page on which

the MRI itself is stored). For example, if bits 5 through 11 represent
'

123E and bit 4 is a 0, the location referenced is absolute address 1238.
However, if bit 4 is a 1 and the current instruction is in a core memory

location whose absolute address is between 4,6008 and 4,7778, the page

address 1238 designates the absolute address 4,7238. Note that, as

shown in the following example, this characteristic of page addressing
results in the octal coding for two TAD instructions On different

memory pages being identical when their operands reference the same

relative location (page, address) on their respective pages.

Content

Location Mnemonic Octal Explanation

200 TAD 250' 1250 TAD 250 and TAD 450 both

. .

'

mean add the contents of loca-

. . tion 50 on the current page (bit

400 TAD 450 1250 4 = l) to the accumulator.

Except when it is on page 0, a memory reference instruction can refer-

ence 4003 locations directly, namely those 2008 locations on the page

containing the instruction itself and the 2008 locations on page 0, which

can be addressed from any memory location.

NOTE: If an MRI is stored in one of the first 2003‘ memory locations (0 to

1773), current page is page 0; therefore, only locations 0 to 1773 are

directly addressable.

Indirect Addressing
In the preceding section, the method of directly addressing 4003

memory locations by an MRIwas described~namely those on page 0

and those on the current page. This section describes the method for

addressing the other 74008 memory locations. Bit 3 of an MRI, shown

in Figure 2—3 but not discussed in the preceding section, designates the

address mode. When bit 3 is a O, the operand is a direct address. When

bit 3 is a 1, the operand is an indirect address. An indirect address

(pointer address) identifies the location that contains the desired address

(effective address), To address a location thatis not directly address-

able, the absolute address of the desired location is stored in one of

the 4008 directly addressable locations (pointer address); the pointer
addressis written as the operand of the MRI; and the letter Iis written

2-15

between the mnemonic and the operand. (During assembly, the pres-

ence of the I results in bit 3 of the MRI being set to 'l .) Upon execution,

the MRI will operate on the contents of the location identified by the

address contained in the pointer location.

The two examples in Figure 2—4 illustrate the difference between
direct addressing and indirect addressing. The first example shows a

TAD instruction that uses direct addressing to get data stored on page 0

in location 50; the Second is a TAD instruction that uses indirect ad-

dressing, with a pointer on page 0 in location 50, to obtain data stored

in location 1275. (When references are made to them from various

pages, constants and pointer addresses can be stored on page 0 to avoid

the necessity of storing them on each applicable page.) The octal value

1050, in the first example, represents direct addressing (bit 3 : O); the

octal value 1450, in the second'example, represents indirect addressing

(bit 3 z 1). Both examples assume that the accumulator has previously
been cleared.

Location Content

200 TAD 50 (TAD 50 : 10505)
Address

Instruction

50 1275

\Data (Number) To Be Acted Upon By
Instruction Address

1275 20 (Content of location 1275 is not used in

the execution of the instruction in loca-

tion 200.)
NOTE: AC : 1275 after executing the instruction in leca-

tion 200.

Location Content

200 TAD I 50 (TAD I 50 : 14505)
. ‘\\Pointer Address

. Designates Indirect Addressing
Instruction

'50 1275
k . \Effective Address

. :*‘-Pointer Address

1275 20

\Data (Number) To Be Acted Upon By
Instruction

Effective Address

NOTE: AC : 20 after executing the instruction in location

200-

Figure 2-4. Comparison of Direct and Indirect Addressing

2-16

The following three examples illustrate some additional ways in

which indirect addressing can be used. As shown in example 1, indirect

addressing makes it possible to transfer program control off page 0 (to

any desired memory location). (Similarly, indirect addressing makes it

possible for other memory reference instructions to address any of the

4 ,09610 memory locations.) Example 2 shows a DCA instruction that

uses indirect addressing with a pointer on the current page. The pointer
in this case designates a location off the current page (location 227) in

which the data is to be stored. (A pointer address is normally stored on

the current page when all references to the designated location are from

the current page.) Indirect addressing provides the means for returning
to a main program from a subroutine, as shown in example. 3. Indirect

addressing is also eflcctively used in manipulating tables of data as de-

scribed and illustrated in conjunction with autoindexing in Chapter 3.

EXAMPLE 1

Location Coatent

75 IMP 1
100\ (1MP I 100: 55003)

. . \ Pointer Address

. Designates Indirect Addressing
100 6000 Instruction

.\\Effective Address

. Pointer Address

6000 DCA 100

. “New Instruction To Be Executed

. Effective Address
NOTE: Execution of the instruction in location 75 causes, pro—

~

gram control to be transferred to location 6000, and

the next instruction to be executed is the DCA 6100

instruction.

EXAMPLE 2

Location Content

450 DCA I 77 (DCA I 577' = 37775)
Pointer Address

Designates Indirect Addressing
Instruction

,

577

.\Effective Address

Pointer Address

227 nnnn

‘ \\Data (Number) Stored By Instruction

Efiective Address

NOTE: Execution of thelinstruction in location 450 causes the

contents of the accumulatorto be stored in loeation
227.

NN[q
2’17

EXAMPLE 3

Location Content

207 JMS l 70 (JMS I 70 = 4470.)
210 TAD 250 (The next instruction tobe executed

. . upon return from the subroutine.)

70 2000 (Starting address of the subroutine

. . stored here.)

2000 aaaa (Return address stored here by JMS

instruction.)
2001 iii (First instruction of subroutine.)

2077 JMP I 2000 (Last instruction of subroutine.)

NOTES: 1. Execution of the instruction in location 207 causes

the address 210 to be stored in location 2000 and

the instruction in location 2001 to be executed

next. Execution of the subroutine proceeds until

the last instruction (JMP I 2000) causes control

to be transferred back to the main program, con-

tinuing with the execution of the instruction stored

in location 210.

2. A’JMS instruction that uses indirect addressing is

useful when the subroutine is too large to store on

the current page.

3. Storing the pointer address on page 0 enables in-

structions on various pages to have access to the

subroutine.

OPERATE MICROINSTRUCTIONS

The operate instructions (octal operation code = 7) allow the pro-

grammer to manipulate and/or test the data that is located in the

accumulator and linkbit. A large-number of difierent instructions are

possible with one operation code because the operand bits are not

needed to specify an address as they are in an MRI and can be used to

specify different instructions. The operate instructions are separated
into two groups: Group 1, which contains manipulation instructions,
and Group 2, which is primarily concerned with testing operations.
Group 1 instructions are discussed first.

Group 1 Microinstructions

The Group 1 microinstructions manipulate the contents of the. accu-

mulator and link. These instructions are microprogrammable; that-is,

they can be combined to perform specialized operations with other

Group 1 instructions. Microprogramming is discussed later in this

chapter.

2-18

I 2 3 4 5 6 7 8 9 IO ll

l I Q CLA CLL CMA CML RAR RAL % IAC

OPERATION I ¢ I ROTATE ONE PLACE

CODE ZERO SPECIFIES ‘l I ROTATE TWO PLACES

GROUP I

The preceding diagram illustrates the manner in which a PDP—8 in-

struction word is interpreted when it is used to represent a Group 1

operate microinstruction. As previously mentioned, 78 is the operation
code for operate microinstructions; therefore, bits 0 through 2 are all

1’s. Since a reference to core memory is not necessary for the operation
of microinstructions, bits 3 through 11 are not used to reference an

address. Bit 3 contains a 0 to signify that this is a Group 1 instruction,
and the remaining bits are used to specify the operations to be per-

formed by the instruction. The operation of each individual instruction

specified by these bits is described below.

CLA

\CLL

CMA

CML

RAR

RTR

Clear the accumulator. If bit 4 is a 1, the instruction sets

the accumulator to all zeroes.

Clear the link. If bit 5 is a l, the link bit is set.to 0.

Complement the accumulator. If bit 6 is a 1, the accumu—

lator is set to the 1’s complement of its original value; that

is, all 1’s become 0’s, and all 0’s become 1’s.

Complement the link. If bit 7 is a 1, the state of the link bit

is reversed.
‘

'

Rotate the accumulator and link right. If bit 8 is a 1 and

bit 10 is a O, the instruction treats the AC and L as a closed

loop and shifts all bits in the loop one position to the right.
This operation is illustrated by the following diagram.

L AC

mum14010140101093st
AFTER RAR

Rotate the accumulator and link twice right. If bit 8 is a 1

and bit 10 is also a 1, a shift of two places to the right. is

executed. Both the RAR and RTR instructions use what is

commonly called a circular shift, meaning that any bit

rotated off one end of the acoumulator will reappear at the

other end. This operation is illustrated below.

2-19

RTL

IAC

NOP

L AC

a mllllfllololololollillllBEFORERTR
\\ ”es\\\\\

I101110000001Arrensm

Rotate the accumulator and link left. If bit 9 is a 1 and bit

10 is a 0, this instruction treats the AC and L as a closed

loop and shifts all bits'1n the loop one position to the left,

performing a circular shift to the left.

Rotate the accumulator and link twice left. If bit 9 is a l

and bit 10 is a 1 also, the instruction rotates each bit two

positions to the left. (The RAL and RTL microinstruetions

shift the bits in the reverse direction of that directed by the

RAR and RTR microinstructions.)
Increment the accumulator. When bit 11 is a 1, the con-

tents of the AC15 increased by 1.

N0 operation If bits 0 through 2 contain operation code

7,;, and the remaining bits contain zeros, no operation is

performed and program control is transferred to the next

instruction in sequence.

A summary of Group 1 instructions, including their
octal forms,'13

given below.

Mnemonic1 Octal2 Operation Sequence3
NOP 7000 No operation —-«

CLA 7200 Clear AC 1
'

CLL 7100 Clear link bit 1

CMA 7040 Complement AC 2

CML 7020 Complement link bit 2

EAR 7010 Rotate AC and L right one position 4

RAL 7004 Rotate AC and L left one position 4

RTR 7012 Rotate AC and L right two positions 4

RTL 7006 Rotate AC and L left two positions 4

IAC 7001 Increment AC 3

1 Mnemom'c code is meaningful to and translated by an assembler into‘bmary
code.

2 Octal numbers conveniently represent binary instructions.
3 Sequence numbers indicate the order in which the operations are performed

by the PDP-S/ I and PDP-S/ L (sequence 1 operations are performed first,

sequence 2 operations are performed next, etc.).

2-20

Group 2 Microinstructions

Group 2 operate microinstructions are often referred to as the “skip
microinstructions” because they enable the programmer to perform
tests on the accumulator and link and to skip the next instruction de-

pending upon the results of the test. They are usually followed in a pro—

gram by a JMP (or possibly a JMS) “instruction. A skip instruction

causes the computer to check'for a specific condition, and, if it is pres-

cut to skip the next instruction. If the condition were not present, the

next instruction Would be executed.

I 2 3 4 5 6 7 8 9 10 ll

SM SZA SNL 0/l
| l ' CLA

SPA SNA ZL SKP
08R HLT 0

CONTAINS A 0KOPERATION VALUE OF BIT 8

CODE 78
‘

DETERMINES THE

ACTION SPECIFIED TO SPECIFY

CONTAINS A I BY BITS 5. 6,817 GROUP 2
TO SPECIFY

GROUP 2 REVERSE SENSING BIT

OI SMA. SZA,8: SNL. ARE ENABLED.

! I SPA, SNA,81 SZL ARE ENABLED.

(UNCONDITIONAL SKIP WHEN

BITS 5.6.8: 7 ARE 0'3)

The available instructions are selected by bit assignment as shown in

the above diagram. The operation of each individual instruction speci—
fied by these bitsIS described below.

'

CLA

SMA

SPA

SZA

SNA
_

Clear the accumulator. :If bit 4 is a l, the instruction sets

the accumulator to all zeros.

‘

Skip on minus accumulator. 'lf bit 5 is a l and bit 8 is a ‘U, ,

the next instruction is skipped if the accumulator is less

than zero

Skip on positive accumulator. If bit 51s a l and bit 8 is a

1, the next instruction is skipped if the accumulator is

greater than or equal toizero.
‘

Skip on nonzero accumulator. If bit 6 is a 1 and bit 8 is a

1, the next instruction is skipped if the accumulator is not

zero.

‘Skip onnonzero accumulator. If bit 6 is a 1 and bit 8 is a

1 also, the next instruction is skipped if the accumulator is

not zero.

2—21

SNL

SZL

SKP

OSR

HLT

Skip on. nonzero link. If bit 7 is a 1 and bit 8 is a O, the

nest instruction is skipped when the link. bit is a 1.

Skip on zero link. If bit 7 is a 1 and bit 8 is a 1, the next

instruction" is skipped when the link bit is a 0.

Unconditional skip. 11bit s is a 1 and bit 5, 6 and 7 are

all zeros, the next instruction is skipped. (Bit 8 is a reverse

sensing bit when bits 5,6 or 7 are used—see SMA, SPA,

SZA, SNA, SNL, and SZL above.)
Inclusive OR of switch register with AC. If bit 91s a 1, an

inclusive 0R operation is performed between the content

of the accumulator and the console switch register. The re-

sult is left in the accumulator and the original content of

the accumulator is destroyed. In short, the inclusive OR

operation consists of the comparison of the corresponding
bit positions of the two numbers and the insertion of a 1 in

the result if a 1
appears

in the corresponding bit position
in either number.See Chapter 1 for further discussion. The

action of the instruction is illustrated below.

LINKE ETOIOIOIO] 1 IoLiJol I I0] IJAcCUMULATon

L1 fem: lollIOJOIOIIIlIOISWITCHREGISTER

UNKD b}01£ll]0[l]0]l[OllllldRESULTIN,AC

Halt. If bit 10 is a 1, the computer will stop at the conclu-

sion of the current machine cycle.
'

A summary of Group 2 instructions, including their octal representa-

tion, is given in the following table.

Mnemonic Octal Operation Sequence

CLA 7600 Clear the accumulator 2

SMA 7500 Skip on minus accumulator

SPA 7510 Skip on positive accumulator l

1 (or AC : O)
SZA 7440 Skip on zero accumulator 1

SNA 7450 Skip on nonzero accumulator 1

SNL 7420 Skip on nonzero link 1

SZL 7430 Skip on zero link 1

SKP 7410 Skip unconditionally l

OSR 7404 Inclusive 0R, switch register 3

. with AC

7402 Halts the program 3HLT

2-22

MICROPROGRAMMING

Because PDP—8 instructions of Group 1 and Group 2 are determined

by bit assignment, these instructions may be combined, or micropro—

grammed, to form new instructions enabling the computer to do more

operations in less time.

Combining Microinstructions

The programmer should make certain that the program clears the

accumulator and link before any arithmetic operations are performed;
To perform this task, the program might include the following instruc—

tions (given in both octal and mnemonic form).

.CLA 7200 (octal)
. CLL 7100 (octal)

However, when the Group 1 instruction format is analyzed, the follow-

ing is observed.

I l l 0 CLA CLL

OPERATION \ LMUST BE A I TO SPECIFY CLL

CODE
MUST BE A ITO SPECIFY CLA

MUST BE A 0 TO SPECIFY GROUP I

Since the CLA and the CLL instructions occupy separate bit posi-

tions, they may be expressed in the same instruction, thus combining
the two operations into one instruction. This instruction would be writ-

ten as follows.

CLA CLL 7300 (octal)

In this manner, many operate microinstructions can be combined mak—

ing the execution of the program much more efficient. The assembler

for the PDP—8 will combine the instructions properly when they are

written as above, that is, on the same coding line, and separated by a

space.

Illegal Combinations
'

Microprogramming, although very efficient, can also be troublesome

for the new programmer. There are many violations of coding which

the assembler will not accept.

2-23

One rule to remember is: “If you can’t code it, the computer can’t do

it.” In other words, the programmer could write a string of mnemonic

microinstruetions, but unless these microinstructions can be coded cor—

rectly in octal representation, they cannot be performed. To illustrate

this fact, suppose the programmer would like to complement the accu-

mulator (CMA), complement the link (CML), and then skip on a

nonzero link (SNL). He could write the following.

CMA CML SNL

These instructions require the following bit assignments.

0123456789l0|l

CMA[l[ITI[Oi I i'l i i i ii

CMLllililiOi I l i'iiiid

SNLlilaII[|Ii[l'iiiiq

The three microinstructions cannot be combined in one instruction be-
cause bit 3 is required to be a 0 and a 1 simultaneously. Therefore, no

instructions may be used which combine Group 1 and Group 2 micro-

instructions because bit 3 usage is not compatible. The CMA and CML

can, however, be combined because their bit assignments are com—

patible. The combination would be as follows.

CMA CML
'

7060 (octal)

To perform the original set of three operations, two instructions are

needed.

tIMA CML 7060 (octal)
SNL 7420 (octal)

Because Group 1 and Group 2 microinstructions cannot be com-

bined, the commonly used microinstruction CLA is a member of. both

groups. Clearing the AC is often required in a program and it is very

convenient to be able to microprogram the CLA with the members of

both groups. .

The problem of bit assignment also arises when some instructions

within a group are combined. For example, in Group 1 the rotate in—

structions specify the number of places to be rotated by the state of bit

10. If bit 10 is a 0, rotate one place; if bit 10 is a 1, rotate two places.

Thus, the instruction RAL can not be combined with RTL because bit

10 “would be required to have two different values at once. If the pro—

2—24

grammer wishes to rotate right three places, he must use two separate

instructions.

RAR 7010 (octal)
RTR 7012 (octal)

Although he can write the instruction “RAR RTR”, it cannot be cor-

rectly converted to octal by the assembler because of the conflict in bit

10; therefore, it is illegal.

Combining Skip Microinstructions

Group 2 operate microinstructions use bit 8 to determine the instruc-

tion specified by bits 5, 6, and 7 as previously described. If bit 8 is a 0,

the instructions SMA, SZA, and SNL are specified. If bit 8 is a 1,'the
instructions SPA, SNA, and SZL are specified. Thus, SMA cannot be

combined with SZL because of the opposite values of bit 8. The skip
condition for combined microinstructions is established by the skip con-

ditions of the individual mcroinstructions in accordance with the rules

for logic operations (see “Logic Primer” in Chapter 1).
0R GROUP—SMA 0R S-ZA 0R SNL

‘

If bit 8 is a O, the instruction skips on the logical OR of the condi—

tions specified by the separate microinstructions. The next instruction

is skipped if any of the stated conditions exist. For example, the com-

bined microinstruction SMA SNL Will skip under the following condi-

tions:

1. The accumulator is negative, the link is zero.

2. The link is nonzero, the accumulator is not negative.
3. The accumulator is negative and the link is nonzero.

(It will not skip if all conditions fail.) This manner of combining the

test conditions is described as the logical OR of the conditions.

AND GROUP—SPA AND SNA AND SZL

A value of bit 8 = 1 specifies the group of microinstructions SPA,

SNA, and SZL which combine to form instructions which act according
to the logical AND of the conditions. In other words, the next instruc-

tion is skipped only if all conditions are satisfied. For example, the in—

struction SPA SZL will cause a skip of the next instruction only if the

accumulator is positive and the link is zero. (It will not skip if either

of the conditions fail.)

NOTES: 1. The programmer is not able to specify the manner

of combination. The SMA, SZA, SNL conditions

are always combined by the logical OR, and the

SPA, SNA, SZL conditions are always joined by a

logical AND.

2. Since the SPA microinstruction will skip on either

a positive or a zero accumulator, to skip on a

strictly positive (positive, nonzero) accumulator

the combined microinstruction SPA SNA is used.

2-25

Order of Execution of Combined Microinstructions

The combined microinstructions are performed by the computer in a

very definite sequence. When written separately, the order of execution

of the instructions is the order in which they are encountered in the pro—

gram. In writing a combined instruction of Group 1 or “Group 2 micro-

instructions, the order written has no bearing upon the order of

execution. This should be clear, because the combined instruction is a

12-bit binary number with, certain bits set to a value of 1. The. order in

which the bits are set to 1 has no bearing on the final execution of the

whole binary word.
,

The definite sequence, however, varies between members of the

PDP-S computer family. The sequence given here applies to the PDP-

8/1 and PDP-S/L. The applicable information for other members of

the PDP-S family is given in Appendix E. The order of execution for

PDP-8/I and PDP-S/L microinstructions is as follows.

GROUP 1 ,

Event 1 CLA, CLL—Clear the accumulator and/or clear the

link are the first actions performed. They are efiectively

performed simultaneously and yet independently.
Event 2 CMA, CML—Complement the accumulator and/or com-

plement the link. These operations are also effectively

performed simultaneously. and independently.
Event 3 LAC—Increment the accumulator. This operation is per—

formed third allowing a number in the AC to be comple—
mented and then incremented by 1, thereby forming the

two’s complement, or negative, of the number.

Event 4 RAR, RAL, RTR, KTL—The rotate instructions are per-

formed last in sequence. Because of the bit assignment

previously discussed, only one of the four operations may

be performed in each combined instruction.

GROUP 2

Event 1 Either SMA or SZA or SNL when bit 8 is a 0. Both SPA

and SNA and SZL when bit 8 is a 1. Combined micro-

instructions specifying a skip are performed first. The

microinstructions are combined to form one specific test,

therefore, skip instructions are effectively performed

simultaneously.
Because of bit 8, only members of one skip group may be

combined in an instruction.

2-26

Event 2 CLA—Clear the accumulator. Thisinstruction is per-

formed second in sequence thus allowing different arith—

metic operations to be performed after testing (see Event

1) without the necessity of clearing the accumulator with

a separate instruction before some subsequent arithmetic

. operation.
Event 3 OSR—Inclusive OR between the switch register and the

AC. This instruction is performed third in sequence,

allowing the AC to be cleared first, and then loaded from

the switch register.
Event 4 HLT—The HLT is performed last to allow any other

operations to be concluded before the program stops.

This is the .order in which all combined instructions are performed.
In order to perform operations in a different order, the instructions
must be Written separately as shown in the following example. One

might think that the following combined microinstruction would clear

the accumulator, perform an inclusive OR between the SR and the AC,
and thenskip on a nonzero accumulator.

CLA OSR SNA

However, the instruction would not perform in that proper manner,

because the SNA would be executed first. In order to perform the skip
last, the instructions must be separated as follows.

CLA OSR

SNA

Microprogramming requires that the programmer carefully code

mnemonics legally so that the instruction does in fact do what he desires

it to do. The sequence in which the operations are performed and the

legality of combinations is crucial to PDP—8 programming.
The following is a list oi commonly used combined microinstructions,

,. some of which have been assigned a separate mnemonic.

Instruction Explanation

— CLA 0L1) Clear the accumulator and link.

CIA CMA IAC Complement and increment the accumulator.

. (Sets the accumulator equal to its own nega-
‘

tive.)
'

'

LAS CLA OSR Load accumulator from switches.
‘

(Loads the accumulator with the value of the

switch register.)
STL CLL CML Set the link (to a 1).
-— CLA IAC Sets the. accumulator to a 1.

STA CLA CMA Sets the accumulator to a —1.

2-27

are given below.

In summary, the basic rules for combining operate microinstructions

1. Group 1 and Group 2 microinstructions cannot be combined.

2. Rotate microinstructions (Group 1) cannot be combined with

each other.

3. OR Group (SMA, SZA, or SNL) microinstructions cannot be

combined with AND Group (SPA, SNA, or SZL) microin-

struetions.

4. OR Group microinstructions are combined as the logical OR

of their respective skip conditions. AND Group microinstruc-

tions are combined as the logical AND of their respective skip
conditions. .

5. Order of execution for combined instructions (PDP—S/I and

PDP-S/L only) is listed below.

Group 1 Group 2

1. CLA, CLL 1. SMA/SZA/SNL or

SPA/SNA/SZL

2. CMA, CML 2. CLA

3. IAC 3. OSR

4. RAR, RAL, RTR, RTL 4. HLT

EXERCISES

l. The following is a list of current addresses and locations to be

addressed. Determine whether the second location should be di-

rectly or indirectly addressed from the first.

Current Address Location to be Addressed

a. 2456 2577

b. 1500 1600

c. 1230 0030

d. 0050 0120

e. 6555 6400

f. 6555 6600

g. 4343 4100

h. 2742 2450 -

i. 2507 5507
'

j. 3200 3377

228

.2. What type of instructiOrl is each of the following (MRI, operate

Group 1 or operate Group 2 microinstruction)?

7430 v

0024

7240

7000

4706

7700

3. Why are eachvof the following not legal instructions for the PDP-S?

. a. 6509 b. 15007 c. 1581 d1 635 e. 7778

4. What is the effect of each of the following Octal instructions?

9:031
‘

Mnemonic
‘

l

_

Operation

0000

4010

2300

1777

3500

5400 -

1030

2577

5273

3150

5. Separate the following octal instructions into microinstruction

mnemonics.
‘

'

7260

7112

7440

7632

7550

7007

7770

6. Write the octal representation for each location in the following

program. What are the contents of the accumulator and locations

205, 206, and 207 after execution of the program?

”WP-P
0‘!“

aware-“9999*?
*P-“PP-PP‘?‘
Location, Mnemonic Octal

0200 CLA
0201 TAD 0205

0202 TAD 0206

0203 DCA 0207‘
0204 HLT

0205
'

1537

0206 2241

0207
'

0000
‘

*2—29

..

I

7. Write the octal form of the following microinstructions. Identify

*‘r'P‘qc
rhea-.0
.ch

any illegal combinations.

CLA CLL CMA CML

CLL RTL HLT

SPA CLA

CLA IAC RTL

CLA IAC RAL RTL

SMA SZA CLA

SMA SZL

CLA OSR HLT

CLA OSR IAC

CLA SMA SZA

8. What instructions could be used to perform a skip only if the

9.

10.

11.

accumulator is zero and the link is nonzero?

Why is it not possible to write one combined microinstruction that

will load the accumulator from the console switch register, and

then test that number, skipping on a positive value?

Write the following programs.

a. Program starts in location 0200 and adds 2 and 8. Give both

mnemonic and'oetal representations.
1). Program beginning in location 400 which interchanges the con—

tents of locations 550 and 551. Give both mnemonic and octal

representations.
Write programs to add three numbers A, B, and C in the specified
locations below and put the result in the given address for the

SUM. All programs start in location 200. Give octal and mnemonic

coding.

A B C SUM

a. 0030 0031 0032 0033

b. 0300 0301 0302 0303

c. 3000 3001 3002 3003

2-30

Chapter 3'

Elementary
Programming

Techniques

Mastery of the instruction set is the first step in'learning to program

the PDP-8 family computers. The next step is to learn to use the in—

struction set to obtain correct results and to obtain them efiiciently. This

is best done by studying the following programming techniques. Exam-

ples, which should further familiarize the reader with the instructions

and their uses, are given to illustrate each technique;

The modern digital computer is capable of storing information, per—

forming calculations, making decisions based on the results and arriving
at a final solution to a given problem. The computer cannot, however,

perform these tasks without direction. Each step which the computer is

to perform must first be worked out by the programmer.

The programmer must write a program, which is a list of instructions

for the computer to follow to arrive at a solution for a given problem.
This list of instructions is basedon a computational method, sometimes

called an algorithm, to solve the problem. The list of instructions is

placed in the computer memory to activate the applicable circuitry so

that the computer can process the problem. This chapter describes the

procedure to be followed when writing a program to be used on the

PDP-8 family of computers.

3—1

PROGRAMMING PHASES

In order to successfully solve a problem with a computer, the pro-

grammer proceeds through the five programming phases listed below:

1. Definition of the problem to be solved, _

2. Determination of the most feasible solution method,
3. Design and analysis of the solution——fl.owcharting,
4L Coding the solution in the programming language, and

5. Program checkout.

The definition of the problem is not always obvious. A great amount

of time and energy can be wasted if the problem is not adequately de-

fined. When the problem is to sum four numbers, the defining phase is

obvious. However, when the problem is to monitor and control a per—

formance test for semiconductors, a precise definition of the problem
is necessary. The question that must be answered in this phase is:

“What precisely is the program to accomplish?”

Determining the method to be followed is the second important

phase in solving a problem with a computer. There are perhaps an in—

finite number of methods to solve a problem, and the selection of one

method over another is often influenced by the computer system to be

used. Having decided upon a method based on the definition of the

problem and the capabilities of the computer system, the programmer

must develop the method into a workable solution.

The programmer must design and analyze the solution by identifying
the necessary steps to solve the problems and arranging them in a

logical order, thus implementing the method. Flowcharting is a graphical
means of representing the logical steps of the solution. The flowcharting

technique is eflective in proViding an overview of the logical flow of a

solution, thereby enabling further analysis and evaluation of alternative

approaches.

Having designed the problem solution, the programmer begins coding

the solution in the programming language. This phase is commonly
called programming but is actually coding and is only one part of the

programming process. When the program has been coded and the pro-

gram instructions have been stored in the computer memory, the prob—
lem can be solved. At this point, however, the programming process

is rarely complete. There are very few programs written which initially
function as expected. Whenever the program does not work properly,
the programmer is forced to begin the fifth step of programming, that

of checking out or “debugging” the program.

3—2

The program checkout phase requires the programmer to methodi-

cally retrace the flow of the instructions step-by-step to find any pro-

gram errors that may exist. The programmer cannot tell a computer:
“You know what I mean!”, as he might say in daily life. The computer

does not know what is meant until it is told, and once given a set of

instructions, the computer follows them precisely. If needed instructions

are left out or coding is done incorrectly, the results may be surprising.
These flaws, or “bugs” as they are often called, must be found and

corrected. There are many different approaches to finding bugs in a

program; however, the chosen approach must be organized and pains-

takingly methodical if it is to be successful. Several techniques for de-

bugging programs for the PDP—S family of computers are described

in Chapter 6. .

’

FLOWCHARTING

A simple problem to add three numbers together is solved in a few,

easily determined steps. A programmer could sit at his desk and write

out three or four instructions for the computer to solve the problem.

However, he probably could‘have. added the same three numbers with

paper and pencil in much less time than! it took him to write the pro-

gram. Thus, the problems which the programmer is usually asked to

solve are much more complex than the addition of three numbers, be-

cause the value of the computer is in the solution of problems which are

inconvenient or time consuming by human standards.

When a more complex problem is to be solved by a computer, the

program involves many steps, and Writing it often becomes long and

confusing. A method for solving a problem which is written in words

and mathematical equations is extremely hard to follow, and coding .

computer instructions from such a document would be equally difficult.

A technique called flowcharting is used to simplify the writing of pro-

grams. A flowchart is a graphical representation of a given problem,

indicating the logical sequence of operations that the computer is to

perform. Having a diagram of the logical flow of a program is a tre-

mendous advantage to the programmer when he is determining the

method to be used for solving a problem, as well as when he writes

the coded program instructions. In addition, the flowchart is often a

valuable aid when the programmer checks the written program for

errors.

3—3

The flowchart is basically a collection of boxes and lines. The boxes

indicate what is to be done and the lines indicate the sequence of the

boxes. The boxes are of various shapes which represent the action to

be performed in the program. Appendix C is a guide to the flowchart

symbols’and procedures which are used in this text.

The following are examples of flowcharts for specific problems, illus—

trating methods of attacking problems with a computer program as well

as illustrating flowcharting techniques. Example 1 adds three numbers

together. Example 2 puts threenumbers in increasing order.

Example I ——— Straight-Line Programming

Example 1 is an illustration of straight-line programming. As the

flowchart shows, there is a straight—line progression through the process—
ing steps with no change in course. The value of X, which is equal to

A+B+C is in the accumulator when the program stops.

(START D

‘

CLEAR

ACCUMULATOR

i

GET A INTO

ACCUMULATOR

7

ADD B

I ADDC I
i

-

srop

Example 1 — Add Three Numbers

Example 2 -- Program Branching

Example 2 is designed to arrange three numbers in increasing order.

The program must branch to interchange numbers that are out of

order. (Branching, a common feature of programming, is described in

detail later in this chapter.) Note that the arithmetic operations of sub-

traction are done in the accumulator, which must be cleared initially.

3—4

I START I

CLEAR THE

ACCUMULATOR

T

GET 'IRST
NUMBER INTO

ACCUM LATOR

SUBTRACT .

SECOND NUMBER

IS AC

POSITIVE

‘3'

INTERCHANGE

IST AND 2ND

NUMBERS
COMPARE

2ND AND 3RD

NUMBERS

AS ABOVE

IS AC

POSITIVE

?

N0 INTERCHANGE
2ND AND 3RD

NUMBERS

COMPARE

‘IST AND 2ND
NUMBERS

AS ABOVE

YES
IS AC

POSITIVE

?

NO

Example 2 -— Arrange Three Numbers in Increasing Order

3-5

T

INTERCHANGE

1 ST AND 2ND

NUMBERS

CODING A PROGRAM

The introduction of an assembler in Chapter 2 enabled the pro-
‘

grammer to write a symbolic program using meaningful mnemonic codes

rather than the octal representation of the instructions. The programmer

could now‘ write mnemonic programs such as the following example,
which multiplies 1810 by 3610 using successive addition.

200/ CLA CLL > (Initialize)
201/ TAD 210 '

(Set up a Tally
‘ 202/

'

CIA equal to —1 810 to

203/ » DCA 212 count the additions of 36)
204/ TAD 211 (Add 36) .

'

205/
'

182 212 (Skip if Tally is O)
206/ JMP 204 (Add another 36 if not done)
207/ HLT (Stop after 18 times)

'
i

210/
'

0022 (Equal to’ 18m)
211/ 0044 (Equal to 3610)
212/ 0000 (Holds the tally)

Writing the above program was greatly simplified because mnemonic

codes were used for the octal instructions. However, writing down the

absolute address of each instruction is clearly an inconvenience. If the

programmer later adds or deletes instructions, thus altering the location

assignments of his program, he hasto rewrite these instructions Whose

operands refer to the altered assignments. If the programmer wishes to

move the program to a different section of memory, he must rewrite the

program. Since such changes must be made often, especially in large

programs, a better means of assigning locations is needed. The assem-

bler provides this better means.

Location Assignment

As in the previous program example, most programs are written in

successive memory locations. If the programmerassigned an absolute

location to the first instruction, the assembler could be told to assign

.

the next instructions to the following locations in order. In programming
the PDP—S, the initial location is denoted by a precedent asterisk (*).

The assembler maintains a current location counter by which it assigns
successive locations to instructions. The asterisk causes the current

location counter to be set to the value following the asterisk With this
'

improvement incorporated, the
previous example appears as shown

in the following example.
'

3-6

*200

NOTE! In this example, CLA CLL is stored in location 200 and the
successive instructions are storedin 201, 202, etc.

Symbolic Addresses

The programmer does not at the outset know which locations he will

use to store constants or the tally. Therefore he must leave blanks after

each MRI and come back to fill these in after he has assigned locations

to these numbers. In the previous program, he must count the number

of locations after the assigned initial address in order to assign the

correct values to the MRI operands. Actually this is not necessary, be-

cause he may assign symbolic names (a symbol followed by a comma

is a symbolic address) to the locations to which he must refer, and the

assembler will assign address values for him“. The assembler maintains

a symbol table in which it records the octal values of all symbolic
addresses. With symbolic address name tags, the program is as shown

below.

*200 '

START, CLA CLL

TAD A

CIA
‘

DCA TALLY

MULT, TAD B

182 TALLY

'JMP MULT

HLT

A, 0022

B, 0044.

TALLY, 0000

$

NOTES: 1. The dollar sign is the terminal, character for the assembler.

2._ The comma after 'a symbol (e.g., START,) indicates to the

assembler that the symbol is a symbolic address.
'

3-7

Symbolic Programming Conventions
5

Any sequence of letters (A, B, C . . .

, Z) and digits (0, 1
,

. . .
, 9)

beginning with a letter and terminated by a delimiting character (see
Table 3-1) is a symbol. For example, the mnemonic codes for the’

PDP—8 instructions are symbols for which the assembler retains octal

equivalents in a permanent symbdl table.

User~defined symbols (stored in the external symbol table) may be

of any length; however, only the first six characters are considered, and

any additional characters are ignored. (Symbols which are identical in

their first six characters are considered identical.)

Any sequence of digits followed by a delimiting character forms a

number. The assembler will accept numbers which are octal or decimal.

The radix is initially set to octal and remains octalyunless otherwise

specified. The pseudo-instruction DECIMAL may be inserted in the

coding to instruct the assembler to interpret all numbers as decimal until

the next occurrence of the pseudo-instruction OCTAL in the_coding.
These pseudo-instructions afiect all numbers included in the symbolic

program including those preceeded by an
* to denote change of origin.

v Each symbol or number written in a PDP—8 program must represent
a 12-bit binary value in order to be interpreted by the assembler.

The special characters in Table 3-1 are used to specify operations to

be performed by the assembler upon symbols or numbers in PDP-S

symbolic programs.

The comma after a symbol in a line of coding (e.g., MULT, TAD B)

indicates to the assembler that the value of MULT is the address of

the location in which the instruction is stored. When an instruction that

references MULT (now a symbolic address) is encountered, the assem-

bler supplies the correct address value for MULT. (Care must be taken

that a symbolic address is never used twice in the same program and

that all locations referenced by an MRI are identified somewhere in the

program.)

The space and «tab are used to delimit a symbol or number. In a com-

bined microinstruction such as CLA CLL, the space delimits the first

mnemonic from the second, and the assembler combines the two mne-

monic into one instruction. The space and tab similarly delimit the mne-

monic from the symbolicaddress.

TAD A or TAD A

SPACE LcTRL/TAB

3—8

Table 3-1. Special Characters for the PDP-S Symbolic Language

Character

Keyboard Name
Use

SPACE space combine symbols or numbers

(nonprinting) (delimiting)
CTRL/TAB tab (nonprinting) combine symbols or numbers or for-

,

'mat the symbolic tape (delimiting)
RETURN carriage return terminate line (delimiting)

(nonprinting)
+ plus combine symbols or numbers
—— minus combine symbols or numbers

,
comma assign symbolic address

2 equals define parameters
* asterisk set current location counter

, semicolon terminate coding line (delimiting)
$

'

> dollar sign terminate pass (delimiting)
point has value equal to current location

counter

/ slash indicates start of a comment

The carriage return is used to terminate/a line of coding. The assem-

bler will also recognize a semicolon as a line terminating character.

$23 ‘3 is the same as TAD A; TAD B

One of these two characters rr(i.e., semicolon or carriage return)

V

must be used to separate each line‘of coding.

The assembler will recognize the arithmetic symbols + and -— in

conjunction with numbers or symbols, thereby enabling “address arith—

metic”. For example, the instruction IMP START+1 will cause the

computer to execute the instruction in the next location after START.

The numbers specified in such instructions are subject to the pseudo-
instructions DECIMAL and OCTAL, therefore the number is inter-v

preted as an octal number unless the pseudo—instruction DECIMAL is

in effect.

The decimal point, or period, is a character which is interpreted by
the assembler as the value of the current location counter. This special
symbol can be used as the operand of an instruction; for example, the

instruction JMP .—1 causes the computer to execute the preceding in-

struction.

The equal sign is used to define symbols. This character is used to

replace an undefined symbol with the value of a known» quantity. For

example, the programmer could define a “new instruction” NEGATE

3—9

by writing that NEGATE 2' CIA. The programmer could then write

the following instructions to subtract B from A.

START, TAD B

NEGATE

TAD A

HLT

NEGATE : CIA

The above coding would be assembled as if the instruction CIA had

been included in the actual coding.

The slash is used to insert comments and headings as described later

in this chapter.
‘

The dollar sign as previously noted, is a terminal character for the

assembler itself. When this character is encountered, the assembler

stops accepting input and terminates the assembly pass, as described in

Chapter 6. *

“These characters and conventions will be used throughout the re—

mainder of this text to code programs in PAL III, the symbolic lan-

guage of the PDP-8 family of computers. Thus, all examples given may

be directly punched on paper tape as described in Chapter 4 and

assembled by the procedure described in Chapter 6.

PROGRAMMING ARITHMETIC OPERATIONS

. The instructions for the PDP-S may be used to perform the basic

arithmetic operations within the limits of the machine to represent the

messary numbers. That is, numbers may be added unless the sum ex—

ceeds 409510 or 77778. When a sum exceeds the size of. the accumulator,

overflow occurs and incorrect answers result.
_

This condition can

usuaily be detected by checking the value of the link bit.

The following instructions will add numbers and check for overflow,

baiting the program if the link is 1.

ADD, CLA CLL
‘

TAD A

TAD B

SZL

HLT

DCA SUM

3-10

Since the link is initially cleared in the above example, a link value

equal to 1 is an indication that the sum of the contents of locations A

and B is too large to be represented by the 12-bit accumulator alone.

The computer will halt if the overflow is detected with the actual sum

in the combined 13 bits of the accumulator and link.

Arithmetic Overflow ,

Since the PDP-8 regards the numbers 0 through 37778 as positive
numbers and the numbers 40008 through 77778 as negative numbers,
the addition of two positive numbers could result in either a positive
or a negative number depending upon the size of the numbers added.

Arithmetic overflow is said to occur Whenever two positive numbers

add to form a negative number, as shown in the following example.

2433., (a positive number)
+221 18 (a positive number)

46448 (considered a negative number by the

PDP—S)

Likewise, two negative numbers could be added to yield a positive num-

ber as in the following example.

52758 (—25033)
+57618 (—20173)

Disregarded—éi 3256 (considered a positive number by the

PDP-S)

v Because of situations like those illustrated in the two preceding ex-

amples, the programmer must consider the size of the numbers used

in programmed arithmetic operations. If the programmer suspects that

overflow may occur in the result of an arithmetic operation, he should.

follow such an operation by a set of instructions to correct the error or

at least to indicate that such an overflow occurred.
The cenditions outlined below may be used to test for arithmetic

overflow.
'

'

Signs of Numbers Added Overflow and Link Value

Positive + Negative No overflow possible; link value ignored.
Positive + Positive May result in negative sum; no change in

link value.

Negative + Negative May result in positive sum; link is always
'

complemented regardless of the sign of the

result.

The program coding on the next page uses the following facts, as-

suming an initially cleared link, to quickly determine the sign of the

sum of two unknown quantities, A and B.

3-11-

Sign
of A

Positive

Negative
Positive

Negative

Sign Result of Adding only Bit Q of A to all offi
of B

Negative
Positive

Positive

Negative

Link Value Bit 0 of AC

i-IOOO OOHi—t
/ CODING TO ADD TWO NUMBERS

/TESTING FOR ARITHMETIC OVERFLOW.

START,

OPPSGN,

BTHNEG,

BTHPOS,

SUM,

MASK,

A,
B,

'

POSERR,

NEGERR,

CLA CLL

TAD A

AND MASK

TAD B

SZL

JMP BTHNEG

RAL

SZL CLA

JMP OPPSGN

JMP BTHPOS

TAD A

TAD B

DCA SUM

HLT

CLA CLL

TAD A

TAD B

SMA

J MP NEGERR

DCA SUM
HLT

TAD A

TAD B

SPA

JMP POSERR

DCA SUM

HLT

0

4000

nnnn

nnnn

3-12

/MASK OUT ALL BUT BIT 0.

/ADD B TO BIT 0 OF A.

/LINK = I IMPLIES BOTH

/ARE NEGATIVE.

/ROTATE BIT O INTO LINK.

/BIT 0 = 1 IMPLIES

/OPPOSITE SIGNS.

/BIT O = 0, BOTH POSITIVE.

/ IF A AND B ARE OF OPPOSITE

/SIGNS, THE ADDITION

/CANNOT RESULT IN

/OVERFLOW.

/IF TWO NEGATIVE NUMBERS
/ADD TO FORM A

/POSITIVE NUMBER,
/JMP TO ERROR ROUTINE.

/OTHERWISE, STORE SUM.

/IF TWO POSITIVE

/NUMBERS ADD TO FORM

/A NEGATIVE NUMBER, JMP

/TO ERROR ROUTINE.
. /OTHERWISE, STORE SUM.

/ANY NUMBERS A AND B

/ROUTINE TO SIGNAL

/ARITHMETIC OVERFLOW

/OF POSITIVE NUMBERS.

/ROUTINE TO SIGNAL

/ARITHMETIC OVERFLOW

/OF NEGATIVE NUMBERS.

Subtraction

Subtraction in'the PDP-S family of computers is accomplished by

negating the subtrahend (replacing it by its two’s complement) and

then adding it to the minuend, ignoring the overflow if any. The follow-

ing example shows the contents of the accumulator for each step of the

subtraction process.

Subtraction‘Program Resulting Contents

Link Accumulator

CLA CLL 0 000 000 000 000 (0000)
TAD B O 000 000 011 111 (0037)
CMA 0 111 111 100 000 (7740)
IAC 0 111 111 100 001 (7741)
TAD A 1 000 000 000 11 1 (0007)

A, 0046 (000 000 100 110)
B, 0037 (000 000 011 111)

Note that the number to be subtracted (subtrahend) is brought into

the accumulator, complemented (1’s complement) and incremented by
1 (to form the 2’s complement). (The 2’s complement could be ob-

tained directly through the one microinstruction CIA.) The number

from which A is to be subtracted (minuend) is then added to the ac-

cumulator and the difference is obtained.

If A were already in the accumulator from a previous calculation, an

alternate procedure could be followed. The number A could be negated
first, then B added to it to get B—A. Negating this result yields the same

answer because — (BA) is equal to A—B.

Multiplication and Division

A previous example illustrated the method of performing multiplica—
tion with the basic PDP—S instructions, namely by repeated addition.

Obviously, multiplication by this method is also subject to the limita-

tion of overflow. The largest positive number which can be directly
represented‘is 2047 m or 37778.

Multiplication by repeated addition will properly handle positive and

negative numbers within the limits of positive or negative arithmetic

overflow. For example 7 7778 is the PDP—S representation for —1. If it

is multiplied by itself the answer should be +1. In other words, adding
77778 to itself 77778 times should leave (after carries from the most

significant bit) the accumulator equal to 1.
_

3—13

7777 lst

+7777 2nd

1 7776

+7777 3rd

Disregarded
‘

1 7775

Carries .

1 0003
+7777 7776th

1 0002
i

+7777 7777th

1
.

0001

Thus, successive addition will work properly as a method of multiply~
ing negative as well as positive numbers in the PDP-S family of com—

puters.

Similarly, division could be performed by repeated subtraction. This

method of division could be used to obtain a quotient and remainder,
because only whole numbers are directly represented in the PDP-S.

There are, however, much more efficient means of multiplying and di-

viding numbers in the PDP-8. One means is through the extended arith-

metic element (EAE) option, which is described in Chapter 4. Multi-

plication and division can also be performed through use of the floating

point packages, mathematical routines, and interpretive languages of

the system software for the PDP—S. These “software” approaches to

multiplication and division are described in Chapter 6 of this book.

Double Precision Arithmetic

Two memory location (24 bits) are used to express double precision
numbers. Using these 24 bits allows the representation of numbers in

the range —-8>< 106 to 8X10? The following program adds two double

precision numbers, obtaining a double precision result

Note that if the addition of AL and BL produces a carry, it will

appear in the link. The accumulator is cleared by the DCA CL instruc—

tion, and the RAL instruction moves the value of the link into the least

significant bit position. The values of AH and BH are then added to

the carry (if any) and the higher part of: the answer is deposited in CH.

3-14

m

This technique may be extended to. any order of multiple precision.

*200

DUBADD,

AH,
AL,
BH,

BL,

CH,
CL,
$

CLA CLL
TAD AL

TAD BL
'

DCA CL

RAL

TAD AH

TAD BI-I

DCA CH

HLT

1345

2167

0312

0110

0

0

A similar procedure is followedto subtract two double precision
numbers. The following program illustrates the technique.

*200

DUBSUB,

AH,
AL,

BH,
BL, ,

CH,
CL,

KEEP,
$

,

CLA CLL

TAD BL
CIA

TAD AL

DCA CL

RAL

DCA KEEP

TAD BH

CMA
‘

TAD AH

TAD KEEP

DCA CH

CLL

HLT

1345

2167

0312

0110

0

0

0

The location KEEP is used to save the contents of the link while the

value of BH was, complemented in the accumulator.» To form a double

7 precision two’s complement number, a double precision ,one’s comple-

3-15

ment is formed and the 1 is added to it once. Thus, the value of .BL is

complemented using the CIA instruction, while the value of BH is

complemented with the CMA instruction. The CLL instruction is used

to clear the link and disregard the carry resulting from using two’s com-

plement numbers to perform subtraction.

Powers of Two

In the decimal number system, moving the decimal point right (or

left) multiplies (or divides) a number by powers of ten. In a similar way,

rotating a binary number multiplies (or divides) by powers of two. How-

ever, because of the logical connection between the accumulator and

the link bit, care must be taken that unwanted digits do not reappear in

the accumulator after the passage through the link. Multiplication by

powers of two is performed by rotating the accumulator left; division is

performed by rotating the accumulator right. Multiplication and division

by this method are subject to the limitation of 12-bit numbers (unless
double precision is used). That is, significant bits rotated out of the

accumulator by multiplication or division are lost and incorrect results

are therefore obtained. For example, the following program multiplies a

number by 8 (23).

*200

MULT8, CLA CLL

TAD NUMBER

CLL RAL

CLL RAL

CLL RAL

DCA NUMBER

IJLT

NUMBER, 0231

$

The program will replace the number 02318 by 2310,. Notice that

multiplying any number with four significant octal digits (such as

12348) using this program will yield incorrect results.

WRITING SUBROUTINES

Included in the memory reference instructions, given in Chapter 2,

was the instruction IMS (jump to subroutine), This instruction is a

modified JMP Command which makes return to the point of departure
from the main program possible. The JMS instruction automatically

stores the location of the next instruction after the JMS in the location

to which the program is instructed to jump, thereby enabling a return.

3-16

The programmer need only terminate the subroutine with an indirect

IMF to the first location of the subroutine in order to return to the

next instruction following the JMS instruction. The following simple

program illustrates the use of a subroutine to double a number con—

tained in the accumulator.

(Main Program)

START, CLA CLL

TAD N (Get the number in the AC)
'

JMS DOUBLE (Jump to subroutine to double N)
DCA TWON (First instruction after the subrou-

'

tine)

N, nnnn (Any number, N)

TWON, nnnn (2N will be stored here)

(Subroutine)

DOUBLE, .

0000

DCA STORE (Save Value of N)
TAD STORE (Get N back in the AC)

.

CLL RAL (Rotate left, multiplying by 2)
SNL

.
(Did overflow occur?)

IMP I DOUBLE

CLA CLL (If overflow occurs, display the

TAD STORE number to be doubled in the AC

VHLT and then stop the computer.)
STORE, 0000

58

Notice that the first instruction of the subroutine is located in the second

location of the subroutine. Any instruction stored in location DOUBLE

would be lost when the return address is stored. Also note that the sub-

routine as it is written must be located on page 0 or current page, be-

cause it is directly addressed. (A subroutine is often located on another

page and addressed indirectly as the next example demonstrates.)

The following program multiplies a number'in the accumulator by a

number stored in the location immediately following the JMS instruc—

tion.

3-17

(Main Program)
*200

START, CLA CLL

TAD A»

DCA .+3

TAD B

JMS I 30

0000

DCA PRDUCT

PRDUCT, 0000

A, 0051

B, 0027

*30

MULT

(Subroutine)
*6000

MULT, 0000

CIA

DCA MTALLY

TAD I MULT

ISZ MTALLY

JMP .»—2

ISZ MULT

1MP 1 MULT

MTALLY, 0000

The preceding example illustrates the following important points.

1. The JMS I 30 instruction could be used anywhere in core

memory to jump to this subroutine because the pointer word

(stored in location 30) is located on page 0 and all pages of

memory can reference page 0.

2. The period was used to denote the current location in the in-

structions DCA .+3 and JMP .-2.

3. Since the result of the subroutine is left in the AC when jump-

ing back to the main program, the next instruction should store

the result for future use.

4. The first instruction of the subroutine is in location MULT +1

since the next address in the main program is stored in MULT

by the JMS instruction.

3—18

S. The first two instructions of the subroutine set the tally with

the negative of the number in the AC.

6. The second number to be multiplied is brought into the sub—

routine by the TAD I 'MULT instruction since it is stored in

the location specified by ‘the address that the JMS instruction

automatically stores in' the first location of the subroutine. This

is a common technique for transferring information into a sub-

routine.

7. The ISZ MTALLY instruction is used in the subroutine to

count the number of additions. The 182 MULT instruction is

used to increment the contents of MULT by one, thereby mak—

ing the return jump (JMP 1 MULT) proceed to the next in—

struction after the location which held the number to be multi-

plied.

8. An interesting modification of the previous program is achieved

by defining'a “new operation” MLTPLY by including in the

coding the statement MLTPLYzJMS I 30. The assembler

would make a replacement such that any time the programmer

writes MLTPLY, the computer would perform a jump to the

subroutine and return to the program with the product in the

AC.

ADDRESS MOQIFICATION
A very powerful tool often used by the programmer is address modi—

fication, meaning the inclusion of instructions in a program to modify
the operand portion of a memory reference instruction. It is a particu—

larly useful technique when working with large blocks of stored data

as illustrated by the two programs that follow.

The first program sums 1008 numbers in locations 3003 to 3773- The

program begins in location 2008. The block of 1008 numbers is sum—

med using only one TAD instruction merely by repeatedly increment—

ing and performing the instruction.

,The second example program moves data between memory pages as

well as performing an operation upon the data. The program computes
the square of the 2008 numbers in locations 40008 to 41778. The pro-

gram starts in location 2008. All numbers to be squared must not ex-

ceed 4510 or the square is too large to be represented in the normal

format.
V

3—19

CLEAR AC

A DD FIRST NUMBE
'

ADD NEXT NUMBER

ADD 1 TO THE ADD

INSTRUCTUON

Program

*200

START, CLA CLL

TAD K100

CIA

DCA TALLY

ADD, TAD 300

ISZ ADD

ISZ TALLY

JMP ADD

DCA SUM

HLT

K100, 0100
TALLY, 0000

SUM, 0000

$

3-20

The second example illustrates the method of using indirect address-l

ing in an address modification situation. It should .be noted that in the

first example the actual instruction was incremented to perform the

modification. In the \second example, the modification was done by

incrementing the contents of a location which was used for indirect

addressing. The second example could be simplified further through
use of autoindexing, a feature that willxbe discussed later.

*200

START, CLA CLL

TAD K200

CIA

DCA TALLY

TAD K4000

DCA NUM

TAD K4200

DCA RESULT

AGAIN, TAD I NUM
JMS SQUARE
DCA 1 RESULT

ISZ RESULT

ISZ NUM

ISZ TALLY

IMP AGAIN

HLT

K200, 0200

TALLY, 0000

K4000, 4000

NUM, 0000

K4200, .

4200

RESULT, 0000

*300 »

SQUARE, 0000

DCA STORE

TAD STORE-

CIA .

DCA COUNT

TAD STORE

ISZ COUNT

JMP .,_2
,

JMP I SQUARE
STORE, 0000

COUNT, 0000

3-21

The reader should note that the first eight instructions of the second

example are concerned with intializing the program. This intializing
enables the stored program to be restarted several times and still oper-

ate on the correct locations. If the program had merely incremented

locations K4000 and K4200 and utilized those locations for indirect

addressing the program would only operate on the correct locations of

the first running. On successive runnings the program would be opera—

ting on successively higher locations in memory. Withvthe program

written as shown however the pointer words are automatically reset.

This procedure is often referred to as “housekeeping.”

INSERTING COMMENTS AND HEADINGS

Because programs very seldom are written. used, and then forgotten,
the programmer should strive to document his procedure and coding
as much as is reasonably possible. There are many instances where

changes or corrections must be made by people unfamiliar with a pro-

gram, or more commonly the original programmer is asked to modify
a program menths after his original efiort. In both cases, the success of

the attempt to change the program depends largely upon the documen-

tation provided by the original programmer. A complete and accurate

flowchart is the first form of documentation. It is extremely important
to document modifications made in the program by incorporating these

changes in the flowchart as well.

Many times it is desired to include headings and dates to identify a

program within the actual coding of the symbolic program. It is often

helpful to add comments to simplify the reading of a symbolic program

and to indicate the purpose of any less than obvious instruction. PDP-8

programming allows comments and headings to be inserted simply by

preceding any comments with a slash (/).

The following example illustrates the method used to insert com-

ments and headings in a PDP-S program, It also illustrates the use of

a rotate instruction. The program takes a binary word stored in memory

and counts the number of non-zero bits. Although the program may

have no useful application, it does serve to familiarize the reader with

the structure of the accumulator and link bit and the action of a rotate

instruction. The flowchart and comments will aid the reader to under-

stand the program.
'

3-22

(START ’

I GET THE NUMEER'
‘

RQTATE LEFT

YES
~

NO (STOP.)

I

I CLEAR LINK

7

q—-———«—~——-——————-— INCREASE COUNT

/COUNT THE BINARY ONES PROGRAM

/ 20 SEPTEMBER 1968

*200

START, CLA CLL .

»

DCA COUNT /SET COUNT TO 0.

TAD I WORD /GET THE WORD.

SNA

HLT /STOP IF THE WORD IS 0.

ROTATE, RAL /ROTATE ONE BIT INTO LINK.

SNL /WAS THE BIT = 0?

JMP .r—z /YES: ROTATE AGAIN.

CLL
-

/NO: CLEAR LINK.

Isz COUNT /COUNT THE NUMBER OF 1’s.

SNA

HLT /STOP IF THE WORD IS NOW 0.

IMP ROTATE
COUNT, o

‘

-

WORD,
'

3000 /ANY 12-1311“ NUMBER.

3-23

The following points should be observed in the preceding example.

1. The word was checked to see that it was non-zero to begin
with. If this check were not made, a zero word would be rotated

endlessly by the remaining instructions in the program.

2. Because a rotate right instruction (RAR) would transfer the

.

bits into the link just as the RAL instruction does, either could

be used in the above program. Both instructions use a circular

shift of the accumulator and link bits.

3. Because the link bit is rotated into the accumulator by the

rotate instructions, the link must be cleared each time a. l is

rotated into it.

LOOPING A PROGRAM

As many of the examples given have already shoWn, the use of a

program loop, in which a set of instructions is performed repeatedly,
is common programming practice. Looping a program is one of the

most powerful tools at the programmer’s disposal. It enables him to per—

form similar operations many times using the same instructions, thus

saving memory locations because he need not store the same instructions

many times. Looping also makes a program more flexible because it is

relatively easy to change the number of loops required for differring
conditions by resetting a counter. It is good to remember that looping
is little more than a jump to an earlier part of the program; however,

the jump is usually conditioned upon changing program conditions.

There are basically two methods of creating a program loop. The

first method is using an ISZ (2nnn8) instruction to count the number

of passes made through the loop. The ISZis usually followed by a IMP
'

instruction to the beginning of the. loop. This technique is very efficient

when the required number of passes through the loop can be readily
determined.

'

The second technique is to use the Group} 2 Operate Microinstruc-

tions to test conditions other than the number of passes which have

been made. Using this second technique, the program is required to

loop until a specific condition is present in the accumulatoror link bit,

rather than until a predetermined number of passes are made.

To illustrate the use of an ISZ instruction in a program loop situa—

tion, consider the following program which simply sets the contents of

all addresses from 2000 to 2777 to zero.

3-24.

*200

CLEAR, CLA ~

TAD CONST
‘

DCA COUNT /SET'COUNT TO 4-1000.

TAD TTABLE

DCA STABLE /SET STABLE TO 2000.

DCA I STABLE /CLEAR ONE LOCATION.

ISZ STABLE /SELECT NEXT LOCATION.

ISZ COUNT /IS OPERATION COMPLETE?

JMP .‘—3 /NO: REPEAT.

HLT /YES: HALT.

CONST, 7000 /2’S COMP OF 1000.

COUNT, 0

TTABLE, TABLE

STABLE, 0 /POINTER TO TABLE.

*2000
‘

TABLE; 0

$

Several points should be carefully noted.

1. The first five instructionsinitialize the loop, but are not in it.

The location COUNT is set to -1000 at the beginning, and 1

is added to it during each passage of the loop. After the lOOOth
'

(octal) passage, COUNT goes to zero, and the program skips
the IMP instruction, and executes the HLT instruction. On

each previous occasion, it executed the IMP instruction.

. In the list of constants following the HLT instruction, 'ITABLE

contains TABLE, which is in turn defined below as having the

value 2000, and containing 0. Therefore, STABLE contains

2000 initially. In order to understand this point it must be re-

membered that an asterisk character causes the first location

after the asterisk to be set to the value after the asterisk. There-

fore, in the previous example CLEAR equals 200 and TABL

equals 2000. '

. ISZ STABLE adds 1 to the contents of location STABLE,

forming 2001 on the first pass, 2002 on the second pass, and

so on. Since it never reaches zero, it will never skip. This is a

very common use. It is said to be indexing the addresses from

2000 to 2777. (When using an ISZ instruction in this way, the

programmer must becertain that it does not reach 0. Follow

the ISZ instruction with a NOP if neceSsa‘ry.)

3-25

4. For every ISZ instruction used in a program, there must be

two initializing instructions before the loop, and there must be

a constant and a counting location in a table of constants. This

procedure allows the program to be rerun with the counting
locations reset to the correct values.

The following program utilizes a Group 2. skip instruction to create

a loop. The program will search all of core memory to find the first

occurrence of the octal number 1234.

*0

NUMBER, 1234

*200

BEGIN, CLA CLL

. TAD NUMBER

CIA

DCA COMPARE /STORES MINUS NUMBER.

DCA ENTRY /SETS ENTRY TO 0.

REPEAT, ISZ ENTRY /INCREASES ENTRY.

CLA

TAD I ENTRY /COMPARISON IS

TAD COMPARE /DONE HERE.

SZA CLA

JMP REPEAT

TAD ENTRY

HLT /ENTRY IS IN AC.

COMPARE, 0

ENTRY, 0

$

The previous example is not very useful perhaps but it is interesting
to note that the program will search itself as well as all other core

memory locations.

Also notice the following points with regard to the example.

1. The 182 ENTRY instruction is used to index the locations to

be tested. The next instruction (CLA) is unnecessary, thus if

ENTRY becomes zero during the course of the program, the

program will not be affected. It is very important to protect

against an 182 instruction going to zero and skipping a neces—

sary part of a program, if the 182 is being used to simply
index. .

3-26

s

2. The number to be searched for was stored in location 0, and

the search starts in location 1. Therefore, the program will find

at least one occurrence of the number and will halt after one

complete pass through memory if not before.

3. The program could be modified to bound the area of the search.

By setting the contents of ENTRY equal to one less than the

desired start location and putting the number being searched for

in the location following the last location to be searched, the

program will search only the designated area of memory.

4. The program could be restarted at location REPEAT in order

to find a second occurrence of 1234 after the program had

halted with the first occurrence.

AUTOINDEXING

The PDP-8 family computers have eight special registers in page 0,

namely lecations 0010 through 0017. Whenever these locations are

addressed indirectly by a memory reference instruction, the content of

the register is incremented before it is used as the‘operand of the in-

struction. These locations can therefore be used in place of an ISZ in—

struction in an indexing application. Because of this unique action these

eight locations are called autoindex registers. It is important to realize

that autoindex registers act as any other location when addressed

directly. The autoindexing, feature is performed only when the location

is addressed indirectly.

The following example is a modification of the first program example
in the preceding section with an autoindex register used in place of the

ISZ instruction. (The purpose of the program is to clear memory loca-

tions 2000 through 2777.)

a

g
Carefully notice the difference between the two examples, especially

that TABLE now has to be set to TABLE—1 since this is incremented

by the autoindexing register before being used for the first time. This

3-27

point must be remembered when using an autoindex register. The

register increments before the operation takes place, therefore it must

always be set to one less than the first value of the addresses to be

indexed.

"' 10

INDEX,
I"200

CLEAR,

CONST,
COUNT,

TTABLE,
ll‘2000

TABLE,

0

CLA

TAD CONST

DCA COUNT

TAD TTABLE

DCA INDEX

DCA I INDEX

182 COUNT

JMP .»—2

BLT

7000

O

TABLE—1

0

The memory search example of the preceding section could also be

simplified using an autoindex register as shown below.

‘0

NUMBER,
* 10

ENTRY,
‘200

BEGIN,

REPEAT.

COMPARE,
$

1234

0 Notice that in this case ENTRY

originally equals 0 because its

CLA CLL content is incremented before

TAD NUMBER being used to obtain data for

CIA the comparison.
DCA COMPARE

DCA ENTRY

TAD I ENTRY

TAD COMPARE

SZA

JMP REPEAT

TAD ENTRY

HLT

0

3—28

PROGRAM DELAYS

Because the development of a computer was primarily sparked by a

desire for speed in performing calculations, it seems inconsistent and

self—defeating to slow the computer down with program delays. How-

ever, there are many occasions when a computer must be told to slow

down or to wait for further information. This is because most peripheral

equipment, and certainly .the human operator, is very much slower than

the computer program. A temporary delay may be introduced into the

execution of a program when needed by causing the computer to enter

one or more futile loops which it must traverse a fixed number of times

before jumping out. It is often necessary to have a computer perform a

temporary delay whilea peripheral device is processing data to be sub-y
mitted to the computer. The delays can be accurately timed so as not

to waste any more computer time than necessary.

The following is a simple delay routine using the ISZ instruction for

an inner loop and an outer loop. The reader should remember when

analyzing the example that the PDP-S represents only positive numbers

up to 37778 or 204710. Therefore, the computer counts up'to 204710

and then continues to'count starting at the next octal number 40008,

which the computer interprets as ~2048m. Successive'increments of

'this number will finally bring the count to zero. Thus. a location could

be used to count from 1 up to O by using an ISZ instruction.

(main program)

TAD CONST /START OF DELAY ROUTINE

DCA COUNT

ISZ COUNT]
’

/INNER

JMP .'—1 /LOOP

ISZ COUNT

JMP .—3

CONST, 6030 /SETS DELAY

COUNT, 0
’

'COUNTl, 0

The inner loop consists of an ISZ instruction with an execution time

on the PDP-S/I of 3.0 microseconds (a microsecond is 10'6 seconds)
and a JMP instruction with an execution time of 1.5 microseconds.

Therefore, the inner loop takes 4.5 microseconds for one pass, and each

time it is entered the program will traverse it 409610 times before leav-

ing. This means that a delay of 18.432 milliseconds (a millisecond is

3-29

10‘3 seconds) has occurred. If, as in the example above, the value of

CONST is 60308, this loop will be entered 100010 times giving a total

delay of 18.432 seconds. For any given purpose, a desired delay of

from milliseconds to seconds can be obtained precisely by varying the

values of CONST and the initial value of COUNTI. Similar reasoning
can he used to design delays for other members of the PDP-8 family.

A second type of delay, which waits for a device response, is dis—

cussed in Chapter 5. This type is not a timed delay but causes the com-i

puter to wait until it receives a response from an external device.

PROGRAM BRANCHING

Very few meaningful programs are written which do not take ad—

vantage of the computer’s ability to determine the future course the

program should follow based upon intermediate results. The procedure
of testing a condition and providing alternative paths for the program

to travel for each of the different results possible is called branching a

program. The Group 2 microinstructions presented in Chapter 2 are

most often used for this purpose. The 182 instruction also provides a

branch in a program. These instructions are often referred to as con~

ditional skip instructions. The 182 instruction operates upon the con-

tents of a memory location, while the Group 2 microinstruetions test

the contents of the AC and L.

A typical example of a conditional skip would be a program to com—

pare A and B and to reverse their order if B is larger than A.

FORM A‘E

SAVE A

IN DUMMY

STORE 8 IN

NS LOCATlON

STORE DUMMY IN

B'S LOCATION

3—30

*200

TEST,
‘

,

CLA CLL
_.

,

»

.

TAD B‘
» /SUBTRACT B

CIA /FROM A

TAD A /HERE.
SMA CLA .

HLT /STOP HERE IF A IS GREATER

0R EQUAL,

TAD A /THE REMAINDER OF

DCA DUMMY /THE PROGRAM

TAD B /DOES THE SWITCH.

DCA A
’

TAD DUMMY

DCA B

HLT .
.

.

,

A, 1234 /SUBSTITUTE ANY POSITIVE

B, 2460 /VALUES FOR A AND B.

DUMMY, 0

$

If A is less than B, their diflferencewill be negative and the HALT will

be skipped. The program will proceed to reverse the order of A and B.

If A is greater than or equal to B, the program will halt.

.

The concept illustrated by the above example can be included in a

larger program that will take a set of elements and arrange them in

increasing order. The following important concepts should be learned
L

from the example.
1. The program contains two loops to perform the. sort. The inner

loop starts at TEST and is traversed 208 times to switch ad-

jacent elements of the set. The outer loop begins at START

and is re—entered until the elements are in the correct order.

. A “software flag” was created to Signal the program that a

switch has been performed on the last pass. The flag is checked

upon every exit from the inner loop. If the flag is non-zero

(equal to 7-1), a reverse was performed on the last pass and

the next pass is started. If the flag is zero, the set is now in

order and the program halts.
V

. The flag is set to zero on each pass through the outer loop by

depositing-AC=O in it. It can only be set to~a non—zero value

by a pass through the REVERSE subroutine.
’

The TALLY had to be set to —(AMOUNT) +1 or in this

case to —'208 because if theset contains 11 elements there are

- n—-1 comparisons“ between an element and the immediately
succeeding element, thus, in this case, TALLYz—ZOB.

‘

3-31

5. The following sort of five elements illustrates the technique
used in the program.

INITIAL

G)

G)

CD

(9

®

PASS!

(9(3)

3’2?»

PASS 2

G) 00

®

® @®‘@®
In performing the above sort, the program maKes three passes.

On the third pass through the table of data, the flag is not

raised; therefore, the program stops.

swwcu

xth

7

SET FLAG

{ STOP }

‘ START ’

FORM

xrxz

NO 45
‘

YES

RESULT 0.
(R NEG‘

?

INCREMENT

XI X2

DONE

‘

N0
ALL x's

YES

RESET

thz

CLEAR FLAG

3-32

*20@

START: CLA
‘

TAD

CIA

IAC

DCA

DCA

TAD

DCA

TAD

IAC

DCA
TEST; TAD

CIA

TAD

SPA

SKP

JMS

ISZ

ISZ

ISZ

JMP

TAD

SZA

JMP

HLT

AMOUNT; 21

TALLY: DOOM

BEGIN; 2@@@

X1:
'

OZOO

X2: @@@0

FLAG: WOO“

HOLD: (3%?!”

REVERSE,0WDD
' TAD

DCA

TAD
‘

DEA

TAD

DCA

CLA

DCA

JMP

CLL

AMOUNT

TALLY

FLAG

BEGIN

X1

BEGIN

x2
1 X2

I'Xl

SNA CLA

REVERSE

I X]

HOLD

I X2

I X1

HOLD

I X2

CLL'CMA

FLAG

I REVERSE

lTHESE INSTRUCTIONS SET

/UP A TALLY EQUAL T0

lAMOUNT -1 T0 COUNT THE

_/PASSES THRU TEST LOOP.

ICLEARS FLAG BEFORE EACH PASS

/THESE INSTRUCTIONS

ISET THE POINTERS

IX] AND X2 TO THE

IPROPER VALUES

/INITIALLY.

/SUBTRACTION FOR THE

/TEST IS

/DONE HERE-

100 SWITCH IF Ac IS POSITIVE.

xser UP THE X'S FOR

/THE NEXT PASS.

IHAVE ALL x's BEEN TESTED?

INO: KEEP TESTING. a

V

IYES: WERE ANY swrrouas

/DONE ON THE LAST PASS?

iYES: GO THRU PROGRAM AGAIN.

INO: STOP, TABLE IS IN ORDER.

/SUBROUTINE TO SWITCH X'S

.1

xsrrs AC EQUAL TO -1.

/SET FLAG=-l ON A SWITCH-

6. This program can perform a sorting for any specified block of

data merely by specifying the octal number of entries to be

sorted in the location AMOUNT and by specifying the begin--
ning address of the block in BEGIN. The data to be sorted

must be placed in consecutive memory locations.

.3-33

Exercises,

1. Write a subroutine SUB to subtract the number in the AC from

the number in the location after the JMS instruction that calls the

subroutine. Return to the main program with the difference in the

AC. Use a flowchart and comments to document the procedure.

2. Write two programs to put 0 into memory location 2000, 1 into

2001, 2 into 2002, etc., up to 7778 into 2777 using (a) an 182
,

instruction for indexing and (b) autoindexing. Use flowcharts

and comments to document the procedure.

3. The following program was previously given to multiply two num-

bers together.

*200

START, CLA CLL

TAD A

CIA

DCA TALLY

MULT, TAD B

182 TALLY

JMP MULT

HLT ,

A’ 1 b
'

b r A dB
B, 1311

stitute any nurn ers or an

TALLY, 0000

$
.

,

a. What is the largest product that the PDP-S can compute using
this program?

'

Using the following value for A and B, verify that the program will'

obtain the correct answers. Remember that any carry from the most

significant bit is lost from the accumulator.

A B A X B

b. 77560—1819) 0027(2310)
c. 0000 0005

d. 7700('—641o) 0000

4. Write a program TRIADD which will add two triple precision
numbers A+B:C. There are three parts to each number, namely
AH (A high) AM (A medium), and AL (A low); BH, BM, and

BL; CH, CM, and CL. Use a flowchart and comments to docu-

ment the procedure.

3—34

10.

. Write a program to perform a multiplication between two single—

precision numbers to yield a double—precision product. Use com-

ments and a flowchart to document the procedure.

. Write a program to multiply any number n by a power of 2 (the

exponent is stored in location EXP), the product being expressed
in double precision. Use comments and a flowchart to document

the procedure.

. Write a program to find how many of the numbers stored in a

table from address 3000 to address 3777 are negative. Use a flow-

chart and comments to document the procedure.

. Write a program that will run for exactly 20 seconds on the PDP-S

or PDP—8/I before it halts. Use a flowchart and comments to

document the procedure.

. Modify the program written for. exercise 8 such that if bit 11 of

the console switch register is a l, the program runs for 20 seconds,

and if it is a O, the program runs for 40 seconds.
Hint: The OSR instruction must be used to check the switch

.

register.

The program on the next page rotates a bit left or right depend—
ing on the value of: bit 0 and faster or slower depending on the

value of the remaining bits. Analyze the program and comment

each instruction to indicate its use in the program.

3-35

*200

ROTATE,

BEGIN,

GO,

INSTR,

SAVEAC,

SAVEL,
MASK,

COUNTR,

COUNT,
LEFT,

RIGHT,

KRAR,
KRAL,

CLA CLL CML
HLT

DCA SAVEAC

RAL

DCA SAVEL

TAD MASK

OSR

DCA COUNT

OSR

RAL w.

SZL CLA

JMS LEFT »’

JMS RIGHT

CLL

TAD SAVEL

RAR

TAD SAVEAC

RAR

ISZ COUNTR

IMP .—-1

ISZ COUNT

JMP .--—3

JMP BEGIN

O

0

7000

O

0

0

ISZ LEFT

TAD KRAL

DCA INSTR

IMP I LEFT

0

TAD KRAR

DCA INSTR

IMP I RIGHT

7010

7004

3-36

I

_Chapter4

,

System Description
and Operation

The PDP—S system is composed of the computer console, a Teletype
console (usually an Automatic Send Receive Model 33) and possibly
other peripheral equipment. While normal operation of a computer sys—

tem is by programmed control, manual operation is necessary for many

tasks. This Chapter describes the manual control and operation of the

PDP-8/I: and PDP-S/Lispecifically‘ asvrepresentative of the PDP-8 com—

puter family. This chapter also provides an introduction to the more

common peripheral deViCes which may be included in a PDP—S system. ,

Chapter 5 describes the programmed control of peripheral devices and

the means for transferring information between peripheral equipment
and the central processor.

CONSOLE OPERATION
.

_

The operator console allows manual control of the computer and

provides the most elementary means of storing a program in memory.

It is a collection ’of switches and indicator lamps which enable the pro-

grammer to examine the contents of locations in memory, alter the

contents of memory locations, and determine the current status of a

running program.

Console Components
The PDP-8/I operator console is shown in Figure 4—1. The PDP—8/L

operator console is significantly different from the PDP-S/I console

and is shown in Figure 4—2. The 'following discussion applies to both .

console diagrams except where differences are noted. For reference

purposes, the switches and indicators are identified in the following
tables.

4-1

Switch

POWER

PANEL LOCK

START

LOAD ADD

DEP

EXAM

CONT

Explanation

This key-operated'switch controls the com-

puter’s primary power supply. This switch has

“on” and “off” positions. In the PDP—8/ L,

however, the switch includes a third position
‘which performs the function of the PANEL

LOCK switch, below.

This key-operated switch disables all console

switches except the switch register. (This fea-

ture is provided in the PDP-S/ L by the third

position of the POWER switch.)

The START switch initiates execution of the

computer program beginning in the location

currently held in the PROGRAM COUNTER

register. The START switch clears the ACCU-

MULATOR, LINK, MEMORY BUFFER

and instruction registers.
The LOAD ADD (load "‘address) switch sets

the contents of the switch register (SR) into

the PROGRAM COUNTER (PC). (The PC

is an internal register which is not displayed
on the PDP-8/ L console.) The computer
should be halted before operating this‘switch.

The DEP (deposit) switch sets the contents of

the switch register into the location currently

specified in the PROGRAM COUNTER. De-

pressing this switch also results in the PRO-

GRAM COUNTER being incremented by 1,
and the address, of the location previously
specified by the PC is displayed in the MEM-

ORY ADDRESS register. Successive opera-
tion of the switch stores contents of the switch

register in successive locations because the

PROGRAM COUNTER is incremented each

time the DEP switch is depressed.
The EXAM (examine) switch displays the

contents of the location specified by the

PROGRAM COUNTER in the MEMORY

BUFFER and ACCUMULATOR displays.
Depressing this switch also results in the PRO—

GRAM COUNTER being incremented by 1;

thus, repeated manipulation of the EXAM
'

switch displays the contents of successive

memory locations.

The CONT (continue) switch initiates execu-

tion of the stored program at the location

specified by the PROGRAM COUNTER. The

CONT switch does not clear any active regis-
ters. (The START switch does.)

4-2.

Figure 4-1. PDP-S/I Computer Console

Figure 4-2. PDP-S/L Computer Console

Switch

STOP

SING STEP

SING INST

SWITCH REGISTER

(SR)

MEM PROT

DATA FIELD (DF)
and

INST FIELD (IF)

Explanation

The STOP switch halts program execution at

the end of the instruction in progress.

When the SING STEP (single step) switch is

set, the computer executes instructions one

memory cycle at a time for each depression 0

the CONT switch.
'

When the SING INST (single instruction)
switch is set, the computer will execute one

instruction at a time for each depression of the

CONT switch. This switch is not present on

the PDP-S/PDP—S/L console.

The SWITCH REGISTER is a set of twelve

toggle switches used to specify binary numbers

which are loaded into registers when other

console switches are operated. LOAD ADD

sets the contents of the SR into the PRO-

GRAM COUNTER. DEP sets the contents of

the SR into memory through the MEMORY

BUFFER register. The twelve positions repre-

sent a 12-bit binary word.

PDP—S/ I When the top of a switch is out, it

represents a binary 1 and is con-

sidered set; conversely, when the

bottom of the switch is out it rep-

resents a binary O and is not set.

PDP-S/ L, When the switch is up, it repre-

PDP—8/ S, sents a binary 1 and is considered

PDP-8 set; conversely, when the switch is

'down it represents a binary O and

is not set.

This switch is provided on the PDP-S/ L only.
When set (depressed), the MEM PROT

(memory protect) switch prevents the storing
or changing of information in the upper 2008
locations (7600 to 7777) of core memory (the

upper 200., locations of field 1 in an 8K com-

puter).

NOTE: JMS, DCA, ISZ instructions and

all input transfers are not per-

mitted, thus protecting programs
or data stored in this area.

These two console elements (switches and dis-

plays) are enabled and used when the basic

computer is equipped with extended memory.
Their function is described later in this chap-
ter.

I

4-4

Indicator Display

PROGRAM
'

COUNTER

(PC)

MEMORY ADDRESS

(MA)

MEMORY BUFFER

(MB)

ACCUMULATOR

(AC)

LINK (L)

MULTIPLIER

QUOTIENT
’

(MQ)
Instruction and

Status Indicators

'Manual Program Loading

Explanation

‘The'contents of this 12-bit display represent

the; address of the next instruction to be exe-

cuted. This display is not present on the PDP-

8/ L console.

rContents represent the address of the word

being obtained from or stored in memory.

After depressing the DEP or EXAM switches,

the contents represent the address of the word

previously read or written.

The contents of this 12—bit display represent
the‘word currently being obtained from or

stored in memory.

This display indicates the current contents of

the ACCUMULATOR. After depressing the

DEP or EXAM switch, this displayindicates
the contents of the location whose address is

displayed in the MA.

This display indicates the contents of the

LINK, a 1-bit register which serves as an ex-

tension of the ACCUMULATOR.

This display is activated by the EAE option
:described later in this chapter. The option is

not available on the PDP-8/ L.

These indicators are located in the upper right
of the console. The display indicates the status,

of the program being executed and the opera-

tion code of the instruction being executed.

Having written a program, the programmer must store the instruc-

tions in memory before they can be executed. The octal value of the

instructions may be directly loaded into memory item the computer
console. Once 'the POWER switch has been turned on to energize the

4—5 '

computer, the programmer loads the instructions into memory using
the console switches. The location in which the instruction is to be

stored is identified by setting the SWITCH REGISTER to the desired

address, and then operating the LOAD ADD switch. The address will

be placed in the program counter register and displayed in the PRO-

GRAM COUNTER indicator.

To load an instruction or data into the “location specified by the

PROGRAM COUNTER, a similar procedure is followed. The

SWITCH REGISTER is set to the binary representation of the instruc-

tion (or data) and then the DEP switch is depressed. The instruction

(or data) is displayed in the MB and AC displays and the address of

the location is displayed in the MA display. Loading a program into

sequential memory locations is simplified by the fact that the DEP

switch will automatically increment the program counter register by 1.

Thus, once an initial address is specified, instructions and data may be

loaded into sequential memory locations by alternately setting the binary

representations on the SWITCH REGISTER and operating the DEP

switch.

Once loaded into memory, a program may be checked by using the

EXAM switch. To check the contents of a location, the desired address

is entered on the SWITCH REGISTER and the LOAD ADD switch

is depressed. The EXAM switch is used to display theicontents of the

, specified location in the MEMORY BUFFER display. Because opera—

tion of the EXAM switch will increment the program counter by l (as
does the DEP switch), sequential locations may be examined by re-

peated use of the EXAM switch, once the initial location is specified
using the SWITCH REGISTER and LOAD ADD switch. Thus, a

stored program may be checked to see that it was correctlyloaded by

displaying each program location.

To run a stored program, the binary value of the starting address of

the program is toggled on the SWITCH REGISTER and then the
'

LOAD ADD is depressed. (The starting address appears in the PC.)

Depressing the START switch causes the computer to execute the pro—

gram beginning with the instruction specified by the address in the

PROGRAM COUNTER register. A program may be manually halted

by the operation of the STOP switch.

Console switch positioning and procedures for initializing the console

are outlined below. Figures 4-3 through 4-5 summarize the procedures
for loading, checking, and running a program.

4-6

INITIALIZE

SET SR T0

PROGRAM’S FIRST

ADDRESS

I
DEPRESS LOAD ADD

SWITCH

SET SR TO

PROGRAM'S FIRST

INSTRUCTION

I
DEPRESS DEP

SWITCH

ALL

INSTRUCTIONS

.

IN

7

SET SR TO

PROGRAM'S NEXT

INSTRUCTION

PROGRAM

IS LOADED

Figure 473.

CONSOLE SWITCH POSITIONING

PDP—S/I When the top of a switch is out,
'

'

it represents a binary 1- and is con-

sidered set; conversely, when the

bottom of the switch is out it rep-

resents a binary 0 and is not set.

PDP-8/L, When the switch is up it represents

PDP-8/S, a binary 1 and is considered set;

EDP-8 conversely, when the switch is

down it represents a binary () and

is not set.

INITIALIZING THE CONSOLE

Computer POWER is on.

PANEL LOCK is off.

SWITCH REGISTER equals zero.

Both SING STEP and SING INST are

not set.

All peripheral devices turned off.5"

P939?"

Manually Loading a Program

4—7

SET 5’? TO

THE FIRST

ADDRESS

4
DEPRESS

LOAD ADD

SWITCH

4
DEPRESS EXAM

SWITCH SET sn TO

‘
VALUE or MA -

comewrs or MA 4
(S DISPLAYED DEPRESS

m MB LOAD ADD

swurcn

MB -

CORRECT
SET sa

INSTRUCTION
TO CORRECT

7
msraucnon

DEPRESS DEF

swn‘cn

ALL

INSTRUCTIONS

CHECKED

?

mn‘muze

PROGRAM

‘5 CHECKED

SET SR T0

‘

.
.

ADDRESS

Flgure 4-4. Checking a Stored Program 0F FiRST

msmucnou

4
DEPRESS LOAD ADD

SWITCH

4
DEPRESS START

swwcu
V

PROGRAM

iS RUNNING

Figure4-5. Running a Stored Program

4-8

TELETYPE OPERATION

The ASR 33 Teletype console is the basic input/output device for

the PDP-8 computer family. It consists of a printer, keyboard, paper

tape reader, and paper tape punch. The Teletype unit can operate :

under program control or under manual control. Programmed operation
of the Teletype unit is described in detail in Chapter 5. Operation of the

Teletype unit as an independent deyice for generating paper tapes is

described later in this section.
‘

Teletype Unit Components

The ASR 33 Teletype unit Commonly used in conjunction with the

PDP-S computer family is pictured in Figure 4-6 with the major features

noted.

OFF

REL.

START -

STOP-

FREE-

orr

LINE 0 LOCAL

Figure 46. ASR 33 Teletype Console

4-9

The components of the Teletype unit and their functions are de—
'

scribed in the following paragraphs.
‘

CONTROL KNOB
.

The control knob of the ASR 33 Teletype console (see Figure 4-6)

has the following three positions;
'

LINE The Teletype console is energized and connected to the

computer as an input/ output device under computer con-

trol.

OFF The Teletype console is de-energized.

LOCAL The Teletype console is energized for off-line operation
under control of the Teletype keyboard and switches ex-

clusively.

0000000000000
@00000000

00000000000000'

@ooooooooooa

Figure 4—7. Teletype Keyboard

KEYBOARD

‘

The Teletype keyboard shown in Figure 4-7 is similar to a type-
writer keyboard, except that some nonprinting characters are included

as upper case elements. For typing characters or symbols, such as $,
% , it, which appear on the upper portion of numeric keys and certain

alphabetic keys, the SHIFT key is held depressed while the desired

key is operated.

Designations for certain (nonprinting) operational functions are

shown on the upper part‘of some alphabetic keys. By holding the

CTRL (control) key depressed and then depressing the desired key,
these functions are activated. Table 4-1 lists several commonly used

keys that have special functions in the symbolic language of PDP-8

family computers.

4—10

PRINTER

The printer provides a typed copy of input and output at ten char-
_

acters per second maximum rate. When the Teletype unit is online
‘

(LINE), the copy is generated by the computer; when the Teletype
_

unit is offline (LOCAL), the copy is automatically generated when-

ever akey is struck. .

'

’

PAPER TAPE READER

The paper tape reader is used to input into memory data punched
on eight-channel perforated paper tape at a maximum rate of ten

characters per second. The reader control positions are shown in Fig—
ure 4-6 and are described below.

START Activates the reader; reader sprocket wheel is engaged and

operative.
STOP Deactivates the reader; reader sprocket wheel is engaged

but not operative.
'

FREE Deactivates the reader; reader sprocket Wheel is disengaged.

Table 4-1. Special Keyboard Functions

Key Function Use
.

SPACE
I

space used to combine and delimit symbols
or numbers in a symbolic program

RETURN carriage return used to terminate line of symbolic
program

HERE IS {blank tape used for leader/ trailer (effective only

in LOCAL)
RUBOUT rubout used for deleting characters, punches

. all channels on paper tape

CTRL/ REPT/ P
C

code 200 used for leader/ trailer of binary pro-
‘

gram paper tapes (keys must be re-

leased in reverse order: P, REPT,
CTRL)

LINE FEED line feed follows carriage return to advance

printer one line

4-11

PAPER TAPE PUNCH

The paper tape punch is used to perforate eight~channel rolled oiled

paper tape at a maximum rate of ten characters per second. The punch
controls are shown in Figure 4-6 and described below.

REL. Disengages the tape to allow tape removal or loading.
B. SP. Backspaces the tape one space for each firm depression of

the B. SP. button.

ON Activates the paper tape punch.
OFF Deactivates the paper tape punch.

CHANNELS

87654 321

%

Data is recorded (punched) on paper
*' COLW"

tape by groups of holes arranged in a

definite format along the length of the

tape. The tape is divided into channels,
which run the length of the tape, and

into columns, which extend across the

width of the tape, as shown in the ad-

jacent diagram. The paper tape read-

ers and punches used with PDP-8

family computers accept eight-channel
paper tape.

3
L- SPROCKET

HOLE

Generating a Symbolic Tape _

The previously described components may be used to generate a

symbolic program paper tape through the following procedure.

When switched to LOCAL, the Teletype unit is independent of the

computer and functions like an electric typewriter. Any character

struck on the keyboard is printed, and also punched on paper tape if

the tape punch is ON. Each character struck on the keyboard is rep-

resented in code by one row of holes and spaces according to the

ASCII code described in the following section and given in Appendix B.

4—12

VA sectiOn/of leader-trailer code several inches long isvpunched at

the beginning of the symbolic tape, by pressing the HERE IS key on

the Teletype keyboard; The symbolic program is then carefully typed,

following the conventions used in PDP-8 symbolic programs as de-

scribed1n Chapter 3. -

'

A typing error can be corrected using the B.SP button of the paper

tape punch and the RUBOUT key on the Teletype keyboard. The BSP

button backspaces the paper tape one column for each depression of
‘ the button, and the RUBOUT key perforates all eight channels of a

column (this perforation is ignored by the computer). Therefore,
errors are removed by backspacing the tape to the error and typing
rubouts over the error and all following characters. After typing rub—

'

cuts, the correct infomation must be typed beginning where the error

occurred.
'

Once the symbolic tape is punched, more leader-trailer tape is gen-

erated by striking the HERE 15 key The tape is removed from the

punch unit by tearing against the plastic cover of the punch. The sym-

bolic program thus generated is the input to the assembler described

in Chapter 6.

The program may be listed (typed out) by placing the paper tape
in the paper tape reader This is done by releasing the plastic cover

of the reader unit and placing the eight—channel tape over the reader

head with the smaller sprocket holes over. the sprocket wheel, and

replacing the cover. If the Teletype control'is switched to LOCAL and

the reader is switched to START, the tape will advance over the reader

head and a printed copy of the program will be typed on the Teletype

printer. If the tape punch is also ON, a duplicate of the tape will be

generated at the same time.

Paper Tape Formats

Manual use of the toggle switches on the operator console is a

tedious and inefficient means of loading a program. This. procedure is

necessary in some instances, however, because the PDP—S family of

computers must be programmed before any form of input to the

memory unit is possible. For example, before any paper tape can be

used- to input information into the computer, the memory unit must

have a stored program which will interpret the paper tape format for

the computer. This loader program must be stored in memory with

the console switches. A loader program consists of inputinstructions
to accept information from the Teletype paper tape reader and instruc-
tions to store the incoming data in the proper memory locations.

34.13

Before the loader program can be written to accept information,
the format in which the data is represented on the paper tape must

be established. There are three basic paper tape formats commonly
used in conjunction with PDP~8 family of computers. The following
paragraphs describe and illustrate these formats.

t3

‘—
CHANNEL 7

iO

O. o O 61

.00 O 32

I. O 12

0.0.0... 77

I no I 52

.0 .0 I3

I. 0 II

0.00.... 77

O I. I. 53

I. 0.13

.I 10

0.0.0... 77

o 00

0...... 77

O... 07

O O... 07

W00

W
00 O o o 324

O. 00 310

on on o 311

O. O O O O 323

O O o 240

O. O O O BII

0. 00 O. 323

O 0 o 240

O. o O 301

C. O I I. 323

O. O l. 3034

.0 I 0 O 311

O. .0 O 311

O I o 240

O. I O. 306

O. CO... 317

I. O o 0 322

I. I. I O 315

O. o o 301

o o 324

ll)

m—I-i

-nm>

4>§1307I

LOCATION

CONTENTS

LUCATION

CONTENTS

LOCATION

CONTENTS

LOCATION

CONTENTS

LOCATION

ASCII FORMAT

The USA Standard Code for Informa-

tion Interchange (ASCII) format uses

all eight channels1 of the paper tape to

represent a single character (letter,

number, or symbol) as shown in the

diagram at left. The complete code is

given in Appendix B.

RIM (READ IN MODE)
FORMAT

RIM format tape uses adjacent col-

umns to represent ,1 2-bit binary infor-

mation directly. Channels 1 through 6
'

are used to represent either address or

information to be stored. A channel 7

punch indicates that the adjacent col-

umn and the following column are to

be interpreted as an address specifying
the location in which the information

of the following two columns is to be

stored. The tape leader and trailer for

RIM format tape must be punched in

channel 8 only (octal 200).

1Channel 8 is normally designated for parity check. The Teletype units used

with PDP-S family computers do not generate parity, and Channel 8 is always
punched.

4-14

E
.

C : O O I (I)? ORIGIN

. . . . 32
msreucnou

BIN (BINARY) FORMAT

' ‘

j g:
» BIN format tape is similar to RIM

. 00
'“STRUCT'ON format except that only the first ad-

- oo dress of consecutive locations is speci-
R

u

' 0°
my “WON

fied. An address is des1gnated by 'a

O o 2 . : (5’: msmucnon channel 7 punch and information fol—

. . . . o o o 77 lowing an address is stored in sequen—
- o o:

'NSTRUCT'W
tial locations after the designated

' ' °

:
' ' 76

msmucnou address, until another location is speci—

. . . , . . . 33 fied as an origin. The tape leader/

0 . . so
'“SIRUCI'ON trailer for BIN format tape must be

- 0 01
msmucnou punched in channel 8 (octal 200)

0.00000 77

only.
. . . . 45

INSTRUCTION
I 0

Paper Tape Loader Programs

The three previously described paper tape formats are each used

for a separate purpose in conjunction with PDP— 8 family computers.
The ASCII format is used to represent symbolic programs on paper

tapes, which are then used as input to the assembler. As described in

Chapters 2 and 3, the assembler translates the mnemonic instructions

and symbolic addresses into binary instructions and absolute addresses.

Once this translation has been performed by the assembler, a binary
format tape is generated.

The binary format tape is the common means of loading an as—

sembled program into the core memory of a PDP-S family computer.
The BIN (Binary) loader is the program used to load these binary
format paper tapes. Program instructions are stored in successive lo—

cations beginning with an origin which is signaled by a channel 7 punch
on the paper tape. The BIN loader isla lengthy program requiring 83

memory locations. As an alternative to manually entering the contents

of all 83 locations, the RIM (Read In Mode) format is used.
‘

The RIM loader is simpler than the BIN loader because the memory

unit is supplied with a location for each incoming instruction. It con-

sists of 17 instructions which must be toggled into memory. The BIN

loader is punched in RIM format, and is loaded by the RIM loader;
but it is used to load tapes punchedin the

BIN format, which is the

output of the assembly program.

The RIM loader18 listedin Table 4—2. The instructions are toggled
in, and checked by following the flowcharts given in Figures 4~3 and

4-15

4-4. The instructions are given for use with both the low speed reader

(included in the Automatic Send Receive Model 33 Teletype) and

for the high speed reader (an option described later in this chapter).

Table 4-2. RIM (Read In Mode) Loader

Instruction

Location Low—Speed Reader High-Speed Reader

7756 6032 6014

7757
p

6031 -, 6011

7760 5357 5357

7761 6036 6016

7762 7106 7106

7763 7006
,

.7006

7764 7510 7510

7765 5357 5374

7766 7006 7006

7767 6031 6011

7770 5367 - 5367_

7771 6034 6016

7772 7420 7420

7773 3776 3776

7774 3376 .3376

7775 5356 5357

Note: Location 7776 is used for temporary storage.

The RIM loader will load into memory any program punched‘on

paper tape in the RIM format. Because paper tapes in the RIM and

BIN formats cannot be used until the user understands the material

in Chapter 6, further discussion of the use of paper tape loaders is

contained in that chapter.

PERIPHERAL EQUIPMENT AND OPTIONS

PDP-8 family computers are used in many different environments

and are interfaced. with many different peripheral devices. The Teletype
unit is the most common peripheral device, but other equipment and

options often incorporated in a system with the PDP-S include high

speed paper tape reader and punch units, DECtape, DECdisk, ex-

tended memory, and the extended arithmetic element (EAE). These

options give the basic PDP-8 new capabilities of which the program-

mer should be aware. The purpose and features of each of these op—

tions is described in the following paragraphs.
All of. the options listed above and many others may be directly

connected tothe PDP—S/I. The PDP-8/L may be directly equipped
with the high Speed paper tape reader and punch unit only. Other

4-16

peripherals must be interfaced to the PDP-8/L through an I/O con—

version panel and/or a peripheral expansion panel. EAE is not avail-

able with the PDP-8/ L.
.

High Speed Paper Tape Reader and Punch Unit

Loading a long paper tape program into the PDP-S core memory

with the low—speed reader of the ASR 33 Teletype unit is very time

consuming. Punching a long program on paper tape from an assembly
'

program likewise is very slow. If handling lengthy paper tapes is corn~

manly required, much computer time is wasted while these low—speed
I/O devices read or punch data. The high-speed paper tape reader

and punch unit, shown in Figure 4—8, performs paper tape input and

output at a considerably faster rate. It is of great value in a system
that relies on paper tape as a primary medium of data and program

storage.
’

READER PUNCH

Figure 4-8. High~Speed Paper Tape Unit

The high—speed paper tape reader is used to input. data into core

memory from eight-channel, fan~folded (non—oiléd), perforated paper

tape. The reader inputs information photoelectrically at a rate of 300
1

characters per second (ASR 33 reader inputs at ten characters per

second maximum); Primary power is applied to the reader when the

computer console POWER switch is on. The reader is controlled by
the computer, although the operator may indirectly control the reader

from the keyboard through the’computer. Tape may be advanced,
without being recorded, by the photoelectric sensors, by pressing the

white advance button.
'

4—17.

Paper tapes are manually positioned in the high speed reader with

the following steps.

1. The paper tape is placed in the right—hand bin such that the

beginning of the tape will pass over the sensors first.

2. Several folds of leader tape are placed in the left—hand bin

with the tape passing under the tape retainer cover.

3. The retainer cover is closed over the tape such that the feed

holes are engaged in the teeth of the sprocket wheel.

4. Tape is advanced and read by programmed computer in-

structions.

Once the paper tape has been properly placed in the reader and the

leader/ trailer has been positioned as outlined in the preceding steps,
the tape is normally read under control of system software.

The high speed paper tape punch is used to record computer out-

put on eight-channel, fan-folded paper tape at 50 characters per sec-

ond. All characters are punched under program control from the com-

puter. Primary power is available to the punch when the computer
console POWER switch is turned on. Power is supplied when the

POWER button is depressed on the punch unit itself. In addition to

the POWER button, a FEED button is located on the punch enclosure

to advance feed—hole—only punched tape for leader/ trailer purposes.

The loader programs, symbolic assemblers, Symbolic Editor, and

other system software presented in Chapter 6 include instructions for

using the high speed reader/ punch, as well as for using the Teletype
reader/ punch. (By incorporating the appropriate instructions for the

high speed unit (see Appendix D), the user may write his own l/O

routines for this device as outlined in Chapter 5.)

Extended Memory
The PDP- 8 family of computers have a memory unit composed of

12-bit magnetic core locations. The basic configuration stores 4,096

12-bit words; however, the memory unit of the PDP-S/I, -8/S, or -8

can be expanded into a maximum storage of 32,768 words by adding
4,096-word memory modules. The PDP—8/ L may be expanded to

8,192 words. Each module is called a field, with field 0 being the

original 4,096 words and other fields designated 1, 2, . .

.,
7. (The

PDP-8/L can have only fields 0 and 1.)

Expansion of the basic memory introduces data field and instruction

field registers into the memory unit. Related to these registers are the

DATA FIELD and INST FIELD switches and displays of the com—

puter console. Since the 12-bit word of the PDP-8 is capable of rep-
'

resenting only 4,096 locations uniquely, the data field and instruction

4-18

field registers are used to designate the field of 4,096 words which

contains a particular address.

INSTRUCTION FIELD

The content of the instructionfield register determines the instruc-

tion field (field of 4,096 words) that the instructions are to be taken

from. Any directly addressed AND, TAD, ISZ, or DCA instruction

will obtain its operand from the instruction field. In indirectly ad-

dressed instructions, however, the pointer address is taken from the

instruction field, but the operand (specified by the efiective address)
is obtained from the data field.

DATA FIELD .

The content of the data field register specifies the data field (field of

4,096 words) from which operands (specified by the effective address)
are taken in indirectly addressed AND, TAD ISZ or DCA instructions.

(The pointer addresses are obtained from the instruction field.)

INITIAL FIELD ASSIGNMENTS
The original setting of the data field and instruction field registers

are by the DATA FIELD and INST FIELD switches of the computer
console (see Figure 4—1). Thus, to run a program beginning in loca-

tion 7200 of field 1 and operating on data in field 0, the INST FIELD

(IF) switches are set to 001, and the DATA FIELD (DF) switches

set to 000 (on the PDP—S/L, set to 1 and 0 respectively). The switch

register is then set to 2008. When the LOAD ADD switch is operated,
the values for the data field and instruction field are entered as well

as the starting address. When the START switch is depressed, thepro—

grambeginning in location 200 of field 1 is executed.

A common use of extended‘mcmory is the storage of system soft—

ware. For example, the Binary \Lo'ader may be stored in field 1. By

setting IF—_ 1 and DF-—._ 0, the Binary Loader runs in field 1, but. de-

posits the program (whichIS simply data to the loader) in field 0.

CHANGING FIELD ASSIGNMENTS

The instructionsvfor extended memory (see Appendix D) may be

used to change instruction and'data fields during the execution of a

program. The instructions are written in the following format.

Symbolic Instruction Explanation

CIF+30 change to instruction field 3

CDF—{~10 change to data field 1

The field being changed to is specified by adding its value to the second

octal digit position of the change field instruction. The CDF instruction

, 4-19

causes all future indirectly-addressed operands to be taken from the

specified data field. The CIF (change instruction field) instruction does

not take eifect immediately, but waits for a JMP or JMS instruction to

be encountered in the program execution. When the JMP or JMS is

encountered, control is transferred to the new instruction field. Thus,
if the instruction field is originally field 0, the following instructions

transfer control to field 1.

CIF-l— l O

JMP 20

The next instruction to be executed in the program is contained in

location 20 of field 1. If the 1 MP is indirectly-addressed, the pointer
word is obtained from the old field, but the JMP is to a location in the

new field.

DECtape System

DECtape is an option of the PDP-8 family of computers which

serves as an auxiliary magnetic tape storage facility and updating de-

vice. The standard DECtape transport unit is pictured in Figure 4-9.

The DECtape system stores and retrieves information at fixed positions
on magnetic tape. The advantage of DECtape over conventional mag-

netic tape is that information is stored at fixed positions which may be

addressed. Allocation of fixed, addressable positions for information

storage is a unique feature of DECtape storage facilities, while con-

ventional magnetic tape stores information in sequential (not directly
addressable), variable—length positions. DECtape incorporates timing
and mark information to reference the fixed positions. The 10-channel

DECtape records five channels of information: a timing channel, a

mark channel, and three information channels. These five channels are

duplicated on the remaining‘five nonadjacent channels to minimize

any possibility of loss of information from the other channels. The

DECtape is organized in blocks of data words with control words to

identitfy each block. The tape is bidirectional; that is, it can be written

or read in the forward or reverse direction. Information should be read >

in the same direction that it was written.

The DECtape control unit performs the transfer of information be-

tween the PDP—S and the transport unit. The control can operate as

many as eight separate DECtape transport units.

4-20

,1

Figure 4—9. DECtape Transport Unit

The DECtape transport unit shown in Figure 4-9" is a bidirectional

magnetic tape transport which reads and writes the 10—channel mag-

netic tape. Tape movement can be controlled by programmed instrucL

tions from the computer or by the manual operation of switches located

on the front panel of the transport. Data is transferred only under pro—

gram control.
'

The transport controls are identified below:

Transport Control Explanation

REMOTE A This switch position energizes the DECtape
-

, transport and places it under program control.

OFF . This switch position disables the DECtape
transport.

LOCAL This switch position energizes the DECtape

transport and places it under operator control

from external transport switches.

WRITE ENABLED This switch position enables the DECtape for

search, read, and write activities.

WRITE LOCK This switch position limits, the DECtape trans—

port to search and read activities only. (This

prevents accidental destruction of permanent

data.)
'

Unit Selector The value specified by this eight-position ro-

tary switch identifies the transport to the con-

trol unit.

NOTE: Position 8 on the Unit Selector

switch corresponds to DECtape
unit 0.

4-21

With the transport in LOCAL mode, depress-
ing this switch causes tape to feed onto the

right-hand spool.
With the transport in LOCAL mode, depress-
ing this switch causes tape to feed onto the

left-hand spool. The REMOTE and WRITE

ENABLED lamps indicate whenever their re-

spective conditions are present.

DECdisk System
The DECdisk file is a fast, random-”access bulk storage device for

the PDP-8 computer family. It has a considerably faster access time

than DECtape and offers storage of 32,768 words on each disk (as

many as four disks are possible). The DECdisk comprises a storage
unit with electronics to perform the read and write functions, and the

computer interface logic which participates in the transfer of informa-

tion between the central PDP—8 and the DECdisk unit.
'

The storage unit contains a motor-driven, nickel/cobalt-plated disk.

The disk has ‘16 data tracks, with 2,048 words per track. There are

two timing tracks plus two spares. Data is recorded on a single disk by
fixed position read/write heads. Transfer of information between the

DECdisk and the PDP-S is controlled by programmed instructions as

outlined in Chapter 5.

A fast, convenient, keyboard—oriented Disk/DECtape Monitor is

available for use with the PDP-S family computers to allow the pro-

grammer to efficiently control the flow of programs through any PDP—8

having a DECdisk or DECtape. This monitor system is described in

more detail in Chapter 7'.

Extended Arithmetic Element
The EAE option of the PDP-8 computer family (not available on

the PDP—S/L) provides circuitry to perform arithmetic operations which

can not be directly performed with the basic PDP—S instruction Set.

The option includes microinstructions to perform multiplication and

division. Other microinstructions perform arithmetic and logical shifts

and normalize both positive and negative two’s complement numbers.

The option provides a 12-bit multiplier quotient register (MQ)

which'15 used in conjunction with the AC to perform direct multiplica-
tion and division. The content of this register is displayed on the PDP- 8

console.

The EAE option is essentially an increase in instruction capability.
The instructions, which are microprogrammable, are included in Ap—

pendix D.

4-22

NOTE TO READER

The following exercises are intended for readers who have access to

a computer of the PDP-S family. Readers who do not presently have

access to such a computer should begin study of Chapter 5.

Upon completion of the following exerCises, readers with access to

a PDP-S would benefit from reading the sections of Chapter 6 which

describe loaders, the Symbolic Editor, and the PAL III Symbolic
Assembler. Although knowledge of this material is not necessary to

understand the subject matter of Chapter 5, this knowledge will facili—

tate the running of programs presented therein.

EXERCISES

1. Toggle into memory and run the programs written in Chapter 2,
for exercises 6 and 10.

2. Toggle into memory the RIM Loader (Table 4-2) using the con-

sole switches. Verify the contents of the registers with the EXAM

switch.

3. Write a program to set the contents of locations 2000 through
2007 to the value of the switch register and then halt. Toggle it in

and verify that it works.
,

4. Write a program to accept two numbers from the switch register
and add them displaying their contents in the accumulator. (Hint:

precede each OSR instruction by a HLT. After seeing the switch

register activate the CONT key.) Translate the program into octal

and toggle it into memory. Verify that it works properly.

4 ~23

4-24

Chapter 5

Input/Output

Programming

Being able to program a computer to do calculations is of little use

if there is no way of getting the results of calculations from the

machine. Likewise, the programmer often must supply the computer

with information to be processed. A programmer must be provided
with the means to transfer information between the computer and the

peripheral devices that supply input or that serve as a means of output.

Before a transfer of information can be executed, a control function

must be supplied to specify when the exchange will occur, with what

peripheral device the exchange will occur, and where in core storage

the information will be stored (or obtained from). In general this con—

trol function may be served by either the PDP—8 or the
peripheral

de—

vice itself.

There are three basic methods for theptransfer of information be»

tween input/output (I/O) devices and the PDP—S. The first two

methods provide for PDP—S control over the transfer. One method is

programmed transfer, in which instructions are included at some point
in the program to accept or transmit informatiOn.- Thus, programmed
transfers are program initiated and are under program control.

Information may also be transferred through program interrupt, a

standard feature of the PDP-S computer family that provides for de»

vices to signal the PDP—S when they are ready to transfer information;

the program will then interrupt its normal flow and jump to a routine

to process the information, after winch it will return to the point in the

main program at which it was interrupted. Thus, program. interrupt
transfers are device initiated but are under program control.

5-1
I

These first two methods (i.e., programmed transfers and program

interrupt) use the accumulator as the bufier, or storage area in the
computer, for all data transfers Therefore, only one 12-bit word of

input or output may be transferred at one time by a programmed
transfer, or by program interrupt.

The third method of information transfer is datagbreak, an option
for the PDP-S/L but standard for other PDP-S computers. Data break

is essentially device controlled and allows for direct exchange of large

quantities of information betWeen the device and the PDP-S memory.

It differs from the previous two types of transfer in that there are no

program instructions to handle the transfer and the accumulator is not

used as a buffer. Data break transfers are device initiated and device'

controlled

INPUT/OUTPUT INSTRUCTIONS

As the name implies, programmed transfers: of information are ac-

complished with a set of program instructions. The instructions are

similar to the operate microinstructions in that there is no need to

specify an address in memory. The operation code 68 is used to specify
an input!output transfer (IOT) instruction. A11 programmed transfers

are between the accumulator and the device. Since many different de-

vices could be connected to one computer and each device may at

some time transfer information, the instruction must identify the proper

device for each transfer. The instruction must also specify the exact

nature of the function to be performed.

IOT Instruction Format

All IOT instruction is a 12-bit word that is in the following format.
.

The first three hits represent the operation code 68. The remaining nine

bits may be either binary 0’s or 1’s.

O O O 0 O O O 0 0
i i O

l l i 1 1 i l l 1

k A A. I
Y Y

OPERATION DEVICE SELECTION OPERATION

CODE CODE SPEClFICATION

BITS

Figure 5-1. The IOT Instruction

5-2

The IOT instruction is divided into three parts: operation code, de~

vice selection code, and operation. specification bits.

Device Selection

The device selection code is transmitted to all peripheral equipment
Whenever the IOT instruction is executed. A device selector within

each peripheral device monitors the device Icodes. When the device

selector recognizes a device code as the device’s assigned code, the de—

vice receives the last three hits of the instruction. Each of the last three

bits specifies an action associated with the‘device. When one of the last

three bits is set to a 1, the specified action is performed. Since there

are three bits, only three different actions can be specified for each de-

vice code, although microprogramming is possible. When more instruc—

tions are necessary for a given device, more than one code is assigned
to the device.

Checking Ready Status

Because there is a great difference in the processing speed of a com—

puter and the speed of most peripheral devices, the computer must

check the readiness of a device before any transfer of information is

performed. The input device must signal the computer that it has com-

pletely assembled the information and is now ready to transfer the in-

formation to the computer memory. The output device must signal its

readiness to accept the next piece of information from the computer.
Without such signals, the computer would input and output informa-

tion at a faster rate than the device could process it and some infor-

mation would be lost.
I

To prevent any loss of information, the computer program checks

the ready status of the transmitting or receiving device as part of pre-

paring for a normal data transfer. The ready status is usually checked

with a skip instruction such that if the device is ready, the following
instruction is skipped. The ready status is signaled through a system
of flags, which are 1-bit registers within the device. All I/O devices

have a device flag which is set to a 1 when the device is ready; that is,
when it canbe used (if it is an output device), or when it has informa-

tion (if it is an input device). If the flag is cleared (set to 0), the device

is busy. If a program initiates a device action, the flag associated with

that device will be set to a 1 when the device action is completed.

5-3

Instruction Uses

In general, for each device there are three instructions:

1. An instruction to transfer information and operate the device.

2. An instruction to test the ready status of the device and skip
on the ready (or not-ready) status of the device.

3. An instruction to clear the device flag.
'

The above instructions may be microprogrammed. In particular, the in—

structions to clear the flag and to operate the device often are com—

bined.
'

The specific instructions for devices are given in the following
sections. The Teletype unit is described in depth to explain the fun-

damentals of programming data transfers. The general techniques

developed for the Teletype unit may be extended to handle other de-

Vices.

ASCII Code

The ASCII (U.S.A. Standard Code for Information Interchange) is

presented in Table 5-1. Many of the programs written in this chapter
use this code to transmit information to the PDP-S. The fact that the

ASCII code for the octal digits 0 through 7 is the sum of that digit
plus 2608 shouid be observed.

PROGRAMMING THE TELETYPE UNIT

One of the most common I/O devices is the Teletype unit, which

contains a keyboard, printer, paper tape reader, and paper tape punch.
The Teletype unit can use either the keyboard or the paper tape reader

to input information to the computer and can use either the printer or

the paper tape punch to accept output information from the computer.
The Teletype unit is therefore assigned two device codes.

Teletype [up-(,1Output Transfer Instructions

Functioning as an input device, the keyboard/reader is assigned the

device code 03,5, and functioning as an output device, the printer/

punch is assigned the device code 043.

5-4

Table 5-1. The S-Bit ASCII1 Code

,

~ 8-Bit S-Bit

Character Octal Character Octal
g“ m

A 301 - I . 241

B 302 ,

’

“

242

C 303 '# 243

D 304 $ - 244

E 305 % 245
V

F 306 & 246

G 307
'

247

H 3 l 0 (250

I
_

3 1 1) 25 1

. J 3 12 * 252

K 3 1 3 + 253

L 3 14 , 254

M 315 —- 255

N 3 1 6 . 256

O 3 I7 / - 257

P 320 : 272

Q 32 1
‘ ; 273

R 322 < 274

S 323 = 275

T 324 > 276

U 3 25 7 277

V 326 @ 300

W 327 [333

x 330 \
,

334

Y 33 1] 335

‘Z 332 t 336

O 260 e- 33 7

1 261
'

Leader/Trailer
'

200

2 262 LINE FEED 212

3 263 Carriage RETURN 215

4 264
_

SPACE 240

5 265 RUBOUT
'

377

6 266 Blank 000

7 267 BELL 207

8 270
'

TAB
‘

21 1

9 27 1 FORM , 214

1 An abbreviation for USA Standard Code for Information Interchange.

KEYBOARD/READER INSTRUCTIONS

The instruction format for the keyboard/ reader is shown in Figure
5—2. The mnemonic instructions generated by bits 9, 10, and 11 are

noted, The sequence in which the mnemonic instructions are executed

when microprogrammed is noted below.

\ A J
'

lV Y

OPERATION DEVICE CODE KSF

CODE 3

KCC

KRS

Figure 5-2. Teletype Keyboard/Reader Instructions

Sequence VMnemonic Octal Eflect

1 KSF 6031 Skip the next instruction when

the keyboard buffer register is

loaded with an ASCII symbol
(causing the keyboard flag to be

raised).

2 KCC 6032" Clear AC, clear keyboard flagi

KRS 6034 Transfer the contents of the key-
board buffer into the AC.

2,3 KRB 6036 Transfer the contents of the key-
board buffer into the AC, clear

the keyboard flag.

The fourth instruction (KRB) is a microprogrammed combination of

the mnemonics KCC and KRS. If the paper tape reader is loaded with

a paper tape and switched to START, the KRB instruction accepts one

character from the reader.

A program using the above instructions to read in one ASCII char-

acter from the keyboard or paper tape reader is shown in Figure 533.

Note that this program does not type the character on the teleprinter, it

merely stores the ASCII code for the character in the location STORE.

5-6

*200

INPUT, KCC /CLEAR KEYBOARD FLAG

JMS LISN

DCA STORE

HLT

LISN, 0
'

KSF /SKIP ON KEYBOARD FLAG

JMP .

— l

KRB / READ KEYBOARD BUFFER

JMP I LISN

STORE, 0

39

Figure 5-3; Coding to Accept One ASCII Character

The main program begins with KCC. In general, the main program

should begin by clearing the flags (Xf all devices to be used later in the

program. If the above program is started at location 200, it will pro—

ceed to the KSF, JMP .—1 loop, and stay in this loop endlessly until a

key on the Teletype unit is pressed or a paper tape is loaded into the

reader. When the ASCII code for the character is assembled in the

keyboard/reader buffer register, the flag will be set to a 1 and the pro—

gram will skip out of the loop. The contents of the buffer will be trans-

ferred into the accumulator, and the buffer and flag will be cleared.

PRINTER/PUNCH INSTRUCTIONS

The instruction format for the Teletype printer/punch IOT instruc-

tions is given in Figure 5-4. The mnemonic instructions generated by
bits 9, 10, and 11 are discussed on the following page.

l i O O 0 O l‘ 0 O

K
V

-

, V
g

Y
J

_
rOPERATION DEVlCE CODE TSF

, 4
.

TCF

Tl’C

Figure 5-4. Teletype Printer/Punch Instructions

5-7

Sequence Mnemon ic Octal Effect

1 TSF 6041 Skip the next instruction if the

printer flag is set to 1.

2 TCF 6042 Clear the printer flag.
3 TPC 6044 Load the printer bufl‘er register

with the contents of the AC, se-

lect and print the character. (The

flag is raised when the action is

completed.)

2,3 TLS 6046 Clear the printer flag, transfer

the contents of the AC into the

printer buffer register, select and

print the character. (The flag is

raised when the action is com-

pleted.)
'

The last instruction is a microprogrammed combination of TPC and

TCF, such that the flag is cleared, the character is printed, and then

the flag is again raised. Whenever the paper tape punch is turned on,

the character is punched on paper tape as well as printed on the

teleprinter.

Figure 5-5 illustrates a program to print out one ASCII character

which is held in a memory location.

*200

OUTPUT, CLA CLL

TLS

TAD HOLD

JMS TYPE

HLT

TYPE, 0

'JI‘SF
/SKIP ON TELEPRINTER FLAG

MP .«1
'

TLS /PRINT THE CHARACTER
CLA CLL

IMP I TYPE

HOLD, 0

S

Figure 5-5. Coding to Print One ASCII Character

The program in Figure 5-5 begins by clearing the accumulator and

executing a TLS instruction (which has the effect of clearing the printer
buffer), after which the printer flag will be set, thereby signifying
readiness to accept a character. If the initial TLS instruction were not

5—8

executed, the flag would not be raised (the START key clears all flags),

and the program would remain in the TSF, JMP .—1 loop endlessly.

In the previous case, however, the program uses the printer with a cleared

accumulator such that no character is printed. However, the flag is set

when this action is complete enabling the printing of meaningful infor—

mation in- the TYPE subroutine. The TYPE subroutine clears the

accumulator since the TLS instruction does not. It is advisable to clear

the accumulator after any subroutine unless meaningful data is con—

tained in it.

Format Routines

Input and output routines are very often written in the form of sub-

routines, as the TYPE subroutine in the previous example. The exam—

ple in Figure 5-6 is a carriage return/line feed subroutine that calls

the TYPE subroutine to execute a carriage return and line feed on the

printer, thus advancing to a new line for the-printing of information.

CRLF, o
v

TAD K215

JMS TYPE

TAD K212

JMS TYPE

IMP I CRLF

K215, 215 /ASCII'FOR CARRIAGE RETURN

K212, 212 /ASCII CODE FOR A LINE FEED

TYPE, 0

TSF

JMP .—1

TLS

CLA’CLL
JMP I TYPE

Figure 5-6.
'

Carriage Return/Line Feed Subroutine

Subroutines similar to the one in Figure 5-6 could be written to tab

space the carriage a given number of spaces, or to ring the bell of Tele—

type Model ASR 33 by using the respective codes for these nonprinting
characters. Such subroutines, if commonly used in a program, should

be placed on page 0 (or else a pointer word to the subroutine should

be placed on page zero) to facilitate reaching the routine from all

memory locations.

5-9

Text Routines

The examples in Figures 5-3 and 5-5 may be expanded to accept
and type more than one character. Figures 5-7 and 5-8 illustrate one

expansion. These two programs are compatible in that the characters

accepted byvthe first program are typed out by running the second pro-

gram. The program to accept characters, in Figure 5-7, will continue

to accept character input until a dollar sign ($) is struck on the key-

board, at which time the program will store all zeros in the next loca—

tion and then halt. The program in Figure 5—8 will type the characters

whose ASCII code was stored by the first program. The second pro-

gram will halt when a location with contents equal to zero is reached.

Both programs use locations beginning with 2000 as the buffer for the

storage of ASCII characters. The following flowcharts introduce the

techniques used in the program coding,

START

SET BUFFER POINTER

TO FIRST LOCATION

l
" ‘ '5 TS’EEEE‘iEEB EtaCHECK FLAG KEYBQARD

u

AGAIN FLAG SET
AND SET FLAG

?

SET BUFFER POINTER
To FIRST LOCATION

RETURN
CARRIAGE

GET NEXT

ASCII CODE

ACCEPT ONE

CHARACTER

STORE ONE
HARACTER IN BUFFE"

PRINT THE

CHARACTER

INCREASE THE

BUFFER POINTER

TYPE OUT

CHARACTER

INCREASE BUFFER

POINTER

IS THE

CHARACTER
A "$-

?

V65

STORE ZlgRPS
OVER

'

8'

'

*swmm

START.

LISN;

DONE:

BUFF:

BUFFPT,

MDOLAR,

$

CLA

TAD

DCA

KSF

JMP

KRB

TLS

DCA

TAD

TAD

SNA

JMP

ISZ

JMP

CLA

DCA

HLT

CLL

BUFF

BUFFPT'

u“!

I BUFFPT

I BUFFPT

MDOLAR

DONE

BUFFPT

LISN

CLL

I BUFFPT

ZOOM

0

7534

xszr UP BUFFER SPACE.

/KEYBOARD STRUCK YET?

/NO: CHECK AGAIN.
.

‘

3

/YES: READ CHARACTER.

/ACKNOWLEDGE IT ON PRINTER.

ISTORE CHARACTER.

ICHECK FOR TERMINAL 5.

/CHARACTER IS A 5.

/CHARACTER IS NOT A 5.

/GET ANOTHER CHARACTER.

/STORE O IN LAST LOCATION.

Figure 5-7. Routine to Accept and StoreAAS'CII Characters

*SZOC

START:

CHRTYP;

CRLF.

TYPE:

BUFF:

BUFFPT:

K215:

K212),

$

Figure 5-8.

CLA

TLS

TAD

DCA

JMS

TAD

SNA

HLT

JMS

ISZ

JMP

TAD

JMS

TAD

JMS

JMP

TSF

JMP

TLS

[CLA

JMP

20®0

215

212

CLL

BUFF

BUFFPT

CRLF

I BUFFPT

TYPE

BUFFPT

CHRTYP

K215

TYPE

K212

TYPE

I CRLF

I TYPE

‘ITLS TO SET PRINTER FLAG.

/SET UP BUFFER SPACE.

/RETURN CARRIAGE.

/GET A CHARACTER-

/IS IT ALL ZEROS?

/YES: STOP.

/NO: TYPE OUT THE CHARACTER.
IINCREMENT BUFFER POINTER.

ITYPE ANOTHER CHARACTER.

/CARRIAGE RETURN & LINE FEED-

/TYPE CR FIRST.

/TYPE LINE FEED-

/SUBROUTINE TO TYPE CHARACTER.

IPRINTER READY YET?

/NO: CHECK AGAIN.

/YES: TYPE CHARACTER.

/CLEAR ASCII FROM AC.

Routine to Print Stored ASCII Characters

5-11

The program to print characters may be specialized to print a

specific word as in the program of Figure 5—9. The example is a

subroutine which uses autoindex registers in place of the 182 instruc—

tion. The subroutine types “HELLO!”

HELLO: @
L

IHELLO SUBROUTINE

CLA CLL
/

qTLS
'

ITLS TO SET PRINTER FLAG.

TAD CHARAC ISET UP INDEX REGISTER

DCA IR! /FOR GETTING CHARACTERS.

TAD M6 ISET UP COUNTER FOR

DCA COUNT /TYPING CHARACTERS-

)NEXT: TAD I 1R1 IGET A CHARACTER-

JMS TYPE ITYPE IT.

132 COUNT IDONE YET?

‘JMP NEXT INO: TYPE ANOTHER.

JMP I HELLO IYES: RETURN TO MAIN PROGRAM.

TYPE: @ ITYPE SUBROUTINE

TSF

JMP .—i

TLS

CLA

JMP 1 TYPE

CHARAC’ - IUSED AS INITIAL VALUE OF IRl

BIG IH

3W5 /E

314 /L

31¢ /L

317 /O

241 /!

M6: -6

COUNT, @

IR1=lfl

Figure 5-9. Routine to Print One Word

Numeric Translation Routines

The ASCII codes of oetal numbers may be transmitted to the PDP—8

memory as in the program of Figure 5—3. However, the ASCII code

for the number must be converted to true octal representation before

the computer may use this input. For example, 6 is represented by the

ASCII code 266. When the Teletype key is struck for 6, the code 266

is transmitted to the computer upon execution of the KRB instruction.

To remove the 260 from the coded number to obtain the octal number

itself, two methods could be used.
‘

5—12

The first method is to examine the binary form of the ASCII code.

000 010 110 110

Setting the first eight bits to zero by using the AND instruction with

the appropriate mask results in the binary value for 6; The appropriate.
mask for this purpose is 178 as shown below.

Instruction Operation Comment

000 010 110 110 ASCII Code 266 in

accumulator

AND MASK 000 000 001 111 MASK: 173

000 000 000 110 Contents of accumulator after

. AND instruction is executed.

The second method of stripping an ASCII coded number is to sub-

tract 2608 from the character code. The instruction TAD M260 is used

for this operation as shown in the following example.

Instruction Operation Comment

TAD M260 000 010 1 10 l 10 ASCII Code 266 in accumulator

111 101 010 000 M260: 7520;, (2’s comp of 260)

000 000 000 110 Contents of accumulator after

TAD instruction is executed.

Programs to accept and store an octal digit, using the LISN sub-

routine previously given, are shown in Figure 5-10.

*200 *200

/USING AND / USING TAD / LISN SUBROUTINE

/INSTRUCTION /INSTRUCTION

NUMIN, KCC NUMIN, KCC LISN, 0

JMS LISN JMS LISN KSF

AND MASK TAD M260 JMP .——1
v DCA HOLD DCA HOLD KRB

'

HLT HLT
'

JMP I LISN

HOLD, 0 HOLD, 0

ISEIIASK,
l7 M260, 7520

$.

Figure S-IO. Two Methods of Converting ASCII to Binary

When an octal digit stored in memory is to be printed on the tele-

printer, the octal number 260 must be added to it. The routine in Fig-
ure S-ll uses the TYPE subroutine previously introduced to print out

the binary number 7.

5-13

*200

NUMOUT, CLA CLL

TLS

TAD NUMBER

TAD K260

J MS TYPE

HLT

NUMBER, 7

K260, 260

$
K

Figure 5-11.

The routines presented thus far have been designed to handle only

single—digit octal numbers. The PDP—8 core storage location, how—

ever, is able to represent octal numbers up to four digits. The routine

invFigure 5-12 takes a number that is stored in a PDP-8 location and

prints it on the printer as four octal digits. The routine in Figure 5—13

accepts four octal digits from the keyboard and converts them to one

octal number and stores it in a location, after which it accepts another

four digits, etc. The following flowcharts illustrate the procedure used

in the programs.

CLEAR A

STORAGE LOCATION

C?
GET CONTENY 0F

STORAGE LOCATION
IN AC

. EXECUTE TLS

YO CLEAR BUFFER

AND SET FL AG

SET FIRST 9

HITS T0 ZERO

GET THE

NUMBER IN AC

ROTATE THE NUMBER

l PLACE LEFT

ADD THE CDNYENTS

0F STORAGE

LOCATION

ADO 260

TO THE AC

l

HOTATE AC YHREE

PLACES LEFT

QTORE AC IN

STORAGE LOCATION

TYPE OUT

THE DIGIT

5—14

/TYPE SUBROUTINE

TYPE, 0

TSF

IMP __1

TLS

CLA CLL

1MP I TYPE

Routine to Type One Stored Digit

ACCEPT A DIGIW
FROM KEYBOARD

STDRE DIGIT

TEMPORARILY

RECEIVED

FOUR DIGKTS

7

YES

BRING FIRST DIGIT

)NTD AC

BRING STORED RESULT

INTO AC

ROTATE LEFT

THREE PLACES

ADD NEXT
DIGIT

PACKED
a DIGITS

?

YES

STORE NUMBER

IN BUFFER

m
.

JaqumN”Egg-17I:adfil0)augmog'z{-9amfiya

83803IIOSV/

A1801IIOSV/

\
GBdAl38OlHEEWHN/

03333N1??NEnlEEEDVIHHVO/

ENILHOHGHSsax;/

‘;1vHan/

ssvlaavaNan;sa:ssx/

asH;0Nvsax;09:ON/

a;sxs;191aanosasdx;/

‘;191asax;amvx

cwsaNIaav/

(asawnmsos;IassaH;;saIs/

;na11v;noMSVN/

-asswnNas;v;oasao;S/

-;sssssovss/

ssaH;s;v;oa/

-ava;N01;v001asa0;saav/

'(MNIWOLNI)EOVWd3N0ELVlOH/

'GEdAl380;asawnN;sax

-s;IsIaasdx;sox

asewnN;Nn030;N01;v001;sS/

-ssvlaavaNan;ss/

‘svssas;Nlad;ss0;ss;/

*NOILV001sovao;sanavssox

$93

SIB

are

m

a

17..

L

7881

ssaoIdNP

sdx;swr

alaxav;

sax;swr

SEEMav;

w

sax;IdWP

v13

81;

I~'dNP

,ss;

w

A

;1H

ssaoswr

MOVdNfldNP

810010251

3dAl“SNF

093Mav;

LXSVNGNV‘

sao;sav;

sao;svaa

1;a

1va

sao;sav;

sva

asawnNav;

a;5910voa

vwav;

ssaaswr

81;

sa0;svaa

110v10

$

’u9ax

‘SIBM

‘BIZH

‘EBOLS

'a;oara

'VW

‘LHSVN

‘EEENHN

‘3180

‘Edkl

‘MOVdNfl

‘iaVLS

was*

*EDO

START;

NXTNUM:

NXTDI G,

PACK;

PAKDIG;

CRLF:

Figure 5-13.

CLA

TLS

TAD

DCA

JMS

TAD

DCA

TAD

DCA

JMS

DCA

I52

152

'JMP

JMS

JMS

DCA

JMP

DOA

TAD

DCA

TAD

DCA
TAD

CLL

RTL.

TAD

TAD

DCA

152

I 52

JMP

TAD

JMP

TAD

JMS

TAD

JMS

JMP

CLL

K1777

IR]

CRLF

M4

COUNTR'

KBSD

TEMP

LISN

I TEMP

TEMP

COUNTR

NXTDIG

CRLF

PACK

I IR!

NXTNUM

STORE

M4

COUNTR

K350

TEMP

STORE

RAL

I TEMP

M26Q

STORE

TEMP

COUNTR

PAKDIG

STORE

I PACK

K215

TYPE

K212

TYPE

I CRLF

ITLS TO SET PRINTER FLAG.

{SET INDEX REGISTER FOR

ISTORING PACKED NUMBERS.

IRETURN CARRIAGE.

/SET COUNTER FOR 4 DIGITS.

ISET UP TEMPORARY STORAGE

/FOR THE ASCII INPUTS.

IGET CHARACTER FROM KEYBOARD.

/STORE IT TEMPORARILY.

/INCREMENT STORAGE LOCATION.

{GOT 4 DIGITS YET?

INO: GET ANOTHER.
,

/YES: RETURN CARRIAGE

IAND PACK THE 4 DIGITS.

/STORE PACKED NUMBER.

/GET A NEW NUMBER.

IPACK SUBROUTINE.

/CLEAR OUT STORAGE LOC-

ISET COUNTER FOR

/4 DIGITS.

ISET POINTER T0

IASCII INPUT CHARACTERS.

IGET STORE 1N AC.

IROTATE INTO CLEARED LINK.

IROTATE IT TWICE MORE.

IADD NEXT STORED CHARACTER.

ISTRIP OFF THE 266.

[STORE STRIPPED NUMBER.
»

/INCREMENT POINTER T0 ASCII-

/PACKED 4 DIGITS?

/NO= PACK NEXT DIGIT.

/YES: TAKE PACKED NUMBER

/BACK TO MAIN PROGRAM.

ICARRIAGE RETURN LINE FEED.

Routine to Pack and Store 4-Digit Octal Numbers

5—16

LISN,

TYPE,

K1777:

IRI=1®

M4:

COUNTR:

K350;

TEMP,

STORE:

M260:

K215:

K212:

$

9

KSF

JMP 0'1

KRB

TLS

JMP I LISN

TSF

LIMP 0‘1

TLS

CLA

JMP I TYPE

1777

7774

35%

752%

215

212

/SUBROUTINE TO ACCEPT ASCII-

/SUBROUTINE T0 TYPE ASCII.

/TEMPORARY STORAGE (350-353).

Figure 5-13.((cont.) Routine to Pack and Store 4-Digit Octal Numbers

Samplel’rogram

The previously described routines for typing text and numeric trans-

lation are combined in the following program example which is similar

to the final program of Chapter 3. This program performs the same

numeric sort; however, the numbers to be placed in order are supplied
from the keyboard.

V

-

‘

A

Any number of elements may be supplied; the end of input is sig—
naled by typing a dollar sign ($). The program includes routines to

exclude any nonoctal digits from input and type a question mark. Only

positive octal numbers (0-37778) are allowed as input to the program.

The program is presented in four illustrations. The following flow»

chart diagrams the program.

5—17

‘ START ’

®____.
ACCEPT ASCII

CODE FOR

ONE DIGIT

TYPE '1?"
AND IGNORE
THAT 5mm

IS IT
A NONOCTAL

CHARACTER
?

YES

PACK AND

STORE AS

ONE NUMBER

5-18

COUNT THE

NUMBERS

I

NUMBER

NEGQaTIVE

PUT THE
NUMBERS IN

INCREASING ORDER

TVPE ONE

DIGIT

TYPED
4 mans

?

RETURN

CARRIAGE

Figure 5-14A. Sample Program: Flowchart

\‘

*ewfi

/INITIAbIZATION

START, CLA

TLS

TAD

DCA

DCA

IACCEPT ONE

ACCEPT: JMS

TAD

DCA

TAD

DCA

NEWDIG: JMS

DOA

CLL

BUFF

BUFFPT

AMOUNT
DIGIT.

CRLF

M4

DIGCTR

TEMP!

TEMP

LISN

I TEMP

/CHECK THE CHARACTER.

CHECK: TAD

TAD

SNA

JMP

TAD

TAD

SPA

JMP

TAD

SMA

JMP

ISZ

ISZ

JMP

/YES: PACK THE 4 DIGITS
PACK: TAD

DCA

DOA

TAD

DCA

DIGPCK: TAD

CLL

RTL

TAD

TAD

DCA

ISZ

ISZ

JMP

‘TAD

DCA

TAD

TAD

SMA

JMP

ISZ

ISZ

JMP

Figure 5-14B.

I TEMP

MDOLAR

CLA

ORDER

I TEMP

M266

ERROR

MID

CLA

ERROR

TEMP

DIGCTR

NEwDIG

TEMPI

TEMP

HOLD

M4

DIGCTRV
HOLD

RAL

1 TEMP

M266

HOLD

TEMP

DTGOTR
DIGPCK

HOLD

I'BUFFPT

I BUFFPT

KADOO

CLA

ERROR

AMOUNT

BUFFPT

ACCEPT

/TLS TO SET PRINTER FLAG-

« ISET UP STORAGE AREAE

ISET AMOUNT TO 0.

xRETURN CARRIAGE.

/SET UP COUNTER

/FOR 4 DIGITS.

ISET A POINTER To

ITEMPORARY INPUT STORAGE.

/GET A CHARACTER.

ISTORE IT-

IIS CHARACTER\A 5‘?

/YEs: ORDER INPUT.

/N0: CHECK FOR OCTAL INPUT.

/IS ASCII LESS THAN 26D?

lYES: ERROR.

IND: SUBTRACT 10-

lASCII IS GREATER THAN 267.

/INOREMENT STORAGE POINTER.

/4 DIGITS YET?

/N0: GET ANOTHER.

INTO ONE NUMBER.

/SET POINTER TO STORAGE LOC.

ICLEAR LOCATION HOLD.

/SET COUNTER FOR 4 DIGITS.

/CONTENTS OF HOLD INTO AC.

IROTATE INTO CLEARED LINK.

/ROTATE TWICE MORE.'
IADD ONE ASCII CHARACTER.

ISUBTRACT OUT THE 26%.

/STORE AC IN HOLD-

/INCREMENT STORAGE POINTER.

IPACKED A DIGITS YET?

INOE PACK ANOTHER.

IYES: STORE PACKED NUMBER.

(NEGATIVE INPUT?

/YES: REJECT ENTRY.

/NO: COUNT THE ENTRIES.

/SET UP FOR A NEW ENTRY.

/GET A NEW ENTRY.

Sample Program: Initialization and Input Coding

5419

/PUT THE NUMBERS IN INCREASING ORDER.

ORDER. TAD AMOUNT

CIA

IAC

DCA TALLY

DCA FLAG

TAD BUFF

DCA x1

TAD BUFF

IAC

DCA x2

TEST. TAD I x2

CIA

TAD I x1

SMA SZA CLA

JMS REVERSE

ISZ xx

152 X2

152 TALLY

JMP TEST

TAD FLAG

SZA CLA

JMP ORDER

JMP PRINT

REVERSE.O

TAD x x1

MAHmD

TAD I x2

DOA I x1

TAD HOLD

DCA I x2

CLA CLL CMA

DOA FLAG

JMP I REVERSE

/SET UP A TALLY

/TO COUNT THE

/NUMBER OF

ICOMPARISONS-

ICLEAR THE FLAG-

/SET THE POINTERS

/(X1 AND X2) TO THE

IPROPER DATA LOCATIONS.

/X2=Xl+1

ICOMPARE X1 AND X2.

IREVERSE ENTRIES IF

IX2 IS LESS THAN X1.

IINCREMENT THE POINTERS.

xDONE COMPARING YET?

IND: COMPARE MORE ENTRIES.

IYES: IS FLAG SET?

/YES: MAKE ANOTHER PASS.

/NO: TYPE THE ORDERED DATA.

ISUBROUTINE TO SWITCH x's.

ISET FLAG WHENEVER

IA SWITCH IS MADE.

Figure 5-I4C. Sample Program: Ordering Coding

5-20

IPRINT OUT THE ORDERED NUMBERS A

PRINT, JMS CRLF /RETURN THE CARRIAGE-

TAD BUFF ISET THE BUFFER POINTER.

DOA BUFFPT
’

TAD AMOUNT iSET LIMIT FOR OUTPUT.

CIA
.

DCA PRNTCT
‘

ANOTHR, JMS CRLF xRETURN CARRIAGE.

TAD M4 ICOUNT THE DIGITS OUTPUT.

DOA DIGCTR

DCA HOLD /CLEAR HOLD LOCATION.

TAD I BUFFPT IOET A CHARACTER.

CLL RAL IROTATE INTO CLEARED LINK-

MORE, TAD HOLD IADD HOLD TO Ac.
-

RAL IROTATE THREE TIMES LEFT.

RTL

DCA HOLD ISTORE AC IN HOLD-

TAD HOLD

AND MASKT , /MASK OUT FIRST 9 BITS.

TAD K26Q

JMS TYPE /TYPE OUT ONE DIGIT.

Isz DIGCTR ITYPED 4 DIOITS?

JMP MORE IND: TYPE ANOTHER.

ISZ BUFFPT vas: INCREMENT BUFFER LOC-

152 PRNTCT xTYPED ALL ENTRIES?

JMP ANOTHR' /NO: TYPE ANOTHER ENTRY.

JMS CRLF vas: RETURN CARRIAGE AND

JMP START IACCEPT MORE NUMBERS To SORT.

ERROR; OLA v

TAD QUEST

JMS TYPE
»

JMP ACCEPT / DISREGARDS ILLEGAL ENTRY.

END: 0

,

Figure 5-14D. Sample Program: Output Coding

5-21

*1flfl

TYPE: Q /TYPE OUTPUT SUBROUTINE.

TSF
‘

JMP a—l

TLS

CLA

JMP I TYPE

CRLF: G ICARRIAGE RETURN&LINE FEED-

TAD K215

JMS TYPE

TAD K212

JMS TYPE

JMP I CRLF

LISN: 0 /LISN INPUT SUBROUTINE-

KSF

JMP --l

KRB

TLS

JMP I LISN

BUFF: END

BUFFPT: Q

M4: 7774

DIGCTR: W

TEMPl’ ».+2 .

TEMP; Q

Q

Q

0

MDOLAR: 7534

MIG; ‘lfl

K4QGG: 4QQ®

HOLD; G

M26@; “26%

AMOUNT: @

FLAG; Q

TALLY; Q

X1; 0

X2: 0

PRNTCT; G

MASK7: 7

K260: 26G

K212; 212

K215: 215

QUEST: 277

$

Figure 5-14E. Sample Program: Subroutines and Constants Coding

5422

PROGRAM INTERRUPT FACILITY

The running time of programs using input and output routines is

primarily made up of the time spent in waiting for the device to accept
or transmit information. Specifically, this time is spent in loops such as:

TSF

JMP .—l

Waiting loops waste a large amount of computer time. In those cases

where the computer can be doing something else While waiting, these

loops can be removed and useful routines can be included to use this

waiting time. This sharing of a computer between two tasks is often

accomplished through the program interrupt facility, which is standard

on all PDP—8 family computers.

The following two instructions control the interrupt facility.

Mnemonic Octal Operation

ION 6001 Turn interrupt facility on.

IOF 6002 Turn interrupt facility off.

The program interrupt facility allows a running program to proceed
until a peripheral device connected to the interrupt facility sets its

4 ready flag. The running program is often referred to as the background

program. Whenever a flag is set to l by a device that is connected to

the interrupt facility, the PDP—S completes execution of the instruction

_ in progress and then acknowledges the interrupt. The interrupted com—

puter will automatically execute a JMS 0 instruction. The result of this

action is that the program counter register, which contains the address

of the next instruction to be performed in the main program, is stored

in location 0. The instruction in location 1 is then performed, which

usually initiates a service routine for the peripheral device.

The service routine, sometimes called the foreground program, is

usually contained elsewhere in memory and an indirect‘jump to the

start of the program is contained in location 1. The service routine is

terminatedby a IMP I 0 instruction, to return to the background pro-

gram.

The occurrence of an interrupt disables the facility from further in-

terrupts. The ION instruction must be included in the interrupt service

routine to enable further interrupts. This‘ is usually done immediately
before returning to the background program. The ION instruction does

not take efiect until one instruction following it has been completed.

5-23 .

\
i

Thus, the ION instruction is usually followed by the JMP I O.

INTRTE, ——

SERVICE .

ROUTINE .

EXIT, ION Enables interrupt facility
. JMP I 0

V again after execution of

. JMP I 0.

0000, 0202

0001, JMP INTRTE

0200, 152 COUNT

g

0201, TAD A Interrupt request oc-

curred during the execu—

tion of this instruction;
caused a 1MS 0 to be ex-

ecuted immediately after

completion of the TAD

A instruction execution.

0202, RAL Interrupt is turned on

before this instruction is

executed.

Programming an Interrupt

The program presented in Figure 5—15 includes a program to rOtate ,:

one bit through the accumulator as the background program. The fore—

ground program, which is initiated by the service routine, accepts
ASCII characters from the Teletype unit and, upon receipt of the

ASCII code for a period, prints out the characters which have been

stored.

The program begins with an initialization routine to set up bufier

space to store the incoming characters and to set the mode for input.
(The program signals input mode by a value of MODE :: 0 and out—

put mode by a value of MODE : 1.) Once the initializationroutine
has enabled the interrupt facility, the background program is started.

The background program is a routine to rotate one bit through the

accumulator and, link. The first instruction clears all bits but hit 11. The

program then counts through the two 182 loops, after which it rotates

the bit one place left and then returns to the count loops. The accumu-

5-24

later and link displays will exhibit a quickly rotating light while waiting
for an interrupt to initiate the foreground program.

The first instruction to be executed after an interrupt request is an

automatic JMS 0, thereby storing the return address to the background“

program in location 0. The program then executes the instruction in

location 1 whichvis an indirect jump to the service routine location 2

which contains SERV).

Since an interrupt occurs during the running of the background pro-

gram, the service routine must save the active registers of the back-

ground program. The service routine stores the link and accumulator,
so that they may be restored after the service routine is completed.

The service routine must determine the source of the interrupt request
'

by determining which device flag is set and then jump to a routine to

service the appropriate device. The service routine ends with a HLT,
which would be encountered only if the service routine is entered and

neither flag is set—a condition that should never exist.

I

The keyboard input routine is entered when the keyboard flag is set.

The flag is cleared to prevent further interruptions when the interrupt
system is re-enabled. If the mode is not set for input, program control

is transferred to the background program. Otherwise, the program

accepts the character (KRB), acknowledges its receipt by printing it

on the printer (TLS), and stores it in the buffer. (Notice that no KSF,

IMP .--1 loop is necessary.) The routine then checks for the ASCII

code for a period, returning to the background program if, it is not a

period. Upon receipt of a period, the routine resets the bufier and sets

the mode for output. Program control then returns to the background
program. (Since a TLS instruction was executed previously, an interrupt
will be requested when this action is, complete, and the stored ASCII

codes will be typed out by the printer output routine.)

The printer output routine is entered when its flag is set. The routine

clears the device flag and checks for output mode. When in output

mode, the routine prints one character from the buffer. (Notice that no

TSE, IMP .—1 loop is necessary.) If the character is not a period,
control returns to the background program while the printer finishes

typing the character. It the character is a period, the routine resets the

buffer, sets the mode for input, and returns to the background program.

5-25

The exit routine to return to the background program must restore

the link and accumulator to the values at the time of interrupt. The

program turns the interrupt on (ION) and then returns to the rotate

program via a JMP I 0 instruction (lOcation 0 contains the value of

the program counter when the interrupt occurred). The ION instruc-

tion does not take effect until the instruction following it has been

executed.

The constants used by the routines conclude the program listing.

“c?
SET MODE RESTORE CLEAR

FOR INPUT 1:: AND L KEYBOARD FLAG

RESERVE wan

aursen SPACE IMERRUPT 0N

row CHARACTERS
V

RETURN TO

TURN aAcxoaouuu

mrsnnupr ON PRoen M

6
TYPE ONE

CHARACTER

ROTATE an
FROM aurrzn

ENDLESSLV THROUGH

ACCUMULATOR

STORE ASCII

CODE IN

BUFFER

SAVE AC

AND L

KEYBOARD

FLAG SET
?

ENTER KEYBOARD

SERVICE ROUTINE

(KB)

ENTER PRINTER

SERVICE ROUTINE

(‘I’PI

PRINTER

FLAG SET
7

CHANGE MODE

TD OUTPUT

Figure 5-15A. Program to Operate on Program Interrupt Facility:

Flowchart

5-26

*0

/FIRST INSTRUCTIONS AFTER AN INTERRUPT;

Q /STORES RETURN ADDRESS.

JMP I 2 /JUMP TO SERVICE ROUTINE.

SERV .

*EQG

/INITIALIZATION ROUTINE-

START; CLA CLL

DCA MODE /SET MODE FOR INPUT.

TAD K1777
.

DCA BUFFER /SET UP BUFFER SPACE.

ION xTURN ON INTERRUPT FACILITY.

/BACKCR0UND PROGRAM

ROTATE, CLA CLL IAC /SET ONE BIT IN AC-

152 COUNT /R0TATING DELAY INSTRUCTIONS.

JMP 0'1

ISZ COUNT

JMP .-I

RAL /ROTATE BIT LEFT.

JMP ROTATE+1 /EXECUTE DELAY INSTRUCTIONS.

ISERVICE ROUTINE
’

SERV: DCA Ac /SAVE ACCUMULATOR.

RAL

DCA L /SAVE LINK.
_

KSF /KEYBOARD INTERRUPT?

SKP /NO: CHECK PRINTER-

JMP KB /YES: SERVICE KEYBOARD.

TSF IPRINTER INTERRUPT?

SKP /NO: SKIP PRINTER ROUTINE JMP.

JMP TP /YES: SERVICE THE PRINTER.

HLT IFATAL HALT IF NO FLAG SET.

IKEYBOARD INPUT ROUTINE
.

KB, KCC /CLEAR KEYBOARD FLAG.

TAD MODE
V

/INPUT MODE?

52A CLA
'

JMP EXIT /NO: RETURN TO BACKGROUND.

‘Isz BUFFER /YES: INCREMENT BUFFER.

KRB /READ THE CHARACTER-

TLs. /ACKNowLEDGE ON THE PRINTER.

DCA I BUFFER ISTORE CHARACTER.

TAD I BUFFER /IS CHARACTER A PERIOD?

TAD MPER

SZA CLA .

JMP EXIT /NO: RETURN TO BACKGROUND.

TAD K1777 _/YES: RESET BUFFER

DCA BUFFER /TO TYPE THE CHARACTERS.

CLA CMA

DCA MODE /SET MODE FOR OUTPUT AND

JMP EXIT
,

IRETURN TO BACKGROUND.

Figure 5-1513. Program to Operate on Program Interrupt Facility: Coding

5-27

IPRINTER OUTPUT ROUTINE

TP; TCF ICLEAR PRINTER FLAG.

TAD MODE /OUTPUT MODE?

SNA CLA

JMP EXIT INO: RETURN TO BACKGROUND-

ISZ BUFFER /YES: INCREMENT BUFFER-

TAD I BUFFER /GET CHARACTER FROM BUFFER-

TLS {TYPE IT OUT-

TAD MPER /IS CHARACTER A PERLOD?

SZA CLA

JMP EXIT INO} RETURN TO BACKGROUND-

DCA MODE /YES: SET MODE FOR INPUT;

TAD K1777 /RESET BUFFER: AND

DCA BUFFER

_
JMP EXIT /RETURN TO BACKGROUND.

/ROUTINE FOR RETURNING TO BACKGROUND PROGRAM.

EXIT: TAD L /RESTORE LINK-

CLL RAR

TAD AC IRESTORE ACCUMULATOR.

ION IRE-ENABLE INTERRUPT FACILITY.

JMP I Q lfl CONTAINS RETURN ADDRESS-

COUNT: C3
'

MODE: W

K1777: 1777

BUFFER: M

AC: 9

L: D

MPER; “256

3

Figure 5-153 (cont.) Program to Operate on Program Interrupt Facility:
Coding

Advanced Use of the Program Interrupt Facility

The following paragraphs entitled “Multiple Device Interrupt Pro—

gramming” and “A Software Priority Interrupt System” are intended

for programmers making extensive use of the program interrupt facil—

ity. The reader who merely desires a general knowledge of the interrupt
facility may omit these topics from his reading.

MULTIPLE DEVICE INTERRUPT PROGRAMMING

Many programming applications use the interrupt facility to service

several devices. For. example, a PDP-8 may use the program interrupt

5—28

facility to control the operation of DECtape and DECdisk systems

through a Teletype console. Systems of this type require a service

routine that determines the source of the. interrupt request (i.e., which

device flag is set). The following example is an instruction sequence

which uses dummy skip instructions to determine the device requesting
the interrupt.

'

DASF

SKP ,

JMP SERVA / DEVICE A REQUESTED THE INTERRUPT

DBSF
'

SKP -

JMP SERVB [DEVICE B REQUESTED THE INTERRUPT

DCSF

SKP .

.

JMP SERVC / DEVICE C REQUESTED THE INTERRUPT

I

o

DNSF

SKP
V

,
.

JMP SERVN /DEVICE N REQUESTED THE INTERRUPT

The dummy skip instructions (DASF, DBSF, etc.) are skip-on-flag
instructions for each of the devices in the interrupt system. (Usually,
these instructions skip the next instruction if the device flag is set to a

1. Instructions for some devices, however, may skip if the flag is a 0,

i.e., skip—onénon-flag. Instructions of this type should not be followed

by the unconditional SKP instruction.) Because of the predominance
of SKP instructions, the instruction sequence which determines the

source of an interrupt request is often called a skip chain.

As the previous example implies,kthe skip chain may be enlarged to

test for almost any number of device flags. However, an important
limitation upon the size of a skip chain is imposed by the devices which

the chain serves. The chain must be traversed and the device serviced

before the desired information is lost. High-speed devices, such as mag-

netic tapes, disks, or drums, must be serviced quickly or the informa—

tion will not be available. On the other hand, low-speed devices, such

as paper tape readers and punches, have a relatively long period of

time in which they may be serviced before any loss of information

occurs. The programmer must take these time factors into account

whenever he programs a multiple device interrupt system.

5-29

High-speed devices should be tested and serviced first by the skip
chain. Thus, the chain should begin by checking the device flags of the

high-speed devices of the system, such as DECtape and DECdisk, and

conclude by checking the flags of the low—speed devices such as the

Teletype keyboard or paper tape readers and punches. Thus, a high—

speed device is not required to wait while a long set of device flags
is checked.

In the case of two interrupt requests occurring simultaneously, the

high-speed device is serviced first. The second device may be serviced

simply by returning to the background program and waiting for an—

other request, or it may be serviced by checkingthe flags through a

skip chain before returning to the background program.

A SOFTWARE PRIORITY INTERRUPT SYSTEM

A service routine may be written in such a way that a priority of de-

vice interrupts is established through software. The programmer sets

priorities by allowing the service routine for a particular device to be

interrupted by the interrupt request of a higher priority device. This

may be necessary in a system that includes high-speed devices that re—

tain information for a short time and that require immediate attention.

A lower—priority device would be serviced by a routine that would re—

enable the interrupt facility at its beginning. The higher-priority device

would not re-enable the interrupt until it had completed its task.

The service routine of a multiple interrupt system must include in—

structions to save the contents of the accumulator and link for each

interrupt. The contents of the program counter must also be removed

from location 0 before a new interrupt occurs. To save the contents of

these active registers, the programmer must establish a “push down”

list of accumulators, links, and program counters. The instructions to

handle such a list could be the following.

SERV, DCA I ACPTR /SAVE AC

RAL

DCA I LPTR / SAVE L

TAD 0
_

DCA I PCPTR /SAVE PROGRAM COUNTER

ISZ ACPTR / INCREMENT POINTERS FOR

ISZ LPTR /NEXT USE.

ISZ PCPTR

5-30

The above instructions would then be'followed by the chain of instruc—

tions to test the flags and jump to the service routine for the device

whose flag is set. .

’

The service routine for a high-priority device in such a system is

similar to the preceding program examples, in that the interrupt facility
is not enabled until processing is complete.

_

The low—priority device would be serviced by a routine which would

re—enable the interrupt system immediately after clearing its device

flag. A low—priority keyboard routine might start as follows.

KB, KCC / CLEAR DEVICE FLAG.

ION /TURN INTERRUPT ON.

/ SERVICE PROGRAM WILLTAD MODE

/PROCEED UNTIL

/ INTERRUPTED 0R COMPLETED.

0

Thus, the keyboard could be interrupted during the process of trans-

mitting a character. The service routine would save the status of the

routine by storing the program counter accumulator and link in the

push-down list described before. After the high priority device had

been serviced, the following exit routine would return control to the

low priority device.

EXIT, IOF

CLA CMA

TAD ACPTR

DCA ACPTR

CLA CMA

TAD LPTR

DCA LPTR
'

CLA CMA

TAD PCPTR
‘

DCA PCPTR

TAD I PCPTR

DCA 0

TAD I LPTR

CLL RAR

TAD I ACPTR

JMP I 0

/INTERRUPTS NOT ALLOWED.
,

/FOLLOWING INSTRUCTIONS WILL

/DECREASE THE POINTERS

/BY 1 AND THEN

/USE THEM. 4

Through this approach, multiple interrupts could occur and would be

serviced on a priority basis specified by the programmer.

5—31

Program Interrupt Demonstration Program

The program presented in Figures 5-16A through 5—16F is a dem-

onstration program to run on the program interrupt facility. -It contains

a bit rotating program, the speed and direction of which is determined

by the switch register settings. (This same program is presented in

Exercise 10 of Chapter 3.) The foreground program is the ordering
program which was given in Figure 5—14. This program has the capac-

ity to accept 4—digit positive octal input from the Teletype keyboard,
automatically terminating each 4-digit number with a carriage return

and line feed. Upon receipt of a typed dollar sign (33), the program will

place the data in increasing order, and type the ordered data on the

printer. The program will not accept negative numbers or nonoctal

digits.

The example is useful as a demonstration and illustration of the

power of program interrupt as the computer will seem to be perform—

ing two tasks at the same time. The programmer knows that this is not

possible and that the two tasks are sharing the computer time; how—

ever, the appearance indicates simultaneous actions.

When an interrupt request occurs, locations 0, 1, and 2 of page 0

provide the storage for the program counter and the jump to the service

routine.

The constants which are stored on page 0 include four “software

switches” to record the conditions within the running program. MODE

is used to specify the input or output status of the running program.

SW1 is used to signal the input of the first digit of a new number (0)

or the input of successive digits of a continuing number (I). SW2 is

used to control the input and output of data by separating each number

with a carriage return and line feed. SW3 is used to bypass the output
mode and allow the typing of carriage returns, line feeds, and question
marks (to denote errors of input) during the input of data.

Other constants include pointers which permit oft—page jumps to

routines elsewhere in memory. The constant BUFF is a pointer to the

storage area for the packed input numbers. It contains END which is

defined as END 2
. in the last line of Figure 5—16F. Thus, the butter

is all of memory following the last instruction.

5—32

*0

IFIRST INSTRUCTIONS AFTER AN INTERRUPT.

@

JMP I 2

SERV

#50

/CONSTANTS STORED ON PAGE 6.

MODE, 0 IINPUT=65 0UTPUT=-1.

SW1,' @ INUMBER STATUS SWITCH

SW2, @ IOUTPUT:CR=@,LF=-1,DATA=1.

SW3; 6 /MODE BYPASS SWITCH

AC: \@ ISAVE AC AND

L: 0 IL DURING AN INTERRUPT.

PRINTR. TP IFOLLOWING ARE POINTERS FOR

KEYBRD, KB /THE RESPECTIVE ROUTINES.

ORDPTR, ORDER

EXITPT, EXIT
M7@@@: 195% /ORDER SUB-PROGRAM CONSTANTS

BUFF: END

BUFFPTJ @

M4: 7774

DIGCTR: Q

TEMPI J I+2

TEMP). 0

0

Q

E

0
C

MDOLAR: 7534

M10: '10

HOLD: 0

HOLDL’ Q

M260: ‘7526

AMOUNTJ 0

FLAG: Z

TALLY: 0

X1: 6

X2: Q

PRNTCT: 0

K7) 7

K260: 26G

K212: 212 *

K215: 215

QUEST, 277

K4600; 40@@

Figure 5-16A. Program Interrupt Demonstration Program

(Constants Located on Page 0)

5-33

ISUBROUTINES STORED ON PAGE O.

OR, TAD K215
’

ICARRIAGE RETURN ROUTINE

TLS

OLA OMA

DOA swa /SET sw2 FOR A LF..

JMP 1 EXITPT

LE, TAD K212 /L1NE FEED ROUTINE

TLS
-

OLA

TAD swa

SNA OLA

JMP SW25ET

DOA sws /TURN OFF MODE BYPASS.

DOA sw2 ISET sw2 FOR OR.

JMP 1 EXITPT

swesET. OLA CLL IAC
.

,

DOA swe /SET sw2 FOR DATA.

JMP 1 EXITPT

Figure 5463. Program Interrupt Demonstration Program
(Subroutines Located on Page 0)

The location TEMP is used as a pointer to the four locations after

it; these locations are used for the storage of incoming ASCII codes.

The subroutines CR and LF type the carriage returns and line feeds

when called for by the setting of SW2.

The program begins in location 200 as shown in Figure 5—16C. The

initialization routine sets each of the software switches to zero. After

the initialization is completed, the interrupt facility is turned on and the

background program is started.

The rotate subprogram begins by checking the setting of the switch

register to determine the direction of rotation. The value of bit 0

specifies a rotate right when it is a 0, or a rotate left when it is a l. The

last nine bits Of the switch register determine the speed of the rotation.

They are stored in COUNT and determine the number of passes

through the 182 COUNTR, JMP .——1 loop.

The BEGIN routine determines the speed and direction and the GO

routine establishes the bit position after each check of the switch regis-
ter setting. The INSTR routine executes the delay and the rotation of

the bit.

5-34

*QOO

INEXT INSTRUCTIONS INITIALIZE THE PROGRAM.

/FURTHER INITIALIZATION DONE BY RESTART.

START, 10F /INTERRUPT OFF DURING INITIALIZATION.

CLA CLL

DOA MODE

DOA swx

DOA SW2

DOA SW3

TAD BUFF

DOA BUFFPT

DCA AMOUNT

ION
'

i

xROTATE SUB—PROGRAM BEGINS HERE.

ROTATE. OLA CLL CML

BEGIN; DOA SAVEAO

RAL

DOA SAVEL

TAD K7960 /ALwAYS SET BITS 0,1 AND 2.

OSR

DOA OOUNT IMAX COUNT IS —IODO.

OSR

RAL xPUT BIT D IN LINK.

SZL CLA

JMS LEFT

JMS RIGHT

CLL

GO, TAD SAVEL
RAR

TAD SAVEAO

INSTR. HLT /OVERWRITTEN BY RAR OR RAL.

ISZ COUNTR

JMP INSTR+I

ISZ COUNT

JMP INSTR+1

JMP BEGIN

SAVEAC: O

SAVEL; O

K7DOO, 799%

OOUNTR. O

COUNT, O
/SUBROUTINES TO DETERMINE DIRECTION.

LEFT, @

ISZ LEFT /SKIP INSTR AFTER JMS LEFT.

TAD KRAL .

DOA INSTR

JMP I LEET /STORE 'RAL' IN 'INSTR'.

RIGHT: O

TAD KRAR
‘

DOA INSTR /STORE 'RAR' IN 'INSTR'.

JMP I RIGHT

KRAR, RAR

KRAL, RAL

Figure 5-16C. Program Interrupt Demonstration Program
(Initialization Routine and Rotate Subprogram)

5—35

/SKIP CHAIN TO SERVICE

SERV: DCA AC

RAL

DCA L

TSF

SKP

JMP I PRINTR

KSF

SKP

JMP I KEYBRD

HLT

/ORDER SUB-PROGRAM

ORDER:

TEST:

REVERSE:

INCPTR:

CLA CLL

TAD AMOUNT

CIA

IAc

DCA

DCA

TAD

DCA

TAD

IAc

DCA

TAD

CIA

TAD

SPA

JMP

TAD

DCA

TAD

DCA

TAD

DCA

CLA

DCA

I52

152

152

JMP

TAD

SZA

JMP

CLA

DCA

TAD

DCA

DCA

TAD

CIA

DCA

TLS

JMP I EXITPT

TALLY

FLAG

BUFF

X1

BUFF

X2

I X2

I X:

SNA CLA

INCPTR

1 x1

HOLD

I x2

I X}

HOLD

1 x2

CLL CMA

AMOUNT

PRNTCT

ROUTINES

/SAVE AC AND L

IDURING AN INTERRUPT.

IIS INTERRUPT CAUSED

/BY TELETYPE PRINTER?

ISERVICE TELETYPE PRINTER.

/IS INTERRUPT CAUSED

/BY KEYBOARD?

/SERVICE KEYBOARD.

ISHOULD NEVER REACH HERE.

ISET TALLY FOR COMPARISONS.

ICLEARS FLAG FOR EACH PASS

/IS X2 LESS THAN XI?

INO:

IYES=

DON'T REVERSE.

REVERSE X2 AND X1.

ISET FLAG TO SIGNAL

[THAT A REVERSE WAS DONE

IINCREMENT X POINTERS.

ICOMPARED ALL ENTRIES?

/NO: COMPARE NEXT X'S.

/YES: ORDER DONE YET?

INO: MAKE ANOTHER PASS.

lYES: SET OUTPUT MODE.

/SET POINTER TO FIRST ENTRY.

/CLEAR NUMBER STATUS SWITCH.

ISET A TALLY FOR OUTPUT.

ITO TRIGGER NEXT INTERRUPT.

Figure 5~16D. Program Interrupt Demonstration Program

(Skip Chain to Service Routines and Order Subprogram)

5—36

The service routines are reached through the skip chain in Figure
5—16D. These service routines are located on a separate memory page
and are reached through pointer words stored on page 0.

The order subprogram is initiated when input is complete. The

routine sorts the positive octal numbers stored in the buffer into in—

creasing order. The technique is the same as that used previously in the

program of Figure 5—14;

These routines conclude the instructions placed on page 1 of mem—

ory. The service routines begin on the next memory page.

*ADn

Ks. j ch
.

TAD MODE /INPUT MODE DOES NOT
SZA CLA , /HONOR KEYBOARD REQUEST.
JMP EXIT

’

TAD SW1

SZA CLA
, /CHECK FOR A NEw NUMBER

JMP CNTDIG /OR A CONTINUED DIGIT.
TAD M4

DOA DIGCTR

TAD TEMP1

DCA TEMP

CNTDIG, KRS /READ KEYBOARD CHARACTER.
TLS ITYPE IT ON PRINTER.

*

DOA 1 TEMP /STORE DIGIT TEMPORARILY.
CHECK, TAD I TEMP

TAD MDOLAR
_ /CHECK FOR TERMINAL 5

SNA OLA .

JMP I ORDPTR

TAO I TEMP

TAD M260 IASCII LESS THAN 26m?
SPA

'

JMP ERROR /YES: ERROR.

TAD Min /NO: SUBTRACT in.

SPA
.

/GREATER THAN 267?

JMP LEGAL
'

/NO: DIGIT IS LEGAL.
ERROR,, CLA LAC /NOT AN OCTAL NUMBER.

DCA sws '/SET TO TYPE ?.CR,LE.
,DCA sw1 /SET FOR A NEw NUMBER.
TLs

Figure 5-16E. Program Interrupt Demonstration Program
'

(Keyboard Service Routine)

5—37

The service routines begin in location 400 as presented in Figure
5~16E. The keyboard service routine honors an interrupt only if the

mode is set to 0. The routine uses SW1 to specify number status, re~

setting the digit counter if a new number is started. The routine accepts
the incoming digit and types it on the printer.

The input of a non-octal character or terminal symbol ($) is checked

after each character is received. Whenever the terminal $ is received

by the program, control is transferred to the order subprogram. If the

character is not an octal digit, the program types a question mark and

JMP

LEGAL; CLA

DCA

ISZ

ISZ

JMP

PACK, TAD

DCA

DCA

TAD

DCA

DIGPCK: TAD

RAL

RTL

TAD

TAD

DCA

152

132

JMP

TAD

DCA

TAD

TAD

SPA

JMP

IAC

JMP

NOTNEG: iSZ

ISZ

CLA

DISALO: DCA

DCA

TLS

JMP

Figure 5-1613 (cont.) .

EXIT

CMA

SW1

TEMP

DIGCTR

EXIT

TEMP]

TEMP

HOLD

M4

DIGCTR

HOLD

CLL

I TEMP

M266

HOLD

TEMP
DIGCTR

DIGPCK

HOLD

I BUFFPT

I BUFFPT

Kacey

CLA

NOTNEG

DISALO

BUFFPT

AMOUNT

CMA

SW3

SW1

EXIT

ISET SW1 TO SIGNAL

{A CONTINUED NUMBER.

/HAVE 4 DIGITS?

INO: GET NEXT DIGIT-

/YES: PUT NUMBER TOGETHER.

/NEXT 7 INSTRUCTIONS

/COMBINE THE 4 OCTAL DIGITS

IINTO ONE MEMORY WORD.

IPACK ANOTHER DIGIT.

/STORE THE OCTAL NUMBER.

ICHECK FOR NEGATIVE ENTRY.

IENTRY IS LEGAL.

/SET SW3 TO TYPE A "?".

IDISALLOW NEGATIVE ENTRY.

/COUNT THE ENTRIES.

/TYPE A CR:LF

/AFTER THE ENTRY.

/CLEAR SW1 FOR NEXT PASS.

Program Interrupt Demonstration Program
(Keyboard Service Routine)

5-38

ignores the whole entry in which it occurred. The program requests a

new 4—digit number by typing a carriage return and line feed.

When four digits have been received, the pack routine combines the

four ASCII codes into one octal number and stores the number in the

buffer. If the number is negative, the entry is disallowed.» (The next

packed number will be deposited in the same location, thus destroying
the negative number.) A running count of the entries is kept and later

used when ordering is performed. The software switches are finally set

to return the carriage for the next number to be input.

The printer service routine in Figure 5-16F is used to output the

ordered numbers and to type carriage returns, line feeds and question
marks during input. The “mode bypass switch”, SW3, is used in con-

junction with the subroutines On page 0 to type carriage returns and

line feeds. If the program is in output mode, the results of “the sorting
will be typed by the printer service routine. The stored numbers will be

unpacked, translated into ASCII codes andtyped out.

/PRINTER SERVICE ROUTINE

TP, ,TCF

TAD SW3 /CHECK MODE-BYPAss-SWITCH.

SNA CLA-

JMP MODOHK /NO BYPASS: CHECK MODE.

TAD sws

SPA CLA

JMP RETLF IMODE-BYPASSJ DO A CR & LF.

TAD QUEST /MODE BY PASS SET FOR "2”.

TLs

CLA OMA
‘

‘/AETER TYPING THE ? SET sws.

DCA sws ITO TYPE THE CR &LF.

JMP EXIT

MODCHK, TAD MODE /CHECK MODE.

SNA CLA

JMP EXIT /INPuT MODE: IGNORE REQUEST!

RETLE, TAD swe /OUTPUT MODE: BEGIN OUTPUT.

SNA CLA
,

-

\
JMP CR /FIRST PASS,CARRIAGE RETURN.

TAD sw2

SPA CLA

JMP LF /L1NE FEED 0N SECOND PASS.

DATA, TAD sw1 /PRINT DATA ON THIRD PASS.

52A OLA
’

/NEw NUMBER?

JMP DIGTYP lNO: TYPE ANOTHER DIGIT.

TAD M4 /YES: RESET DIGIT COUNTER-

DCA DIGCTR

DCA HOLD /CLEAR THESE LOCATIONS.

DCA HOLDL

Figure 5-16F. Program Interrupt Demonstration Program
(Printer Service. Exit and Restart Routines)

5-39

When the action of either service routine is completed, the exit mu»

tine returns control to the background program until the next interrupt
occurs. This routine restores the accumulator and link and turns the

interrupt on before jumping to the interrupted background program.

The restart routine initializes the software switches for the ordering
of a new set of data input from the keyboard. The mode is set for input
and control returns to the background program until new input is

supplied.
TAD r BUFFPT «erT NUMBER To BE PRINTED.

OIOTYP. TAD HOLDL
'

.

. OLL RAL /ROTATE INTO THE LINK.

TAD HOLD /THESE TwELVE INSTRUCTIONS

RAL /PRINT OUT THE NEXT DIGIT-

RTL

DOA HOLD

RAR

DOA HOLDL

TAD HOLD

AND K7

TAD K26O

TLs

OLA OMA /SET FOR ANOTHER DIGIT.

DOA sz

ISZ DIGCTR /w0RD COMPLETE?

JMP EXIT IND: GET ANOTHER DIGIT.

OLA iYES: SIGNAL A NEw NUMBER.

DOA swr

DOA swe /TYPE A OR & LF.

152 BUFFPT

Isz PRNTOT IALL NUMBERS PRINTED?

JMP EXIT INO: NAIT FOR NEw NUMBER.

RESTART,OLA CLL /YES: SET UP FOR NEw INPUT.

DOA MODE

DCA SW1

DOA swz

OMA /SET BYPASS szTOH

DOA sws ITO TYPE A OR & LF.

TAD BUFF

DCA BUFFPT

DCA AMOUNT

JMP EXIT

/ROUTINE TO RETURN TO ROTATE PROGRAM

EXIT; CLA CLL

TAD L

RAR

TAD AC

ION

JMP I O /O CONTAINS RETURN ADDRESS.

END:.

3

Figure 5-l6F (cont). Program Interrupt Demonstration Program
(Printer Service, Exit and Restart Routines)

5~40

DATA BREAK

Programmed transfers of data, including program interrupt transfers,

pass through the accumulator. The accumulator must therefore be

cleared while the transfer is performed. This type of transfer is often

too slow for use with extremely fast peripheral devices. Devices which

operate at very high speed, or which require very rapid response from

the computer, use the data break facility (standard on all PDP—8

family computers except the PDP—S/L). Use of these facilities permits
an external device to insert or extract words fromvthe computer mem-

ory, bypassing all program control. Because the computer program has

no cognizance of the transfers made in this manner, the program must

check for the presence of this data prior to its use. The data break is

particularly well-suited for devices that transfer large amounts of data

in block form, for example, random access disk files, high-speed mag-

netic tape systems, or high—speed drum memories.

The data break facility allows a peripheral device to transfer infor-

mation directly with the PDP-8 core memory on a “cycle stealing”
basis. Input/output equipment operating at high speed can transfer in-

formation with the computer through ‘the data break facility more

efficiently than through programmed means. In contrast to programmed

operations, the data break facilities permit an external device to con—

trol information transfers.

Data breaks are of twobasic types: single—cycle and 3-cycle. In a

single-cycle data break, registers in the device specify the core memory

address of each transfer and count the number of transfers to deter—

mine the end of the 'block. .In the 3-cycle data break, two computer

memory locations perform these functions, simplifying the device in—

terface by omitting the two hardware registers.

In general terms, to initiate a data break transfer of information, the

control must do the following tasks.

Specify the affected address in core memory.

Provide the data word.

Indicate direction of data word, transfer.

Indicate a single—cycle o‘r ‘3-cycle break.weave Request the data break.

5-41

Single-cycle data break is a device-controlled transfer of information

which steals one memory cycle from the PDP—S. When a device that is

connected to the data break facility wishes to transfer a word of infor—

mation, it requests a data break. The PDP—8 computer completes the

current instruction and enters the break state. For one memory cycle,
the device has access to the PDP-S and transfers the data word into

(or out of) the memory unit at a location specified by the device con~

trol. The device controls the number of words to be transferred and

the locations in memory to be affected by the transfer. The device con-

tinues to request breaks and transfers one word per break until the

block transfer is complete.

The 3-cycle data break facility provides a current address register
and a word count register in core memory for each connected device,

'

thus eliminating the necessity for registers in the device control. When

several devices are connected to the facility, each is assigned a difierent

pair of core locations for word count and current address, allowing
interlaced operations of the devices. The device specifies the location

of these registers in memory. Since these instructions are in memory,

they may be loaded and unloaded without using IOT instructions.

The 3—cycle data break facility performs the following sequence of

operations.

I. An address is read from the device to indicate the location of

the word count register. This location specifies the number

of words in the block yet to be transferred. The address is

always the same for a given device.

2. The content of the specified word count register is read from

memory and is incremented by 1. To transfer a block of n

words, the word count is set to ——n during the programmed
initialization of the device. When this register is incremented

to 0, a pulse is sent to the device to terminate the transfer.

3. The location after the word count register contains the cur—

rent address register for the device transfer. The content of

this register is set to 1 less than the location to be affected by
the next transfer. To transfer a block beginning at location

A, the register is originally set to A—1.

4. The content of the current address register is incremented by
1 and then used to specify the location affected by the trans-

fer.

5-42

After the transfer of information has been accomplished through the

data break facility, input data (or new output data) is processed,

usually through the program interrupt facility. An interrupt is re-

quested when the data transfer is completed and the service routine

will process the information.

EXERCISES

1. Write a Subroutine ALARM which rings the teleprinter bell

five times.

2. Write a format subroutine for the teleprinter to tab Space the

teleprinter carriage. The subroutine is entered with the num—

‘

ber of spaces to be tabbed in the accumulator.

3. Write a program that will type a heading at the top of the
'

paper and then type the numbers 1 through 20 down the left

hand side of the page with a period after each number.

4. Write a program which will accept a 2-digit octal number

from the Teletype keyboard and type “SQUARED:”and

the value for the number squared followed by “OCTAL”

and a carriage return and line feed

5. Extend the program written in Exercise 4 by adding routines

to disallow the input of an 8 or 9 and type out an appropriate

message.

6. Combine the program of Exercise 5 with a bit-rotating pro—

gram to use the program interrupt facility.

5—43

NOTE TO READER

This chapter concludes the introduction to machine—language pro-

gramming on the- PDP—8. The remaining chapters deal primarily with

software supplied by Digital Equipment Corporation as an aid to the

programmer. Chapter 6 describes the software available to assist the

PDP—8 programmer in writing machine~language programs. Later

chapters describe specialized software systems and a conversational

language, FOCAL, which can be used to write programs on the PDP-8.

The programming of advanced input/output devices and options
(e. g., EAE, DECtape, DECdisk, A/D Converters) are beyond the

scope of this publication. The applicable PDP—8 Users Handbook

should be consulted when programming these devices.

5-44

Chapter 6

Operating the

System Software

This chapter contains brief descriptions of the PDP—8 family systems

programs and selected program operating procedures. The major por-

tion of the‘chapter is devoted to detailed operating procedures for the

most frequently used system software—the loaders, symbolic editor, the

assemblers, the dynamic debugging programs, and FOCAL.

DESCRIPTIONS ,

A comprehensive package of system software accompanies each com—

puter in the PDP~8 family. (Software is the collection of programs and

routines associated with the computer.) The package contains many

programs and routines furnished on punched paper tape or stored on

DECtape in binary coded format, as well as associated manuals and

documents describing the use and operation of each program and rou-

tine.

The system software, supplied by Digital Equipment Corporation,
allows the programmer to write, edit, assemble, compile, debug, and

run his programs, making the full data processing capability of the

computer immediately available. System software comes from past,

present, and continuing programming efforts of DEC programmers and

. users (see Chapter 11).
'

The system programs furnished with each computer in the PDP—S

family are those capable of operating with that‘ specific computer and

its I/O devices. If, for example, a computer has 4K of core memory,

the set of programs in the accompanying software package are those

designed to run in 4K of core memory, and the package accompanying

computers with 8K of core memory include those programs capable of

operating in 8K of core memory, i.e., both 4K and 8K programs, and

so on.

Many of the frequently used software programs are briefly‘described
on the following pages.

6—1

Symbolic Editor

The Symbolic Editor is a program which allows the programmer to

prepare, edit, and generate a symbolic program tape online from the

Teletype keyboard. Using Editor, the programmer may enter 'his sym-

bolic program into core from the keyboard or paper tape reader, and-

then issue certain commands to edit his program. When used properly,
Editor can substantially ease the labor of writing and editing symbolic

programs and reduce the number of passes necessary to correct sym—

bolic program tapes. Symbolic Editor is further described later in this

chapter and in the DEC manual entitled Symbolic Editor, Order No.

DEC-OS-ESAB—D.

PAL III Symbolic Assembler

The PAL IlI Symbolic Assembler is a two-pass assembler which

translates symbolic programs written in the PAL III symbolic language
into binary~coded programs, producing the binary tape acceptable to

the computer. The assembler offers an optional third pass which pro-

duces an octal/syrnbolic printout and/or punchout of the assembled

program. The assembler is described in more detail later in this chapter
and in PAL III Symbolic Assembler, Order No. DEC—OS—ASAC-D.

MACRO-8 Symbolic Assembler

"The MACRO-8 Symbolic Assembler acceptssyrnbolic programs

written in the MACRO-8 symbolic language and translates them into

binary-coded programs in two passes. An. optional third pass is avail-

able for an octal/symbolic assembly program listing. MACRO—8 is

compatible with PAL III and has the following additional features:

user-defined macros, double—precision integers, floating—point constants,

dehmetic and Boolean operators, literals, text facilities, and automatic

oil-page linkage generation. The MACRO—8 Symbolic Assembler is

discussed later in this chapter and in MACRO—8 Assembler, Order No.

DEC—OS—CMAA—D.

8K SABR Symbolic Assembler

SABR is an advanced one-pass assembler for use with 8K to 32K

words of core. The SABR language is similar to the assemblers above

with many additional features, and differs from them in its operating

procedures, pseudo-ops, assembled output (relocatable binary code),
and execution of assembled programs. SABR is also used with 8K

FORTRAN. For a complete description, refer to 8K SABR Assembler,

Order No. DEC-OS-ARXA‘D.

FORTRAN Compilers and Operating Systems
FORTRAN (FORmula TRANslation) is a problem—oriented lan—

:

guage written mostly in mathematical terms and some English words. It

6-2

is especially suited for solving equations and making other mathematical

calculations. For those who elect to write their programs in FORTRAN,
DEC has 4K FORTRAN and 8K FORTRAN. Each is briefly ex-

plained below.

on

4K FORTRAN

4K FORTRAN consists of a compiler, debugging aid, and oper-

ating system The one—pass compiler translates FORTRAN symbolic—

language statements into binary code and produces a binary tape. The

debugging aid (Symbol Print) lists the variables Used and their locations

in core and indicates the section of core used by the compiled program.

The operating system loads and executes the compiled program. In ad—

dition, the operating system contains an extensive library of arithmetic

function subprograms and I/O routines. Useful error messages are

printed on the teleprinter when any error is detected by the compiler or

operating system. For additional information, refer to 4K FORTRAN,

Order No. DEC-OS-AFCO-D.

8K FORTRAN

8K FORTRAN consists of a one—pass compiler, the one—pass 8K

SABR assembler, a linking loader, and an operating system, as well as

a comprehensive library of subprograms. During compilation, the sym~

bolic program is compiled into nonexecutable binary code. During
assembly, a relocatable binary program tape is produced. The linking

loader is used to convert the relocatable binary code into absolute

binary code for execution under control of the operating system.

‘Mean-ingful error messages are typed on the teleprinter as they are

detected. For additional information, refer to 8K FORTRAN, Order

No. DEC-OS-KFXB-D.

ALGOL-8

ALGOL (for ALGOrithmic Language) is one of the most widely
used international programming languages. The language emphasizes
formal, well—defined procedures for solving problems with computers
and is the standard language of the scholarly Association for Computing
Machinery (ACM).

The ALGOL—8 compiler conforms to SUBSET ALGOL 60 as

approved by the International Federation of Information Processing
Societies (IFIPS) with additional restrictions. Further information is

provided in ALGOL—8 Programmer’s Reference Manual, Order No.

DEC—OS-KAYA-D.

6-3

FOCAL

FOCAL (for FOrmula CALculator) is an online, conversational in—

terpreter designed to be used as a tool by students, engineers, and scien-

tists in solving a wide variety of their problems. The language consists

of short imperative English statements and mathematical expressions in

standard notation. FOCAL puts the full calculating power and speed of

the computer at the user’s fingertips without the user having to master

the intricacies of machine-language programming; in fact, the user need

know nothing at all about computers

Using FOCAL, a FORTRAN—like program can be entered from the
keyboard and immediately executed, with the interpretive features

taking care of editing, compiling, and executing the stored program.

Procedures for loading and getting “online” with FOCAL are de—

scribed later in this chapter and a thorough description of the FOCAL

language15 given in Chapter 9. (FOCAL18 also describedin a

separatemanual, Order No DEC—08—AJADD.)

BASIC-8
p

BASIC-8 is a modified version of the very popular algebraic language

developed at Dartmouth College. The BASIC-8 language is composed
of easy-to-learn English statements and mathematical expressions. It is

ideally suited for the classroom as well as the office or laboratory.
(BASIC-8 operates with TSS/ 8, described in Chapter-’8.)

Disk Monitor System
The Disk Monitor System is a keyboard—oriented system con-

taining a monitor and a comprehensive software package. The pack—

age includes a FORTRAN Compiler, Program Assembly Language
(PAL-D), Editor program (Editor), Peripheral Interchange Program
(PIP), and Dynamic Debugging Technique (DDT—D) program. These

system programs simplify the user’s task of editing, assembling, com-

piling, debugging, loading, saving, calling and running his own pro-

grams. The system is modular and open ended, permitting the user to

construct the software required in his particular environment and to

have full access to his disk for storage and retrieval of his programs.

Chapter 7 is devoted to the Disk Monitor System, and it is further

described in Disk Monitor System, Order No. DEC—DS-SDAB-D.

TSS/S

TSS/8 (Time-Sharing System for the PDP—S/I and PDP-8 com-

puters) is a general-purpose, stand-alone, time-sharing system. TSS/8

6-4

offers each of up to 16 users a comprehensive library of programs which

provide facilities for compiling, assembling, editing, loading, Saving,

calling, debugging, and running user, programs online. Any of'these

library programs can be called into use by typing, in response to Moni-

tor’s invitation (the dot), the command R and the assigned name of the

program. For example, .R FOCAL brings the FOCAL program into

core from the disk and automatically executes FOCAL so that it begins

ftyping out its initial dialogue (see Chapters '8 and 9).
The heart of. this time-sharing system is a complex of programs

called Monitor. Monitor coordinates the operations of the various units,
allocates the time and services of the computer to users, and controls

their access to the System. By segregating the central processing opera—

tions from the time-consuming interactions with the human users, the

computer can in effect work on a number of programs simultaneously.
The executions of various programs are interspersed without interfering
with one another and without detectable delays in the responses to the

individual users. See Chapter 8 or Time—Sharing System——TSS/8 Mom'—

tor, Order No. DEC-T8-MRFB-D.

Loaders

A loader is a short program or routine which, when in core, enables

the computer to accept and store in core other programs. DEC offers

the programmer the following assortment of loaders to use, depending
on his preference and system cenfiguration.

Read-In Mode (RIM) Loader—used to load into core programs

punched on paper tape in RIM format, primarily the Binary
Loader RIM consist of 17 instructions which are toggled into core

using the console switches.

Binary (BIN) Loader—used to load into Core programs punched
on paper tape in binary format, which includes the programmer’s
binary tapes and most of DEC’s system software. BIN is on

punched paper tape in RIM format

HELP Loader—used to load into core the RIM and BIN Loaders.

HELP is in two parts: the first part consists of 11 instructions

which are toggled into core using the' console switches; the second

part is the HELP Bootstrap Loader punched on paper tape (con—

taining the RIM and BIN Loaders), which is loaded into core

using the low—speed paper tape reader.

TCOI Bootstrap Loader—used to load into core the DECtape
Library System programs. The loader is a 20-instruction program

which can be toggled into core using the console switches or it may

6-5

be on paper tape in RIM format and therefore read into core using
the RIM Loader.

The four loaders above are covered in greater detail in the System
User’s Guide, Order No. DEC-OS-NGCB-D. RIM and BIN are also de-

scribed under “Operating Procedures” in this chapter.

Disk System Binary Loader-is a keyboard-oriented loader used

to input assembled binary programs into core. This loader is exi

plained in Chapter 7 and in Disk Monitor Sysfem, Order No.

DEC—D8-SDAB-D.

Dynamic Debugging Programs
>

Dynamic debugging programs are service programs that allow the

programmer to run his binary program on the computer. From the

Teletype keyboard, the programmer can control program execution,
examine registers and change their contents, make alterations to the pro-

gram, and much more. DDT-8 and CDT—8 are the two dynamic debug-

ging programs included in the system software package.

DDT—8 (Dynamic Debugging Techniquek—allows the programmer

to do all the things mentioned in the preceding paragraph by com-

municating with his object program using either the mnemonic

coding of the symbolic program or the octal coding of the binary

program. DDT-8 is described in more detail later in this chapter
and in DDT-8, Order No. DEC-O8—CDDA-D.

0DT—8 (Octal Debugging Technique)——allows the programmer to

do all the things mentioned above by communicating with his

object program using the octal representation of his binary pro-

gram. ODT—S occupies less core storage than DDT—8 and can be

loaded in upper memory or lower memory, depending on where

the binary program resides. If the programmer’s program uses

floating—point numbers, the low version of ODT-S must be used

when debugging his program (DDT-8 does not interpret floating—

point numbers). DDT—8 is described in more detail later in this

chapter and in 0DT—8 Order No. DEC-OS-COCO-D.

Library of Utility Subroutines

Utility subroutines are short routines for performing such tasks as

printout or punchout of core memory content in octal, decimal, or

binary form, as specified by the programmer. Other tasks include octal

or decimal data transfers and binary-to-decimal, decimal—to-binary, and

paper tape conversions. These subroutines can be incorporated in the

user’s program or run independently.

6-6

A complete set of standard diagnostic programs is provided to sim—

plify and expedite system maintenance; these are called MAINDEC

programs or routines. MAINDECs permit the programmer to effec-

tively test the operation of the computer for proper core memory func-

tioning and proper execution of instructions. They also enable perform-
ance checking of standard and optional peripheral devices. A list of

software documentation may be obtained from the DEC Program
'

Library.

Library of Mathematical Subroutines

The system software package also includes a set of mathematical

function routines to perform the following operations in both single and

double precision: addition, subtraction, multiplication, division, square

root, sine, cosine, arctangent, natural logarithm, and exponentiation.
These routines are incorporated in the programmer’s symbolic program

as needed and are executed in response to an indirect JMS instruction

to the‘desired routine. (See Program Library Math Routines, Order No.

DEC—OS-FFAC-D.)
' '

Also included in the software package is a floating~point system to

enable the programmer to concentrate on the logic of his computation
rather than on decimal points. The system maintains a constant number

of significant digits throughout the computation. thereby enhancing the

accuracy of the result.

Floating—point notation is particularly useful fer computations in—

volving numerous multiplications and divisions where magnitudes are

likely to vary widely and where only crude predictions can be made as

to the amount of variation involved. The floating-point system allows

storage of very large or very small numbers by storing only the signifi-
cant digits together with the exponent for that number. The system is

constructed as a self-contained package which includes its own input,
arithmetic, and output routines. It allows the programmer to use

floating-point arithmetic without having to construct his own arithmetic

subroutines.

When loaded in core, the starting address of the floating-point system
is stored in absolute location} 0007 and isactivated in response to a

JMS I 7 instruction. Then, the appropriate floating—point subroutines

are called by the subsequent instructions in the

program
as shownin

the following example.

JMS I 7 / indirect jump to floating-point system.

FGET A , / gets the floating-point number A

FADD B / and adds it to floating—point number B

6-7

FPUT C /and puts the result in floating-point
FEXT / location C, and then exits the floating—

/point system, returning to the main

/ program

For more detail, see Floating—Point System, Order No. Digital 8-5—S.

Availability of Software

System program tapes and manuals are available from DEC Sales

Offices and the central Program Library. In addition, a large variety of

programs written by users of PDP—S family computers are available

through DECUS (see Chapter ll).

OPERATING PROCEDURES

Initializing the System
.

Before using the computer system, it is good practice to initialize all

units. To initialize the system, ensure that all switches and controls are

as specified below.

Main power cord is properly plugged in.
‘

Teletype is turned OFF.

Low-speed punch is OFF.

Low—speed reader is set to FREE.“

Computer POWER key is ON.

PANEL LOCK is unlocked.

Console switches are set to

DF=OOO IF==OOO SR=0000

SING STEP and SING INST are not set.

8. High-speed punch is OFF.

9. DECtape REMOTE lamps OFF.

SP‘MPPNH
The system is now initialized and ready for your use.

Loaders

READ-IN MODE (RIM) LOADER

When a computer in the PDP—S family is first received, it is nothing
more than a piece of hardware; its core memmy is completely demag—
netized. The computer “knows” absolutely nothing, not even how to

6-8

receive input. However, the programmer knows from Chapter 4 that he

can manually load data directly into core using the console switches.

The RIM Loader is the very first program loaded into the computer,
and it is loaded by the programmer using the console switches. The RIM

Loader instructs the computer to receive and store, in core, data

punched on paper tape in RIM coded format (see Chapter 4). (RIM
Loader is used to load the BIN Loader described below.)

There are two RIM loader programs: one is used when the input is

to be from the low-speed paper tape reader, and the other is used when

input is to be from the high-speed paper tape reader. The locations and

corresponding instructions for both loaders are listed in Table 6-1.

The procedure for loading (toggling) the RIM Loader into core is

illustrated in Figure 6—1.

Table 6-1. RIM Loader Programs

Instruction

Location Low-Speed Reader High-Speed Reader

7756
.

,

6032
'

6014

7757 6031 6011

7760 . 5357 5357

7761
,

6036 6016

7762 7106 7106

7763 7006 7006

7764 7510 7510

7765
'

5357 5374

7766 7006 7006

7767 6031 6011

7770 5367 5367

7771 6034 6016

7772 7420
'

7420

7773
.

3776 3776

7774 .

‘

3376 3376

7775 5356 5357

7776 0000
'

0000

/

After RIM has been loaded, it is good programming practice to

'verify that all instructions were stored properly. This can be done by

performing the steps illustrated in Figure 6-2, which also shows how to

correct an incorrectly stored instruction.
’

'

When loaded, the RIM Loader occupies absolute locations 7756

through 7776.

6—9

Set
*

DF=Desired Field

IFxDesired Field

Using
Extended

Margery

Set SR17756

Depress
LOAD ADD

*

DECmpe users should

load RIM imo field 0‘

No

Yes

Set SR = First

lnstruciion

l Depress DEP
,

Set SR= Next

InsQructinn

Depress DEP

Figure 6-1. Loading the RIM Loader

‘

6-10

I Set SR=MA I

Depress LOAD ADD I

Set SR=-Correct

Instruction

l.

Depress DEP

Using
Exlended

Memory
‘

?

Yes
' Set

DF = Correct Field

IF = Correct Field

Set SR x 7756 —

I Depress LOAD AD!) I

Depress EXAM

MB =

Instruction

?

All

Instructions

Checked

Figure 6-2. Checking the RIM Loader

BINARY (BIN) LOADER

The BIN LoaderIS a short utility program which, when1n core, in-

structs the computer to read binary-coded data punched on paper tape
and store it in core memory. BIN is used primarily to load the programs

furnished in the software package (excluding the loaders and certain

subroutines) and the programmer’s binary tapes.
BINlS furnished to the programmer on punched paper tape in RIM—

coded format. Therefore, RIM must be in core before BIN can be

loaded. Figure 6-3 illustrates the steps necessary to properly load BIN.

And when loading, the input device (low- or high-speed reader) must

be that which was selected when loading RIM.

6—11

.
.RlM Is Loaded

Pui BIN Tape
In HSR

Depress START

Tape
7

Reads In

?

HSR SIops 111

End Of Tape

Load RIM

Using
Extended

Memary
?

Depress LOAD ADD

I

Set SF? = 7756

—————— 4 See Figures 6-1 ,6—2

Set
*

DF = Correct Field

IF = Correct Field

Law ~

Speed Reader

Turn TTY To LINE

[I
Put LSR To FREEWILl

Put BIN Tape
In LSR

Pu! LSR To START:LI

Depress START

Tape
Reads In

?

LSR SVops AI

—'——Dl Depress STOP H
End

0"
Tape

“
Same field settings
as RINL

Remove Tape
From Render

(BIN Is Loaded >

Figure 6-3. Loading the BIN Loader

6-12

When stored in core, BIN resides on the last page of core, occupying
absolute locations 7625 through 7752 and 7777. ,

BIN was purposely placed on the last page of core so that it would

always be available for use—the programs in DEC’s software package
do not use the last page of core (excluding the Disk Monitor, dis-

cussed in Chapter 7). The programmer must be aware that if he writes

a program which uses the last page of core, BIN will be wiped out

when that program runs on the computer. When this happens, the pro—

grammer must load RIM and then BIN before he can load another

binary tape.

Figure 6-4 illustrates the procedure for loading binary tapes into core.

6-13

0 Load BIN
————— “‘1 See Figure 6-3

Using
Extended

Memory
?

Yes 591

DFIDesired Filld

IF I Field of BM

Depress LOAD ADD

Nb

High-Speed Reader Which Low-Speed Radar

Radar

?_

S" SRI3777 Turn TTY To LINE

l PM Top. In HSR PM Top: In LSR

SH LSR To START

5“

Door.“ START

No Ti:

0 Read; 1n

?

pl

VII

Tum S'op:
Al Beginning 0!

Truiier Tap.
?

o m

Depress CONT

"no
‘

Yo:

End No

0' Tape

?

Y"

Obj“: Tape
I! Loaded

Figure 6-4. Loading A Binary Tape Using BIN

6-14

Symbolic Editor

The Symbolic Editor is a service program which allows the pro-

grammer to write and prepare symbolic programs and to generate a

symbolic program tape of his programs. Editor is very flexible in that

the programmer can type his symbolic program online from the Tele—

type keyboard, thus storing it directlyinto core memory. Then, using
certain Editor commands, the programmer can have his program listed

(printed) on the teleprinter for visual inspection.
Editor also allows the programmer to add, correct, and delete any

portion of his symbolic program. When the programmer is satisfied that

his program is correct and ready to be assembled or compiled, Editor

can be commanded to generate a Symbolic program tape of the stored

program.

.

The Symbolic Editor program is usually issued on punched paper

tape in binary-coded format. Therefore, it is loaded into core memory

using the BIN Loader. When in core, Editor is activated for use by set—

ting the switch register (SR) to 0200 (the starting address) and de-

pressing the LOAD ADD (load address) and then START switches.

Editor responds with a carriage return/line feed sequence on the

Teletype.

Initially, Editor is in command mode, that is, it is ready to accept
commands from the programmer;'anything typed by the programmer is

interpreted as a command to Editor Editor accepts only legal com-

mands, and if the programmer types something else, Editorignores the

command and types a question mark (?).
When not in command mode, Editor is in text mode, that is, all

characters typed from the keyboard or tapes read in on the tape reader

are interpreted as text to be put into the text buffer in the manner spe-

cified by a preceding Editor command Figure 6— 5 illustrates how the

programmer can transfer Editor from one mode to the other.

Type a command.
then depress
RETURN Key

Command Mode Text Mode

Type desired

input, then

CTRL/FORM Keys

Figure 6-5. Transition Between Editor Modes

6-15

Seven of Editor’s basic commands are briefly described below.

Command Meaning

A Append incoming text from the keyboard into the text

buffer immediately following the text currently stored

in the buffer.

R Read incoming text from the tape reader and append
it to the text currently stored in the buffer.

L List entire text buffer; the programmer can specify one

line or a group of lines.

C Change a line; the programmer precedes the command

with the decimal line number or line numbers of the
‘

lines to be changed.
I Insert into text buffer; the programmer specifies the

decimal line number in his program where the in-

serted text is to begin.

D Delete from text buffer; the programmer specifies the

line or group of lines to be deleted. .

P Punch text buffer; the programmer can specify one
-

line, a group of lines, or the entire text buffer.

All commands are executed when the RETURN key is depressed ex-

cept the P command. To execute the P command, press the RETURN

key on the Teletype, turn on the punch, and press the CONT (continue)
switch on the computer console.

The above commands are only the seven basic commands. A sum—

mary of all commandsis providedin Table 6—4 at the end of this section.

WRITING A PROGRAM

Now that you have some idea of what you can do with Editor and

what Editor can do for you, we will write and edit a short program, ex-

plaining each step in the comments to the right of the printout.
The example program finds the larger of two numbers and halts with

the number displayed in the accumulator (AC). The program is written

in PAL III, to be assembled using the PAL III Assembler described

later in this chapter.
The programmer loads Editor using the BIN loader (see Figure 6-4).

Editor is then activated by loading the starting address (02008) and

depressing the LOAD ADD and START switches. After Editor re-

sponds with a carriage return/line feed, the programmer types A and

RETURN key. Editor is now in text mode, that is, subsequent charac-

ters typed are appended to the text butter. The programmer new types
the symbolic program. (Block indentingis facilitated using the CTRL/

TAB key, which Editor has programmed to indent in ten-character

increments.)

6—16

CLA /CLEAR AC

TAD NUMB /GET B

CMA

CMA / 1’s COMP B

IAC / r—B

TAD NUMA /ADD —B + A

SMA. / IF --B LARGER '

.
JMP .+4 / JUMP 4 LOCATIONS

CLA ’/ CLEAR AC

TAD NUMB /GET B

HLT /B IS LARGER

CLA /CLEAR AC

TAD NUMA /GET A

‘ HLT /A IS LARGER

NUMB, 0000

NUMA, 0000

$

Visual inspection reveals that we have errors in lines 4, 16, and 17.

(Editor maintains a line number count in decimal, with the first ‘iine

typed being 1 and our last line being 18.) Line 4 can be removed using
the D (Delete) command; and lines 16 and 17 can be corrected using
the C (Change) command. However, Editor is presently in text mode,
and in order to issue another command Editor must be transferred to

command mode. This is done when the programmer types CTRL/ V

FORM (depress and hold down the CTRL key while

key) .

*200

typing the FORM

VCTRL/FORM (nonprinting) The programmer types CTRL/ FORM;
Editor responds with CR/ LF and

rings the teleprinter bell, indicating

>

that it is in command mode.

4!) The programmer types 4]) and the RE-

TURN key; Editor responds with a

CR/ LF and the line is deleted.

The programmer types 15, 16C and the

RETURN
.

key, informing Editor

that lines 15 and 16 (formerly I6
and 17) are to be changed.

Editer'responds with a CR/ LF, trans-

fers, to text mode; and waits for the

programmer to change the lines.

The programmer types NUMA, 1111

and NUMB, 0011.

15, 16C}-

NUMA, 1'1 11

NUMB, 0011

6-17

The symbolic program should now be correct. However, it is good

programming practice to check the program after editing; this can be

done using the L (List) command, but since only original lines 4, 16,
and 17 were changed it is not necessary to have the whole program

listed. The programmer can command Editor to list lines 4 through 17.

CTRL/ FORM (nonprinting)

4, 17L

NUMA,

NUMB,

CMA

IAC’

TAD NUMA

SMA A

JMP .+4

CLA

TAD NUMB

HLT

CLA
TAD NUMA

HLT

1111

0011

$

The programmer types CTRL/ FORM

to return Editor to command mode;
Editor responds with CR/ LF and

rings the bell, and waits for the next

command.

The programmer types 4,17L and the

RETURN key; Editor types lines 4
.

through 17.

/ 1’s COMP B

/v—-B

/ADD ——B + A

/ IF ——B LARGER

/JUMP 4 LOCATIONS

/ CLEAR AC

/GET B

/ B IS LARGER

/ CLEAR AC

/GET A

/A IS LARGER

The changes were accepted properly. The symbolic program is correct

and ready to be punched on paper tape.

GENERATING A PROGRAM TAPE
Before issuing the P (Punch) command, Editor must be in command

mode. Figure 6-6 illustrates the procedures required to

generate
a sym—

bolic program tape using Editor.

CTRL/ FORM (nonprinting)
?

The programmer types CTRL/ FORM;

Editor responds with a question
mark, indicating that Editor Was in

command mode

The programmer commands Editor to

punch the entire text buffer by typ—

ing P and the RETURN key.

6—18

Edilov I; tn

Command Mod.

And

Computed Symbolic
qumm in In

Tent Bufllv

HuqhvSpeed Punch

Selacl Suiich

Register Option

Depress NSF 0N

Tyne T And

RETURN Keys

1999 Command

(P up Or m,nPt
And RETURN Key

Low '

Speed Punch

_
sum Switch _:—Su Table 6-2 }— Sn Tabla 6 2

1w. 1' And

RETURN Klys find

Daprul LSP 0N

Anev Leadar Tana

Depress LSP OFF

Typl Command

(P “F 01 mmP‘
And RETURN Kay

Depress CONT

And Typed

Typo F And

RETWN Key: And

~ Dew-u LS? 0N

Type 1‘ And

RETURN Key: And

Depress LSP ON

Mk! Tmllu

Depnss LSP OFF

Figure 6-6. Generating a Symbolic Tape Using Editor

Dona“ LSP OFF

When Editor recognizes a P command it waits for the programmer to

specify the low— or high-speed punch. If the programmer wants the

program punched and typed, he sets SR bit 10 to 0 and the program

will be punched on the low—speed punch and simultaneously typed on

the teleprinter. If the programmer wants only a program tape and if he

6-19

has a high-speed punch available, he sets SR bit 10 to 1 and the pro-

gram will be punched on the high-speed punch. For the purposes of this
discussion, a printed program listing is desired, so the low-speed punch
is specified. The programmer turns on the low-speed punch and de-

presses the CONT switch on the computer console, and Editor begins
punching and typing the contents of the entire text buffer.

An image of the stored symbolic program has been punched and

typed by Editor.

If the programmer stops the computer, e. g., purposely or accidentally
turning the computer off, he may restart Editor at location .0200 or

0177 without disturbing the text in the buffer. Editor can also be re-

started at location 0176; however, all text currently in the bufier is

wiped out. Therefore, the programmer can restart at location 0176 to

re~initialize for a new program

SEARCH FEATURE

A very convenient feature available with Editor is the search feature,
which allows the programmer to search a line of text for a specified
character. When the programmer types a line number followed by S,
Editor waits for the user to type in the character for which it is to

search. The search character is not echoed (printed on the teleprinter).
When Editor locates and types the search character typing stops, and

Editor waits for the programmer to either type new text and terminate

the line with a RETURN key or to use one of the following special
keys. .

1. (- to delete the entire line to the left,

2. RETURN to delete the entire line to the right,
3. RUBOUT to delete from right to left one character for each

RUBOUT typed (a \ is echoed for each RUB-

OUT typed),
4. LINE FEED to insert a carriage return/line feed (CR/LE)

thus dividing the line into two,

5. CTRL/ FORM to search for the next occurrence of the search

character, and/ or

6. CTRL/ BELL to change the search character to the next char-

acter typed by the programmer.

INPUT/OUTPUT CONTROL
'

Switch register options are used with input and output commands to

control the reading and punching of paper tape. The options available

to the programmer are shown in Table 6-2. These optibns are used in

conjunction with the “Select Switch Register Option” operation in

Figure 6-6.

6-20

Table 6-2. Input/Output Control

SR Bit Position Function

0 0 Input text as is

1 Convert all occurrences of 2 or more

spaces to a tab

1 0 Output each tab as 8 spaces

1 Tab is punched as tab/ rubout
2 .0 Output as specified

1 Suppress output*
‘

10 0 Low-speed punch and Teleprinter
1 High-speed punch .

11 0 Low-speed reader

1 High-speed reader

*Bit 2. allows the user to interrupt any output command and return imme-
'

diately to command mode; when desired, merely set bit 2 to 1.

ERROR DETECTION

Editor checks all commands for nonexistent information and incor-

rect formatting. When an error is detected, Editor types a question
_

mark (?), and ignores the command. However, if an argument is pro-

vided for a command that doesn’t require one, the argument is ignored
and the command is executed properly.

Editor does not recognize extraneous and illegal control characters;

therefore, a tape containing these characters can be cleaned up or cor-

rected by merely reading the tape into Editor and punching out a new

tape.

SUMMARY OF SPECIAL KEYS AND COMMANDS

Using special keyboard keys and commands, the programmer con—

trols Editor’s operation. Certain keys have special meaning to Editor, of

which some can be used in either command or'text mode. The mode

of operation determines the function of each key. The special keys and

their function are shown in Table 6-3.

am

Table 6-3. Special Keys

Key Command Mode Text Mode

RETURN

RUBOUT

CTRL/FORM'

. (period)

LINE FEED

ALTMODE

IIAV

CTRL/TAB

Execute preceding com-

mand

Cancel preceding com-

mand (Editor responds
with a ? followed by a

carriage return and line

feed)

same as (4—-

Respond with question
mark and remain in

command mode

Value equal to decimal

value of current line

(used alone or with +

or
— and a number; e.g.

.+8)

Value equal to number of

last line in buffer; used

as an argument

List next line

List next line

List next line

List previous line

Used with . or / to ob-

tain their value

Same as = (gives value

of legitimate argument)

Enter line in text buffer

Cancel line to the left mar-

gin

Delete to the left one char—

acter for each depres-
sion; 3. \ (backslash) is

echoed (not used in’

Read (R) command)

Return to command mode

and ring teleprinter bell

Legal text character

Legal text character

Used in Search (8) com~

mand to insert CR/LF

into line

Produces a tab which on

outputr'is interpreted as

10 spaces' or a tab/rub-

out, depending on SR

option

Editor commands are given when in command mode. There are three

basic types of commands: Input, Editing, and Output. Table 6-4 con—

tains a summary of Editor commands and their function.

6—22.

Table 6—4. Summary of Commands

A

Type Command Function

Input A Append incoming text from keyboard into text

buffer
'

'

R Append incoming text from tape reader into text

butter .

Editing L List entire text buffer

nL List line 11

m,nL List lines In through 11 inclusively
nC Change line n

,

m,nC Change lines In through 11 inclusively
I

,

Insert before first line

nI Insert before line n

K Delete entire text buffer

nD Delete line n

m,nD Delete lines In thrOugh n inclusively
m,n$kM Move lines In through n to before line k

G Print next tagged line (if none, Editor types ?)
nG Print next tagged line after line 11 (if none, ‘2)
S

'

Search bufier for character specified after RE-

TURN key and allow modification (search char-

acter is not echoed on printer)
nS Search line n, as above

m,nS Search lines m through 11 inclusively, as above

Output P Punch entire text‘bufi'er

nP Punch line It

m,nP Punch lines In through 11 inclusively
T Punch about 6 inches of leader/ trailer tape
F Punch a FORM FEED onto tape
N Do P, F, K, and R commands

m and n are decimal numbers, and m is smaller than n; K is a decimal number.

The P and N commands halt the Editor to allow the programmer to select

1/ 0 control; press CONT to execute these commands.

Commands are executed when the RETURN key is depressed, excluding the

P and N commands.
'

Symbolic AsSemblers
,

‘

A symbolic assembler is a service program that translates symbolic

programs into binary-coded programs which can be loaded and run

on the computer. In other words, the programmer writes the symbolic

program using symbols which are meaningful to him, and then an as

sembler is used to translate the symbols into binary code, which is

meaningful to the computer. The computer knows only yes or 110, plus

6—23

or minus, voltage or no voltage, magnetized or demagnetized, i.e., one

of two conditions (states) which we simplify as 1 or 0. Therefore, the
,

assembler translates the programmer’s symbols into 1’s and 0’s which

are meaningful to the computer.

Because assemblers are vital to the efficient operation of computers
in the PDP-S family, DEC presently offers four (PAL III, MACRO—8,

PAL-D, and 8K SABR), and this list is destined to grow with time as

other versions are needed to assemble other programming languages.
This se‘ction includes general descriptions of PAL III and MACRO—8.

PAL-D incorporates most of the features of both PAL III and

MACRO-8 and is used only in the Disk Monitor System. So, if you

learn PAL III and MACRO—8, you have only to learn the few excep-

tions of PAL-D and then you know all three.

First PAL III is discussed and then MACRO-8. MACRO-8 is com-

patible with PAL III except for some additional features, therefore, in

the section on MACRO-8 emphasis is on the additional features and

exceptions. s

PAL III SYMBOLIC ASSEMBLER

The PAL III Symbolic Assembler (PAL stands for Program Assembly

Language) is an indispensable service program used to translate symbolic

programs, which are written in the PAL III language, into binary—coded
programs (binary programs). Having progressed to this section of the

Handbook, you are by now familiar with the PAL III programming

language; because the symbolic language used in the preceding chapters

is PAL III. In this section, the PAL III Assembler is used to assemble
the example program written using Editor (see “Writing'a. Program,”
above).

PAL III is a two-pass assembler with an optional third pass, i.e., the

symbolic program tape must be passed through the assemblertwo times

to produce the binary-coded. tape (binary tape), and the optional third

pass produces a complete octal/symbolic program listing which can be

typed and/or punched if desired. A brief explanation of the three passes

is given below.

Pass 1. The assembler reads the symbolic program tape and defines all

symbols used and places these user symbols in a symbol table for use

during Pass 2. The assembler checks for undefined symbols and certain
other errors and. types an error message on the teleprinter when an error

is detected.

Pass 2. The assembler rereads the symbolic program tape and gener-

ates the binary tape using the symbols defined during Pass 1. When the

low-speed punch is used, meaningless characters will be typed on the

6—24

teleprinter, and these should be ignored by the programmer. The assem-

bler checks illegal referencing during this pass and'types an error mes-

sage on the teleprinter when any is detected.

Pass 3. The assembler reads the symbolic program tape and types

and/or punches the octal/symbolic program assembly listing. This list-

ing thoroughly documents the assembled program and is useful when

debugging and modifying the program.
'

The meaningless characters, error messages, and octal/symbolic pro—

gram listing will be shown later in this section.

PAL III accepts symbolic program tapes from either the low-speed
or high—speed reader and produces the binary tapes on eitherthe low-

speed or high-speed punch.
‘

During assembly, the programmer communicates with PAL III via

the switches on the computer console. Switch options are used to specify
which pass the assembler is to perform and which reader and punch the

assembler should accept input from and punch out on.

ASSEMBLING A SYMBOLIC PROGRAM. Earlier in this chapter,
the programmer wrote a PAL III symbolic program and generated the

> symbolic program tape using Editor. That symbolic program can now

be assembled to produce a binary program using PAL III. A listing of

the symbolic program follows.

*200

CLA . . /CLEAR AC

TAD NUMB / GET B

CMA
‘

/ l’S COMP B

IAC /-—B

TAD NUMA /ADD -B + A

SMA / IF »——B LARGER

JMP .+4 / JUMP 4 LOCATIONS
CLA /CLEAR AC

TAD NUMB /GET B

HLT / B IS LARGER

CLA / CLEAR AC

TAD NUMA / GET A

HLT /A IS LARGER

NUMA, 11 1 1

NUMB, 0011

‘3

First, PAL III must be loaded into core memory, and since PAL III

15 on punched paper tape in binary—coded format, it is loaded into core

memory using the BIN Loader (see Figure 6-4 for loading procedures).

$25

With PAL III in core, we are ready to assemble the symbolic pro-

gram. Figures 6-7 and 6-8 illustrate the procedures for assembling with

PAL III using the low—speed reader/punch and high-speed reader/

punch, respectively. In these flowcharts, the switch register options are

set for the appropriate reader/punch.
The low—speed reader and punch (LSR and LSP) are used in the

following assembly (see Figure 6-7).

Initializing and Starting Load PAL 111 into core memory using
BIN.

Set SR:0200 and depress LOAD ADD.

Turn TTY to LINE and put symbolic
program tape in LSR.

Entering Pass] Set SR:2200 and set LSR to START.

, Depress LSP to ON and depress
START.

NUMA 0215 Error messages would be typed now.

NUMB 0216 Symbol table concludes Pass 1.

Entering Pass 2 Put symbolic program tape in LSR.

BB: Set SR:4200 and set LSR to START.

8 8 Depress LSP to ON and depress CONT.

:”‘ Disregard meaningless characters While

<:
‘ object tape is being punched.

<) Error messages would be typed now.

Entering Pass 3 Put symbolic program tape in LSR.

Set SR=62OO and set LSR to START.

Depress LSP to ON and depress‘CONT.
The octal/ symbolic program listing is

being typed and punched.

*200

0200 7200 CLA /CLEAR AC

0201 1216 TAD NUMB /GET B

0202 7040 CMA / I’S COMP B

0203 7001 IAC / —B

0204 1215 TAD NUMA /ADD ~—B + A

0205 7500 SMA / IF —B LARGER

0206 5212 JMP .+4 / JUMP 4 LOCATIONS

0207 7200 CLA / CLEAR AC

0210 1216 TAD NUMB /GET B

021 1 7402 HLT /B IS LARGER

0212 7200 CLA /CLEAR AC

0213 1215 TAD NUMA ./GETA

0214 7402 HLT /A 718 LARGER

0215 1111 NUMA, 1111

0216 0011 NUMB, 0011

NUMA 021 S

NUMB 021 6

6-26

Lm mu. m —————— «I 5.. Figuvl 6-4

ming
Eunndod

Memory

?

So!

OF ' O‘Iirld Flu‘d

lF' I mm 0! PAL m

SN SR . 0200

Douro" LOAD ADD

Tum TTY To LINE

Pul Symbolic

Top- In L5H
Door." STOP \

L
SII SR ' 5200 l

Punch

Lining Tnhl‘
?

509 SR Il 2200

SM LSR To START

Punch Yu

Symbnl Tail.

‘7

Down: START

TOM
‘

Rum: In

Doom. CONT

W63? Fur

End 04 MW“

Walt for End

0! Blnory Tap.

?
3" L59 OFF

SI! L5H FREE
A

Wait For

Symbov Tabla
‘

‘ -

)H Any
Fumuhnd

Roman Top!
me LSR

Error VII

Dioonas'ic
?

Come! r91

And fine mula

Finish 6

Figure 6-7. Assembling with PAL 111 Using Low-Speed Reader/Punch

6-27

------ 4 See Figure 54

5n

ICIFs Desired Field

IF: Fluid 0! PAL [H

mm;
Eltlndcd

Manor y
7

PM Symbolic

Tm: In NSR

L_.._
52! SR = 620!59' SR I ‘20!

Deon“ ”SP
.

Y“ POWER To on Pm“

1
And FEED

Dept”! HSP

Dunn CONT

Punch

Symbol Table

7

Punch 01 PH!“

Program L4qu
7

3" SR = 6200

POWER To 0"

And FEED
Depress HSP

POWER To 0N ~

And FEED

Wniv For End

Of Emmy Vane

Deptess CONT

Wail For

End 0' Listing

Wan For

Svmhol Table

On TTY

Finished

Figure 6-8. Assembling with PAL III Using High-Speed Reader/Punch

6-28

The tape produced during Pass 2 is the binary tape, which is loaded

into core memory using the BIN Loader. The symbol table tape pro-

duced during Pass 1, the binary tape produced during Pass 2, and the

octal/symbolic program listing produced during Pass 3 are used when

debugging the program.
‘

PSEUDO—OPERATORS. When writing a PAL III symbolic pro-

gram, the programmer can use pseudo-operators (pseudo-ops) to direct

the assembler to perform certain task or to interpret subsequent coding
in a certain manner. Some-pseudo-ops generate storage words in the

binary program, others direct the assembler on how to proceed with the

assembly. Pseudo-ops are maintained in the assembler’s permanent

table,1 which can be altered using certain psuedo—ops.

When using more than one memory bank, the pseudo—op; FIELD in-

structs the assembler to output a field setting:

FIELD n where, n is an integer, a previously defined symbol, or a

symbolic expression within the range 0 through 7,

inclusive.

Integers used in a symbolic program are usually taken as octal num-

bers. However, if the programmer wishes to have certain numbers

treated as decimal, he may use the pseudo-op DECIMAL, and then re—

turn to the original radix with the pseudo-op OCTAL.

DECIMAL all integers in subsequent coding are taken as decimal

until the occurrence of the pseudo-op OCTAL,

OCTAL which resets the radix to its original base.

In an indirect address instruction, the special symbol “1” between the

operation code and the operand, or address field, is another pseudo-op.
(Indirect addressing was covered in Chapter 2.)

'

When a symbolic program is very long, it is often desirable to punch
the symbolic program on two or more physical lengths of tape. The last

instruction of each section must be the pseudo—op PAUSE, and the

last instruction of the program must be a dollar sign ($).

PAUSE stops the assembler, but the current pass is not ter-

minated. When the programmer is ready to assemble

the next section, he has only to depress CONT on the

computer console. (PAUSE is normally used only at

the physical end of tape.)

fThe permanent symbol table contains operation codes (MRI’s, IOT’s, micro-

instructions, and pseudmops) and their oetal equivalents; it is a permanent
part of the assembler. An external symbol table contains user—assigned sym-
bols and their corresponding absiolute addresses; it is created. during assembly
and punched on the binary tape during Pass 2.,

'

6-29

The last three pseudovops are used to alter the permanent symbol
table. They are:

EXPUNGE erases the entire permanent symbol table excluding the

pseudo-ops.

FIXMRI meaning FIX Memory Reference Instructions. The

pseudo-op FIXMRI must be followed by one space,

the symbol for the MRI to be defined, an equal sign,
and the octal value of the symbol to the~immediate

left of the equal sign.

FIXTAB meaning FIX the current permanent symbol TABle. All

symbols that have been defined before the occurrence

of this pseudo-op are made part of the permanent

symbol table.

Therefore, with these three pseudo-ops the programmer can alter the

permanent symbol table to contain only those symbols he needs to

assemble his symbolic program, which in turn provides more core for

the external symbol table.

OUTPUT CONTROL. Output is controlled by the setting of switch

register bit 11. When the assembler first entersa pass, it ‘v‘looks” at the

state of SR bit 11 and outputs as specified. The SR bit 11 options are:

Bit 11:0 Output on teleprinter and low—speed punch.
Bit 11:1 Output on high-speed punch.

ERROR MESSAGES. The assembler is constantly checking for assem—

bly errors, and when any is detected, an error message is printed on the

teleprinter. Error messages are printed in the following format.
’

xx yyyyyy AT nnnn

where xx is the error message (see below), yyyyyy is the symbol or

octal value of the symbol of the error occurring AT location nnnn.

Assembly errors are checked for during Pass 1 and Pass 2
only.

The

error codes are listed below.

Pass 1: IC Illegal Character

RD Redefinition

DT Duplicate Tag
ST Symbol Table Full

UA Undefined Address

Pass 2: IR Illegal Reference

Fer a thorough description of PAL III, see PAL Ill Symbolic As-

sembler, Order No. DEC-OS-ASAC-D

6-30

MACRO-8 SYMBOLIC ASSEMBLER

The MACRO—8 Symbolic Assembler is a service program used to

translate symbolic programs that are written in the MACRO-8 symbolic

language into binary programs. The MACRO—8 language can be gen-

erally considered as PAL III with the following additional features:

1. User-Defined Macros—Groups of computer instructions re—

quired for the solution of a specific problem can be defined by
the user as a macro instruction (explained later).

2. Double Precision Integers—Positive or negative double preci—
sion integers are allotted two consecutive core locations.

3. Floating-Point Constants—The format and rules for defining
these constants are compatible with the format used by the

Floating-Point System.

4. Operators—Symbols and integers may be combined with a

number of operators.

5. Literals—Symbolic or integer literals (constants) (are auto-

matically assigned.
‘

6. Text Facility—There are text facilities for single characters and

blocks of text.

7. Link Generation~—Links are automatically generated for off—

page references.

With these additional features, it is clear that'the MACRO-8 Assem-

bler requires more core memory than the PAL III Assembler. There-

fore, programs originally coded to be assembled by PAL III might have

too many user symbols to be assembled by MACRO—8 (it was necessary

to decrease the size of the user’s symbol table to incorporate the addi-

tional features). However, the programmer can, using the appropriate

pseudo-op, increase or decrease the size of the permanent symbol table

if desired.

MACRO—8 is a two—pass assembler with'an optional third pass which

produces a octal/symbolic program assembly listing. There are two

versions of MACRO—8.

The Low Version uses the low-speed reader for all input and the

teleprinter and low—speed punch for all output.

The High Version uses the high-speed reader for all input, the high-

speed punch for binary output (and, if desired, the program listing

tape), and the teleprinter and low—speed punch for output of error

diagnostics, symbol table, and the third pass program listing.

6-31

The three passes of MACRO-8 are identical to those of PAL III, in

fact, the example program assembled by PAL III in the preceding sec-

tion could be assembled by MACRO~8, and the printed output would

be the same for both assemblers.

MACROS. When writing a program, it often happens that certain

coding sequences are used several times with just the arguments

changed. If so, it is convenient if the entire sequence can be generated
by a single statement. To do this, the coding sequence is defined by

dummy arguments as a macro. A single statement referring to the macro

by name, along with a list of real arguments, will generate the correct

sequence in line with the rest of the coding.
The macro name must be defined before it is used. The macro is de—

fined by means of the pseudo-operator DEFINE followed by the

macro’s name and a list of dummy arguments. For example,

DEFINE MOVE DUMMYI DUMMYZ

< CLA

TAD DUMMYl

DCA DUMMYZ

TAD DUMMY2>
.-

The actual choice of symbols used as dummy arguments is arbitrary;
however, they may not be defined or referenced prior to the macro

definition. The actual definition of the macro must be enclosed in angle
brackets (< >).

The above definition of the macro MOVE could have beencoded as

follows:

DEFINE MOVE ARGl ARGZ
,

<CLA; TAD ARGI; DCA ARGZ; TAD ARG2>

When a macro name is processed by the assembler, the real argu—

ments will replace the dummy argumentsFor example, assuming that

the macro MOVE has been defined as above,

*400

A, 0 0400 0000

B, —6. 0401 7772

MOVE A, B
_

0402 . 7200

s
'

0403
,

1200

0404 3201

0405
'

1201

6-32

A macro need not have any arguments. A sequence of coding to

rotate the contents of the accumulator and link six places to the left

might be stated as follows. .

DEFINE ROTL6

<RTL; RTL; RTL>

A macro is referenced by giving the macro name, a space, and then

the list of real arguments, separated by commas, There must be at least

as many arguments in the macro reference as in the corresponding
macro definition. For a detailed list of other macro restrictions, see
MACRO-8 Assembler, Order No. DEC-08-CMAA—D.

LITERALS. Since the symbolic expressions which appear in the ad-

dress part of an instruction usually refer to the address of locations con—

taining the quantities being operated upon, the programmer must ex-

plicitly reserve the locations holding his constants. The MACRO-8 pro-

gramming language provides a means for using a constant directly. Sup—

pose, for example, that the programmer has an index which is incre-

mented by two. One way of coding this operation would be as follows.

CLA

TAD INDEX

TAD C2

DCA INDEX

C2, 2

Using a literal, this would become

CLA

TAD INDEX

TAD (2)

DCA INDEX

The left parenthesis is a signal to the assembler that the expression fol-

lowing is to be evaluated and assigned a location in the constants table

of the current page. This is the same table in which the indirect address

linkages are stored. In the above example, the quantity 2 is stored in a

location in a list beginning at the top of the memory page (page address

177), and the instruction in which it appears is encoded with an ad-.

dress referring to that location. A literal is assigned to storage the first

time it is encountered, and subsequent references will be to the same

location.
.

6-33

If the programmer wishes to assign literals to page 0 rather than the

current page, he may use square-brackets, [and], in place of the paren—

theses, However, in both cases, the right or closing member may be

omitted, as in the example below.

Literals may be nested. For example:

*200

TAD (TAD (30

will generate

0200 1376

0376 1377

0377 0030

This type of nesting may be carried to as many levels as desired.

PSEUDO—OPS. MACRO—8 has available a number of useful pseudo—

ops, which are listed and briefly explained below.

PAGE

DECIMAL

OCTAL

PAUSE

EXPUNGE

FIXTAB

DEFINE

When used without an argument, the current location

counter is reset to the first location on the next succeed-

ing page. With an argument (PAGE n); the current

location counter is reset to the first location on the spec-
ified page, page 11.

When this pseudo—op occurs, all integers encountered in

subsequent coding will be taken as decimal until the

occurrence of OCTAL,

which will reset the radix to its original base.

When several tapes are to be aSSembled together, each

except the last (which ends with $) should have as its

last symbol the pseudo-op PAUSE. This causes the

assembler to stop processing and halt the computer.
After placing a new tape in the tape reader, assembly
can be continued by depressing CONT on the computer
console.

'

When used, the entire permanent symbol table (exclud-

ing pseudo—ops) is erased. Thispseudo—o‘p is used when
’

the programmer wishes to provide more core for the

user program symbols. Then, with FIXTAB,

the programmer can build a customized permanent sym-

bol table, containing only those permanent symbols re-

quired for his user program.

Used to define macros. This pseudo-op was covered un-

der “Macros,” above.

The preceding pseudo—ops and a few others are described in detail in

the MACRO“? Assembler manual.

634

OFF-PAGE REFERENCING. During assembly, the page bits of the

address field are compared with the page bits of the current location

counter (see “Page Addressing” in Chapter 2). If the page bits of the

address field are nonzero and do not equal the page bits of the current

location counter, an off-page reference1s being attempted (see “Indirect

Addressing” in Chapter 2). If the referenceis to an address not on the

page where the instruction will be located, the assembler will set the

indirect bit (bit 3) and an indirect address linkage will be automatically

generated on the current memory page.
Although the assembler will recognize and automatically generate an

indirect address linkage when necessary, the programmer may still indi-

cate an explicitindirect address using the special symbol “1” between

the operation code and the address field.

As can be seen by comparing Figures 6-9 and 6 10 to Figures 6-7

and 6- 8, the assembly procedures for MACRO—8 and PAL III are

similar but certainly not identical.

SWITCH REGISTER OPTIONS. As the assembler begins to enter

each pass, it “reads” or “looks at” er “senses” (take your choice) cer—

tain bits of the switch register which tell it how to proceed. The optional
settings of the switch register are shown in the table below.

Table 6-5. Switch Register Options

SR Bit Position
'

Meaning

0-11 0 Enter next pass.
'

_

O 1
’

Erase symbol table, excluding permanent symbol, and

enter Pass 1-(the programmer then depresses STOP

and CONT).
1 1 Enter Pass 2 to generate another binary tape.

. 2 1 Enter Pass 1"without erasing defined Msymbols
3 . 1 Enter Pass 3.

10 1 Delete double precision integer and double precision
floating-point processors (this increases the symbol
table size by 1008 symbols).

11 1 Delete macro and number processors (this increases
'

the symbol table size by 1758 symbols).

Switch register bits 10 and 11 are sensed by MACRO-8 when it enters

Pass 1, and remembers these settings throughout the assembly. If these

bits are set to l, MACRO-8 would have to be reloaded to handle sub-

sequent programs that use macros, double precision integers, or float-

ing—point numbers.

6-35

Load MACRO-a - - - - 4 $00 Figures-Q

Set

DF-Duirtd Field

IF . Fiold 0f MACRO-8

50! SR ‘ ‘200 5!? 5R IOGOO

5.: sun-2200]$ $
[PM Tm. IN Lsfij ‘ r Pu! rap. [0 LSR I

‘ I M Top. In LSR] ‘
l Pm LSR To sum 1 ‘ I Pu! LSR To sum I

Pu! LSR Ya STRRT

Punch

Proqmm Listing
7

NTmlanfi

Corr“! Em:

who Ediw

Figure 6-9. Assembling a MACRO-8 Symbolic Program

Using the LawoSpeed Reader/Punch

6-36

I Lood MACRO-8_ _ S" F!"

Us in
sumo V" 3"

m”,

'

Drab-mu Field

?
xr- mm: m mono-a

No

2

‘

5m sn-ozoo
’

Depress LOAD ADD

Tum TTY Yo LINE

Pass 1 Which Pan 3

Pass 2

SM SIR-0600

Pm Tap. In HSR

Punch Program
Lining

?

‘

MI

>

Dom" NSF

POWER To OFF

Dowel: LSP 0N

SI! SR' 2200

SM samzoo
'

Pu! Tags In HSR

Pu! Yap. In HSR
Dawn: HS? 501 Location

POWER To ON 0004 IOSOO

Depress HSP FEED

t

Tape
Road! In

7

m 0

Pu! Tape In HSR
7"” 5'°°’

»No

Duprus STOP

Errar Yu
Co"

‘

. . cc! Ever

”“3"" Ulinu Elliot 0

mm Lemma

0004' 2600

"CM -odDuvl -PauB

‘Ih More Tw-
Fov Sam Pun

Yu

?

Na

om, m
Figure 6—10. Assembling a MACRO~8 Symbolic Program

Using the High~Speed Reader/Punch

6-37

9—

When assembling using the high-speed reader, the Pass 3 program

listing is normally output on the teleprinter and low-speed punch. How—

ever, when assembling a long program, the programmer may wish to

have the third pass listing output on the high-speed punch. This can be

done by changing the contents of location 0004 from 2600 to 0600

(see Figure 6-10). It is advised that this change not be made until Pass

3, so that Pass 1 and 2 diagnostics will be printed.

ERROR MESSAGES. The assembler is constantly checking for as-

sembly errors, and when one is detected, an error message is printed on
the teleprinter. Error messages are printed in the following format.

XX YYYYYY

where xx is a two—letter code which specifies one of the types of errors

listed below, and yyyyyy is either the absolute octal address where the

error occurred or the address of the error relative to the last symbolic

tag (if there was one) on the current page.

Following"is a descriptive list of the error messages, some are printed
out during Pass 1, others during Pass 2, and some of which are printed
out during both passes.

Error Code Meaning

BE MACRO-8 internal tables have overlapped
IC

.
Illegal character

ID Illegal redefinition of a symbol
IE

'

Illegal equal sign
II

.

Illegal indirect address

IM Illegal format in a macro definition

LG . Link generated to off-page address“

MP Missing parameter in macro call

PE Current, nonzero page exceeded

SE Symbol table exceeded

US Undefined symbol
ZE Page zero exceeded

*This is to inform the user of off-page references which may not be an error.

This diagnostic can be suppressed to speed up Pass 2 assembly by setting
location 1234 to 7200 prior to entering Pass 1.

For a thorough description of MACRO-8, see_MA (SRO—8 Assembler,
Order No. DEC—OS-CMAA-D

6-38

CONCLUSION
.

,

The programmer decides which assembler is needed to translate his

symbolic program into a binary program. The decision depends on such

things as the amount of core memory available, the size of the symbolic

program and the namber of .user symbols it contains, and whether the

symbolic program contains macros, literals, etc.

Dynamic Debugging Programs &
,

Included in the System Software package are two dynamic debugging

programs: DDT-8 (Dynamic Debugging'Technique) and CDT-8 (Oc-
tal Debugging Technique). Dynamic debugging programs are service

programs which allow the programmer to run his binary program on

the computer and use the Teletype keyboard to control program execu—

tion, examine registers, change their contents,flmake alterations to the

program, and much much more.

A symbolic program can be assembled. correctly and still contain

logical errors, i.e., errors which cause the program to do something
other than what is intended. The assembler checks for certain syntax

errors, not logical errors. Syntax errors include undefined tags, mis-

spelled tags and operation codes, and incorrect format (e.g., omission

of a required operand). Logical errors are detected only when the pro-

gram is running on the computer.

DEBUGGING WITHOUT DDT-8 OR CDT-8

If the programmer feels sure that his program is correct and ready
for use, he can simply load the program and let it run until it steps (if it

stops). And if the program doesn’t produce the correct results, the pro—

grammer without a DDT program can use the console switches to

examine specific locations one—by-one to try to find the error(s) by

interpreting the console lights. There are two hazards to this approach.
First, by the time the program stops the error may have caused all

pertinent information, including itself, to be altered or eliminated.

Second, the program may not stop at all, it might continue to run, in

an infinite loop; such loops are not always easy to detect.

Added to. these problems are the difficulties of interpreting binary
console displays and translating them into symbolic expressions related

to the user’s program listing. Further, adding corrections to a program
in the form of patches (altered and added instructions or routines) re—

quires seemingly endless manipulation of the console switches. In all

this, the chance of pregrammer error at the cOnsole is large and is likely
to obscure any real gain made from debugging.

6-39

The programmer can, of course, while sitting at his desk using the

program assembly listing, mentally execute his program. This method

is frequently used with very short programs, very short onlywhuman

memory can not retain every step and instruction in even a fairly short

program; it can not match computer memory.

What is needed to conveniently and accurately debug a user program
is a service program which will assume the tasks the programmer would

have to perform it he used the console switches. DDT-8 and CDT-8

are such debugging programs.

‘

.

DEBUGGING WITH DDT—8

Using DDT-8, the programmer can run his program on the computer,
control its execution, and make corrections to the program by typing
commands to DDT-8 and altering his program from the Teletype key—

‘

board. Tracking down a subtle error in a complex section of coding is

a laborious and frustrating job if done by hand, ‘but with the breakpoint

facility (explained later) of DDT-8, the user can interrupt the operation
of his program at any point and examine the state of the program and

computer. In this way, sources of trouble can be isolated and quickly
corrected.

_

'

~

By the time the programmer is ready to start debugging a new pro

gram at the computer, he should have at the console:

I. The binary tape of the new program.

2. The symbol definition tape which was part of the assembly

output from Pass 1.

3. A list of the symbols and their definitions.

A complete octal/symbolic program listing.
.

5. A binary tape of the DDT-8 program, which is loaded into

core memory using BIN (see Figure 64).

P

To begin the debugging run, first ascertain that BIN is in memory,

then load the programmer’s binary program and the binary DDT-8 pro—

gram tape (see Figure 6-4 for loading procedures). Figure 6-11 illus-

trates the procedures for loading and executing DDT—8.

Core memory now contains the DDT-8 program, the user’s program,

and a table of permanent symbol definitions. This table includes the

definitions for all of the memory reference instructions, microinstruc-

tions, the ten basic IOT instructions, and the combined operations CIA

and LAS.

6-40

Lead _

’

,

Oblect Program
““““ “I SI! Figure 6-4

.

'fi—Eeor-s '- —————— -l See Figure 6-4

'

(See Figure 6-12) ‘

‘ Set sfiseaoo I

Depress LOAD ADD I

Depress START I

Debug Object Program
DDT-8 Is In

Command Mode

lil

- - — - See Figure 6-12

Figure 6-11. Loading and Executing DDT—8

The programmer may communicate with his program using either

the mnemonic coding of the symbolic-program or the octal coding of

the binary program. Therefore, since DDT—8 is to perform all transla—

tion between binary and symbolic representation, it must have access

in memory to the user’s symbol definitions. The external symbol table

tape (containing the user’s symbol definitions) produced during as—

sembly at the end of Pass 1 is now loaded into memory by DDT-8.

Figure 6-12 illustrates the steps required in loading the Pass 1 symbol
table tape.

The external symbols of the user’s program are stored in memory im-

mediately below DDT-8’s permanent symbol table (mentioned in the

paragraph below Figure 6-11). These symbols,-and any others which

may be entered from the console constitute the external symbol table.

Additional symbols may be appended to the external symbol table by

performing the steps illustrated in Figure 6-13.

A new external symbol tape can be generated off-line using the Tele-

type keyboard and low-speed punch merely as a tape preparation fa-

cility. The symbol tape can then be loaded into memory using DDT—8

as shown in Figure 6-12.

6—41

— - —' - -{ Soc Figures-14

Turn TTY To LINE

Pu! Symbol Tabla

Tape ln LSR

Set LSR To START

No Tape
Roads In

7

SM LSR To FREE

Octal Address Typed
ls Lower Limit Of

Enamel Symbol Table

External Symbol
Table ll Loaded

Figure 6—12. Loading the External Symbol Table Tape Using DDT-8

After loading the external symbol table tape, the address typed out

will be the lowest memory location which is occupied by a symbol
definition. The Programmer is now ready to begin debugging using

The example program to be checked out is a subroutine which ac—

cumulates the sum of the first n integers. The program is shoWn below.

6-42

‘wam DDT-8

ln Cammund ModeU
Loud External

Symbol Table

Set SR =1400

MUType CR

Type CR/LFU

Typg New Symbol

Type 1 01 More Spacesm

Wm
UL

’

‘

Type Octal Value

OfDefinifion Of

New Symbol

More

Symbols
'7

Yes

Type CR/LF And EOT

I Depress CONTU

Address Typed
Is Lower Limit 0f

External Symbol Tubl

Figure 6—13. Appending New Symbols to Extérnal Symbol Table

6—43
‘

/ INTEGER SUMMATION SUBROUTINE

INTSUM, O

CLA

TAD I INTSUM /GET COUNTER

DCA N /SAVE IT

DCA PSUM / CLEAR PSUM

LOOP, TAD PSUM / GET SUM

TAD INT /ADD INTEGER

DCA PSUM / SAVE NEW SUM

ISZ N
‘

/ DECREMENT COUNTER, N:0?

JMP LOOP /NO, NOT FINISHED

TAD PSUM /YES, FINISHED. AC:SUM

ISZ INTSUM / GET OVER ARG.

IEXIT, JMP I INTSUM 7/ RETURN

N, 0

PSUM. 0

*300

ITEST, CLA / INTSUM TEST PROGRAM

JMS INTSUM
’

INT, 0 / PUT INTEGER HERE

RTN, HLT

F»

For testing purposes, a short calling sequence has been included

which provides the integer limit of the sum as an item of data. The first

task is to place an integer in the core location that holds this datum,

namely, the location labeled INT in the calling program. By typing the

address of the core location (which in this case can be done by typing
the address tag), followed by a slash, the programmer indicates to

DDT-8 that he wishes to examine the contents of that location. Thus,
he types

INT,»/

and DDT-8 responds to the slash by typing an expression which has

the value of the contents of the specified location. In this case, the con-

tents of INT = O, and the line now appears as follows.

INT/AND 0000

NOTE: In the examples, information typed by DDT-8 is underlined to in-

dicate a distinction from information typed by the programmer. In

actual operation no underlining is present.

After typing the contents of the specified core location, DDT-8 types

five spaces and waits. The location is now open, which means that its

contents are available for modification. The programmer decides that

the first test integer is 10. This must be an octal integer since DDT-8

6~44

performs no decimal arithmetic. With the location open, the program-

mer types the number 10. Then, to close the location, he types a car-

riage return (RETURN key) immediately after the number.

INT/AND 0000 10 (RETURN key was typed after 10)

Further access to this location is new denied until the programmer

opens it again.

Having provided his data, the programmer is ready to start the pro—

gram. If it works, it should stop almost immediately with the sum of

the first 108 integers, which is 1008, displayed in the accumulator (AC)

lights. To start the program, the
programmer types the following com-

mand

ITEST[G

The left bracket (D is printed when the ALT MODE key is typed; its

function here is to identify the succeeding character as a DDT-8 com-

mand. The letter G specifies the action to be performed, which'in this

case causes DDT—8 to transfer control to the test program at location

ITEST.

The programmer has typed the G command; his program starts

executing. Immediately he observes that something is wrong—the pro-

gram did not stop almost instantaneously, but ran for a very short, but

observable, time. The contents 'of the AC lights are definitely not equal
to 1003.

_

The programmer restarts DDT-8 after each program execution, that

is, he sets the SR to 5400 and then presses LOAD ADD and START

switches. He must also open the PSUM and N Locations to restore

them to zero before continuing debugging.
V At this point, the programmer knows something is wrong, but he is

not sure where the error lies. If he could interrupt the program during
its operation, he might get a better idea of the nature of the problem.
For instance, if he could‘verify that the data was transferred to the

subroutine correctly, he could eliminate the calling sequence as a source

of error.

The DDT-8 facility which allows the programmer to. interrupt the

operation of the program at any time is called the breakpoint. As its

name implies, it allows him to break into the program sequence at some

point and return control to DDT-8. He can specify a breakpoint by

“typing the address of the instructlon where he wants to interrupt the

sequence, and after this address he types the breakpoint command

([3). If he requests a breakpoint at location

6-45

INTSUM+3

the program will be interrupted when the datum is in the AC, but be—

fore it is deposited in the working location 11. The breakpoint command

would follow and the statement would appear as follows.

INTSUM+3 [B

When this command is given, the information is retained by DDT-8

until the programmer executes the program. At that time, the sequence

of operations performed my DDT-8 is:

1.1 The contents of location INTSUM+3 are saved in a special
location within DDT-8.

2. In place of the instruction in location INTSUM+3, DDT-8

substitutes the instruction JMP I 4. Location 4 contains the

address of a special breakpoint handling subroutine within

DDT-8.

3. After the breakpoint has been set up, DDT—8 passes control

to the programmer’s program.

To ascertain that the error did not destroy the item of data in the

calling program, check it by opening thelocation.

'INT/AND 0010

The programmer then opens the PSUM and N Locations and restores

them to zero.

Having ascertained that the datum is correct, start the program again.

ITEST[G

Almost immediately, the breakpoint is encountered and control re-

turns to DDT-8. When the breakpoint occurs, DDT-8 saves the con-

tents of the AC. it then types the address of the breakpoint, a right

parenthesis, and the contents of the AC which have been saved.

INTSUM+0003) 0010

The programmer sees that the transfer is correct. Therefore he restarts

DDT-8 to continue debugging.
In similar fashion, the programmer moves the breakpoint to the end

of the subroutine at location IEXIT. He discovers that at this point
the error has manifested itself. He knows now that the trouble is in the

initialization of the main loop. The breakpoint is set at LOOP to dis-

cover that the datum is placed in location It as desired. Now the break-

point is moved to the end of the loop.

6-516

L00P+3 [B

ITEST[G

L00P+0003)0'010

At the end of the first pass through the loop, the contents of the AC

are equal to the starting value of n, At this point, however, the contents

of 11 itself have just been changed. If the subroutine is working properly,
the contents of n should now be equal to 7770. The programmer in-

vestigates:
'

N/ANDOOOIO

The programmer now realizes what he did wrong In his attempt to

save space by using the datum as a counting index, he forgot that the

ISZ instruction increments the contents of negative value. Therefore,
he must negate the counter by inserting the CIA instruction as shown

below.

INTSUM, O

CLA

TAD I INTSUM ./ GET COUNTER

CIA /NEGATE COUNTER

DCA N / SAVE IT

and the program will run properly. Realizing this, the programmer con—

cludes the debugging session by typing

[B

to remove the bieakpoint When the breakpointIS removed, the original
contents of the break locatio'n1s restored

The example debugging session above was simple; the error was

Obvious. This is seldom the case, and with long Or complex programs

several debugging runs may be required. Being able to debug a program

using symbolic expressions shortens the time required to arrive at a

7 correct, workable program.

DEBUGGING NOTES. For DDT-8 to be useful, the programmer

should be aware of and consider certain factors. Namely, the following:

6-47
/

Do not open any symbol table location.

2. The symbol table tape is loaded using the low-speed reader

only.

3. Each user symbol occupies four locations in the symbol table

storage area.

4. Input is interrupted when the symbol table storage area is full.

5. To enter a combined operate class IOT instruction into an open

location, the combination must contain no more than two

mnemonics, the second of which must be CLA. Any other

combination is illegal and therefore ignored.

6. DDT-8 is restarted at its starting address, 5400, unless the

programmer wishes to restart before he has punched a com—

plete tape with checksum. In which case, he must restart at

location 5401, and the checksum is preserved.

DDT—8 offers a very convenient feature, the word search feature,
which allows the programmer to look at the contents of one, a group,

i

or all locations in his program. A word search is indicated to DDT-8

when the programmer types the upper and lower limits of the search

using the [L and [U commands and then the Word search command,

nnnn[W (nnnn is the word being searched). Address and location con-

tents are printed as symbolic expressions or octal integers, according
to the mode (symbolic or octal) specified by the programmer using
the [S or [0 command. The search never alters the contents of any

location, examined. The word search feature is detailed in DDT-8,
Order No. DEC-OS-CDDA—D.

ERROR DETECTION. DDT-8 is constantly watching for certain

errors, those listed below.

1. Undefined symbol or illegal symbol

2. Illegal character

3. Undefined control command

4. Off—page addressing

When an error is detected, DDT—8 types a question mark (?) on the

teleprinter and ignores all the information typed between the point of

the error and the previous tab or carriage return.

SUMMARY OF SPECIAL KEYS AND COMMANDS. The program—

mer controls DDT—8 from the keyboard using special keys and com-

mands. Certain keys have special meaning to DDT-8, and they must

6-48

be typed in certain formats in order to be acceptable to DDT—8. Tables

6-6 and 6-7 summarize the special keys and commands.

Table 6.6. DDT-8 Special Keys

Key Meaning

(space) Separation character

+ (plus) Specifies address arguments relative to symbols
— (minus) Same as +

. (period) Current location; used in address arguments

= (equal) Type last quantity as an octal integer
RETURN Make modifications, if any, and close location

LINE
FEED

Make modifications, if any, close location and open

next sequential location

/ (slash) Location examination character; when following the

T

'

(up-arrow)

address location, the location15 opened and its con-

tents printed
When following a location printout, the location

addressed therein is opened
<— (back-arrow) Delete the line currently being typed

Table 6-7. DDT-8 Commands

T (SHIFT/ I)

Command Meaning

Mode Control

[0 Set DDT-8 to type out in octal

[S Set DDT-8 to type out in symbolic

.

Input
[R Read symbol tape into external table from LSR, or

define new symbol from keyboard

Program Examination and Modification _

nnnn/ Open location nnnn (nnnn may be octal or sym—

bolic)

RETURN Close location currently open; enter modification,
if any \

LINE FEED Close location currently open and open next se-

quential location; enter modification, if any

Close location currently open and open location

_

address therein; enter modification, if any

6-49

Table 6-7. DDT-8 Commands (Cont)

Command Meaning

Breakpoint Insertion and Control

[B Remove current breakpoint

nnnn[B Insert a breakpointvat location nnnn

nnnn[G Go to location nnnn and start program execution

n[C Continue from breakpoint, execute breakpoint n

times and return control ,to programmer. If n is

absent, it is assumed to be 1.

Word Search

nnnn[W Begin word search for all occurrences of expres-

sion nnnn masked by the contents of M between

the limits imposed by L and U. 'M, L, and. U are

locations within DDT-8 which may be opened,
modified and closed exactly as any general loca-

tion in the user’s program.

Output

[T Punch leader/ trailer tape

mmmm;nnnn[P Punch binary tape from memory bounded by ad-

dresses mmmm and nnnn

[E Punch en.d~of—tape (i.e., checksum and trailer)

Address Tags

[A Accumulator storage (at breakpoint)

[L Lower limit of search

[U Upper limit of search

[M Mask; used in search

[Y Link storage (at breakpoint)

NOTE; The

(character [is generated by depressing ALT MODE on the key-
boar .

a

For a thorough description of DDT—8, see DDT—8, Order No. DEC-

OS-CDDA-D.

DEBUGGING WITH CDT-8 -

Using DDT—8, the programmer can run his binary program on the

computer, control its execution, and make alterations to his program

by typing on the Teletype keyboard. DDT—8 has the same capabilities
as DDT-8 except that the programmer must reference his program

using its octal representation instead of mnemonic symbols, and ODT-8

commands are formulated differently.
DDT—8 occupies less core memory than DDT-8, and can be loaded

into either lower (SA : 1000) or upper (SA 2 7000) core memory,

6-50

depending on where the user’s program resides. That is, if the user pro-

gram resides in the first few pages 'of memory, then ODT-S should be

loaded in the upper pages of memory, and vice versa. As with DDT—8,
the user program can not occupy (overlay) any location used by

CDT-8, including the breakpoint location which is location 0004 on

page zero.
'

When the programmer is ready to start debugging a new program at

the computer, he should'have at the console:

I. The binary tape of the new program.

2. A complete octal/symbolic program listing.

3. A binary tape of the CDT-8 program (either high or low

version).

To begin the debugging run, first ascertain that BIN is in core mem-

ory, then load the programmer’s binary tape followed by the binary
CDT—8 tape (see Figure 6—4 for loading procedures). ,Figure 6-10

illustrates the procedures for loading and executing CDT—8*.

Load Object Program
-' - -- -- - - - See Figure 6-4

Load oer-s
——————— + See Figure 6-4

Set

SR =1000 (low)

sa=7ooow>

l
Depress LOAD ADD

l
Depress START

Iebuq Object Proqrrm,
ODT-a Is In -

Command Mode

'

Figure 6-14." Loading and Executing CDT-8

6-51

The example program debugged earlier in this chapter under “De-

bugging with DDT-S” could be debugged here. However, since the only
diflerence would be the appearance of the debugging commands, we

need only show the command formats and give a brief explanation of

each, which can be found in Table 6—8.

Table 6-8. DDT-8 Commands

Command Meaning

/ Reopen last named location; modify if desired

nnnn/ Open location nnnn; modify if desired

RETURN Close currently opened location (typing another com—

“

mand also closes the currently opened location)

LINE FEED Close currently opened location and open next se-

1‘ (SHIFT/N)

<— (SHIFT/ O)

quential location

Close currently opened location, take contents as MRI

and open and type contents of referenced location

Close currently opened location and Open indirectly,
i.e., the content of the opened location is interpreted
as the address of the location whose content is to be

typed and available for modification.

nnnnG Go to location nnnn and transfer control to pro-

grammer for modification if desired.

B Remove previously established breakpoint and re-

store breakpoint to original status.

nnnnB Establish a breakpoint at location nnnn.

A Open location containing the contents of the accumu—

lator (AC).

LINE FEED Open location containing the contents of the link.

C Continue (proceed) from a breakpoint, i.e., execution

begins with the breakpoint instruction.

nnnC Continue (proceed) from a breakpoint and iterate

nnn (octal) times through breakpoint.

M Open search mask, i.e., open for modification the

location containing the current value 'of the search

mask (mask is initially set to 7777).

LINE FEED Open lower search limit (initially set to 0001', change
by typing new lower limit after ODT-S has typed
0001).

LINE FEED Open upper search limit (initially set to SA of

CDT-8, 1000 or 7000; change by typing new upper

limit after ODT—S has typed initial limit).

nnnnW Word search, i.e., using the mask and lower and

upper limits, CDT—8 searches for instruction nnnn.

e52

Table 6-8. DDT-8 Commands (Cont)

Command Meaning

T Punch leader/ trailer tape, i.e., type T and then turn

punch ON; turn punch OFF when sufficient tape has

been punched, then depress STOP on the console. Re-

start ODT—8 at appropriate SA.

mmmm;nnnnP Punch binary core image of locations mmmm through
nnnn. After executing this command by typing the

RETURN key, the computer halts for the program-
mer to turn the punch ON and to depress CONT on

the console. When specified image is punched, turn

punch OFF.
‘

E Punch checksum and trailer tape. After executing this
'

command by typing the RETURN key, the computer
halts for the programmer to turn-the punch ON and

to depress CONT on the console. When sufficient

trailer tape has been punched, depress STOP on the

console and restart ODT—S at appropriate SA.

The address of the current or last location opened is remembered by
CDT—8 even after the commands G, C, B, T, E, and P, and may be

reopened merely by typing / (the slash command).
After debugging his program, the programmer can command DDT-8

to produce a binary tape of the debugged program, which can be loaded

by the BIN Loader and run on the computer. The For punch command

is used with the low—speed punch only. Figure 6-15 illustrates the pro-

cedure for generating the binary ceded object tape using the high-speed
punch.

Typing the G command alone is an error, it must be preceded by an

octal address to which control will be transferred. If not preceded by
'an address, a question mark will not be typed but it will cause control

to be transferred to absolute location 0.

Typing any‘TEhCh' command with the punch ON is an error and

will cause ASCII characters to be punched on the binary tape, which

means the tape cannot be loaded and run properly.
'

DEBUGGING NOTES. Only one breakpoint may be in effect at one
time, therefore, requesting a new breakpoint' removes the previously
existing breakpoint. A breakpoint must not be set to any location in

the program which is altered during execution; if so set, the alteration

will destroy the breakpoint.

6-53

Wi'h ODT ‘ 8

In Contral

Type Command

mmmm gn nn n P

Sew

SR= 1231 (low)

SR! 7231"")

Depress LOAD ADD

Se! 5R=6026

Depress DEF

SM SR £602’

Depress DEF

Set

SR = |225(Iaw)

SR = 72250“)

Depress LOAD ADD

Depress HSP 0N

Deoress START

Leader Tape
Is Punched

Depress STOP

Set

SR ' 1203mm

SR 1 7203““)

é)

Figure 6—15.

Depress LOAD ADD

Core Image 0!

mmmmmnnn

Is Punched

Punch

More Care

7

Se!

SR * i222 How)

SR = 7222“")

Depress LOAD ADD

Depress START

Accumumfed

Checksum B Trailer

Tape 1: Punched

Depress STOP

Depress HSP OFF

Remove Tape

Sev

SR = |23Hlowi

SR : 723! (m)

é

6-54

Depress START
‘

Depress LOAD ADD

Se! SR 3 6046

Depress DEP

Se! SR = 6041

Depress DEP

Set

SR= 1000 How)

SR: 7000 (hi)

Depress LOAD ADD

Depress START

DOT-8 Is Ready
For Next Command

Generating Binary Tape Using High-Speed Punch

An open location can be modified by typing the desired octal instruc-

tion and closing the location. Any octal number from 1 to 4 digits in

length is a legal input, but typing a fifth digit is an error and will cause

the entire modification to be ignored and a question mark to be typed
by DDT-8.

.

ERROR DETECTION. The only legal inputs to CDT-8 are control

commands and octal digits. Any other characters will cause the charac-

ter or line to be ignored and a question mark (?) to be typed out by
CDT-8.

For a more detailed discussion, See 0DT—8, Order No. DEC—08-

COCO~D.
'

FOCAL
'

FOCAL (Formula CALculator) is an online, conversational inter-

preter designed to help scientists, engineers, and students solve com—

plex numerical problems. The language Consists of short easy to learn

imperative English statements. Mathematical expressions are typed in

standard notation.
‘

With FOCAL, the programmer has the full calculating power and

speed of the computer at his fingertips. It is used for simulating mathe—

matical models, for curve plotting, for handling sets of simultaneous

equations in n—dimensional arrays, and many other kinds of problems.
The procedure for loading the binary-coded FOCAL tape is illus-

trated in Figure 6-16. When FOCAL is properly loaded in core, the

programmer sets the switch register to 0200 (the starting address of

FOCAL), depresses the LOAD ADDress switch and then the START

switch, and FOCAL will respond with its initial dialogue (see Chapter
9). The initial dialogue is a question and answer sequence, with

FOCAL asking questions and the user providing the answers.

After the programmer has answered the initial dialogue questions,
FOCAL will type an asterisk, indicating that it is ready to accept com-

mands from the programmer.
The FOCAL language and its numerous features are explained in

Chapter 9.
L

6-55

W— 4 Su Fiqun 6—3

Put FOCAL Top.
In Read-r

5M SR‘T‘ITT

And Pr": LOAD ADD

Turn TTY

To LINE

High - Spud Which
Low~ Spud

Reudcr

» Sev' SR: 3777 Set LSR to START

Prus STARTI

“

Tape 0

Reads In 0

Y0.

Z

Top: 5009:

Pro" CONT

fl
.1)

20
AC I 0000

Y.‘

No End

0! Tape

YII

SM SR-OZOO

Smmng Adan"

And Pun LOAD ADD
.

Of FOCAL

Puss START

Ralpond To

lnmul Din Iocuc

FOCAL
9 V

Type; a o
?

2

YO!

FOCAL Is Ready
For User Input

Figure 6-16. Loading and Executing FOCAL

6-56

Chapter 7

Disk

Monitor System

The PDP—8 Disk Monitor System is designed for any computer in

the PDP-8 family having at least one DECdisk. This system consists

of a keyboard-oriented Monitor, which enables the user to efficiently
control the flow of programs through his PDP-S, and a comprehensive
software package, which includes a FORTRAN Compiler, Program

Assembly Language (PAL-D), Edit program (Editor), Peripheral
Interchange Program (PIP), and Dynamic Debugging Technique
(DDT-D) program. Also provided is a program (Builder) for generat-

ing a customized monitor according to the user’s particular machine

configuration (amount of core, number of disks or DECtapes, etc.).

The system is modular and open ended, permitting the user to con-

struct the software required in his environment, and allOWS the user full

access to his disk (or DECtape)——referred to as the system device—

‘for storage and retrieval of his programs. By typing appropriate com-

mands to the Monitor, the user can load a program (construct it from

one or more units of binary coding previously punched out on paper

tape or written on the disk by the Assembler, and assign it core),
save it (write it out, with an assigned starting address, on the system

device), and later call it (read it back into core from the system de-

vice) for execution.

7—1

GENERAL DESCRIPTION

The PDP—S Disk Monitor System permits the user to control the flow

of programs through his computer and takes full advantage of the

extended memory capabilities of disk or DECtape. In addition to

the Monitor, the system also contains a library of system programs.

Together, they provide the user with the capabilities of compiling,
assembling, editing, loading, saving, calling, and debugging his own

programs.

Monitor Residence

Monitor, as well as system and user programs, is stored on and re—

trieved from the user’s system device. To obtain a working Monitor,
the user must first build his own customized version, via the easy-to-
use dialogue technique of the System Builder program and store this

a version on his system device. Following this, the user then creates his

System Program Library on the system device. Both of these procedures
are described in Appendix A of the Disk Monitor manual (DEC-D8-

SDAB—D).
In core, the resident part of Monitor (called head of monitor)

resides in the top page (locations 7600 through 7777) of field 0. The

starting address of Monitor is 7600; 7642 is the entry address to the sys-

tem I/O routine, which performs all reading and writing on the system
device. Nonresident portions of Monitor, such as those routines which

perform SAVES and CALLS, are automatically called in as needed,
and in core they share the area from location 7000 through 7577.

(These portions disappear after use, leaving this area for the user.)

System Modes

At any point in time, the system is running in one of two modes:

Monitor mode or user mode. Monitor mode is entered (1) whenever

the Monitor is started (see “Initializing the Monitor”) or (2) when

CTRL/C (t C) is typed while runningimy system program. Monitor

mode is signalled by the Monitor typeout of a dot (u). At both Monitor

and system program time, Monitor is able to sense a ’1‘ C typein,

causing the system to enter Monitor mode, return to Monitor at loca-

tion 7600, and respond with a dot (.) typeout. At this point, the user

can issue any Monitor command via the Teletype keyboard.
User mode is present whenever the system is executing a system or

user program. System programsrsignal user mode by responding with

an asterisk (*) typeout.

7-2

SYSTEM PROGRAM LIBRARY

The Monitor System’s library of programs presently consists of the

Peripheral Interchange Program (PIP), Disk System Editor (Editor),
PAL—D Disk Assembler (PAL-D), 4K Disk FORTRAN (FORTRAN

D), and Dynamic Debugging Technique for Disk (DDT-D), and this

list is destined to lengthen with time.

To load a program using the Monitor System,'the Loader makes

certain queries to which the user must type a reply. The queries are

the same for all programs. The user’s replies will vary, however, de-

pending on the particulars of the program being loaded.

When loading a program into core, the user should first check to see

whether Monitor is in core. This is done by typing TC (CTRL key
and then the C key). The t C will not echo (not print on the tele—

printer). If Monitor is in core, it will respond by typing a period (.)
at the left margin of the teleprinter paper. If a period is not typed in

response to 1‘ C, Monitor is not in core.

The library system includes the Disk System Binary Loader

(LOAD) which is automatically saved on the disk at Build time.

Disk System Binary Loader15 described1n “Loading Programs—Disk

System Binary Loader.’
‘

The user may save any program on the disk by responding to the

last period typed by Monitor with the word SAVE, a 1-to-4-character

name of the program, the type of program (user or system), whether

it’s a one or more page save, and the location of its starting address,
as is thorOughly described in “Saving Programs (SAVE Command).”

After each program is saved on the system device, it may be called

(i.e., transferred from the disk into core) merely by responding to

Monitor (to a period) with the four characters designated as the name

of that program, as explained in “Calling a Program (CALL Corn—

mand).
”

The programs in the System Library are described below. Further

information‘concerning these programs may be found in the Disk

Monitor manual or in the other manuals referred to.

Peripheral Interchange Program
The Peripheral Interchange Program (PIP) performs general utility

operations, such as listing the contents of specified directories, deleting
unwanted files from the system device, and transferring files between

devices, and copying specified files. PIP enables the user to do any of

the above operations merely by typing commands from the teleprinter

keyboard.

7-3

A summary of PIP options follows.

List entire system directory
B Copy a binary file

D Delete a file to be specified
F Copy a FORTRAN binary file

M Move directory to safe disk

P

R

S

U

l"

Protect disk 1 (blocks 0-176)
Restore directory from safe disk

Copy a system file1

Copy a user file1

RETURN or A Copy a ASCII file

Disk System Editor

The Disk System Editor enables the user to generate and edit

symbolic programs online from the teleprinter keyboard. The sym—

bolic program may be either printed on the teleprinter, punched
on paper tape using the high— or low—speed punch, or stored on the

system device as a user program.

Editor operates either in command or text mode. In command

mode, all typed input is interpreted as a command instructing Editor

to perform a certain operation or to allow the user to perform an

operation on the text stored in the buffer. In text mode, all typed
input is interpreted as text to replace, to be inserted into, or to be

appended to the contents of the text buffer.

The command language of the Disk System Editor is identical to

that described in the POP-8 Symbolic Editor manual (DEC—08—

ESAB-D) with a few exceptions.
A summary of Editor commands follows. Each command is termi-

nated by pressing the RETURN key, which initiates execution of

the command.

Function Command Meaning

Read R Read incoming text and append to buffer until a

form feed is encountered

Append A Append incoming text to any already in the buffer

until a form feed is encountered.

List L List the entire buffer.

nL List the line 11.

m,nL List lines m through 11.

1User system files may not be copied onto paper tape.

7-4 '

Function Command Meaning

Proceed P Proceed and output the entire contents of the

buffer and return to command mode.

nP Output line n, followed by a form feed.

m,nP Output lines In through n,» followed by a form feed.

Trailer T Punch four inches of trailer.

Next N Punch the entire buffer and a form' feed: kill the

buffer and read next page.

nN Repeat the above sequence n times.

Kill K Kill the buffer.

Delete nD Delete line n.

m,nD Delete lines on through 11.

Insert I Insert before line I all text until a form feed is

encountered.
*

..

‘

-

nI ‘Insert'before line 11 until a form feed is encounty
ered.

Change 110 Delete line 11 and replace it with any number of
lines from the keyboard until a form feed is en—

countered.

m.nC Delete lines m through n, replace from keyboard
as above until form feed is encountered.

Move m,n$kM Move and insert lines in through It before line k.

Get G Get and list the next line beginning with a ,tag.
nG Get and list the next line after line n which begins

with a tag.

Search S Search the entire buffer for the character specified
(but not echoed) after the carriage return;
allow modification when found.

us Search line n, as above, allow modification.

m,nS Search lines In through, n, allow modification.

End file E Process the entire file (perform enough NEXT

commands to pass the remaining input to the

output file) and create an end—of-file indication;

legal only for output to the system device. If

the low—speed paper tape reader is used for

input while performing an E command, the

paper tape reader will eventually run out of

tape, and at this point typing a form feed will

allow the command to be completed.

PAL-D Disk Assembler
‘

PAL-D, the acronym for Program Assembly Language for the

Disk system, is the symbolic assembly program designed primarily
for the 4K PDP-S family of computers with disk or DECtape.

The PAL—D Assembler performs many useful functions, making
machine language programming easier, faster, and more efficient.

Basically, the Assembler processes the user’s source program state-

ments by translating mnemonic operation codes into the binary codes

needed in machine instructions, relating symbols to numeric values,

assigning absolute core addresses for program instructions and data,
and preparing an output listing of the program which includes

notification of any errors detected during the assembly process.

The Assembler is thoroughly documented in the PAL—D Disk

Assembler Programing Manual (Doc. No. DEC—DS-ASAA-D).

FORTRAN-D for the Disk System
FORTRAN-D' (FORmula TRANslation for the Disk System),

is an expanded version of standard PDP-S FORTRAN designed
for PDP—8 family computers with disk or DECtape units. FOR-

TRAN-D is described in detail in the 4K FORTRAN Programming
Manual (DEC-OS-AFAC-D).

FORTRAN—D contains a compiler, an operating system, and two

programs to aid debugging. The FORTRAN compiler is used to

convert a source program into an object program. The FORTRAN

operating system is used to execute the object program.

This version of FORTRAN is designed to facilitate user/system
communication by allowing the user to type appropriate commands

from the teleprinter keyboard, eliminating the need to toggle input

using the switch registers.

FORTRAN statements specify the computations required to carry

out the processes of the FORTRAN program. There are four types
of statements provided for by the FORTRAN language:

a. Arithmetic statements define a numerical calculation.

b. Control statements determine the sequence of operation in

the program.

c. SpecifiCation statements define the properties of variables,

functions, and arrays appearing in the source program. They
also enable the user to control storage allocation.

(1. Input/output statements are used to transmit information be-

tween the computer and related input/output devices.

The compiler consists of a loader (FORT) and the main portion of

the compiler (.FT.). This version of the compiler differs from the

7-6

standard PDP—8 4K FORTRAN compiler in the following ways.

a. It uses the disk or DECtape unit (whichever is the system

device) during its operation.
b. It will compile programs which have been stored on the sys—

‘

tern device or programs which have been prepared on punched

paper tape.
p

c. It will generate a FORTRAN binary output file either on the

system device or on punched paper tape.
d. Significant improvements have been employed with the READ

and WRITE statements.

e. Input and output devices are determined using the Command

Decoder.

f. It is possible to terminate compilation at any time by typing
. t C, thus returning control to Monitor.

g. Within certain restrictions, a program compiled with output to

the system device may be executed immediately when the user

types t P after compilation of the program.

h. Statement numbers need not be delimited by a semicolon, un-

.

'less the user wishes them to be employed for appearance.

i. Statements without preceding numbers must be preceded by a

space, a tab, or a semicolon.

Debugging Aid (Symbolprinz). Symbolprint .(STBL) is a program
which may be used with the FORTRAN compiler. Its purpose is to

help the user create and debug his FORTRAN programs by providing
certain information about the compiler-generated interpretive code.

Symbolprint may be used only immediately after a program has been

compiled using the Disk FORTRAN compiler.

‘Symbolprint provides the following information:

a. The core limits of the interpretive code.

b. A list of variable names and their corresponding locations

(the symbol table).
0. A list of statement numbers and their corresponding locations

(the statement number table).

Operating System. The FORTRAN operating system consists of a

loader (FOSL) and the interpreter and arithmetic subroutine package
(.08.). This version of FOSL differs from the paper tape FORTRAN

operating system in the following ways.

a. It will load and execute programs which have been compiled
and saved on the system device or programs which have been

compiled on paper tape.

7—7

b. FOSL may be called directly by the compiler when a program

has been compiled and saved. on the system device. This is

referred to as compile-and-go mode.

c. FOSL is able to recognize READ and WRITE statements

‘

which may read and write data in ASCII format on either

the low-speed paper tape reader/punch, the high-speed paper

tape reader/punch, or the system device.

d. The execution of a FORTRAN program may be interrupted
by the user at any time by typing 1“ C, control will be returned

to Monitor.

Debugging Aid (Diagnose). Diagnose (DIAG) is a basic system p120-

gram which helps the user debug his FORTRAN program. It is in-

tended to be used in conjunction with the PDP-S 4K FORTRAN

Operating System and revised FORTRAN Symbolprint. Diagnose pro-

vides the following information.

a. If stack overflow or underflow has occurred, it will type a

message indicating which of the five run-time stacks caused

the error.

b. It will type a message indicating the contents of the current

location counter (CLC).
c. If the counter stack is nonempty, it will type the contents of

that stack.

d. If location zero is nonzero, it will type the contents of that

location (minus one), indicating the point at which some

FORTRAN systems error occurred.

Dynamic Debugging Technique for the Disk System
The Dynamic Debugging Technique for the Disk System (DDT-D)

is used for online checking, testing, and altering object programs by

typing from the teleprinter keyboard. When debugging online, the user

checks his program at the computer, controlling its execution, and

making corrections or changes to his program while it is running on

the computer.

When using DDT-D, the user should have a listing of his program

and its symbols so that he can update the program listing as correc—

tions and changes are made to his program. The user may refer to-

variables and tags by their symbolic names or by their octal values.

DDT—D operates as described in DDT Programming Manual (Doc.
No. DEC—08-CDDA~D), except where that manual differs from this

one, in which case this manual has precedence.

7-8

DDT—D can be considered as being in three sections.

a. DDT Proper (.DDT) A slightly modified version of
I

DDT-8 (low); occupies core loca-

tions 200 through 4577 and the

three breakpoint locations.

b. Driver (DDT) Resident in core with its origin set

above DDT proper (above 4577);

it is a 2—page program plus a 1—

page once-only program, and it

contains breakpoint insertion and

removal logic, overlay routines,

continuation iteration count and

control, and breakpoint list.

6. User Core Image File Occupies same storage area as

(.SYM)
’

‘
DDT proper and is used for swap-

ping DDT proper and the user

program to and from the system
device.

DDT-D is an expanded version of DDT-8 with the following excep-

tions.

Three breakpoints (as opposed to only one in DDT—8)

No punching (program may be output on the system device)

No switch options (user direction is via keyboard)
No halts (continues when user types T P)

'5199‘?”
EQUIPMENT RE UIREMENTS

The minimum equipment requirements of the PDP-8 Disk Monitor

System are as follows.

A basic PDP—8 family computer with 4Kvof core

Teletype
‘

k

.

3-Cycle Data Break (Option required with PDP—8/S)
At least one DF32 Random Access DECdisk File or a TCOl

DECtape Control with a TUSS DECtape transport The DEC—

tape must have timing and mark tracks written on it prior to use.

NOTE \

L

The system will recognize up to 32K of core; up to four disks (1 Type DF32

and 3 Type DS32’s), up to eight DECtape transports (TCOl Control only) and

a high-speed paper-tape reader/ punch.

7—9

INITIALIZING THE MONITOR

The following discussion assumes that the user has built a customized

Monitor via the System Builder and has stored it on his system device;
it further assumes that the user has bootstrapped this customized Moni-

tor into core and that the Monitor is currently intact. If this is not the

case, such 21 Monitor must be built and bootstrapped into core bv the
p

steps outlined in the Disk Monitor System manual (DEC-D8-SDAB-

D).
0

Monitor start is at location 7600. A jump to this location can be

made by either (l) stopping the machine, setting the switches to 7600,
and pressing LOAD ADD (load address) and START, or (2) typing
1 C when in Monitor mode or when a system program (or any user

program which includes coding to sense a T C typein) is running.1
Monitor start performs the following actions.

3. Saves the coding from location 7200 through 7577 in the first

two scratch blocks on the system device.

b. Reads blocks 1 and 2 (containing the rest of Monitor) from

the system device into these locations.

c. Transfers control to Monitor, which responds with a carriage

return, line feed, and a dot.

A Monitor restart can be performed by typing RUBOUT to Monitor

A Monitor restart performs the same actions as described above except
for Subparagraph a. A common use for RUBOUT is to terminate a

command string when the operator has discovered that he has made a

mistake. The command string is ignored, and Monitor responds as

described in Subparagraph c. The user core image on the system de—

vice is not changed by RUBOUT (it is changed, however, by T C).

COMMAND STRINGS

The user types commands in the form of command strings to direct

Monitor, or a system program, to perform some action. Command

strings are simple in format and afford the user an easy means of com—

municating with the system.
Monitor indicates its readiness to accept a command string by typing

a dot, and at this point, the user can type some Monitor command,
such as CALL or SAVE.

Unless otherwise indicated, all command strings are terminated by
the RETURN key, which echoes as a carriage return, line feed.

.

1A start instruction (ST:7600) is issued when running Loader causes a jump to

7600 after loading has been performed. Certain errors also cause a jump to this

location.

7—10

, System programs indicate their readiness to receive information by

typing either an asterisk or a query. The most common queries are as

follows;

*OUT- Requests that the user specify one output device name. In

the case of disk or DECtape the filename to be assigned to

the output data must also be specified (see “Filenames”).

*IN— Requests that the user specify one or morex(up to five)

input device names. For disk and DECtape, filenames of

~ input files must also be specified (see Filenames).

*OPT- Requests that the user specify one option or switch, entered

as a single alphanumeric character; see the appropriate
reference for options available in each system program.

This communication between, the system and the user is handled by
a portion of Monitor known as the Command Decoder.‘ Command

Decoder is called into core by the system when needed and occupies

any four contiguous pages of core.

Command String Format
,

Command strings are composed of a few basic elements and follow

certain rules of punctuation. Their basic elements are as follows.

a. Device names

b. Filenames

c. Punctuation

(1 Special characters

Each of these elements is described in the following paragraphs.

Device Names. Device names permitted in command strings are as

follows.

Dn: DECtape unit, if both disk and DECtape are present in the sys-

tem (nzunit number, 0 through 7)

S: System device (disk or DECtape unit 0)

R: High--speed paper tape equipment (reader or punch)
T: Low-speed paper tape equipment on the Teletype (reader or

punch)

Filenames. Filenames are limited to four characters in length and can

be composed of any combination of alphanumeric characters or special
characters2 with the following exceptions.

a. Imbedded spaces cannot appear in a filename (they are

ignored).3 However, trailing spaces are permitted.
1Command Decoder is a system program (..CD) which is saved on the system
device at Build time.

2Although both printing and nonprinting keyboard characters are allowable,
printing characters are recommended.

3Note that Monitor is given the filename EX C; one reason for this unconven-

tional use of an imbedded blankIS to protect Monitor from accidental destruction

by the user (e.g., deletion via PIP)

7-11

b. A filename cannot be one of the following words or symbols.

CALL SAVE l
,

Extensions to the filenames specified by the user are automatically
. appended by the system. They are used internally by the system and

cannot be referred to or modified by the user.

SYS (n) Saved system program file in core bank n.

USER (n) Saved user program file in core bank :1.

ASCII Source language program file (input to PAL-D Assembler

or FORTRAN Compiler).
BINARY Binary program file (output from PAL-D Assembler).
FTC BIN Interpretive binary file (output from FORTRAN Com—

piler).

Filenames (and extensions) are meaningful only for file—structured

devices (disk and DECtape). If they are specified for other devices,

they are ignored. Both the filename and extension name appear on

directory listings produced by the list feature in PIP.1

Example: NAME TYPE BLK

8D
,

'

PIP .SYS (0) 0015

SRCl . ASCII 0007

BIN .. BINARY 0001

SRCl .USER (O) 0001

Punctuation. Punctuation within command strings is as follows.

, Used to separate device names, when more than one is given in a

command string. The comma is also used to separate core references

in a SAVE command string, when more than one contiguous area

of core is specified.
; Precedes the entry specification in a SAVE command.

: Terminates each device name. The colon is also used following the

filename in a SAVE command to indicate that the file is to be saved

as a user program.

- Separates the beginning and ending addresses of a contiguous core

area specificationin 21 SAVE command.

! Follows the filenamein a SAVE command when a file18 to be saved

as a system program.

1“3D” in example means VERSION 8, change D.

7-12

Special Characters. Special characters are used as described below.

TC

th

RETURN

RUBOUT

If given while the system is in Monitor mode or a system

program is running; control is returned to Monitor start

(location 7600). Monitor responds with a dot. t C is typed

by holding down the CTRL key and striking t C. T C does

not echo (does not print).

Typed in response to a t typeout. Instructs the system to

proceed with the next-operation.1 tP is typed by holding
down the CTRL key and striking P. 1P does not echo

(does not print).

Carriage return terminates current command string input.
When typed alone, in response to a system query, it indi¥

cates that the user does not desire to specify the item (e.g.,
device name) requested. Echoes as carriage return, line

feed.
'

Causes the current command string to be ignored, and the

system returns to the beginning of the command string and

is ready to receive a new command. RUBOUT does not

echo.

Examples of Command Strings
These examples illustrate the elements and rules explained above.

'

Samples of both Monitor commands and system program commands

are given.'~’
Monitor Commands

‘

_._CALL PRG], Call the user program file, PRGI,
from the system device into core for

execution.

. SAVE PALD! 0—7577; 6200 Save a program, previously loaded by
Loader into locations 0 through 7577

or core, on the system device as a

system program (l). Assign a starting
address of 6200 and a filename,
PALD.

SYSTEM PROGRAM

COMMANDS /’

*IN-SzPROZ Use the file PROZ on the system de-

vice as the input file.

*IN—S:TST1,R: Use the file TSTI on the system de-

vise and one file from the high-speed
paper tape reader as the input files.

*0UT—DS:SPEC Write the output file on DECtape
unit No. 5 and assign it the filename

SPEC.

1‘) P can also be used to prematurely terminate certain operations whilevin pro—

gress (e.g., the typing out of a file directory by the list Option in PIP).
—’In all examples, system response (typeout) is underlined for clarity.

7—13

LOADING PROGRAMS—«DISK SYSTEM BINARY LOADER1

The Disk System Binary Loader takes as input the binary coding
produced by the PAL—D Assembler and loads it into core in executable

form. When loading is completed, Loader “disappears” after first en-

tering the loaded program at the starting address typed by the user

just prior to loading (see “Loader Operating Procedures” below).
Loader accepts input from the system device or paper tape.

Loader requires one pass for any program which doesnot load above

location 6777 (field 0). Loader uses core from location 167 through
177 and 6000 through 7577 , and the resident portion of Monitor occu-

pies the remainder of field 0. One-pass loading reads input files. only
once.

Two passes are required for all other programs (i.e., programs load—

ing above 6777). In two-pass loading, programs can be loaded in all

of field 0, except locations 7600 through 7777.2 Two—pass loading re—

quires that input paper tapes be read through the reader twice.

Loader Operating Procedures

. LOAD Direct Monitor to bring Loader from
'

the system device into core for exe-

cution.
‘

*IN- Loader requests source of input(s).
Type one or more device names,

separated by commas. If an input
device is a file-structured device (8:,

Dn:) include filename(s).

Up to five files can be specified.

Examples

*IN-R:,R:,R: Input three tapes from the paper

tape reader.

*IN-SzINPT Input the file INPT from the system
device.

*IN-S:BIN2,R: Input the file BINZ from the system
device» and one tape from the paper

tape reader.

*IN-S:BIN1,S:BIN2 Input the files BINI and BIN2 from

the system device.

1The Disk System Binary Loader is a system program saved on the disk at Build

time. It is called by the user in the same manner as any system program. It

occupies locations 7000-7577 and has a starting address of 7000.

Elm 8K and larger systems, Loader sets up locations '7574 through 7577 to per-

form a start in fields other than 0. It is the user's responsibility to,protect these

locations if he wants to start in other than field 0.

7-i4

\

If device(s) are valid and'filenames

(if any) are actually found on the

system device, Loader responds with

one asterisk for each correct input.

*OPT- Loader requests mode desired (one—

pass or two-pass).

Examples
'

‘

*OPT-l One—pass loading desired; no pro-

grams are loaded above location

.

6777.

*OPT'Z Two-pass loading desired; programs

(or anything else)

*ST:

fnnnn

where

fzfield number‘ (omitted if

field 0).

and

nnnn 2 location within field

Exam Ies

*ST—Z) Load into field 0.

*ST27600 Return to Monitor after loading.

*ST 2 0

*ST 2 30225 Load into field 3.

Jump to location 255. field 3. after

loading.
*ST 2 10000 Load into field 1.

Return to Monitor after loading
into field I.

Loader new types a series of up-

arrows, one at a time, as explained
below.

,

.

.

Following each up-arrow typeout,
the user is required to perform
one or more actions.

m First up—arrow: Loader is ready to

can be loaded. above location 6777.

Loader requests the starting address

to which control is to‘ be transferred

when loading is completed. The ad

dress is typed in the form

load. If paper tape input, put the

tape in the reader. Type T PE’

lThe f~digit forces Loader to start loading .into the specified field until a ”field

setting” is found in the input file or tape.
311“ Teletype paper tape equipment is used. type T P hem-0 turning on the

reader.

7—15

Second up-arrow: End of pass I. If

operating in one-pass mode, type
T P to jump to previously specified
starting address.

If operating in two—pass mode.

type‘r P.

The next two upwarrows appear only
it’ operating in two-pass mode.

Third up-arrow: Reload paper tape

input for pass 2. Type 1P.
F'ourth up-arrow: End of pass 2.

Type TP to jump to previously
specified starting address.

Multiple Input Files

An up—arrow is typed out as the

processing of each input file is com—

pleted. If paper tape input, insert the

next file in the reader and type TP.

Repeat the above step until all files

given in response to the *IN-request
have been processed.
It’ in two-pass mode, each tape must

be entered twice, in the order

T1, T2, T3,. . . .T1, T2, T3,

After all files have been entered the

required number of times, type tP
to jump to the previously specified
starting address.

NOTE

After each input paper tape is read, the high’speed paper tape version of

Loader loops until the user typestP to continue. However, the low-speed paper

tape version halls. Thus, when using the Teletype paper tape equipment for

input, the user need not type T P but press CONT on the console and start the

paper tape reader.

At this point, Loader disappears and control is transferred to the

previously specified starting address.

The loading parameters for system programs are given in Table 7-1.

Loader Error Messages
An illegal checksum error condition causes Loader to type

?

and return to Monitor after the user types 1‘P or TC. Error messages

for illegal filenames or devices are as specified in “System Error

Messages.”

7-16

SAVING PROGRAMS (SAVE COMMAND)
'

The SAVE command enables the user to write core images of sys—

tem or user programs from core onto his system device for subsequent
call-in (CALL) and execution. For example, a program which has

been loaded by Disk System Binary Loader can be stored on the sys-

tem device by the SAVE command. Or, a previously saved program

which has been called in and modified by DDT can‘ be stored

in its updated version on the system device, overlaying the old version

if desired

Core images can be saved in units of one or more pages, each page

occupying one block on the system device. If a core specification (see

below) addresses only a portion of a page, the entire page is written

out. For example, the core specification 45—150 is treated as though it

were 0-177. Core areas to be saved may be contiguous or noncon—

tiguous as desired by the user. Up to 321., core specifications. in any

combination of monotonically increasing single-page or multiple-page
requests, can be entered in a single SAVE command.

SAVE Command Format

1
'

l

. SAVE filename { j
core-specifications. . . ._: entry-point

SAVE
1

Directs Monitor to call in the nonresident SAVE

_

'

routine.
_

filename The filename (program name) to be assigned to

the file on. the systems device. This name will be

used to call the file later when the user wants to

read in and execute the program. Restrictions on

the formation of filenames can be found in

“Command Strings” under “Filenames.” Any pre-

viously saved program with the same “filename”

and having the same extension will be automatic-

ally overwritten.

! or : ! is typed immediately after the filename of a file

if the user desires to save it as a system program

(e.g., PIP). A program saved in this manner can

be called in by simply typing its name to Monitor

(the word CALL is not required)

iilename
An extension name of .SYS is automatically ap-

pended to the filename.

7-17.

core-specifications

: is typed immediately after the filename of a file

if the user desires to save it as a user program. A

program saved in this manner can be called in

and executed later via the CALL command

.CALL filename

An extension name of .USER is automatically

appended to the filename.

Up to 32 specifications can be entered in a single
SAVE command. Each core specifidation is sep-

arated from the following one by a comma. The

last core specification in the series is followed by a

semicolon. Addresses are expressed in octal.

Single-page core specification

fnnnn

where

f: field number (can be omitted if field

0).

nnnn: any location within the page which

the user desires to save.

Multiple-page core specification

When a user Wishes to save a core area of several

contiguous pages, he can type a multiple-page core

specification in the format.

fnnnnl—nnnn2

where -

fzfield number (can be omitted if field

0).

mum]: any location within the first page of

the series of contiguous pages to be

'savcd.

nnnnzzany location within the last page of

the series of contiguous pages to be

saved.

The following rules apply.

a. The beginning address of a multiple-page re-

quest must be smaller than the ending address

(norm1 must be smaller than nnnnz).
b. Both addresses must be in the sameVfield.
c. The field number (f) must be within the

range of your system; however, no check for the

validity of this number is performed at SAVE

time.

7—18

entry-point The entry point of the saved program, in the for-

. mat

fnnnn (see explanations above)

An entry point of 0 causes a return to Monitor at

\ CALL time, regardless of the field into which the

program was saved.

NOTE

The last nonzero field number encountered in a SAVE command string 'is re-

membered and prefixed to all other addresses in the command string. (Remem-

ber: only one field can be referred to in each command string.)

Example: The following entries are identical in meaning.

SAVE PRGA: 1000040777, 11400, 1600-17777; 10200
SAVE PRGA: 30000-777, 51400, 26000—7777; 10200

SAVE PRGA: 10000-777,l400. 6000-7777: 200

SAVE PRGA: 0-777, I400, 6000-7777; 10200

In each of these examples, all addresses are treated as being field I, because the

last five-digit entry seen contained amost significant digit 1.

SAVE command strings for system programs are given in Table 7-2.

SAVE Command Processing
’

A list of the required pages is constructed from the information

typed by the user and a block requirement count is kept. When the

user types the terminating carriage return (RETURN), allowing the

SAVE process to begin, a directory name search on the system device

is initiated. If a file having the same name as the filename in the SAVE

command is found, it is replaced by the file now being saved. If no such

file is found, a new file is created. Next, a storage availability search

finds a sufficient number of available blocks on the system device to

satisfy the block requirement count. (See above.) These block numbers

are stored in a corresponding block list; the blocks are then filled with

the contents of the pages tobe saved. When the SAVE process is com—

pleted, control returns to Monitor (7600).

CALLING A PROGRAM (CALL COMMAND)
Once a file has been loaded and saved, it can be called into core as

desired. There are two types of CALL command strings: one for system

programs and the other for user programs.

The CALL Command string format for system programs (programs
saved by a SAVE command string in which the filename was followed,

by a l) is

Lfilename
where filename is the same as the one used in the SAVE command

string which saved it.
‘

7-19

The CALL command string format for user programs (programs
saved by a SAVE command string in which the filename was followed

by a z) is

_.__CALL filename

When a program is called, a directory name search is performed on'

the system device. Associated with the directory entry is the entry point
of the program and information concerning file protection andmemory
extension. If the appropriate directory name entry is found and the

file has the proper extension (.SYS or .USER), calling proceeds. If

not, the calling process is terminated, ? is typed, and control is returned

to Monitor.

Table '7-1. Loading Parameters for System Programs

Name Core Limits Entry Point Pass

PIP 045177 1000 1

EDIT 0-3177 2600 1

PALD 0-3377, 3600—4377, 6200 2

4600, 5200,

6200-6577, 7000-7577

FORT 0-1777 200 1

.FT. 200-7377 -- 2

STBL 600-777 600 1

FOSL 0-1577 200 1

.OS. 0-5177 —- l

DIAG 200—1 177 200 1

.DDT 200-4577 -- l,

.SYM 200-4577 -- -

DDT 7200-7577 7200 2

Table 7-2. SAVE Commands for System Programs

Name SAVE Command String

PIP SAVE PING-5177:1000
EDIT SAVE EDIT!O—3l77;2600
PALD SAVE PALD!0-7577;6200

FORT SAVE FORT!0-i777;200

.FT. SAVE .FT.!200-7377;0
STBL SAVE STBL!600;6OO

* FOSL - SAVE FOSLSO—1577;200

.03. SAVE .OS.!O—5177;O
DIAG SAVE DIAG!200~]177;200
.DDT SAVE .DDT!200-4577;0
.SYM SAVE .SYM!200-4577;0
DDT SAVE DDT37200-7577;0

(User may assemble anywhereabove location 4577)

7-20

SYSTEM ERROR MESSAGES
,

'

As an input command string is being typed, Monitor recognizes any

incorrect syntax and remembers it. When the user types a carriage re—

turn, Monitor responds with a ? to indicate invalid input.

Error messages output by Command Decoder are given in Table 7—3.

Table 7-3. System Error Messages

Message Meaning

? Illegal syntax or miscellaneous error condition

D Directory on the systems device is full

E Too many inputs or outputs were entered

I No such inputs
8

_ System 170 failure

Monitor—time read or write errors cause a halt to occur. Persistence

of this condition indicates a hardware failure, as the system [/0 rou—

tine attempts to read or write three times before halting.

I/O PROGRAMMING

The modular concept of input/output (I/O) handling of the disk

system provides for easy maintenance and programming. The system
device 1/0 is found in the following places (all I/O routines must be

in field 0).

a. Top page of field 0 (location 7642) which is the I/O routine

used by all system programs for normal 1/0. A copy of this

page is on block 0 of the system device Block O of each DEC-

tapeis the DECtape I/O routine

b. Interrupt versions of disk and DECtape routines are found'in

PIP.

c. Paper tape 1[O is handled by individual programs.

The basic I/O routine (see “Normal,” below) is called as shown in ,

Table 7-4. It is called in two ways. as determined by bit 2 of the func-

tion word.

Normal. The 1/0 routine returns to JMS +6 (normal) or JMS +5
(error). For example, the following routine would read consecutive

blocks from a file on the system device. The routine is initialized by
putting the first block number of the desired file into location LINK.

7-21

If an attempt is made to read past the last block of the file, an exit

will be made to a routine called ENDFIL.

GETBLK,

BLOK,

LINK,

0

TAD LINK

SNA

IMP ENDFIL

DCA BLOK

JMS 7642

3

0

BUFFAD

0

JMP ERROR

IMP I GETBLK

/GET LINK FROM LAST READ

/ IS THIS END OF FILE

/ YES

/CALL DISK I/O ROUTINE

/FUNCTIONzREAD

/ BUFFER ADDRESS

/ ERROR RETURN

Indirect. The 1/0 routine returns to the 12—bit address in the error re-

turn word (normal or the 12-bit address in ERROR).

Table 7-4 Calling Sequence for Disk System I/O Routine

Calling Sequence Explanation

JMS I SYSIO
‘

FUNCT

BLOCK

CORE

LINK

ERROR

Location SYSIO points to 1/0

Function word1

Block to be accessed

Low-order core address

Filled by READ, used by WRITE

Error return here

Normal return here

1Function word: Bits 0-1 unused

Bit 2 :0,

:15

normal return /

indirect return at end of read/ write to

address +1 in error return

Bits 3-5 unit no. if DECtape
Bits 6—8 memory field

Bits 9-1 I function: READ = 3; WRITE = 5

7-22

Chapter 8

Time-Sharing
System

INTRODUCTION

The Time-Sharing System for the PDP-S/I and PDP-S, computers
(TSS/S) is a general purpose stand—alone time—sharing system offering
each TSS/8 user a comprehensive library of system, service, and utility

programs. These programs provide facilities for compiling, assembling,
editing, loading, saving, calling, and debugging user programs online.

Also included are two conversational
language programs, FOCAL—8

and BASIC-8.1

By segregating the central processing operations from the time—con-

suming interactions with the human users, the computer can in effect

work on a number of programs simultaneously. Giving only a fraction

of a second at a time to each program or task, the computer can deal

with many users seemingly at once,>as if each user has the computer to

himself. The executions of various programs are interspersed without

interfering with one another and without detectable delays in the re—

sponses to the individual users.

Core and Disk Allocation

TSS/8 requires a minimum of 12K words (three fields) of core mem-

ory. The first 8K (Fields 0 and 1) are shared by the various Monitor

subprograms. The other 4K (Field 2) and any additional core memory

are shared by the users of the system.

1 BASIC-8 is a modified version of the algebraic language originally developed
at Dartmouth College.

(8-1

The disk area is divided as follows.

Monitor Area The first 16K of the disk is occupied by the

Monitor subprograms. These subprograms
are swapped into core memory as needed.

User Swapping Area This area consists of a 4K track for each

user in the system. When a user is tempo—

rarily swapped out of core memory to allow

other users to have their turn, his program

is stored on his 4K track.

File Storage Area The remaining disk area is Used for storing

system and user program files.

Monitor Functions

The heart of this time-sharing system is a complex of subprograms
called Monitor. Monitor. coordinates the operations of the various

programs and Teletype consoles, allocates the time and services of the

computer to users, and controls their access to the system. The sched-

uling function includes scheduling the user’s requests, transferring con—

trol of the central processor from one user to another, moving (swap-

ping) programs between core memory and disk, and managing the

user’s private files.

TSS/S User and Console

A TSS/8 user is any person running a computer program within

TSS/8. He has an account number and password assigned to him which

identifies him to TSS/S. This account number and password are assigned
to the user by the person responsible for the system, and it identifies

his files on a permanent basis. When the user is using the system, this

number also identifies his console, his individual disk swapping track

(a contiguous 4K section of disk in the User Swapping Area) for tem-

porary storage of active programs by the Monitor, and whatever other

facilities he may be using at any given time.

While the user is logged into the system, he owns at least one Tele—

type console (see Ghapter 4) and one 4K disk track. The console con-

sists of a keyboard, which allows the user to type information to his

user programs and to Monitor, 3 paper tape reader and punch for

paper tape input to and output from core, and a teleprinter, which fur-

nishes typed copy of user input and program and Monitor output.

8—2

‘

\

System Program Library
A comprehensive library of programs is available to all TSS/8 users

and is located in the File Storage Area of the disk. The library can
‘

consist of any or all of the system software which operates in 4K of core

memory. Any program in the library can be called into core from the

.
disk and started merely by typing, in response to the dot typed by

Monitor the command R and the assigned name of the program For .

example,
.R FOCAL

brings FOCAL into core from the disk and automatically executes it so

that it begins typing out its initial dialogue.

User Programs
When a user program is being run by TSS/S it is swapped into czore

memory from the user’s disk track. Several programs may be run at

virtually the same time by employing the technique of bringing a pro-

gram intov core from the disk, allowing it to execute for a short time,

marking the state in which its execution is stopped, returning it to the

disk, and picking up the next user program.

User programs are serviced regularly on a round-robin basis. After

a user program has been executed, it is placed last in the queue of user

programs waiting to run. Each program is allowed to run a fixed inter-

val of time and then it is exchanged for the next user program. If only
one program is in a condition to run, it is allowed to run without inter-

ruption.
‘

User Files

User files are stored in the File Storage Area of the disk. Using the

appropriate Monitor commands, the user can create new files and ex-

tend, contract, and delete old files. Files may contain textual informa-

tion, binary core images, or data in any standard format.

Each user can have access to 'up to four active files at any time. An

internal file number (0 through 3) is associated with each of the user’s

active files, and commands then operate in terms of the internal file

numbers. With this feature, a user may attach one of his files to an

internal file number and then load service and utility programs that

operate on his file without having to explicitly call the file for each

service or utility program used.

The user can protect his files against unauthoriZed access. He can

also specify the extent of access certain other users may have to his

files. For example, a user’s associates may be permitted to look at the

data of certain files but not permitted to alter that data.

8-3

System Configuration

Depending on the hardware configuration of a particular TSS/S,
there can be from I to 16 users working with the system simultane-

ously. Each user has the following resources: at. least 4K words of core

memory for execution of programs and a corresponding 4K disk track

for temporary storage of his core image when swapped out by Monitor.

The minimum equipment requirements of the system are listed below

(see Figure 8-1).

PDP—8/ I or PDP-S with KTOS/ I Time-Sharing Modifications

MC8_/I—A Memory Extension Control and 4096 words

MM8/IA 4096 word memory
RF08 Disk Control

R808 Disk _

PT08 Asynchronous Line Interfaces, Dual (4), Real—Time Clock

PTS/I High-Speed Paper Tape Reader

KES/ I Automatic Multiply—Divider
‘

H961A Option Cabinet

CONSOLES
(1 T0 is)

CEDI I I
(TELETYPE MODEL 33 or 35)

CONSOLE CONTROL

DCOB

or ‘

PTOB'S

PDP-B/I (modified)

. infirm-Ari
l CORE

CPU

RFOE
DISK

Figure 8-1. System Configuration

4K CORE 4K CORE IC‘MAX’MUM I

I
ORE STORAGE

=V32K I

l-W@Q_I
XOOF‘O ————- ——_-—

8-4

The system can have a maximum of 32K of core memory. As addi-
‘ tional fields of core memory are added, they permit overlapping the
'

running time of one user pragram with the swapping time of another,

expanding the resident Monitor to buffer a larger number of consoles

and reducing the amount of Monitor Overlay required, thus increasing

operating speed;

With a minimum of 12K of core memory, the following options are

available.

1.

I—t O

\oooxroxgnrsgugo
Up to three DECdisks can be added to increase the number of

active users and their file storage.
Up to eight DECtapes drives can be added for individual users.

Memory Parity
. Extended Arithmetic Element (PDP-S/I only)

Power Failure Protection

. One High—Speed Paper Tape Punch

. One DA-lO Interface (“(PDP-10)

. One Bit Synchromous Communication Unit (Type 637)

. One Line Frequency Clock (required with PTO8’s)

.7 Maximum total of 16 active Teletype consoles with appropri—
ate Teletype Controls (PT08’s or DCO8)

The Data Communication System, Type DC08, is used in full duplex
mode. It consists of a Data Line Interface Unit (DL8/I), a Serial Line

Multiplexer Unit (685), and other devices connected to form a data

link and message switching system between the user consoles and the

central processor.

THE TSS/8 MONITOR

The TSS/8 Monitor is composed of the following routines.

Scheduler . Error Message Handler

System Interpreter
‘

Buffer Handler
'

IOT Trap Handler DCOS Service

Storage Allocator Disk Service

Overlay Control Optional Device Service

File Control

8-5

With the above routines, Monitor provides services which can be di~

vided into three broad categories: device service, scheduling and rum

ning, and communication.

On an interrupt basis (program interrupt—see Chapter 5) the device

service routines receive information from all input devices, distribute

that information out to the appropriate buffers, and inform the activa~

tion routine when a user program must be activated to receive its iii-

formation. The device service routines also accept output from user

programs, buffer it, and send it to output devices Whenever the devices

are able to receive it. .

Scheduling is handled by a round-robin scheduling algorithm with

the exception that programs with disk requests pending are run out of

turn to optimize disk usage. The scheduling routine decides whether to

remove the current program from core, and if so, which program is to

be run next.
'

A user program is, at any point in time, in one of the following
states.

Running. The user program is in execution. It continues execution

until its quantum has expired or until it issues an I/O request that

cannot be satisfied immediately.
Active. The user program is ready to run and will be swapped into

core when its turn comes. A program can become active when

a. An output buffer is almost empty, thus assuringrcontinuous
‘

output of information,
b. An input bufier is almost full,
c. Input requested by a user has arrived,
d. A user determined activation condition has been satisfied, or

e. The user commands the system to begin execution.

Waiting. In this state the program would be active except that it is

waiting for the completion of some I/O request or special condition.

Dormant. The program is not being entered into the round-robin.

The user may be communicating with Monitor or the program may be

dismissed for a variety of Monitor-determined-reasons (e.g.,illegal op

code).

A program may be swapped out of core memory for any of the fol-

lowing reasons.

1. The quantum of time has expired. The program moves from

the running state to the active state.

8-6

2. The program has requested that the quantum of time be ter—

minated The program moves from the running state to the

active state.

3. The program has filled an output buffer, or has requested in~v

put, but the input buffer is empty, or has requested a special
dismissal condition. The program moves from the running to

the waiting state.

4. The program has tried to execute an illegal instruction. The

program moves from the running state to the dormant state.

System Interpreter
Monitor checks all incoming characters for the call (CTRL/B) char-

acter. When the‘call character is encountered, Monitor routes all sub-

sequent characters up to and including the first carriage return (RE—
TURN key) to its System Interpreter’s input bufier. Monitor’s System

Interpreter performs the following services.

1. Verifies the user’s account number and password when he logs

in, and provides him with a disk track to store user programs

It releases facilities owned by the user when he logs out.

2. Parcels out extra consoles and input/output devices.

3. Provides commands for creating, opening, and maintaining the

user’s files.

4. Allows the user to save all or part of his binary user program

for future use and reference, and restores it with its state un-

changed.

5. Provides accounting of console time and user program run

time
,

6. Provides the user with information about the state of his pro-

gram while itis running, as well as information about the state

of the character control tables.

7. Provides commands for calling the various utility programs.

Communications to the System Interpreter are automatically du-

plexed. That is, all characters from a console keyboard to the System

Interpreter appear on that console’s printer, regardless of the setting of

the character control tables (explained later).

The System Interpreter is kept quite busy receiving messages from

many keyboards and user programs, therefore, it must be run often.

Consequently, it occupies a priority position in the round—robin, being
scheduled whenever there are characters in its input buffer.

8-7

Phantom Routines

Monitor has two phantom routines: error and file control. They are

not phantoms as defined by Webster but they appear to act as though

they were. These routines reside on the disk, “jump” into core when

needed, perform their assigned tasks, and “fade” back onto the disk.

Phantoms are privileged routines which run in place of a regular
user program in the round-robin. The time the phantom takes to per-

form its service is charged to that user program upon which it is serv—

icing. For example, the error phantom prints all error messages for

running user programs, and printing a lengthy error message may re-

quire several intervals of time to which the program in error will be

charged. The error phantom routine replaces the offending program in

the round-robin and prints an error message, thus punishing the user

responsible for the error and no one else.
,

The file control phantom routine handles all modifications to the

user’s files, such as creating, lengthening, renaming, and destroying
files. This phantom routine is brought into operation when a user pro-

gram executes certain input/output transfer (IOT) instructions or when

Monitor is acting for the user program.

Character and Data Flow

When a user logs into the system his account number and password
are associated with a job number, and that job number is then associ—

ated with a disk swapping track and the console(s) he owns. The ac-

count number establishes ownership of the input buffer attached to the

user program and the output bufier(s) attached to the printer(s) of

his console(s).
Monitor provides for communication among the users, user pro—

grams, and Monitor. Data flow is illustrated in Figure 8—2. Communi-

cation is provided through the IOT instructions. When a program exe—

cutes IOT instructions, Monitor picks up locations in the user program

as parameters to service routines. These routines may simulate 1/0

to or from the online device, control or release ownership of devices,
handle character transmission, or return information to the user pro—

gram by filling core locations within the program. Through IOT in—

structions the user program can make its wants known and Monitor

can inform the user program of any unusual conditions in the system.

Characters are generated by users. typing at keyboards or by user

programs typing out. Characters go into input buffers to be read by
user programs or to output buffers to be printed on console printers.

The character control tables (Figure 8~2) set up useful character trans—

mission paths, whereby any character source (keyboard and program)

8-8

DISK

TRACKS

R SWAPPING
CHARACTER

»

EQUEST
FOR SPECIAL

CONTROL SERVICE OR 1/0 USER

TABLES PROGRAM

CONSOLE 4K CORE

GENERAL
SWlTCHBOARD

KEYBOARD —> INPUT — —- 83%; ._ _ _

m a:ROUTINE
m wt— J

1/0 Q's £133 82
CONTROL 5‘; E; g\

GENERAL I :0 o
~

OUTPUT U U

PRINTER — — - lNPUT <— —- —— —

BUFFER
V ROUTINE

PERMIssION

cpMMANOL NGUAGE

03‘? REQUEST AND

FOR SPECIAL SERVICE

SERVlCE

0mm
PHANTOM

SERVICES

DISK

FILES

'

Figure 8-2. Character and Data Flow

may, with permission, send to any character buffer. To insure that

unwanted connections are not made, using the appropriate command

to Monitor the user owning any character buffer may grant or deny
permission for connection into that buffer.

The character control tables are a permission table and a switch—

board table. The permission table allows a user to control which char-

acter sources may place characters in which of his bufiers, and the

switchboard table controls the actual routing of these characters. Char—

acters originating from any keyboard or from any user program typing
out can, with permission, be placed in any or all of the keyboard in—

put bufiers or any or all of the printer output buffers. The user, using
appropriate Monitor commands, establishes the actual routing of char—

acters to and from his associated butters.

The character cOntrol feature finds applications in:

1. Duplexing—Characters typed at a keyboard can be printed
on other consoles without user program intervention.

2. Interprogram Communication—User programs can communi—

cate with each other and with Monitor. Thus, several user

programs may run as one system coordinating their separate
tasks through character communication.

8-9

3. Interconsole Communication—~Users at consoles can set up

general links for conferences, teaching, monitoring, or for any

number of reasons.

4. Multiple Consoles—User programs may receive characters

from and send characters to more than one console. This al—

lows a user program to act as a time-sharing subsystem within

TSS/8, controlling its own set of consoleS, e.g., as in teaching
machine monitors.

MONITOR COMMANDS

A Monitor command is a string of characters terminated by a semi-

colon (;) or a carriage return (RETURN key). Commands to Monitor

are typed on the console keyboard by the user or output by the user

program, with each command beginning with a command name. In

some cases, the command name is the entire command, in which

case it is followed directly by a terminator. In other cases, the com—

mand name is followed by a space, one or more parameters, and then

a terminator (see example below).

.TIME (Requests the time of day. This command was termi-

nated by the RETURN key)

.TIMEe1 (Requests the processing time used by job 0,. Termi-
nated by the RETURN key)

Only enough characters need be typed in the command name to

uniquely identify the command name as shown in the following ex-

ample.

LOGI for LOGIN

LOGO for LOGOUT
'

More than one command may be typed on a line, with all but the

last command being terminated by a semicolon; the last command is

terminated by the RETURN key (see example below). Commands

are executed only when the RETURN key is typed, which explains why
the last command on a line must be terminated by the RETURN key.

.OPEN c1 51 c2; LOAD or 81; START c1

As shown in the above examples, each command or a line of com—

mands is typed after the dot typed by Monitor. The dot is typed by
Monitor when it is ready and available to accept commands from the

user.

8-10

Parameters may be typed as octal numbers, decimal numbers, char—

acter strings, or single letters. in the following descriptions of Monitor

commands the parameters are coded as follows.

on c, . . . represent octal numbers

(11, d2, . . . represent decimal numbers

s., s... . . . represent character strings
11, 12, . . . represent single letters

Logging In and Out

Logging in and out of TSS/8 is a function performed by Monitor’s

System Interpreter routine. When a console is in the free state, a pro-

spective user may attempt to log into the system.

LOGIN e. s;

This is a request by a user to enter into the system. If the console

from which the command is typed is free, there is an available disk

track, and the two parameters following the command LOGIN form

a legitimate account number and password, "then the user will be

logged into the system.

c1 is the user’s account number.

s, is the user’s password.

At the time of login, the switchboard table is» initialized to the nor—

mal operation setting. However, Monitor diverts all characters typed
to the System Interpreter until the user gives a command that indi-

cates otherwise.

LOGOUT;
This is a request by a user to leave the system. It disconnects all con-

,

soles and temporary disk track that he owns, places his programs

in the free state, and resets the switchboard table. It also writes: an

account record on the disk showing how much computing time

(processing time) and console time was used by the user’s pro—

gram(s).
‘

TIME C1;

This is a request for Monitor to type outthe computing (processing)
time used since login. If job c1 is not specified, the job owning the

console is assumed If requested before login and if no job is spe—

cified, the time~of-day is typed. If, at any time, job 0 is specified
the tirne—of—dayIS typed.

8-11

Console Manipulation
ASSIGN K c1;

This is a request for console number c1 to be added to those consoles

already owned by the requesting user.

K denotes console

c1 is the console number

If the console is free, it will be given to the user and the user’s

switchboard table settings will be augmented by those additional

entries which put the new console in the normal state with respect
to its own printer and the program on the user’s disk track. Cross

settings for interconsole connections are left to the user’s discretion.

SLAVE c];

This command causes console number c1 to be slaved. This means

that console number cI will be unable to communicate with Monitor,
that the system will ignore the call (CTRL/B) character from that

console. However, the console may serve as an input/output device

for the user’s program. Monitor checks to make sure that the res

questing user owns the console he wishes to slave. It is illegal to

slave every console that a user owns.

UNSLAVE cl;

This command restores a slaved console to normal status. After this

,

command, console number c1 will be able to communicate with

Monitor. The user must own the console to unslave it.

RELEASE K c1; .

This command releases (deassigns) console number c1 and puts it

in the free state. Monitor checks to make sure that the requesting
user owns the console he wishes to release. When the console is

released, the switchboard table is reset and the input and output
buffers are cleared.

’

Device ‘Allocation

ASSIGN 1.;

This is a request for access to the device specified by 1]..

]1 = R for high — speed paper tape reader

P for high — speed paper tape punch
C for card reader

L for line printer
I for incremental plotter

If device It is not busy, it will be allocated to the user program issu-

ing the command. If device 11 is busy, the job number of the user

having possession is returned. A RELEASE It; or LOGOUT; will re—

lease the device.

8-12

ASSIGN D c;',

This command is the same as ASSIGN 11;
D denotes DECtape unit

on is the unit number of the DECtape unit

RELEASE 11;

RELEASE K c1;

RELEASE D c1;

Each of these commands will annul the current assignment of the

specified device.

File Control

OPEN C1 Si Ca;

This command establishes association between an internal file num-

ber and a file. After this command is given, the file of account es

With the name 51 is associated with internal file number CI. The in—

ternal file number specified must be between zero and three inclusive.

If or is not specified, the account number of the current user is as-

sumed.

CLOSE c1 c2 . . .;

This command closes the files specified by c; 02 . . .

C1 C2 . .is a list of internal'file numbers separated by spaces

After this command is given, no writing can be done on the files

specified, and the associations between the internal file numbers and

the files are broken.

CREATE 5;;
~

.

This command causes Monitor to create a new file which is to have.
the name 51, if there is available space in the File Storage Area of

disk. At the time of creation, Monitor will enter the name of the

new file and the date of creation into the owner’s file directory.

Example:

CREATE NEWF; Asks Monitor to create a new file named

NEWF. If there is no more space in File Stor-

age, Monitor will so inform the user.

RENAME 01 $1;

This command renames a file. The file to be renamed must be al-

ready open and associated with internal file number c1. Its new name

will become s1. Example: '

RENAME 1 MSTR; Assume that file NEWF has been opened to

internal ’file 'number 1; this command will

change the name of that file from NEWF to

MSTR.

8-13

REDUCE c. d];
This command reduces the length of a file. The file which is to be

shortened must be open and associated with internal file number c1.

(11 is the number of segments to be removed from the end of the file

If (11 is greater than or equal to the number of segments in the file,
the file is deleted from the directory. Example:

REDUCE 2 2; Assume file TT13 is opened to internal file

number 2; this command then removes 2 seg—

ments from its end and returns those segments
to free storage.

EXTEND (:1 (L;
This command extends the length of a file. The file which-is to be

lengthened must be open and associated with internal file number ct.

d1 is the number of segments to be added to the end of the file

If there is free storage space available, Monitor will lengthen the file

as requested.
PROTECT c1 c2; .

This command changes the file protection mask of a file. The file

to be protected must be open and associated with internal file num-

ber cl.

1

c2 is the new file protection mask

For file protection, the 12—bit account number is partitioned into a

project number (high order 7 bits) and a programmer number (low
order 5 bits).
File protection masks (cg) are assigned as follows:

(22 = 1 read protect against users whose project number differs from

owner’s.

c2 = 2 write protect against users whose project numbed differs from

owner’s.

c2 = 4 read protect against users whose project number is same as

owner’s.

oz 2 10 write protect against users whose project number is same as

owner’s.

c2 = 20 write protect against owner.

cg can be the sum of any of the above values.

The protect command is illegal for all users except the owner.

Example:

PROTECT 1 3; Read and write protect internal file 1 against
access by any user whose project number dif-

fers from the owner’s.

8-14

F c1;

This command causes Monitor to print out the current state of the

association of the user’s internal file number 01 with the file. The

response format is c1 s1, 01 d.

where

cg is the owner’s account number.

31 is the filename.

1:3 is the protection mask.

d1 is the number of segments.

Control of User Programs

START 01;

This command begins execution of a user program at location c1. In

addition, the command resets the switchboard table so that all

characters typed from either a keyboard or program directed into

the user program’s input buffer are no longer intercepted by the

System Interpreter.
START;

This command restarts a user program. If Monitor has been called

during the execution of the user program, the complete state of the

program is saved including the location of the next instruction to be

executed. When the START command is given, the program’s state

is restored and the program continues execution where, it left off. As

in the START c1; command, characters intended for the user pro—

gram’s input buffer are no longer intercepted by the System Inter-

preter.
DEPOSIT c1 c1 . .cn;

>

This command stores oz in location c1; c3 in location 01 +1;. ;cn

in location c1 +n —1.

n is equal to or less than 10 (decimal).

1 A user can load a binary user program using the DEPOSIT com—

» mand, although it ismuch easier using DDT—8. This command is

useful when making small patches to stored programs. The address

c1 must be an absolute address within the user’s 4K core area.

EXAMINE c1 d1;
This command causes Monitor to type the contents of the d1 loca-

tions starting at location c1

(11 is equal to or less than 10 (decimal).

If d1 is not specified, the contents of location c1 is typed. The address

01 must be an absolute address within the user’s 4K core area.

8-15.

Saving and Restoring Binary User Programs. The SAVE, LOAD, R,
and RUN commands leave file 51 open and assign it internal file num-

ber 3, and turn the user’s interrupt system off.
'

SAVE C; Si;

SAVE c1 5[c2;

SAVE c1 51 c2 c3;

SAVE c1 5, c2 c3 ct;

These commands write portions of the user’s core image onto a file

whose owner’s account number is ex, filename is 5; (51 must have

been previously CREATEd), and

c2 is the file address of the first word to be written; if not specified,
the entire 4K is written on the first 4096 words of the file.

on is the core address of the first word to be written; if not specified,
all 4096 words are written.

ct is the core address of the last word to be written; if not specified,
7777 is assumed.

If 01' is not specified, the account number of the current user is

assumed.

Example:

SAVE NEWF; Writes core words 0 through 7777 or words 0

LOAD Cl 81' through 7777 of file NEWF.

LOAD c1 s1 c2;

LOAD C) S], C: Cs;

LOAD 0. st 0... c3 c4;

These commands read certain portions of the file whose owner’s

account number is c1 and whose filename is st, into core. 01 may be

omitted if it is the same as the account number under which the

user is logged in.

C: is the file address of the first word to be read; if not specified,
words 0 through 7777 are read into words 0 through 7777.

c,1 is the core address of the first word to be loaded; if not specified,
all words 0 through 7777 are loaded.

c, is the core address of the last word to be loaded; it not specified,
7777 is assumed.

'

Example:
LOAD NEWF 5 10 17; Loads words 5 through 14 into words 10

through 17 respectively.
R 5;;

This command is equivalent to

OPEN 3 s1 2; LOAD 2 8,; START 0

which loads program 51 from the system library (account 2) and

starts the program running.

8-16

RUN 31;

This command is equivalent to

OPEN 3 SI; LOAD slg-START 0

RUN c1 81',

This command is equivalent to

OPEN 3 81 c1; LOAD c1 51; START 0

S;
This command stops the execution of the user program, saves its

complete state, and sets the switchboard table so that all characters

directed to the program’s input buffer will be
intercepted by System

Interpreter.
WHERE;

This command causes Monitor to type out the current state of a

user program’s accumulator, link, program counter, and switch

register, multiplier quotient, and step counter.

USER;
This command causes Monitor to type out the number of the job
and devices owned by the user.

USER 01',

This command causes‘Monitor to type out the numbers of the de-

vices owned by user c1. If job 0IS specified, the numbers of unas-

signed devices are typed.
SWITCH c1;

This command sets the user‘s switch register to c1.

BREAK C1;

This command setspthe user’s keyboard delimiter mask to the value

C1.

Permission and Switchboard Tables

Using Monitor commands the 'user may set, reset, and read any

given bit in either‘the permission table or the switchboard table.

SET 11 12 Cr 13 C2

This command sets a bit in either the permission or switchboard

table to a 1.

11 = P denotes permission table

S denotes switchboard table

13:: K denotes keyboard
P denotes user program

c1 is the octal number of the keyboard or program
13""— I denotes input buffer

0 denotes output buffer

c, is the octal number of the buffer which is to receive the charac—

ters from the character source

8-17

Monitor checks for appropriate ownership to decide whether it will

allow the connection to be made. The ownership of the character

source is used to determine legality in setting the switchboard table

while the ownership of the character sink is used in setting the per-

mission table. Examples:

SET P K 13 0 12; Requests that keyboard number 13 be given
permission to write on the printer (output buf-

fer) of console 12. .

SET S P 4 I 16; Informs Mnoitor that job number 4 would

like to type characters into the input buffer of

user program 16. This request will be granted
only if user 16 has previously given permission
by SET P P 4 I 16; or by the equivalent IOT

instruction (SSP).

RESET 11 12 C1 is C2;

This command is identical in all respects to the SET command above

except that the bit indicated by the parameters will be cleared to

zero.

READ L lg e; l3 c2;

This command uses the same parameters to specify a bit in either

the permission or switchboard table as in the SET and RESET

commands above. Monitor will type out the value of the bit.

DUPLEX; .

This command is a shorthand command to set the switchboard table

so that characters typed on the keyboard from which this command

is issued will appear on the printer of that console.

Example:

DUPLEX; If the keyboard issuing this command is num-

ber 16, the command is equivalent to RESET

S K 16 0 16;
UNDUPLEX;

‘

This command is a shorthand command to undo the eflects of the

DUPLEX command. '

ALLOW cl;
7

This command is shorthand to indicate that a user is giving permis—
sion for keyboard number or to place characters in the output buffer

of his console.

Example: ‘

ALLOW 4; Assume that this command was issued from

keyboard number 7, then it is equivalent to

SET P K 4 O 7;
LINK C1;

‘

This command is given by a user who wishes to communicate with

a console other than the one at which he is sitting. This command

8-18

islegal only if the owner of that console has set the permission table

so that he will accept characters from the requesting console into

his printer’s output buffer. The command is shorthand for the com-

mand ALLOW c1; followed by the command to set the switchboard

table so that characters from the requesting console will be placed
in output uffer number ct. Example:

'

LINK 16; Assume that the console which issued this com-

mand was number 7, then this command would

be legal only if the owner of console number

16 had previously set the permission table to

allow keyboard 7 access to that output buffer.

He 'could have done this with ALLOW 7; or

by SET P K O 16; or by an equivalent IOT

instruction executed by his program. If that:

permission has been granted, the LINK com-.

mand is equivalent to the following two switch»

board commands: SET P K 16 O 7; (AL.
LOW 16) and SET S K 7 0 16;

Inter-System Communication

In those TBS/8 systems having a local connection to a PDP—lO

Time-Sharing System or a Synchronous Data Communication System

(Type 637), the input to the user’s input buffer and program output is

scanned for the character sequences CTRL/B CTRL/X and CTRL/B

CTRL/Y, respectively. All characters up to the next CTRL/B are

diverted to the PDP-IO or 637 System, whichever the case may be.

Characters from the PDP—IO and 637 System are directed into the

user’s input buffer.

INPUT/OUTPUT TRANSFER INSTRUCTIONS

Whenever a user program executes an input/output transfer (IOT)

instruction (an instruction of the form 6XXX) the system traps the

instruction and transfers control to a system service or simulation rou-

tine. These routines accomplish special tasks, set up parameters for

the system, and perform input/output for the user program.

IOT instructions may be separated by function into three types:

1. Input/output instructions available on the standard PDP—S/I
'

without a Time-Sharing Monitor—When a user program exe-

cutes one of these IOTs, TSS/S simulates an input/output
,function similar to the function of the IOT instruction on the

standard PDP-S/I. Some standard PDP-8/I IOT instructions

are illegal in TSS/8 (see Appendix C of Time—Sharing System

—-TSS/8_Monitor, Order No. DEC—TS-MREB-D).

8-19,

2. IOT instructions to request input/output service from TSS/8

unavailable on the standard PDP-S/I—These include requests
for DECdisk, DECtape, high—speed paper tape reader and

punch, card reader, and console character handling.

3. [OT instructions which call subroutines to set user param-

eters or to alter the time-sharing environment for a particular
user program—An alteration may, for example, include re—

quests to add or release facilities or to change mode of

character handling.

An IOT instruction usually acts as a subroutine call. Therefore, de—

pending on the specific IOT instruction, parameters may be loaded

into the accumulator (AC) before execution of the IOT. In some cases,

the parameter in the AC acts as a pointer to a parameter block in the

user’s program. If the system has to return information to the user’s

program, it returns that information in the AC or in a block’of loca-

tions in the user’s program (the beginning address of this block is in

the AC). ,

In general, nearly all TSS/ 8 console commands have corresponding
IOTs which allow the user the same features under program control

which he has with the console commands.

ERROR MESSAGES

User Program
Error messages are typed on the user’s printer by the error phantom

routine when error conditions occur in a running user program. If the

user program is not enabled for system error interrupts, the error mes-

sages are typed in the following format.

51 FOR USER c1.

AC:Cg, L263, PCZC‘
INSTR : c5

s1 is a string describing the nature of the illegal instruction C5 that user

program or has executed at location c4. At the time the illegal instruc-

tion was executed the value of the accumulator was c2 and the value

of the link was (:3. For example, an error message might appear as fol-

lows:

8-20

ILLEGAL IOT FOR USER 2 The user program has executed an

AC : 1520, L = 1, PC : 3552 IOT which the system regards as

INSTR :2 6025

System Interpreter

illegal. The illegality may be for

one of two reasons:

1. The IOT itself may be illegal.
2. The parameters of a legal IOT

may invalidate it.

The following error messages result from illegal requests to the Sys—
tem Interpreter. They are printed by the error phantom on the console.

'81?

ILLEGAL REQUEST

SWITCHBOARD ERROR

CONSOLE IN USE

LOGOUT TO RELEASE

, LOGIN PLEASE

UNAUTHORIZED

ACCOUNT

FULL

(31 HAS IT

FAILED BY d1

The System Interpreter does not under-

stand the command.

s1 2 command

The user has requested an illegal service.

This error usually results when some pa—

rameter has been given an incorrect value

or the request refers to a facility not

owned by the user.

The user has attempted to set a bit in the

permission table not owned by' him; or

the user has attempted to make a connec-

tion in the switchboard table for which

permission has not been granted.

The user has tried to log in on a console

which is already in use; or he has at-

tempted to add a console to those he

already owns.

The user has attempted to use a console

which is not logged in.

The user has attempted to log into the

system with an invalid account number

or name.

This message may appear on an attempt
to log into TSS/S from a console. It

means that all disk swapping tracks are

in use.

Job number 01 has the request device; the

request for its acquisition cannot be

granted.

The user has attempted to extend a file

beyond the available disk storage. d1 seg—

ments of the user’s request could not be

added.

8-21

FILE NOT OPEN

DIRECTORY FULL

PROTECTION
VIOLATION

FILE NOT FOUND

DISK FULL

CONCLUSION

The user has attempted to manipulate a

file which is not associated with an in-

ternal file number.

The user’s file directory has no room for

new file names.

The user has attempted to use a. file in a

manner contrary to the file protection
code specified for that file.

The system could not find the desired file

in the specified directory.

The user had attempted to create a new

file when there is no room on the disk

for it.
’

The above is merely an overview of TSS/S. There are many other

aspects not mentioned here. For a thorough coverage, see Time~Shar~

ing System—TSS/S Monitor, Order No. DEC-TS—MRFB—D.

8—22

Chapter 9

FOCAL

Programming

FOCAL (FOrmula CALculator) is an online, conversational, inter—

pretive language for the PDP-S family of computers, It is designed to

help students, engineers, and scientists solve numerical problems. The

language consists of short, easy-to-learn, imperative English statements.

Mathematical expressions are typed in standard notation. The best way

to learn the FOCAL language is to sit at the Teletype console and try

.
the commands, starting with the examples given in this chapter.

FOCAL puts the full calculating power and speed of the computer
at your fingertips. FOCAL is an easy way of simulating mathematical

models, plotting curves, handling sets of simultaneous equations in

n—dimensional arrays, and much more. A few of the many kinds of

problems that have been solved by FOCAL are described under “Ex-

amples of FOCAL Programs.” The user can become acquainted with

many applications of. FOCAL by duplicating the example programs

using different variables.

This chapter describes the features of FOCAL, 8/68, which is issued

on tape DEC—OS-AJAC—PB.

EQUIPMENT REQUIREMENTS

FOCAL operates on a 4K PDP—S family computer with an ASR. 33

» Teletype, and with or without a high—speed reader/punch, analog—to—
digital converter (189), oscilloscope display (34D), or any other DEC

peripherals with the appropriate program overlays available from DEC.

GETTING ONLINE WITH FOCAL

The FOCAL program is furnished to the user on punched paper
, tape in binary-coded format. Therefore, it is loaded into core using the

Binary Loader program, as described in Chapter 6.
‘

9-1

The Initial Dialogue
After FOCAL has been loaded and started, it begins typing out its

initial dialogue, giving the user the options of retaining certain groups

of mathematical functions. 'If these functions are not needed, the user

answers FOCAL’s questions by typing NO and the RETURN key, and

FOCAL erases those functions from core, thus the user gains additional

core storage for use by his programs.

Samples of the initial dialogue are shown below.

CONGRATULATIONS”

YOU HAVE SUCCESSFULLY LOADED 'FOCAL’ ON A PDP-8/I COMPUTER.

SHALL I RETAINALOG, EXP, ATN ?:YES

PROCEED.

a:

With the above response, all mathematical functions are retained,
and the user has about 720 locations available for his programs. .

CONGRATULATlONS!!

YOU HAVE SUCCESSFULLY LOADED ‘FOCAL’ ON A PDP-S/I COMPUTER.

SHALLI RETAIN LOG. EXP. ATN ?:NO

SHALL l RETAIN SINE. COSINE ? :YES

PROCEED.

When the user answers NO to the first question FOCAL asks a

second question. The above response leaves about 975 locations avail-

able for the user’s programs.

CONGRATULATIONS”

YOU HAVE SUCCESSFULLY LOADED ‘FOCAL‘ ON A PDP-S/I COMPUTER.

SHALL I RETAIN LOG. EXP. ATN ?:NO

SHALL l RETAIN SINE, COSINE? :NO

PROCEED.

’k

The above response erases all mathematical functions from core,

giving the user about 1105 locations for use by his programs.

A simple FOCAL program which determines the number of core

locations available for the user’s programs and a formula for calculating
the length of a user program are given under “Estimating the Length
of a User’s Program.”

In the second line of the initial dialogue, FOCAL identifies the type
of computer being used—PDP-S/I, PDP-8/L, PDP-S, etc. FOCAL

concludes the initial dialogue by telling the user to PROCEED, fol-

lowed by an *, and waits for user input.

9-2

THE FOCAL LANGUAGE

When the initial dialogue is concluded, FOCAL types
:9:

indicating that the program is ready to accept commands from the user.

Each time the user completes typing a Teletype line and terminates it by

depressing the RETURN key or after FOCAL has performed a. com-

mand, an asterisk is typed to tell the user that FOCAL is ready for

another command.
'

Simple Commands
'

‘

One of the most useful commands in the FOCAL language is TYPE.

To‘ FOCAL this means “type out the result of the following expres-

sion.” When you type (following the asterisk which FOCAL typed),
‘

*TYPE 6.4’318+8.1346

and then press the RETURN key, FOCAL types

: 14.5664*
'

f

Another useful command is SET, which tells FOCAL “store this

symbol and its numerical value. When I use this symbol in an expres-

sion, insert the numerical value.” Thus, the user may type,

*SET A=3.l4159; SET B=428.77; SET 022.71828

, *

‘

The user may now use these symbols to identify the values defined in .

the SET command. Symbols may consist of one or two alphanumeric
characters. The first character must be a letter, but must not be the

letter F.
'

*TYPE A+B+C

: 4346300”
,

Both the TYPE and SET commands will be explained more fully in

their respective sections of this chapter.
FOCAL is always checking user input for invalid commands, illegal

formats, and many other kinds of errors, and types an error message

indicating the type of error detected. In the example,

*HELP

703.31

*TYPE 2++4 .

?o7.<o
_

3k

HELP is not a valid command and two plus signs (double operators)

9-3

are illegal. The complete list of error messages and their meanings is

given under “Error Diagnostics”

Output Format

FOCAL is originally set to produce results showing up to eight digits,
four to the left of the decimal point (the integer part) and four to the

right of the decimal point (the fractional part). Leading zeros are sup-

pressed, and spaces are shown instead. Trailing zeros are included in

the output, as shown in the examples below.

*SET A:77.77; SET 3:111 1.1111; SET C=39

*TYPE A,B,C ,

: 77.7700: 111 1.1100: 39.0000*

The results are calculated to six significant digits. Even though a re-

sult may show more than six digits, only six are significant, as shown

above in SET B : 1111.1111, which FOCAL typed as = 111l1.1100.

The output format may be changed if the user types

TYPE %x.yz,

where x is the total number of digits to be output and yz (always two

digits, Le, 01, 08, 12, etc.) is the number of digits to the right of the

decimal point. x and yz are positive integers, and the value of it cannot

exceed 19. When first loaded, FOCAL is set to produce output having

eight digits, with four of these to the right of the decimal point
(%8.04), For example, if the desired output format is mm.nn, the

user may type

*TYPE % 4.02, 12.22+Z.37

and FOCAL will type

: 1459*

Notice that the format operator (%x.yz,) must be followed by a

comma.

In the following examples, the number 67823 is typed out in several

different formats.

*SET A267823

*TYPE %6.0l, A

:2 67823.0*

*TYPE %5, A

2 67823“

*TYPE %8.03, A

: 67821000"

If the specified output format is too small to contain the number,
FOCAL automatically prints the number in floating-point format, as

explained below. If the specified format is larger than the number,

FOCAL inserts leading spaces:

*TYPE %7, 67823

= 67823”

Leading blanks and zeros in integers are always ignored by FOCAL.

*TYPE %8.04, 0016, 0.016, ., 007

= 16.0000: 0.0160: 0.0000: 7.0000*

Floating-Point Format

To handle much larger and much smaller numbers, the user may re-

quest output in exponential form, which'1s called floating—point or E

format. This notation is frequently used in scientific computations, and

is the format in which FOCAL performs its internal computations. The

user requests floating-point format by including a % followed by a

comma, in a TYPE command. From that point on, until the user again

changes the output format, results will be typed out in floating-point
format.

*TYPE %, 11

= 0.110000E+02*

This is interpreted as .11 times 102, or simply 11. Exponents can be

used to :616. The largest number that FOCAL can handle is

+0.999999 times 10“", and the smallest is '——0.999999 times 104”“.

To demonstrate FOCAL’S power to compute large numbers, you can

find the value of 300 factorial by typing the following commands. (The
FOR statement, which will be explained later, is used to set I equal
to each integer from 1 to 300.)

*SET A21

*FOR 1:1,300; SET A=A*I

*TYPE %, A
. (wait for FOCAL to

= 0.306051E+615 *
.

, calculate the value)

Arithmetic Operations
FOCAL performs the usual arithmetic operations of addition sub-

traction, multiplication, division, and exponentiation. These are written

by using the following symbols.

9—5

Symbol Math Notation FOCAL

TExponentiation 33 313 (Power must be a

positive integer)

*Multiplication 3 - 3 3 *3

/Division 3—1—3 3/ 3

+Addition 3+3 - 3 +3

—Subtraction 3 —3 , 3—3

These operations may be combined into expressions. When FOCAL
evaluates an expression, which may include several arithmetic opera-

tions, the order of precedence is the same as that in the list above. That

is, exponentiation is done first, followed by multiplication, division,
addition and subtraction. Addition and subtraction have equal priority.
Expressions with the same precedence are evaluated from the left to

right.

A+B’i‘C-+-D is A+(B*C)+D not (A+B) *(C—l—D) nor (A+B) *C+D

A*B+C*D is (A*B)+(C*D) not A*(B+C) *D nor (A*B+C) *D

X/2*Y is 1
2Y

21273 is 43 not 23

Expressions are combinations of arithmetic operations or functions

which may be reduced by FOCAL to a single number. Expressions

may be enclosed in properly paired parentheses, square brackets, and

angle brackets (use the enclosures of your choice for clarity; FOCAL

is impartial and treats them all in the same way).
For example,

SET Al:(A+B)<C+D>* [E+G]

,,. ,.

The [and] enclosures are typed using SHIFT/K and SHIFT/M, re—

spectively.

Expressions may be nested. FOCAL computes the value of nested

expressions by doing the innermost first and then working outward.

*TYPE % , [2+(3-<l *1 >+5) +2]
: 0.110000E+02*

Note that the result is typed in floating-point format.

More About Symbols
The value of a symbolic name or identifier is not changed until the

expression to the right of the equal sign is evaluated by FOCAL. There-

9—6

fore, the'value of a symbolic name or identifier can be changed by re-

defining it in terms of itself (i.e., in terms of its current value).

*SET A123T2

*SET A1 =A1 + 1

*TYPE % 2, A1

= 10*

NOTE

Symbolic names or identifiers must not begin with the letter F.

The user may request FOCAL to type out the values of all of the

user-defined identifiers, in the order of definition, by typing a dollar

sign ($).

*TYPE % 6.05 $

The user’s symbol table15 typed out like this

A@(OO)= 0.306051E+615

B@(OO): 1111.11

C@(00): 39.0000

1@(00)= 301.000

A1(OO): 10.0000

D@(OO): 0.00000 .

E@(00)= 0.00000

G@(OO)= 0.00000
*

If an identifier consists of only one letter, an @ is inserted as a second

character in the symbol table printout, as shown in the example above.

An identifier may be longer than two characters, but only the first two

will be recognized by FOCAL and thus stored in the symbol table.

Subscripted Variables

FOCAL always allows identifiers, or variable symbols, to be hmher

identified by subscripts (range :2047) which are enclosedin paren—

theses immediately following the identifier. A subscript may also be an

expression:
’

*SET A1 (I+3*J) 22.7.1; SET Xl (5+3 *J) 22.79

The ability of FOCAL to compute subscripts is especially mania:

generating arrays for complex programming problems. A convenient

way to generate linear subscripts is shown under “Simultaneous Equa—
tions and Matrices.”

The ERASE Command

It is useful at times to delete all of the symbolic names which you

have defined in the symbol table. This is done by typing a single com—

9-7

mand: ERASE. Since FOCAL does not clear the user’s symbol table

area in core memory when it is first loaded, it is good programming
practice to type an ERASE command before defining any symbols.

Handling Text Output
Text strings are enclosed in quotation marks (“. . .”) and may in-

clude most Teletype printing characters and spaces. The carriage return,
line feed, and leader—trailer characters are not allowed in text strings.
In order to have FOCAL type an automatic carriage return/line feed at

the end of a text string, the user inserts an exclamation mark(!).

*TYPE “ALPHA”l“BETA"!“DELTA”l
ALPHA

BETA

DELTA

*

To get a carriage return without a line feed at the end of a text type-

out, the user inserts a number sign (it) as shown below.

4 SPACES

1 SPACE

3 SPACES

,

5 SPACES

2 SPACES

l r—
8 SPACES

*TYPE !u X Y Zu#56 + =99#u /s:!

X+Y i Z
‘

a:

The number sign operator is useful in formatting output and in plotting
another variable along the same coordinate (an example is given under .

“Intercept and Plot of Two Functions”).

Indirect Commands

Up to this point we have discussed commands which are executed

immediately by FOCAL. Next we shall see how indirect commands are

written.

It a Teletype line is prefixed by a line number, that line is not exe-

cuted immediately, instead, it is stored by FOCAL for later execution,

usually as part of a sequence of commands. Line numbers must be in

the range 1.01' to 15.99. The numbers 1.00, 2.00 etc., are illegal line

numbers; they are used to indicate an entire group of lines. The number

to the left of the point is called the group number; the'number to the

right is called the step number. For example,

9—8

*ERASE

""1.1 SET A21

*1.3 SET B:2

*1.5 TYPE % 1, A+B
a):

Indirect commands are executed by typing the GOTO or DO com-

mands.

The GOTO command causes FOCAL to start the program by exe-

cuting the command at a specified line number. If the user types

*GOTO 1.3

2 2*

FOCAL started executing the program at the second command in the

example above, so that the variable “A” was not previously defined and

therefore has a value of zero.

The G0 command causes FOCAL to go to the lowest numbered

line to begin the program. If the user types a direct GO command after

the indirect commands above, FOCAL will start executing at line 1.1.

*GO

: 3*

The DO command is used to transfer control to a specified step, or

group of steps, and then return automatically to the command immedi-

ately following the DO command. \

*ERASE ALL

*1.1 SET A=1; SET B=2

*1.2 TYPE
“

STARTING
”

‘13 DO 32
*2.1 TYPE

“

FINISHE

*3.1 SET A=3; SET B24

*3.2 TYPE %1, A+B

*GO

STARTING—
—

3 FINISHED: 7*

When the DO command at line 1.3 was reached, the command TYPE

% l, A+B was performed and then the program returned to line 2.1.

The DO command can also cause FOCAL to jump to a group of

commands and then return

automatically
to the normal sequence, as

shownin the example below.

*ERASE ALL

*1.1 TYPE “A
”

*1.2 TYPE “B
”

*l.3 TYPE “C
”

*1.4 DO 5.0

*1.5 TYPE
“

END”; GOTO 6.1

*5.l TYPE “D
"

*5.2 TYPE “B
”

*5.3 TYPE “F
”

*6.1 TYPE“.
”

*GO

A B C D E F END. *

When the DO command at line 1.4 was reached, FOCAL executed

lines 5.1, 5.2, and 5.3 and then returned to line 1.5.

An indirect command can be inserted in a program by using the

proper sequential line number. For example, -

*ERASE ALL

*4.8 SET A=1; SET B=2

*6.3 TYPE %5.4, B/C-l-A

*4.9 SET €21.31 *.29

*GO

= 6.2645*

where line 4.9 will be executed before line 6.3 and after line 4.8.

FOCAL arranges and executes indirect commands in numerical se-

quence by line number, starting with the smallest line number and going
to the largest.

Error Detection
,

During execution. FOCAL checks for a variety of errors. When

an eiror is detected FOCAL stops execution, types a ? followed by an

error message, types an *, and waits for more user input. When the

error occurs in a direct statement, FOCAL types the error message

immediately after the user terminates that line (direct statements are

executed immediately after the line terminator). For example,

*SET A22; PET 3:4; TYPE A + B

?03.31
*

PET is not a FOCAL command. Therefore, FOCAL issued the error

code ?03.31 which means that an illegal command was used. (See
“Error Diagnostics” for a list of all error messages and their meanings.)

When an error occurs in an indirect statement the error message is

typed when FOCAL encounters that statement during execution. And

in addition to the error code FOCAL types the line number of the line

containing the error. For example, .

*1.10 SET A22; TYPE “A”, A, l

*1.20 SET B24; TYPE “B”, B, !

*l.30 GO TO 1.10

*1.40 TYPE “A+B”, A+B

‘60

9-10
,

A: 2.0000

B: 4 .0000

701.89 @ 01.30

’1‘

FOCAL executed lines 1.10 and 1.20 and then recognized that GO
'

T0 is a l-word command and Should have been written GOTO. There—

fore, it issued the error message, meaning GOTO was not used as one

word at line number 1.30.

Corrections
,

.

If the user types the wrong character, or several wrong characters,
‘he can use the RUBOUT key, which echoes a backslash (\) for each

RUBOUT typed, to erase one character to the left each time the 'RUB-

OUT key is depressed. For example,

*ERASE ALL
,

*1.1 P\TYPE X-Y

*1.2 SET $=131\ \ \ \x=13

*WRITE
'

C—FOCAL., 1968

01.10 TYPE X—Y,

01.20 SET X: 13

*
.

The left arrow(<-—) erases everything which appears to its left on

the same line, except when being used to correct a value typed after a

colon '(z) in response to an ASK command (see “ASK”).

*1.3 TYPE A, B, C(-

*WRITE

C—FOCAL., 1968

01.10 TYPE X—Y

01.20 SET x=13
.

1k

A line can be overwritten by repeating the same line number and

typing the new command.

*14.99 SET C9(N+3) :15

it

is replaced by typing

*1499 TYPE 09/254

*WRITE 14.99
14.99 TYPE c9/25-2

if

A line or group of lines may be deleted by using the ERASE com-

mand with an argument. For example, to delete line 2.21, the user

types.

*ERASE 2.21

:4:

To delete all of the lines in group 2, the user types

*ERASE 2.0
It»

The user’s entire symbol table is erased from memory whenever a

line number is retyped or the ERASE command is given. Since

FOCAL does not zero memory when loaded, it is good practice to

ERASE before defining symbols. The command ERASE ALL erases ~

all user input, i.e., program text and variables. Therefore, the ERASE

ALL command should be given before writing a new program.

The MODIFY command is another valuable feature, especially in

editing. It may be used to change any number of characters in a par-
ticular line, as explained under “MODIFY.”

Alphanumeric Numbers (Using Letters as Numbers)
Numbers must start with a numeral but may contain letters. FOCAL

interprets as a number any character string beginning with a numeral,
0 through 9. An alphanumeric number is a string of alphanumeric char-

acters (excluding symbols) which starts with a number. For example,

OABC 23CAT 9XYZ

Each letter in an alphanumeric number is taken as a number, with each

letter A through Z having the value of 1 through 26 respectively, except
for E which has special meaning and is explained below.

A21 J=10 8:19

B22 K=11 T:20

023 L212 U=21

D=4 M=13 V=22

E = (exponentiation) N :14 W ‘2 23

F26 0:15 X:24

G:7 P=16 Y:25

H28 Q=l7 Z:26

1:9 R218

An easy way to give FOCAL numerical valued letters is to start

with the number 0, as in the following example.

*TYPE %2, DAB

2 12"I

9~l2

Since after 0, A=l and B22, therefore, AB: 12. Also,

*TYPE OAB+0

=15*
' ’

Since after 0, A=1, B=2, and C=3, then 12+3 = 15. Therefore,

*TYPE 0XYZ+ 1

= 2677*

because

X 24

Y 25

Z 26

+1 + l

2677

The above example can be solved using the following algorithm.

(X times 102) + (Y times 101) + (Z times 10°) + 1 = 2677

or

'

.

(24 X100) + (25 X 10) + (26 X 1)+1: 2677

Taken as a numeral, the letter B has special meaning. It denotes

exponentiation, where the subsequent alphanumerics are taken as the

exponent of the preceding alphanumerics.

*TYPE %8, OAEC

=

'

1000* (A¢100:11108)

*TYPE OAEG

= 10000000* (Amati x 107)

Only one E is allowed in any one alphanumeric number.

Alphabetic characters may be used when assigning numerical values

to identifiers or variables in response to an ASK statement. An example
.of this use can be found in lines 3.20 and 3.30 of “Intercept and Plot

of Two Functions.”

FOCAL COMMANDS

TYPE »

The TYPE command is used to request that FOCAL compute and

type out a text string, the result-of an expression, or the value of an

identifier. For example

4.14 TYPE s.1+3.2 — -(29.3*5)/2.5¢7

4.15 TYPE (2.2+3.5) *(7.2/3)/59.113
III

H

H

M

9-13

Several expressions may be computed in a single TYPE command,
with commas separating each expression.

*ERASE

*9.l9 TYPE %4.01, Al*2, E+2T5, 2.51*81.1

*DO 9.19

= 0.0: 32.0: 204*

The output format may be included in the TYPE statement as shown

in the example above and as explained under “Handling Text Output.”
The user may request a typeout of all identifiers which he has de-

fined by typing TYPE $ and a carriage return. This causes FOCAL

to type out the identifiers with their values, in the order in which they
were defined. The $ may follow other statements in a TYPE command,
but must be the last operation on the line.

*ERASE
_

SET L233; SET 13:87; SET Y=55; SET 09:91

*TYPE $

L@(00)= 33.0

B@(00) = 87.0

Y@(OO)= 55.0

c 9 (00): 91.0

ll:

Any text string enclosed in quotation marks may be included in a

TYPE command. A carriage return may replace the terminating quo-

tation mark, as shown below:

*1.2 TYPE “X SQUARED :

a:

A text string or any FOCAL command or group of commands may

not exceed the capacity of a Teletype line, which is 72 characters on

the ASR33 Teletype. A line may not be continued on the following
line. To print out a longer text, each line must start with a TYPE

command.

NOTE: For extremely large numbers, there may be some input/output con-

version error. For example,

*TYPE 101616
: 0;999959E+616*

Exponent overflow is not detected:

*TYPE 10T6l7
: 0:957418Ew616

9-14

Several operations are useful in formulating output.
1. FOCAL does not automatically perform a carriage return after

executing a TYPE command. The user may insert a carriage
return/line feed, by typing an exclamation mark (l).

2. To insert a carriage return Without a line feed, the user types a

number sign (it).
3. Spaces may be inserted by enclosing them in quotation marks.

4. An expression may be enclosed in question marks to avoid re-

peating it in quotes (see “Using the Trace Feature”).

ASK

The ASK command is normally used in indirect commands to allow

the user to input data at specific points during the execution of his

program. The ASK command is written in the form,

”11.99 ASK X, Y, Z,
*

When step 11.99 is encountered by FOCAL, it types a colon (z). The

user then types a value in any format for the identifier, followed by a

terminator, which may be space, comma, carriage return, or ALT

MODE. FOCAL then types another colon and the user types a value

for the next identifier. This continues until all the identifiers or vari-

ables in the ASK statement have been given values,

*11.99 ASKX,Y,Z
*DO 11.99

:5, :4, :3,*

where the user typed 5, 4, and 3 as the values, respectively, for X,

Y, and Z.

The ALT MODE, when used as a terminator, is nonspacing and

leaves the previously defined variable unchanged, as shown below.

*SET A25

*ASK A

:123 *
(user depressed the ALT MODE Key after typing 123)

*TYPE A ,

: 5*

ALT MODE is frequently used when the user does not wish to change
the value of one or more identifiers in an ASK command.

9-15

*11.99 ASK X, Y, Z

*DO 11.99

:5, :4, :3,‘

“30 11-99 (User did not wish to enter new value for Y, so he typed
:8, ::lO,* ALT MODE in response to second colon.)

*TYPE X, Y, Z ,

: 8: 4: 10‘

FOCAL recognizes the value when its terminator is typed. There-

fore, a value can be changed but only before typing its terminator.

This is done by typing a left arrow (4-) immediately after the value,
and then typing the correct value followed by its terminator. This is

the exception to the use of the left arrow, as explained under “Cor—

rections.” '
'

.

Text strings and format control characters may be included in an

ASK statement by enclosing the string in quotation marks.

*l.10 ASK “HOW MANY APPLES DO YOU HAVE?” APPLES

*DO 1.10

HOW MANY APPLES DO YOU HAVE? :25
it

The identifier AP (FOCAL recognizes the first We characters only)
now has the value 25.

Alphabetic Responses

Alphabetic characters may be used to assign numerical values to

identifiers or variables:

*1.l ASK A; TYPE %4, A

*DO 1.1

:ABCD : 1234*

Where the user typed ABCD and FOCAL typed the numerical value

of ABCD, as Was explained under “Alphanumeric Numbers."
2

WRITE

A WRITE command without an argument (or with the argument

ALL) causes FOCAL to type out all indirect statements which the

user has typed. Indirect statements are those preceded by a line number.

9-16

When the user types

*WRITE

*WRITE ALL

or simply

*W

and theRETURN key, FOCAL types out a copy of all previously
typed indirect statements.

A specific line or group of lines may be

typed
out with the WRITE

. command using arguments:

*WRITE 2.1 (FOCAL types line 2.1)_
*WRITE 2.0 (FOCAL types all group 2 lines)

SET

The SET command is used to define identifiers, When FOCAL»

executes a SET command, the identifier and its value is stored in the

user’s symbol table, and that value will be substituted for the identifier

when the identifier is encountered in the program.

*ERASE ALL

*3.4 SET A2255; SET B:8.05

*3.5 TYPE %, A+B

*GO

: 0.106000E+02*

An identifier may be set equal to previously defined identifiers, which

appear in arithmetic expressions.

*3.7 SET G=(A+B)*2;2T5
*

ERASE
,

An ERASE command without an argument is used to delete all

identifiers, with their values, from the symbol table.

If the ERASE command is followed by a group number or a specific
line number, a group of lines or a specific liners deleted from the pro—

gram.

*ERASE 2 (deletes all group 2 lines)

.

*ERASE 7.11 (deletes line 7.11)
it

The ERASE ALL command erases all of the user’s input (i.e.,

symbol table entries 'and’ commands) .

9-17

In the following example, an ERASE command is used1to delete

line 1.50.

*ERASE ALL

* 1.20 SET B22

* 1.30 SET C=4
'

* 1.40, TYPE B+C
'

*1.50 TYPE B—C

*ERASE 1.50

*WRITE ALL

C—FOCAL , 8/68

01.20 SET B22

01.30 SET C24

01.40 TYPE B+C

as

‘

G0

The GO command requests that FOCAL execute the program, start—

ing with the lowest numbered line. The remainder of the program

will be executed in line number sequence. Line numbers must be in

the range 1.01 to 15.99. The G0 command cannot be given indirectly.

GOTO

The GOTO command causes FOCAL to transfer control to a specific
line in the indirect program. It must be followed by a specific line

number. After executing the command at the specified line, FOCAL

continues to the next larger line number, executing the program se-

quentially. GOTO is a single word.

ERASE ALL

*1.1 TYPE “A”

* l .2 TYPE “B”

*1.3 TYPE “C”

*1.4 TYPE “D"

*GOTO 1.2

BCD"

D0

The DO command transfers control momentarily to a single line, a

group of lines, or the entire indirect program. If transfer is made to a

single line, the statements on that line are executed, and control is

transferred back to the statement following the DO command. Thus,

9-18

the DO command makes a subroutine of the commands transferred to,

as shown in this example,

*ERASE ALL

*1.1 TYPE “X”

”‘12 DO 2.3; TYPE “Y”

*1.3 TYPE “Z”

*2.3 TYPE “A”

*GO

XAYZA”

If a DO command transfers control to a group of lines, FOCAL

executes the group sequentially and returns control to the statement

following the DO~command.

If D0 is written without an argument or the user writes DO ALL,
FOCAL executes the entire indirect program.

With arguments, D0 commands cause specified portions of the

indirect program to be executed as closed subroutines. These sub-

routines may also ‘be terminated by a RETURN command.

If a GOTO or an IF command is executed withina DO subroutine,

two actions are possible:

1. If a GOTO or IF command transfers to a line inside the DO

group, the remaining commands in that group will be executed

as in any subroutine before returning to the command following
the Do.

'

2. If transfer is to a line outside the DO group, that line is executed

and control is returned to the command following the DO; unless

that line contains another GOTO or IF.

*ERASE ALL

*1-1‘ TYPE “A”; SET X=—1;DO 3.1; TYPE “D”; DO 2

*1.2 DO 2.2

i‘

*2.1 TYPE “G”

*2.2‘ IF (X)2.5,2.6,2;7
*25 TYPE “”H

*2.6 TYPE “I”

*2.7 TYPE “J”

*28 TYPE “”K
,

*2.9 TYPE %2.o1, X; TYPE“ ”; SET X:X+1
1|!

*3.1 TYPE “B”; GOTO 5.1; TYPE “F”

’3

9-19

*5.1 TYPE “C”

*5.2 TYPE “B”

*5.3 TYPE “L”

‘00

(FOCAL types the answer)

ABCDGHIJK:—l.0 IGIJK:0.0 BCEL“

\

IF

In order to transfer control after a comparison, FOCAL contains a

conditional IF statement. The nerrnal form of the IF statement consists

of the word IF, a space, a parenthesized expression or variable, and

three line numbers in order, separated by commas. The expression is

evaluated, and the program transfers control to the first line number if

the expression is less than zero, to the second line number if the expres—

sion has a value of zero, or to the third line number if the value of the

expression is greater than zero.

The program below transfers control to line number 2.10, 2.30, or

2.50, according to the value of the expression in the IF statement.

*2.1 TYPE “LESS THAN ZERO”; QUIT

*2.3 TYPE “EQUAL TO ZERO”; QUIT

*2.5'TYPE “GREATER THAN ZERO”; QUIT
*IF (25—25)2.1,2.3,2.5

EQUAL TO ZERO“

The IF statement may be shortened by terminating it with a semi-

colon or carriage return after the first or second line number. If a semi-

colon follows the first line number, the expression is tested and control

is transferred to that line if the expression is less than zero. If the

expression is not less than zero, the program continues with the next

statement,

*2.20 IF (X)1.8; TYPE “Q”
a:

In the above example, when line 2.20 is executed, if X is less than

zero, control is transferred to line 1.8. If not, Q is typed out.

*3.19 IF (B) 1.8,1.9

*3.20 TYPE B ,

it

In this example, if B is less than zero, control goes to line 1.8; if B

is equal to zero, control goes to line 1.9; if B is greater than zero,

9-20

control goes to the next statement, which in this case is line 3.20, and

the value of B is typed. The expression must be enclosed in paren-

theses, but other enclosures may be used withinwthe expression.

RETURN .

The RETURN command is used 'to exit from a D0 subroutine.

When a RETURN command is encountered during execution of a DO

subroutine, the program exits from its subroutine status and returns to

the command following the DO command that initiated the subroutine

status.
‘

QUIT
.

A QUIT command causes the program to halt and return control

to the user. FOCAL types an asterisk and the user may type another

command. This command is suggested as the formal end of any pro—

gram.
'

Comment '

,

Beginning a command string with the letter C will cause the re-

mainder of that line to be ignored so that comments may be inserted

into the program. Such lines will be skipped over when the program is

eXecuted, but will be typed out by a WRITE command. A program

that is well documented with comments is much more meaningful and

easier to understand than one without comments.

FOR

This command is used in setting up program loops and iterations.

The general format is

FOR A=B, c, D; (command)

The identifier A is initialized to the value B, then the command follow—

ing the semicolon is executed, at least once. After the command has

been executed, the value of A is incremented by C and. compared to

the value of D. If A is less than or equal to D, the command after the

semicolon is executed again. This process is repeated until A is greater

than D, and FOCAL goes to the next sequential line.

The identifier A'must be a single variable. B, C, and D may be

either expressions, variables, or numbers. If cemma and the value C

are omitted, it is assumed that the increment is 1. If CD is omitted, it

is handled like a SET statement and no iteration is performed.
The computations involved in the FOR statement are done in float—

ing-point arithmetic, and it may be necessary; in some circumstances,
to account for this type of arithmetic computation.

9-21.

Example 1 below is a simple example of how FOCAL executes a

FOR command. Example 2 shows the FOR command combined with

a DO command.

Example 1 :

*ERASE ALL

*].1 SET A2100

”‘12 FOR B=:l.l.5; TYPE % 5.02, “BIS
”

B+A.!

*GO

IS 7:. 101.00

IS = 102.00

IS = 103.00

IS : 104.00

IS 105.00H*wwwwm
Example 2.

*1.1 FOR X=1,1,5; DO 2.0

*1.2 GOTO 3.1

,3

*2.1 TYPE 1,“
"

%3, “X ”X

*2.2 SET A:X+100.000

*2.3 TYPE 1“
”

%5.02, “A ”A

*3.1 QUIT

="GO

1

101.00

2

102.00

3

103.00

4

104.00

5

105.00*>><>><>><I>><>>< H

H

{I

ll

H

I!

H

H

H

II

MODIFY

Frequently, only a few characters in a particular line require changes.
To facilitate this job, and to eliminate the need to replace the entire

line, the FOCAL programmer may use the MODIFY command. Thus,

in order to modify the characters in line 5.41, the user types MODIFY

5.41. This command is terminated by a carriage return whereupon the

program waits for the user to type that character in the position in

which he wishes to make changes or additions. This character is not

9—22

printed. After he has typed the search character, the program types out

the Contents of that line until the search character is typed.

At this point, the user has seven options:

1. Type in new characters in addition to the ones that have already
been typed out.

2. Type a form—feed (CTRL/L); this will cause the search to pro-

ceed to the next occurrence, if any, of the search character.

3. Type a CTRL/BELL; this allows the user to change the search

character just as he did when first beginning to use the MODIFY

command.

4. Use the RUBOUT key to delete one character to the left each

time RUBOUT is depressed.
5. Type a left arrow (<—) to delete the line over to the left margin.

6. Type a carriage return to terminate the line at that point, re-

moving the text to the right.
7. Type a LINE FEED to save the remainder of the line.

The ERASE ALL and MODIFY commands are generally used only
in immediate mode since they 'return' to command mode upon com-

pletion. (The reason for this is that internal pointers may be changed
by these commands.)

During command input, the left arrow will delete the line numbers

as well as the text if the left arrow is the right most character on the

line. During MODIFY the line numbers cannot be changed.
Notice the errors in line 7.01 below.

*7.01 JACK AND BILL W$NT UP THE HALL

*MODIFY 7.01
'

JACK AND B\JILL W$\ENT UP THE HA\ILL

*WRITE 7.01
,

1

07.01 JACK AND JILL WENT UP THE HILL
4:

To modify line 7.01, a B was typed by the user to indicate the char—

acter to be changed. FOCAL stopped typing when it encountered the

search character, B. The user typed the RUBOUT key to delete the B,

and then typed the correct letter J. He then typed the CTRL/BELL

keys followed by the $, the next character to be changed. The RUB-

OUT deleted the $ character, and the user typed an E. Again a search

was made for an A character. This was changed "to I. A LINE FEED

was typed tosave the remainder of the line.

9-23

NOTE

When the MODIFY command is used the values in the user’s symbol
table are reset to zero. Therefore, if the user defines his symbols in direct

statements and then uses a MODIFY command, the values of his symbols
are erased and must be redefined.

,

However, if the user defines his symbols by means of indirect statements

prior to using a MODIFY command, the values will not be erased because

these symbols are not entered in the symbol table until the statements de-

fining them are executed.

Using the Trace Feature

The trace feature is useful in checking an operating program. Those

parts of the program which the user has enclosed in question marks

will be printed out as they are executed by FOCAL.

In the following example, parts of three lines will be printed.
*ERASE ALL

*l.l SET A21

”’12 SET 32:5

*1.3 SET C=3

*1.4 TYPE % 2, ?A+B-—C?,!
"‘ l .5 TYPE ?B+A/ C7,!
*1.6 TYPE ?B—-—C/A?

*GO

A+B~C= 3

B+A/C= 5

B—C/Az 2*

When only one ? is inserted the trace feature becomes operative
,when FOCAL encounters the ? during execution, and the program is

printed out from that point until another 7 is encountered (the pro-

gram may loop through the same ‘2‘), until an error is encountered

(execution stops and an error message is typed), or until program

completion.
*ERASE ALL

*l.1 ?SET A2013; TYPE %3, A!

‘12 FOR B:1,1,4; TYPE B+Al

*GO

SET A=OB; TYPE %3, A!

:: 0 FOR B=l,l,4; TYPE B+Al

= 1 TYPE B+A!

= 2 TYPE B+Al

3 TYPE B+Al

4*

ll

9-2 4

In this example, FOCAL encountered the ? as it entered line 1.1

and traced the entire program. In the following example an error has

been insertedin the FOR
statement—FOCAL

will detect it.

*ERASE ALL

*1.l SET A2013; TYPE %3, A!

*1.2 FOR B=l,1 :4; TYPE B+A!

*GO?

C—FOCAL SET A2013; TYPE % 3, A!

: OFOR B:l,1:?07.14 @ 01.20
314

GO? traced the entire program under the same conditions as explained
above when only one ?- is inserted.

Mathematical Functions

Functions are provided to give extended arithmetic capabilities and

to give the potential for expansion to additional input/output devices.

A standard function call consists of four letters beginning with the letter

F and followed by a parenthetical expression.

FSGN(A——B*2)

There are three basic types of functions, two of which are included

in the basic FOCAL program.

‘

The first type contains integer part, Sign part, and absolute value

functions

The second type, the extended arithmetic functions, are loaded at

the option of the user. They will consume approximately 800 locations

of the users program storage area. These arithmetic functions are

adapted from the extended arithmetic functions of the PDP—8 three-

word floating—point package and are fully described in the Floating
Point System manual, Order No. Digital-S-5-8.

The third type are the input/output functions These include a non-

statistical random number generator (FRAN). This function uses the

FOCAL program itself as a table of random numbers. An expanded
version could incorporate the random number generator from the

DECUS library. Following are examples of the functions now available.

1. The square root function (FSQT) computes the square root of

the expression within parentheses.
*TYPE %2 FSQT(4)
: 2*

‘

*TYPE FSQT(9)
: 3*

*TYPE FSQT(144)
= 12*

9:25

2. The absolute value function (FABS) outputs the absolute or

positive value of the number in parentheses.

*TYPE FABS(—-66)
: 66*

*TYPE FABS(——23)

I"TYPE FABS(——99)
—

-99*

3. The sign part function (FSGN) outputs the sign part (+ or ~—-)
of a number and the integer part becomes a 1.

*TYPE FSGN(4—6)
:—-— 1*

*TYPE FSGN(4—4)
:: 1*

TYPE FSGN (1—7)
__ 1-1:

4. The integer function (FITR) has the value of the integer part
of any number:

*TYPE FITR(5.2)
2 S *

It may be used for truncating;
*TYPE FITR(55.66+.5)
= 56*

*TYPE FITR(77.434+.5)
—

~77*

For negative numbers, FITR gives the next smaller integer.
*TYPE FITR(-—4.1)
2—— 5*

5. The random number generator function (FRAN) computes
a

nonstatistical pseudo-random number between +1.

*TYPE % FRAN(.)

=—0.250000E+00*

*TYPE FRAN()

:--—0.623535E+00*

9-26

6. The exponential function (FEXP) computes e to the power

Within parentheses. (e=2.718281)

*TYPE FEXP(6.66953E—1)
:: 0.194829E+Ol*

*T'YPE FEXP(.666953)
= 0.194829E+01*

*TYPE FEXP(1.23456)
= O.343687E+01*

*TYPE FEXP(-—1.)
: 0.367879E+00*

7. The sine function (FSIN) calculates the sine of an angle in

radians.

*TYPE %, FSIN(3.14159)
: 0.238419E———OS*

*TYPE FSIN(1.400)
—

—.0985450E+00*

Since FOCAL requires that angles must be expresséd'm radians to find

a function of an angle in degrees, the conversion factor, 1r/180, must

be used. To find the sine of 15 degrees,

*SET PI:3.14159; TYPE FSIN(15*PI/ 180) t

: 0.258819E+00*

*TYPE FSIN(45*3.14159/180)
:: 0.707106E+00*

8. The cosine function (FCOS) calculates the cosine of an angle
in radians.

‘

*TYPE FCOS(2*3.141592)
= 0.100000E+01*

'

*TYPE FCOS(.50000) ,

_—-.o 877582E+00*

*TYPE FCOS(45*3.141592/ 180)
= o707107E+00*

9-27 V

9. The are tangent function (FATN) calculates the angle in radians
whose tangent is the argument within parentheses. -

*TYPE FATNU.)
= 0.785398E+00*

*TYPE FATN(.31305)
= 0.303386E+00*

*TYPE FATN(3. 141592)
:: 0.126263E-l—01“

10. The logarithm function (FLOG) computes the natural loga-
rithm (logs) of the number within parentheses.

*TYPE FLOG(1.00000)
‘

= 0.000000E+00*

*TYPE FLOG(1.9876S)
*

: 0.686953E+00*

*TYPE %5.03, FLOG(2.065)
: 0.725*

Reading From the High-Speed Reader

Up to this point we have considered only one source of input to

FOCAL programs——the Teletype keyboard. We learned that when

FOCAL types an *, it is ready to accept user commands.

The user can switch the input device to the high—speed paper tape
reader by typing an asterisk in the first position, or immediately follow-

ing the line number in a statement. The following statements cause

FOCAL to read a tape from the‘high—speed reader. g

*
*; The first asterisk is that typed out by FOCAL, inform-

ing the user that a command may be input from

the keyboard. The second asterisk typed by the

user, switches input to the high-speed reader.

1.21 The user types
* after the line number.

To switch back to the keyboard, the user types another *. If there

is no tape in the high-speed reader, or when an “end of tape” condition

is reached, FOCAL automatically switches back to keyboard input.

9—28

This feature is useful for loading FOCAL programs and for inputting
large amounts of data during execution of a FOCAL program

When the following statement is executed FOCAL accepts four

pieCes of data from the high-speed reader.

l.10; FOR 1:1,4; ASK HR(I)
"' 1.1 l *

*DO 1.10
. .

: 3
II

The user typed an asterisk after line 1.11 to return control to the key-
board If the tape contains fewer than four pieces of data, the remain-

ing pieces will be taken from the keyboard.
. Generating Program Tapes

- To generate a program tape of the user’s FOCAL program on the

. low-speed paper tape punch, the user should

1. Respond to *
by typing WRITE ALL (do not depress the RE-

TURN key).

2. Depress low-speed punch to ON.

3. Generate leader tape (depress the SHIFT, REPT, and P keys
'

in that order; release in reverse order).

4. Depress RETURN key.

When the user’s FOCAL program has been

typed
and punched, the

user should

5. Generate trailer tape (depress the SHIFT, REPT, and P keys
in that order; releasein reverse order).

'

6. Depress low-speed punch to OFF.

7. Remove and label the punched paper tape.

V

The user’s FOCAL program is still in the computer. FOCAL is

waiting for user input.

39-2.9

EXAMPLES OF FOCAL PROGRAMS.

The following programs reveal some of FOCAL’s features in various

applications. The examples show that FOCAL finds practical applica-
tion'1n any situation:

FORTRAN-type problems are handled easily with little programming
time.

FOCAL’s easy-to-learn language allow, the user to concentrate more
on his problem than on programming.
FOCAL as a tool is easier to learn and use than a slide rule or any
other desk calculator, and it offers vastly more than any combination

of previous problem solving tools.

FOCAL can calculate complex problems and print and/ or display
the results in “one fell swoop.”

The example programs included in this section are maintained on

punched paper tape. Each program was loaded into core using
FOCAL’s high-speed paper tape reader input feature. The WRITE

command was then used to get the program printout for inclusion here.

Then the GO command was issued to execute each program.

When using the WRITE command, FOCAL immediately identifies

the version of the FOCAL tape being used—in this case, C—FOCAL,

8/68. The C preceding FOCAL , 8/68 is the comment line indicator.

Table Generation Using Functions

The ability to evaluate simple arithmetic expressions and to generate
values with the aid of library functionsis one of the first benefits to be

obtained from learning the FOCAL language.In this example, a table

of the sine, cosine, natural logarithm, and exponential values is gen-

erated for a series of arguments. As one becomes familiar with these

and other library functions, it becomes easy to combine them with the

standard arithmetic operations of addition, subtraction, multiplication,
division, and exponentiation. The user is then able to evaluate any given
formula for a single value or for a range of values as in this eXample.

Although FOCAL allows the typing of more than one command per

line, each command in this example has been typed on a separate line

to maintain clarity and because of the length of several of the com-

mands. In this example, line 01.05 outputs the desired column head-

ings. Line 01.10 is the loop to generate values for I, beginning with the

value 1.00000 and continuing in increments of .0000] up through the

value 1.00010; the DO 2.05 command at the end of this second line

causes line 02.05 to be executed for each value of I. Line 02.05 is the

command to evaluate the various library functions for the I arguments;
the %7.06 specifies that all output results up to the next % symbol

9-30

l

are to, appear infifixe’d-point format withIOne digit position to the left of

the decimal and six digit positions to the right: the second % symbol
reverts the output mode back to floating point for the remaining values

——- FLOG(I). and FEXP(I). Line 01.20 (optional) returns control

to the user.
v

Several techniques can be noted in line 02.05 of this example.

1. FOCAL commands can be abbreviated to the first letter of the

command followed by a space, as shown by the use of T instead

of TYPE. This technique can be used to shorten command

strings.

2. Arguments can be enclosed in various ways: (), < >, [_].
This ability is useful in matching correctly when a number of

such enclosures appear in a command.

3. Spaces can be inserted in an output format by enclosing the ap—

propriate number of spaces within quotation marks. Such use of

spacing is recommended to improve the readability of the output

results.
i

4. FOCAL presently allows accuracy of six significant digits, which

makes possible the use of verysmall loop increments (in this

example, .00001); this should eliminate the need to interpolate

.

between table values of trigonometry functions in most cases.

C-FOCAL ; 8/68

@1-05 T
"

I SINE COSINE LOG E"!

‘Ul-lfl FOR I=l:-fl@001;1-0001J DO 2-05

01-20 QUIT

02-05 T Z7-flésl." ";FSIN(I>:" ":FCOS<I>;" ":XJFLOGCIJa" ":FEXPtk);i

:1:

*GO ,

I SINE COSINE LOG E

= l-GQDBQG = @-841471 = 0-540303 = 6-006000E+00 = 0-2718285+Zl
= 1.000810 = 6.84l476 = $.54@2QS = 0.977507E-Z5 ‘= 0.271831E+@l

= l~0@@@20 = 8.841481 = 0.540286 = 0-195501E-04 = 0-271834E+@l

= i‘ZQZQBQ = 0.841487 = 0.540278 = 0-293249EF24 = 6.271836E+21
= 1-600040 = 0~841492 = 0-54fl270 = 0-39Q997E-fi4 = 0-27!B39E+@l

= i-ZZQESQ = 6.841497 = 5-54fl262 = 6-488744E-04 = 9-271842E+@l

= 1.06206@ = 0.841563 _% 6-540254 = 6.5864905-04 = 0-271844E+@l
= 1-036076 = @0841568 = 0.548245 = 0.6842355-04 = 0.271847E+@l
= l-Qfiflfl86 = 6-841513 = 9.5a0237 = 0.78198flE-64 = 0.271849E+Zl
= l.@00@90 = @nB4lSl9 = 0-540229 = G-879723E~Z4 = 6-271852E+81
= 1.000106 = 0.841524 = 3.54022] = 6-977465E-Q4 = @-271855£+@1

*
.

Addition Exerciser Using Functions

FOCAL randomly selects pairs of 1— or 2-digit positive integers and

«sets them up in an addition problem. The user types the answer to the

addition problem. FOCAL then checks the user’s answer against its

own and tells the user whether he was right or wrong. If the user’s

answer is correct, FOCAL types another addition problem. If the user’s

9-31
‘

answer is wrong, FOCAL gives him two more tries at the problem. If

after three tries the user still has not typed the correct answer, FOCAL

suggests that the user consult his teacher, gives the correct answer to

theproblem, and goes on to another problem.
‘

This program can be used as a drill for the young student of addition,
and with a few modifications it can be extended to give only subtraction

problems or randomly vary between addition and subtraction.

The program uses three functions in line 01.10.

C-FOCAL 1 8/68

01-05 TYPE "HELLO: PLEASE ADD THE FOLLOHING SETS 0F NUMBERS."1

91-16 SET A=FABS<FITR<10$¥FRANC]>)1 SET 8:FABS<FITR<99*FRANEJ?)

61-20 TYPE 27, A;IB:1"-----—---"1

51.36 ASK REPLY;!

61.48 IF (REFLY-A-B) 2ola1.5:2-1

01-56 SET WR=61TYPE "THAT IS CORRECT."1

01-66 SOTO 1.1

62-10 SET WR=HR+IJ IF (UR-2) QoBJQ-EJG-L

02-26 T "SORRY: TRY AGAIN:"|3 SOTO 1-2'

83-16 T "IF YOU ARE HAVING TROUBLE: ASK YOUR TEACHER FOR HELP-"1

63-26 TYPE "THE CORRECT ANSWER IS "A+B;!

63-36 GOTD 1.1

t

‘60

HELLO: PLEASE ADD THE FOLLOWING SETS 0F NUMBERS.

= fl
7

= a

= 6

= 0

:8

THAT IS CORRECT.
= 32
= B

:32

THAT IS CORRECT.
= 28

= S

:83
”

THAT IS CORRECT.

9-32

= s
= 4

——----—--

:34

SORRY. *RY AGAIN.

s _

. 4

:u

SORRY. TRY AGAIN.
'

=
V

a .

= 4

:48
.

IF YOU ARE HAVING TROUBLE: ASK YOUR TEACHER FOR HELP.

THE CORRECT ANSWER IS = 12

= 7

= a

:16

IF YOU ARE HAVING TROUBLE» ASK YOUR TEACHER FOR HELP.

rue CORRECT ANSWER IS = 7
~

=
. 6

'

= 81

887

THAT IS CORRECT.
= 4

‘

= 8

812

THAT IS CORRECT.
= 9
= 7

THAT ZS'CORRECT-

‘9-33

Finding Roots of a Quadratic Equation
This program uses the square root function to analyze a quadratic

equation of the form:

= AX2+BX+C

The analysis is followed by output of the roots and/or a comment

concerning the nature of the roots. After the output the program re—

starts and accepts new values for A, B, and C. Some interesting tea;

tures are:

1. It is not phased by a negative discriminant.

2. Input is set up so that if the space bar is used as a terminator,

A, B, and C will be printed in a row format which is suggestive
of their format in the equation.

3. If A is equal to zero, FOCAL types an error message. There—

fore, division by zero is not possible.

C-FOCAL , 8/68

61-16 ASK i ?A B C?) SET ROOT=B’2-4*A*C

01.2% IF (A) 1-4:1-3:1-4

21:30 TYPE ! "THIS IS A FIRST DEGREE EQUATION" i} SOTO 1‘16

61-40 TYPE 16-03: T
"

THE ROOTS ARE"I IF (ROOT) 1.7;l-6

@l-SB TYPE i’(-B+FSQT<ROOT>)/2*Asl:(-B-FSQT<ROOT>)/2*A1 GOTO l-l

Bioéfi TYPE l -B/2*A:ii GOTO 1-19

Z1-70 TYPE
"

IMAGINARY"I: ‘B/2*A:" + (":F59T(-ROOT)/2*A:")" "*1?
01-80 TYPE !:-B/2*A:" - C":FSQT[-ROOTJ/2*A;")*1";l1 GOTO 1-13

*

*GO

A :4 B :2 Cz8

THE ROOTS ARE IMAGINARY
=- 0-252 + (= l-392)*l

=- 0-258 - (= 1-392)*I

A 16 B :2 6:4

THIS IS A FIRST DEGREE EQUATION

A :1 B :4 624

THE ROOTS ARE

=" 20039

A :1 B 3-2 0:4

THE ROOTS ARE IMAGINARY

= 1-066 + (= 1.732>*I

= 1-660 - (= 1-732)tI

A :4 B :6 0:8

THE ROOTS ARE IMAGINARY
=- 9.750 + (= 1.199)*I
=- 0.758 - <= 1.199)*I

A :1 B :6 688

THE ROOTS ARE

=- 2-605
=- 4.609

9-34

Square Completer Using the FOR Command

The program directs the FOCAL user to specify the values for A,

B, and C for the parabolic function of the form:

F(X):AX2 + BX + C

The program quickly manipulates these values and prints an expression
of the same functionin the form:

F(X) = A(X—-K)2 + C—K2

where in line number 01.20, below, K is SET equal to —B/2A, the

value of the parabola’s axis of symmetry.
It is brought out in many high school algebra classes that this is a

handy way to visualize a parabolic function since it expresses, in easily
readable forms, various characteristics of the graph of the function.

The program is designed‘to do the complicated arithmetic. involved in

completing the square of a parabolic function.

C-FOCAL : 8/63

61-09 TYPE !:"INPUT A:B;C SUCH THAT F(X)=2X?2+BX+C":!

01-10 ASK ?A B C?! IF (A) 1-211-4}

GI-ZB SET K=-B/2*A3 SET C=C/A-K'2

91-38 TYPE 24-02; is" F(X)";A;"*(X-",K:")'2":C:!J GOTO 1-09

01-40 TYPE i: "THAT IS NO QUADRATIC!":!!J GOTO 1;09

*

*GO
4

v INPUT A.s.c SUCH THAT F(X)=2X12+BX+C

A :1 a :1 cu
.

F(X)= 1un*<x-=~ a 50112: 0.75

INPUT A,B,c sucn THAT F(X)=2X12+BX+C

A :3 B :6 0:3
’

F(X)= 3.mmx-=~ 1.2121112: a-em

INPUT (1,3,0 SUCH THAT F1X).=2Xv2+BX+c

A :3 B :18 11:24
.

F(X): 3.ao*<x-=- 3.aa>12=-l 1.0171

INPUT A;B:C SUCH THAT F(X)=2X‘2+BX+C

A 31 B 81 C312

F(X>= l-ZE*(X-=- 0'50)72= 11-75

INPUT A:B:C SUCH THAT F(X>=2X'2+BX+C

A :AB B :CD C:FG

F(X)= 12-@@*(X-=- l-42)Y2= 3-58

INPUT A,B;C SUCH THAT F(X)=2X'2+BX+C

A 30 B :1 0:8

THAT IS NO QUADRATIC!

INPUT A;B;C SUCH THAT F(X)=2Xr2+BX+C

A:28 :4 0:6

F(X): 2.@fl*(X—=- l-fifl)?2= 2.@@

9-35

Interest Payment Program
This is an example of a business-oriented FOCAL program. Itis

designed to give a complete picture of the payments which will be made A

on a loan, with interest, on an installment plan basis.

Under program control, the computer requests as input the amount

of a loan, the percentage of interest on that loan, and the length of

time over which the loan is to be paid. The computer then calculates

and types the amount of monthly payments to be paid, the total amount

of interest which will be paid, and a table showing interest paid, amount

applied to principle, and balance due after each payment,

C’FOCAL - 8/68

01.10 ASK 1117.82: "ENTER INTEREST IN PERCENT
"

Jsl

€1.14 SET J=J/!GB

01-16 ASK "ENTER AMOUNT OF LOAN
"

A]!

61-20 ASK "NUMBER OF YEARS
"

N)!

81.24 ASK "NUMBER OF PAYMENTS PER YEAR
"

M;!!

01-30 SET N=N¥M1 SET I=JIM

@lo34 SET B=l+l

61-46 SET R=A*I/(l-l/B7N)

01-42 TYPE "MONTHLY PAYMENT
"

Rn!

31-48 TYPE "TOTAL INTEREST "
R*N-A:ll

62-05 SET E=A

$2.1! TYPE
"

INTEREST - APP TO PRIN BALANCE":!

02.12 SET L=B¥Ii SET P=R-L

32-l6 SET B=B-P

82-18 TYPE L.
"

"P," "3,!

02.29; [F (B-R) 2.24.2.2A,2.12

62.24 TYPE Bart." "R-snn "LAST PAYMENT!" B*I+B.l

32.30 QUIT

a:

#50

ENTER INTEREST IN PERCENT :5

ENTER AMOUNT OF LOAN 3234S-DG

NUMBER OF YEARS :4

NUMBER OF PAYMENTS PER YEAR :3

MONTHLY PAYMENT = 217.23

TOTAL INTEREST = 261.75

INTEREST APP TO PRIN BALANCE

= 39.35 = 173.15 = 2166.85

= 36-12 = 181.12 =v 1985.74
= 33-10 = 134.13 = lBEI-él

= 30.23 = 137.29 = 1614-40

= 26.91 = 192.32 = 1424.08

= 23.74 = 193.52 = 1230-58

= 2a.51 = 196.72 = 1933.86

= 17.23 = ens-0o = 833.87

= i3.9a = 293.33 = 630.53

= 10.51 = 236.72 = 423.81
= 7.n6 = 21a.17 = 213-65

= 3.56 = eta-67
LAST PAYMENT!= 217-21

:1:

9—36'

h

Temperature Conversion Using the FOR Command

The ability for loop parameters to be negative, zero, fractional, or ex—

pressions, provides power beyond many other similar languages in

simplifying the routine’s structure. 'It also reemphasizes the flexibility
and control over FOCAL programs at the time they are run.

Measurement system conversions are time consuming in many lines

of work. A short FOCAL program, such as the one illustrated in the

following example, eliminates hours of repeated calculations. In this
’

particular example, the problem is to convert temperatures from de-

grees Fahrenheit to degrees Centigrade,using the formula:

T°C=5/9(T°F—'32)

This routine is quite similarin structure to the “Table Generation”

example. The one basic difference is that here the user can input the

loop parameters which govern the generation of the output. Thus, pro-

vision has been made for output» of properly labeled requests for start-

ing, ending, and incrementing values and their input for use by the

program.
v

G-FOCAL': 8/68.

$2010 ASK l."FROM "pSTART1" T0 "JEND!" DEGREES FAHRENHEIT";!

@2-23 ASK " IN INCREMENTS 0F ":INCR1" DEGREES",!!

02-30 TYPE "THE APPROXIMATE FAHRENHEIT T0 CENTIGRADE CONVERSIQNS ARE!"

fi2-40 FOR T= STARTalNCRaENDB TYPE l} DO 2.50

02~45 QUIT

02.50 TYPE " ":T:" FAHRENHEIT DEG. ",(T- 321*5/9:" CENTIGRADE DEG-"

*

#60

FROM i-aa m :85

'

DEGREES FAHRENHEIT

IN XNCREMENTS or :25 DEGREES

THE APPROXIMATE FAHRENHEIT T0 CENTIGRADE CONVERSIONS ARE:

46 G0 FAHRENHEIT DEG. =- 40-69 CENTIGRADE DEG.

2Q.fl% FAHRENHEIT DEG. =- 28-89 CENTIGRADE DEG.

0-06 FAHRENHEIT DEG. =— 17073 CENTIGRADE DEG-

ZG-QG FAHRENHEIT DEG. =- 6-67 CENTIGRADE DEG-

40-06 FAHRENHEIT DEG. .= 4.45 GENTIGRADE DEG-

69-00 FAHRENHEIT DEG- = 15:56 CENTIGRADE DEG-

80-09 FAHRENHEIT DEG. = 26-67 CENTIGRADE DEG-*ll

II

II

II

II

I0

I:

9137

One-Line Function Plotting
This example demonstrates the use of FOCAL to present, in.graphic

form, some given function over. a range of values. In this example, the

function used is
i

y = 30 +15(SIN(X))e~-1X

with x ranging from 0 to 15 in increments of .5. This damped sine

wave has many physical applications, especially in electronics and

mechanics (for example, in designing the shock absorbers of a car).

In the actual coding of the example, the variables I and I were used

in place of X and y, respectively; any two variables could have been

used. The single line 08.01 contains a set of nested loops for I and J.

The 1 loop types spaces horizontally for the y coordinate of the func-

tion; the I loop prints the *

symbol and the carriage return and line

feeds for the x coordinate. The function itself is used as the upper limit

of the J loop, again showing the power of FOCAL commands.

The technique illustrated by this example can be used to plot any

desired function. Although the *
symbol was used here, any legal

FOCAL character is acceptable.
C-FOCAL . 8/68

38-51 F I=flr~51153 T "*"sli F J=@;36+15*FSIN(I)*FEXP[-.1*IJJ T
" "

#

*DO 8-51

*

Intercept and Plot of Two Functions

Values are first computed and printed for two monotonic functions.

Then these curves are plotted within specified limits. Nonmonotonic

functions must be plotted using the method of residuals.

C-FOCAL , 8/68

01-62 ASK "LOWER LIMIT".LL.1"UPPER LTMIT",UL,1H1NCREMENT",1N.1
61-10 SET Y1=n; SET Y2=o;

01-26 FOR x=LL,1N.UL: SET Y1=—x—3; SET Y2=3+4*x-Xv21 DO ezn

62-10 1F (YE-Y1) 2.4,2.2.2.4

O2.2o TYPE 11 "THE POINT OF INTERSECTION IS ",1; GOTO 2.3

$2.3o TYPE "x1",x," "."Y1",Y1,1."x2",x,". v,"Y2".Y2,11: RETURN

$2.40 TYPE "x1".x." ","Yl",Y1,!."x2",x," ","Yz",Y2,11

O3.1O TYPE "DO You WANT A PLOT?"

03.2o ASK "(TYPE Y FOR YEs. TYPE N FOR NO) ",AN,11

m3.3o 1F (AN-25) 9.1.4.1 -

94.1o FOR x=LL.1N,UL: DO 5.0

05.01 I? (x) 5.1;5-02,5.1

O5.@2 TYPE
"

Y..........,.........4...................Y",r
05.1% FOR Y=O.3O1 TYPE-n

"
‘

05.20 TYPE ".",#
V

-

O5.3n FOR Y=@:3m+(PX-3)J TYPE " ".
fev-~

n5.4n TYPE "*",#

05.50 FOR Y=0:3M+<3+4*X—XT2)5 TYPE
" "

asgeo TYPE "*".1

65.76 RETURN

n9.1o QUIT
*

#60
V

LOWER LIMIT:-1@
UPPER L1M1T:1g
INCREMENT:1

V

X1=- 10-00 HYI= 7.00

x2=- 10.00 Y2=- 137.95

X1=- 9.oov Y1= 6-08

x2=- 9.oo Y2=— 114.oo

x1;- 'a.oo Y1: 5.05

x2=- 8-66
7

Y2=- 93.30

X1=- 7.23 Y1: 4.06

x2=- 7.0o Y2=- 74.0%

x1=- 6-do Y1: 3.9%

x2=- 6-00 Y2=- 57.60

X1=— s-oo Y1= 2.0a

x2=- 5-00 Y2=- 42.66

x1:— 4.9a Y1: 1.39

x2=- 4.0n Y2—- 29.nz

x1=- 3.@@ Y1 o-oo

x2=- 3.0a Y2— 18.0%

X1=- 2.00 Y1=- 1-uo

x2=— 2-oa Y2=- 9.00

9-39

THE POlNT 0F INTERSECTION IS

Xl=- l-QG YI=- 2oflfl

X2=- 1.00 Y2=- 2.@6

X1: 0-66 Yl=- 3.02

X2= 0-60 Y2= 3-60

X]: 1.00 Yl=- 4-09

X2= 1-03 Y2= 6-66

Xl= 2-08 Y1=~ 5.06

X2: 2-05 Y2: 7030

X1: 3-00 Yl=- 6-99

X2: 3-68 Y2= 6-60

Xi= 4.93 sz—l . Lag

X2= 4-06 Y2= 3-66

X1= 5-08 Y|=- Soflfl

X2= 5-06 Y2=- 2-G6

THE POINT OF INTERSECTION 15

x1: 6-66 Y1=e 9-00

x2: 6-56 Y2=- 9.aa_

x1:
‘

7.3a Yl=- ‘10.00
x2: 7.99 Y2=- 18.20

x1: 8.6m YI=~ 11.29

x2: 3.32 Y2=- 29.20

x1: 9-an Y:=- 12-66

x2: 9.ae Y2=- 42-60

x1: 10.@@ Yl=- 13.az

x2: 1e.aa Y2=- 57.5z

x1: 11.mm ¥1=— 13-ma

x2: 11-mm Y2=- 57.an

DO YOU WANT A PLOT?(TYPE Y FDR YES- TYPE N FOR NO) :Y

t n It

’1‘ . it

t a II:

It q *

2k o 3|!

* . or

1k -*

It It

ill *-

* u

Y-c..............t.-.u.*.-...........-...Y

* u t

t c *

* . *

It! - 5k

1F ill I.

* .

* 3F n

at it o

1k It .

* 3F o

* 5‘ -

9-40

Plotting on the Oscilloscope
This is an eXample- of ’using the FDXS and FDIS functions for plot-

. ting, on the oscilloscope. The functions are used in the SET command
'

of statement number 01.40 as shown below, which is equivalent to

SET H:FDXS(X)—FDIS(Y)

where X and Y are the x and y coordinates of the point to be plotted
on the scope.

The program will plot a sine wave with a user—determined number

of complete cycles (Q).

C'FOCAL : 8/68

Gltlfl ASK "NUMBER OF CYCLES" Q

aloao F 1=6- ,55; S X(I)=2Q*IJ S Y(1)= (FSINC3- l4159*I/<25/9>1+1)*500

al.30 TYPE l "READY TO PLOT" :l

01-40 FOR I=@-,50J SET H=FDXS(X[I]}-FDIS(Y<I>)

51.5% GOTO l-4

ill

#60

NUMBER OF CYCLES:2

READY TO PLOT

Formula Evaluation for Circles and Spheres
In this example, FOCAL is used to calculate, label, and output the

.

following values for an indefinite number of radii typed in by the user.

Given: radius(R)

Program calculates: circle diameter 2R

circle area 7R2

circle circumference ZrR

sphere volume 4/ 31rR3

sphere surface area 4sz

Although the American system of inches is used in this example,
conversions to other systems (metric, for example) could be very easily

incorporated into the program, thus eliminating any need for hand—

calculated conversions.

The program is very straightforward. ASK is used to allow the user

to type in the radius value to be used in the calculations. SET is used

to supply the value of 11' (PI). TYPE is used for all calculations and

output. Note that if a value (such as P1 in this example) is to be

entered once and then used in repeated calculations, it should be

entered by a SET‘ command which is outside the calculation loop,
otherwise, the variable would be set at the beginning of each pass

through the loop. However, if the value of the variable changes during
each iteration, then it must be calculated either by a SET or TYPE

Command within the loop.

9-41

The use of the GOTO command (line 01.60) results in an infinite

loop of lines 01.10 through 01.60. This technique is used when the

number of desired repetitions is not known. The looping process can

be terminated at any time by typing CTRL/C. If, however, the num-

ber of desired repetitions is known (e.g., 10), the following method

can be used.
’

*SET PI=3. 14159

*1.1 ASK . . .

”1:6 TYPE 1 z 1 s ! (Eliminate GOTO 1.1)
’1‘

*FOR I:1,10; DO 1 (Direct command; causes all

steps in group 1 to be ex-

ecuted 10 times)

The ability to choose between these methods provides great flexibility
in actually running FOCAL programs.

C-FOCAL : 8/68 .

fll-Zl SET PI=3-141592

@lvlfi ASK "A RADIUS OF": R:
"

INCHES"

01.20 TYPE 28.64: i;
"

GENERATES A CIRCLE OF:“; !

61-21 TYPE DIAMETER": 2*R:
"

INCHES": 1

@1-30 TYPE
"

AREA": P1*R'2:
"

SQUARE INCHES": !

61.35 TYPE
"

CIRCUMFERENCE"; 2*PI*R;
"

INCHES": 1

61-48 TYPE 3;
"

AND A SPHERE OFz": l

@1-49 TYPE
"

VOLUME"; (4/3)*PI*R?3:
"

CUBIC INCHES": l

61-50 TYPE
"

AND SURFACE AREA": 4*PI*R'2:
"

SQUARE INCHES"

01.6% TYPE 1!!) GOTO 01.18

*
‘

*GO

A RADIUS 0F:1.414 INCHES

GENERATES A CIRCLE 0F:

DIAMETER: 2-8288 INCHES

AREA= 6-2813 SQUARE INCHES

CIRCUMFERENCE= 8-8844 INCHES

AND A SPHERE OF:

VOLUME= 11-8423 CUBIC INCHES

AND SURFACE AREA= 25-1252 SQUARE INCHES

A RADIUS 0F: ...

9-42

Simultaneous Equations and Matrices

Many disciplines use subscripted variables for vectors in one, two,

or more dimensions to store and manipulate data. A common use is

the 2-dimensional array or matrix for handling sets of simultaneous

equations. For example,

Given: 1x1 + 2x2 + 3x. = 4

4x1+ 3x2 + 2x3 :1

1X1 + 4X2 + 3X3 2 2

Find: the values of X1, X2, and X3 to satisfy all three equations simul-

taneously. ,

.

The solution can be reduced to simple mathematics between the

various elements of the rows and columns until correct values of X are

found, as shown in Example 3 below.

Since FOCAL uses only a single subscript, the handling of two or

more dimensions requires the generation of awlz'near Subscript which

represents the correct position if it were stored in normal order; i..e.,
leftmost subscript moving fastest.

IN ONE DIMENSION

ARRAY() Element D could be represented as

ARRAY(3); any element in this array

can be represented by a subscript in the

range 0 through 4. The first element in

an array always has a subscript of. 0.mudw> thHo
IN TWO DIMENSIONS

ARRAY(row, column) or A(I,J)

This must be reduced to the form A(G), where G is a function of I

and J; that is, A(I,J) = A(G). Consider the’ diagram

J=.

o 1

‘

2

1:0 0‘ ‘5 10

1 1 6 11

2 2 7 12

3 3 '8 13

4 4 9 14

The numbers along the outside edges of the box above are the 2-dimen-

sional subscripts; the numbers inside the box are the linear subscripts.

'
'

9-43

Thus each combination of I and I can be given a unique value, e.g., for

I=2 and J=1 the element is 7.

Notice that for a constant 1, increasing the value of J by one in-

creases the value of the linear subscript by five. Similarly, for a constant

J, increasing the value of I by one increases the linear subscript by
three.

The array, above, has five rows and three columns, so two values

can be defined:
‘

IMAX = 5 and JMAX = 3

The total number of elements is IMAX * JMAX = 15. To generate
the number G in any box, using the corresponding values of I and J, the

formula is

G :1 + IMAX '1' J or A(G)
'

which is equivalent to A(I+IMAX*J). The example of solving simul-

taneous equations, above, uses this algorithm for subscripts merely by

replacing I, IMAX, and I with J, L, and K, respectively, so as to form

the equation .

A(J+L*K)

Each element in a 2—dimensional array represents an area.

IN THREE DIMENSIONS

ARRAY(row, column, plane) = A(I,J,K) = A(G)

In a 3-dimensional array, each array represents a volume. Three

dimensions can be illustrated as a cube.

9-44

This cube has dimensions of five rows, three columns, and five planes;
thus, IMAX = 5, IMAX = 3, and KMAX .= 5. Each plane is num-

bered exactly as in the 2-dimensional example, except with the addition

of 15 times K (with K = the number of planes back from the first) to

each subscript in the first plane.
For example,

Upper lefthand square, back one plane from the first=15

I=0, J: 0, K=1; 1+(IMAX*J)+(IMAX*JMAX*K)=15=G
v or'

A(0,0,1) =A(15)

IN FOUR DIMENSIONS

ARRAY (row, column, plane, cube) =A(I,J,K,L) =A(G)

Assign the values for IMAX, IMAX, KMAX; a method similar to the

one. used above yields

G=I+ (IMAX‘J),+ (IMAX*JMAX*K) +(IMAX‘JMAX*KMAX*L)

This process can be extended indefinitely to n—dimensions!
*

9-45

lfiwunpde 1:

*FOR J=0:4} TYPE 12:1} FOR I=0123 TYPE J+5*I

=V 6= 5= 10

= 1: 6= 11

= 2: 7: l2

= 3= 8= 13

4= 9= 14*

lianude 2:

6—F00AL . 8/68

01-05 TYPE "ENTER 3 ROWS AND 4 COLUMNS 0F NUMBERS-"1

01-10 FOR J=0;2J TYPE 1! FOR K=0a33 ASK NO<J+3*K)

01-15 SET MAX=NO(0)

01-20 FOR J=0121 FOR K=0:3} DO 02.00

01‘25 TYPE !: "LARGEST NUMBER IS "J MAXI QUIT

02-05 IF (MAX-NOCJ+3*K)) 2-101 RETURN

02-10 SET MAX=NO(J+3*K)1 RETURN

*

*Go

ENTER 3 ROWS AND 4 COLUMNS OF NUMBERS.

:0 :S :8 :9

x] :2 :3 :4

:9 :8 :7 :6

~LARGEST NUMBER IS = 9.00000*

*

*GO

ENTER 3 Rows AND 4 COLUIfiNS 0F NUMBERS.

3A :B :C ED

:A :B :C :D

:A :B SC SD

LARGEST NUMBER IS = 4.09060:

*
.

*GO
A

ENTER 3 Rows AND 4 COLUMNS OF NUMBERS.

:A :5 :c :D

:4 :3 :2 :1

IA 24 2 3

LARGEST NUMBER IS = 4.zaaaa*

F

9-46

Example 3:

C-FOCAL :

01.02

01.04

01.05

01.10

01.11

01.12

01.14

01.16

01.17

01-18

01.20

01.22

01.23
01.26

01.28

01-29

04.05

04.10

04.20

04.22

04.30

05.10

05-20

05.30

05.40

07.10

07-20

*

*GO

8/68,

TYPE !"ROUTINE TO SOLVE MATRIX EQ- AX=B FOR X"!

ASK

TYPE

ASK

FOR

FOR

SET

FOR

SET

FOR

FOR

SET

"ENTER DIMENSION OF A; THEN

!"ENTER COEFF'S A(J,K)---A(J,N) AND B(J)"!

L:!5 SET N=L-1} SET I=-1

K=01N3

J=01N3

M=1E‘6

J=@’N;

RCP)=0

K=0:L3

J=01N3

I=I+1

SET R(K)=K+1

TYPE !3 FOR K=0:L5 ASK A(J+L*K)

FOR K=0xNfi DO 4.0-

SET ACP+L*K)=A(P+L*K)/M

D0 5-0
'

IF (I-N) 1

FOR J=0:N;

FOR K=®1N3

~14,l-26:1-14

FOR K=0’N3 DO 7.0

TYPE !7.2; "X("K:")

TYPE !!! QUIT

"1%8-05:X(K)

IF (REJJ) 0:4.3;4.1

IF (FABS<A[J+L*KJ$-FABS[MJ) 4-33

SET M=A(J+L*K)

SET P=Ji

RETURN

SET Q=K

IF (J-P) 5-2,5.4:5.2

SET D=A(J+L*O)
FOR K=0:L; SET A(J+L*K)=A(J+L*K)-A(P+L*K)*D.

RETURN

IF (lE-é-FABSEA<J+L*K>I) 7.2; RETURN

SET X(K)=A(J+L*L)

ROUTINE TO SOLVE MATRIX EO. AX=B FOR X

ENTER DIMENSION OF A: THEN

ENTER COEFF‘S A(J:K).coA(J:N) AND B(J)
o
-

lab-JEDu

n

u

><><><°'“"
*

A

ONO)
“

n

u

on

u

u 4

l

2

0-00000 .

3

- 1-00000 '

2-00000

9-47

Demonstration Dice Game

Sooner or later, people who have access to a computer will try to

“match brains” with it or use it for their own enjoyment. Such pastimes
are usually keyboard oriented and FOCAL lends itself nicely to these

ends. The following example uses the random number generator,
FRAN (), to produce dice combinations, plus IF logic to check bets

and winning combinations.

Lines beginning with a C indicate that the line is to be treated as a

comment and is not to be interpreted or executed. If a comment state-

ment is preceded by a statement number, the line is stored as part of

the program but does not affect the program logic.
'

The random number generator must be modified for use with statis-

tical 0r simulation programs to achieve true randomness. However, it

is sufficiently random in its present form for most applications.

NOTE

We naturally cannot assume any responsibility for the use of this or any

shnflarroufines

C-FOCAL a 8/68

01.16 SET 8:6;TYPE l!"DlCE GAME"I:"HOUSE LIMIT OF 31666

81.13 TYPE ". MINIMUM BET Is 5V4!

01.29 ASK "YOUR BET IS"AIIF (Inna—A) 3.1

61.22 IF IA-i)3-4,1.26.I.26

81-26 IF (A-FITR(A)Y3-5;1-3:3-5

01.32 ASK M100 BJSET D=Ctuo arTYPE
"

"iSET D=D+c

61.32 IF (0—7)1.42.3.2.1.42

91-46 IF (D—2)1.5,3.3.1.5

@1342 IF (D~II>I.4.a-2,I.4

01.50 IF cn~33 1.6,3-3.l.6

0!.69 ASK M300 2:5ET E=croo atTYPE
"

"3557 E=E+c

$1.72 IF CE~7I 1.74.3.3.|.74
'

52.74 IF cE~DJI.6.3.2.1.6

82.16 SET C=FITR(16*FABS(FRAN()))IIF (C-6)2-2:2.2p2ul

02.26 IF (C*!)2.lJTYPE :11" "CIRETURN

63-10 TYPE "HOUSE LIMITS ARE $1080"!!! GOTO 1.2

@3-26 5 B=BrAJT 17:!"YOU WIN. YOUR WINNINGS ARE "B:!!lGOT0 [-2

33.30 S E=B~A1T 17;!"SORRY: YOU LOSE: YOUR WINNINGS ARE "BIVIIGOTO l-2

$3.49 TYPE "MINIMUN BET IS Sl"ll!GOTO 1-2

‘03.50 TYPE "N0 PENNIES: PLEASE"!IJGOTO 1-2

n

tC ONCE YOU PLACE A BET; FOLLOW THE OTHER CGLONS WITH A
#C CARRIAGE RETURN TO INDICATE THE COMMAND "ROLL THE DICE"-

a

9-48

*GO

DICE GAME

HOUSE LIMIT OF $IOGO. MINIMUM BET IS $1

YOUR BET 15:.50 MINIMUN BET IS $1

YOUR BET 18:15 :

’

3 :
'

4 :

S
'

.

IN. YOUR WINNINGS ARE
. ,= . 15

6

1

= 4

YOU W

YOUR BET 13:5 :

= 2 = 2 :

: 6 : 1 ,

SORRY: YOU LOSE. YOUR WINNINGS ARE = 16

YOUR BET 15:8 :

= 6 : 5
'

YOU WIN. YOUR WINNINGS ARE = 13

YOUR BET IS: I‘LL QUIT WHILE I'M AHEAD. THANKS!

'949

Schroedinger Equation Solver

The program is designed to ‘aid’the user in searching for possible
energy-states of an electron in a potential well. This is one of the most

. complex equations yet written in FOCAL. It calculates and plots the

energy levels of an electron within specified boundary conditions.

C-FOCAL : 8/68

'fll-fll T lx"SCHROEDINGER EQUATION SDLVER -":!

61-62 T !;" TDELSQUARED PSI + AX * PSI = E * PSI":!1

61-03 A "TILTED SQUARE WELL PROBLEM WITH WIDTH":XU:!

Gl-QB A "WELL TILT SLOPE A":Al:!,"TRIAL ENERGY E":Bl:l

01-69 A "NUMBER OF STEPS":NT:1

01-11 S VF=01 S SL=1

81-79 S P(@J=El S DX=XEINT3 S P(I)=SL*DX3 S R0=E
61.75 S VF=6

01.8% S Pfl=fl

01.9% F N=Z912NT-21 D 6

61-93 T 1:"PSI ZEROS“Z2-B: P6

61.95 GOTO 7-D2

65-16 T 1:13:31 PX:" PSI":X:P(FX>;"-"
65-28 S PZ=FITR(PM*SC)J S PE=FITR<(P[PXJ+PM)*SC>
95.3% F X=1:1:PZ} T

" "

65.4% T ".";#3 F X=lplyPE+245 T " "

flS-SQ T "*"J R

06-10 S P(N+2)=<(-BI+A1*DX*[N+1])*DX?2+2>*P(N+1)-P(N)
66-26 I (NT-N-2) 12-96I6191603

06-36 S RB=P(N+2)*P(N+I)3 I (RB) 6.416.436-9

66.40 S PZ=PZ+13 R

06-95 CONTINUE

@7-fl2 S CF=(P<NT>/P<l>)?23 T
"

CONV IND”%: CF

67.05 A
"

NEW E?"NY

67-07 I (NY-9) 7-91706837-9

Z7.@8 I (VF) 7-09.7-8a7-Z9

D7o09 I (CF-100) 7v1:7-l;7-8

97-10 S R2=P(NT)*VFJ 1 (R2) 7-73;7.8@:7-85

57.73 S DB=-@-5*DB} GDTO 7‘85

07-85 S 08:0.1

07-85 5 Bl=Bl*(l+DB)3 T Bl! S VFfNT)! G 1.8%

67-99 00 141 GOTO 12-61

12.@1 T !:!p"EIGEN E"Bli S HP=BllCA1*X@)

12.26 T "
EN/MAX POT“HP:!

12-98 QUIT

14.16 S PM=B3 S PP=63 F PX=1111NT1 D 15

14.26 S PS=PM+PP1 S SC=4SIPS

14-26 T 11!) F PX-=l:1;701 T "."

14-4G F PX=B;1:NT} D 5

14-56 T 11F PX=1:1:7@3 T "."

14.60 T 1!} R

15.16 I (PEPXJ) 15-2:15-9;15-5

15.26 I (PM+P<PX>) 15-3a15-4:15-4
15-30 S PM=FABS(P[PX3)

15.40 RETURN

15-59 I (P<PX>-PP> 15-9115~9:15-6

15-66 S PP=P(PX)

15r9fl RETURN

*

9-50“

*GO

SCHROEDINGER EQUATION SOLVER -

-DELSQUARED P51 + AX *'PSI = E * PSI

TILTED SQUARE WELL PROBLEM wer NIDTH;I

WELL TILT SLOPE Azse'

TRIAL ENERGY 525%

NUMBER OF STEPS:24

PSI ZEROS= 1 CONV IND= 0.329830E+E2 NEW E?:Y

..

a PSI= @.aaeazmz+ea.

1 PSI= 0.4166675—01.

2 PSI= 0-798671E-61-

3 PSI: a-1117135+a0-

4 PSI: 9~135973£+za.

s PSI= 6-148662E+60-

‘6 PSI= 0.152@355+@a.

7 PSI= 6-14551ma+@a.

a PSI= 0-130037E+@6.

9 PSI= 0.107m4zE+@a.

1a PSI: 5.7823515—01.

11 PSI= 0.4546875-01.

12 PSI= 6-1856445-01-

13 PSI='@-2479855-@l- **

l4 PSI=-@-S9l747E-@1- #

l5 PSI=-fl-914l@7E-@l- *

16 PSI=-@-120671E+Qflu *

IT PSI=-Z-l464405+60- *

l8 PSI=-D-168501E+0@- *
.

l9 PSI=-0-1869QSE+00- *

28 PSI=-0-201929E+@fl- *

21 PSI=-$-214@32E+00- *

22 PSI=-0-223812€+Bfl~ ¥

23 PSI=-0-231973£+@B.*

24 PSI='G-239295E+66-*

9.9.0....non-.cyuouugovcnogoooauo.uuoo..ouoosocoaoo

II

II

{I

II

II

H

II

II

II

II

II

II

II

II

II

II

ll

II

II

H

II

II

ll

II

N

'

EIGEN E= BuSGZQQBE+62 EN/MAX POT= finlfififlflflE+01

*
.

9—51

uo-cyoo~--~0ouonc.

*

t

u

*

u

n

.

u

.

.

n

o

u

c II

c

u

u

c

o

o

a

.

n

.

o

a

c

co...uooo¢uoc-ooooo

SUMMARY OF COMMANDS, OPERATIONS, AND FUNCTIONS

f‘
‘

.‘u F
‘

of Form EXPLANATlON

ASK A ASK X.Y.Z FOCAL types a colon for each variable;
the user types a value to define each .vari-

able.

COMMENT C COMMENT If a line begins with the letter C, the re-

mainder of the line will be ignored.

CONTINUE C C Dummy line:-

DO D D0 4.! Execute line 4.]; return to command fol-

lowing D0 command,

DO 4.0 Exeeute all group 4 lines; return to com;

mand following [)0 command. or when a

RETURN is encountered.

ERASE E ERASE _Erases the symbol table.

ERASE 2.0 Erases all group 2 lines.

ERASE 2.l Deletes line Z.l.

ERASE ALL Deletes all user input.

FOR F FOR i=x,y,z;(eommands) Where the command following is executed
"

at each new value.

FOR i=x.z;(commands) x=initial value of i

yzvalue added to i until i is greater than

1.

GO G G0 Starts indirect program at lowest num-

bered line number.
'

GO? 0? 60'! Starts at lowest numbered line number

and traces entire indirect program until

another ? is encountered. until an error

is encountered. or until ‘completion oti

.

program.

GOTO G GOTO 3.4
'

Starts indirect program (transfers, control
* to line 3.4). Must have argument.

IF I [F (X)Ln, Ln, Ln Where X is a defined identifier, a value,

"7 (X)Ln,Ln; (commands)
”

or an expression, followed by three line

numbers.

lF ()0an (commands) If X is less than zero, control is trans~

ferred to the first line number.

If X is equal lozero, control is to the

second line number.

If X 15 greater than zero, control is to the

third line number.

MODIFY M MODIFY LIS Enables editing of any character on line

1.15 (see below).

QUIT Q QUIT Returns control to the user.

RETURN R RETURN Terminates D0 subroutines, returning to

the original sequence.

SET 3 SET A=5/B‘C; Defines identifiers in the symbol table.

TYPE T TYPE A+B—C; Evaluates expression and types out = and

result in current output format.

TYPE A—B, Cl E; Computes and types each expression sep-

arated by commas.

TYPE "TEXT VIKING" Types text. May be followed by l to gen—

erate carriage return-line feed, or # to

generate carriage return.

WRITE w wme FOCAL types out theentire indirect pro-

WRITE ALL gram.
,

WRITE 1.0 FOCAL types out all group 1 lines.

FOCAL type: out line Ll.WRITE Ll

9-52

FOCAL Operations

To set output TYPE %x.y where x is the total number

format, of digits, and y is the num-

ber of digits to the right of

the decimal point.
TYPE %6.3, 123.456 FOCAL types: = 123.456

TYPE' % Resets output format to float-
'

ing point. ,

To type sym- TYPE 33 Other statements may not fol-

bol table,
_

.

low on this line

To input from high-speed paper tape reader,

** The second *
was typed by the user. Input is from

the high-speed reader until occurrence of next *.

FOCAL types
* for each line number read in from

the reader.
‘1.10*; User typed 1.10*;. Input is taken from the high-

speed reader until occurrence of next *.

Modify Operations
After a MODIFY command, the user types a search character, and

FOCAL types out the contents of that line until the search character is

typed. The user may then perform any of the following optional
operations.

1.

2.

Type in new characters. FOCAL will add these to the line at

point of insertion.
‘

Type a CTRL/ L. FOCAL will proceed to the next occurrence

of the search character.
Type a CTRL/BELL. After this, the user may change the

search character.

Type RUBOUT. This deletes characters to the left, one char-

acter for each time the us‘er'strikes the RUBOUT key.

Type (- . Deletes the line over to the left margin, but not the

line number.

. Type RETURN. Terminates the line, deleting- characters over

to the right margin.

Type LINE FEED. Saves the remainder of the line from the

point at which LINE FEED is typed over to the right margin.

9-53

The Trace Feature

Special Example-
Character of Form Explanation

? 7. . .? Those parts of the program enclosed in question
or marks will be printed out as they are executed.

?- - - If only one ? is inserted, the trace feature becomes

operative, and the program is printed out from that

point until another ? is encountered, until an error

is encountered, or until program completion.

Summary of Functions

Square Root FSQT(x) where X is a positive number or ex-

pression greater than zero.

Absolute Value FABS(x) FOCAL ignores the sign of x.‘

Sign Part FSGN(X) FOCAL evaluates the sign part only,
with 1.0000 as' integer.

‘

Integer Part FITR(x). FOCAL operates on the integer part
of x, ignoring any fractional part.

Random Number FRAN() FOCAL generates a random number.

Generator

Exponential FEXP(x) FOCAL generates e to the power x.

Function (eX) (2.71828")
Sine , FSIN(x) FOCAL generates the sine- of x in

‘ radians.

Cosine FCOS(x) FOCAL generates the cosine of x in

radians.

Arc Tangent FATN (x) FOCAL generates the arc tangent of

X in radians.

Logarithm FLOG (x) FOCAL generates loge (x).

Analog-to—Digital FADC(n) FOCAL reads from an analog-to-
digital channel, the value of the

function is that integer reading.

9-54

Scope Functions

FDIS(y) Displays y coordinate on scope and

intensifies x—y point.

FDXS(X) Displays X coordinate on Scope.

Other functions are available from DEC for use with such periph-
erals as incremental plotter, card reader, etc.

Special Characters
1. Mathematical operators:

.

T
It

/

+

Exponentiation
Multiplication
Division

Addition
'

Subtraction

2. Control characters:
Output format delimiter

Carriage return and line feed

Carriage return

Type symbol table contents

Parentheses

Square brackets (mathematics)
Angle brackets

Quotation marks (text string)
Question marks (trace feature)
Asterisk(s) (high-speed reader input)

3. Terminators:

SPACE key (names)
RETURN key (lines) (nonprinting)
ALTMODE key (with ASK statement)
Comma (expressions)
Semicolon (commands and statements)

.

9-55

Error Diagnostics
Error messages are typed in the following format:

?nn.nn @ nn.nn (error code @ line number)

Error Code »

Meaning

?00.00 Manual start from console

701.00 Interrupt from keyboard via CTRL/ C

701.35 Group zero is an illegal line number

1701.43 Illegal step or line number

?01.89 GOTO not used as one word or bad argument in IF

?01.;2 . Line number too large

?01.;3 Double periods in line number

?02.48 Nonexistent line referenced by DO

702.63 Nonexistent group referenced by DO

702.81 Storage filled by push-down list

?03 .09 Nonexistent line used or a tight loop

?03.31 Illegal command used .

?04.07 No space after IF or illegal format

?04.35 Left of = in error for FOR or SET

?04.48 Excess right parenthesis
?04.56 Illegal terminator in FOR

?05.63 Bad argument to MODIFY

”206.13 Illegal use of function or number

?06.64 Storage filled by variables

?07.14 Operator missing or double E

?07.34 No operator before parenthesis

?07.<0 Double operators

?07.:1 No argument given after function call

?07.;8 Illegal function name

?08.50 Parentheses do not match

?09.16 Bad argument inERASE

?09.50 Maximum group number exceeded

?l1.20 Input buffer has overflowed

712.83 Storage filled by text

?20.4l Logarithm of zero requested
723.35 Literal number is too large
?26.9l Negative exponent used

?26.96 Exponent is too large
?28.58 Division by zero requested

?30.48 Imaginary square roots required

?3I.<7 Illegal character or unavailable command or

unavailable function used

NOTE:

The above diagnostics apply only to the version of FOCAL, 8/68, issued on

tape DEC-OS-AJAC-PB.
‘

9-56

ESTIMATING THE LENGTH OF USER’S PROGRAM

FOCAL requires five words for each identifier stored in the symbol
table, and one word for each two characters of stored program. This

may be calculated by

Ss +£2-
' 1.01 = length of user’s program

where s = Number of identifiers defined

c = Number of characters in indirect program

>

If the total program area or symbol table area becomes too large,
FOCAL typesyan error message.

’

FOCAL occupies core locations 1-32008 and 46008—75768. This

‘ leaves approximately 70'01D locations for the user’s program (indirect

program, identifiers, and push-down list). The extended functions

occupy locations 4600-5377. If the user decides not to retain the ex—

tended functions at load—time, there will be space left for approximately
‘

11001° characters for the user’s program.
'

The following routine allowsthe user to find out how many core

locations are left for his use.

*FOR 1:1,300; SET A(1) :1

?06.64
I

_

(disregard error code)

*TYPE %4, PS,
“

LOCATIONS LEFT
”

= 720 LOCATIONS LEFT "'

9-57

'

CALCULATING TRIGONOMETRIC FUNCI‘lOlSS ifi FOCAL

Argumcm Function

Funclion FOCAL Represcnlalion Range Range

Sine FSlN(A) o<w<|or4 o<|F1<I

Cosine Fcosuu o<w<m4 0<|F|<I

ngem FSINlA)/FCOS(A} o<|A|<m4 0<|F|<I076
[A1:(2N+l)r/2

Seem! l/FCOS(A) o<yA§<1m4 l<lFl<l0r6
'1741=(2N+I)v/2

Cowcufl l/FSIN(A) 0<[A|<1m4 I<|F1<xor6

l5|=2N'

Cmpnt FCOS(A)/FSIN(A) 0<lAl<lm4 0<1FI<101440
|A{=2N.

Arc tint FATN‘A/FSQTfl—«ATZJ 0<IA[<l 0<|Fl<vl2

Am cosine FAmmsé'm—szm 0<IA1<I 0<1Fl<vf2

\

Arc (Intent FATN(A) 0<A<IOT6 0<F<vl2

Arc seem! FATN(FSQT(MZ——l)) I <A<101‘6

'

o<F<v/2

Arc «Leeann FAT!“ I lFSQTUHZ—l)) 1<A<101300 D<F<1l2

Am collngem FATNH/A) 0<A<10r615 O<F<Irl2

Hyperbolic sine (FEXP(A)——FEXP(—A))/ 2 0<|A|<700 0<|Fl<5‘10t300

Hyperbolic cosine (FEXP(A)+FEXP(—A))l 2 0<|A|<700 I<F<5 “01300

Hyperbolic tangent (FEXP(A)~FEXP(-A))/ 0<|AI<700 0<lF|<l
(FEXHA) +FEXP(—A))

Hygrbolic mun! l/(FEXP(A)+FEXP(~A)) 0<IAI<700 0<F<l

Hyperbolic coucnnl 2/ (FEXNA) —FEXP(—A)) O<|A|<700 0<lF|<1017

Hyperbolic cmnngem (FEXPM) +FEXP(—A))/ o<w<700 I <|P|<1017
(FEXHA) —FEXP(~A))

Arc hyperbolic sine FLOG(A+FSQT(A12+1)) — l OtS<A< l 01‘600 — l 2<F< l 300

Arc hyperbolic cosine FLOG(A+FSQT(A12" l)) l<A< l01300 0<F<700

Arc hyperbolic tangent (mom I +A)—FLOG(1 —A))12 o<1A|<l 0<IF1<8.31777

Arc hyperbolic secum FLOGU l/A)+FSQT((l/A12)—l)) 0<IAl<l 0<F<700

Arc hyperbolic cement FLOGu l/A)+FSQT((I/A12)+l)) 0<lA|<l07300 0<|Fi<l400

Arc hyperbolic colnngem
V

(FLOGfX-H leLOGlX- l))IZ l<A<lOT616 0<F<B

9-58

Chapter [0
Q

PDP-8 Computers
in the Sciences

As a leader in the field of small, general purpose computers, Digital
is well aware of the significant impact of small computers on the sci-

ences, particularly in the way scientists Work in their laboratories and

in the way engineers design and build instruments, machines, and con-

trol systems. Scientists use PDP-S family computers as personal, pow-2

erful tools; engineers build them in as components. More computers in

the PDP—S family have been sold for these applications than any other
computer in the world. Designed particularly for online applications;
PDP-S computers embody design features that make them simple and

straightforward to interface and program for any application.

OFFLINE AND ONLINE USES
.

Before we discuss in detail the scientific applications of computers in.

the PDP-8 family, let us define two basic concepts in this regard, 0]?—
line and online.

'

A computer used to analyze data that has previously been recorded

is said to be used offline. In contrast, a computer used by a scientist to

directly collect, sample, and analyze data while an experiment is in

process is said to be an online computer. ,

There are two types of online usage. In the first type, the computer-—

usually a small model—is physically located in the laboratory. In the

second type, where the amount of data to be processed is too large for

a small computer to handle, the scientist connects his experiment to a

larger, remotely located computer; this larger computer is usually

capable of handling several users simultaneously, i.e., on a time—shared
basis. A variation of this second type of online usage is to connect a

10—1

small computer situated in the laboratory to a larger, time-shared com-

Duter at a remote location.

Ofl’line use of a computer reduces computation time as compared to

manual calculations, but offers few other advantages. On the other

hand, an online computer permits the scientist to participate to a

greater degree in his experiment. The results which he constantly re-

ceives during the course of his experiment allow him to make certain

choices on the spot. He may call for a more intensive investigation of

interesting results, extend the scope of his experiment on the basis

of developing information, or even instruct the computer to look for

and investigate interesting phenomena automatically during the experi-
ment.

DATA COLLECTION

Frequently, an experiment involves the measuring of a “signal” that

is continuous, although it may vary in amplitude, frequency, or both.

This signal must be converted into an electronic signal before it can be

processed by any type of computer, whether analog or digital; this con-

version is usually performed by a transducer or a potentiometer, and,
if necessary, the signal is then amplified by a high-gain amplifier. In

the case of digital computers, the analog signal thus produced must be

further converted by connecting it'to the input channel of an. analog—

to-digital (A/D) converter to digitize the signal. The A/D converter

changes a signal varying continuously with time to a series of discrete

numeric values. This conversion, known as “sampling a signal,” can be

performed at many points in time during the experiment.
In addition to converted analog inputs as described above, a digital

computer can accept digital or contact-closure information. Process—

related on/ofi signals such as alarms, limit indications, and selector

switch settings can then be correlated with the analog data. Direct

digital transducers (e.g., digital shaft position encoders) can interface

to digital input channels without the intermediate A/D conversion.

Once the inputs are brought into the computer, the data can be veri-

fied, manipulated, formatted, and displayed in a variety of ways. The

arbitrary voltage or frequency readings from the A/D converter can be

compared against limits and converted to meaningful units (e.g., 3.26

millivolts from one sensor may correspond to +132°F; the same volt-

age from another sensor might represent 84 gallons per minute).

Through programming, input data can be compared, sorted, arranged
'

in labeled columns along with the time of reading, and displayed on a

10-2

Teletype printer or cathode ray tube. Data can be accumulated and

then written out on some peripheral medium for later analysis ofiline.
Communications linkages allow data to be sent to remote processors
as it is collected.

'

DATA ANALYSIS
'

The computer can be used to analyze collected data to obtain arith-

metic means, medians, variances, deviations, correlations, regressions,
factors, etc., between one group of responses and another. Large sta-

tistical evaluations can be made either online or offline, depending

4_

upon their complexity. A set of data can be compared with a pre-

v1ously collected data set, a user determined standard, or a component

within the sample itself. The user can specify the number of places of

accuracy he requires and have all calculations performed to this limit.

DATA DISPLAY

Using an online computer, the experimenter can display his data

while the experiment is running. Data can be displayed in a meaningful

format such as columnar listings on the line printer or as graphs on

an incremental plotter or cathode ray tube oscilloscope.

COMPUTER INSTRUMENTATION CONTROL

To illustrate the automation of instruments in the lab by a computer,
the following elemental example of data collection, analysis, and in-

strument control is. given. The application consists of controlling the

pressure of a liquid within a pipeline, as shown in Figure 10-1. There

are four valves available for controlling the flow. A pressure gauge

transmits the current pressure. Assuming that the pressure is to be

always kept below 20 lb/sq.in., the flow chart in Figure 10—1 shows

the processing involved.

LABORATORY AUTOMATION

In laboratory work, the computer offers many advantages besides

just those of faster numeric computation. It can be programmed, to

make judgments based on data as it is received. For example, it can

skim areas of little interest and concentrate on more promising areas.

The results of a general scan can be viewed by the experimenter while

a more detailed scan of Some particular area is being performed. Also,

procedures can be modified or even terminated prematurely as the

progress of the experiment dictates.

10—3

TO
COMPUTER

AID CONVERTER
PRESSURE
GAUGE

NO

OVRZO

Figure 10-1.

V1 V2

INITIAL
OPENING VALUES

READ IN

CURRENT

PRESSURE

PRESSURE YES

5 20 PSI

‘?

STEP TO NEXT

DESIGNATED VALVE
IN SEQUENCE

(56.1, 2,3 ,4,I,2)

INCREASE
OPENING VALUE

BY SET
AMOUNT

OPEN DESIGNATED

VALVE TO

OPENING VALUE

PIPELINE SCHEMATIC

RETAIN

VALUES
START

RING ALARM

PRESSURE CONTROL

FLOW CHART

Example of Computer Instrumentation Control

10-4

Such flexibility is not possible with fixed-program devices; these '

devices cannot vary their operations even though meaningful data is

not being collected. An instrument under the control of a computer, on

the other hand, can be made to find the proper areas of study. In addi-

tion, a readout device may be used to inform the experimenter of what

is happening and signal him immediately of any unusual results.

Computerizing instrumentation is a major step forward in laboratory
automation, but the loop between input and results can be closed even

further. For example, in the clinical laboratory, personnel shortages
and increasing hospital populations have placed an unprecedented
burden on the pathologist. This burden has been relieved by a clinical
computer, which can receive testing instructions, start and stop inStru—

mentation, analyze the data, log the dataIn a precise format, correlate

the data with other physiological information, send the correct informa—

tion to a ward, coordinate with other departments, and keep accurate

and complete records

The PDP—8 family of computers has become increasingly important
in this field of analytical instrumentation in the laboratory. Currently,
PDP—8 computers are being used in a variety of applications because

of their ability to process large numbers of chemical analyses repeti—
tively on samples with a standard matrix and a relatively narrow varia-

tion between samples. A sampling of these applications is given below,

Gas-Liquid Chromatography
The GLC—8 computer-based system can simultaneously handle 20

laboratory gas or liquid chromatographs. The system automatically
detects peaks and shoulders, calculates peak areas and peak retention

times, allocates peak overlap areas, corrects for baseline shift and

applies response factors. Using stored analysis tables as internal

standards, peaks can be identified and the percentage of each com—

ponent determined. GLC-S prints out a complete analysis report,

including retention time, peak area, component percentage and toler-

ance. Analysis time is saved, human errors reduced, and efficiency of

instrument use greatly increased. Types and sampling rates of chromato—

graphs can be mixed, analysis tables can be calibrated and updated

automatically, and instantaneous analysis reports to remote locations

can be provided. GLC-S is designed primarily for use with gas or

liquid chromatographs, but may be used with other analytical instru-

ments, such as amino—acid analyzers, that use the same method of

analysis.

10~5

Pulse Height Analysis
-

,

‘PHA-S is a complete computer system for single— or mum-parameter

analysis. It can gather, store, display, and analyze energy or time-of-

pop
»

compursn

PAPER PAPER
TAPE TAPE

PUNCH PUNCH

“57"“ car

“Em-€33" mspuw

T002 NUCLEAR

mspuw INTERFACE

m.
oumm 1E

Dem“
CHANNEL

NUCLEAR ADC DETECTOR

Tues
DECTAFE

1/0 BUS ,

Figure 10-2. Computer-Based Pulse Height Analysis System

flight spectra and record the results on a variety of output devices.

Using analog-to—dig’ital converters, FHA—8 can be configured with

4,096 to 32,768 channels for spectra storage. With optional mass

storage devices, systems can be set up to run multiple experiments auto-

matically, store results from each experiment, and retrieve them upon

command. Background counts can be subtracted, spectra compared,
one spectrum subtracted from another, and energy calculations per-

formed. Oscilloscope subsystems may be used to generate contours,

isometrics, and area-of—interest displays. The computer can also be

used to rotate axes, integrate areas between markers and under peaks,
calibrate energy versus channel number, and fit curves.

10—6

Mass Spectroscopy
The extremely high data rates required in high resolution mass

spectroscopy are easily handled by PDP-S‘ systems. With sampling
rates above ZOKHz, the computer can scan 500 or more peaks with

from 20 to 50 points per peak. The computer can also be used to con—

trol the sweep of the magnet, providing lower data rates and increased

accuracy when desired. Centroid calculations, to determine peak posi-
tions accurately, may be performed while the scan is taking place.

In low and medium resolution mass spectrosc0py, where the analyst
has much slower data rates, the computer can generate a mass map to

determine integer mass units. The computer can be connected to mag—

netic deflection, time-of-flight‘ (TOF), or quadropOIe mass spectrom-
eters to observe ion current versus voltage potential.

MASS
SPECTROSCOPE

’BULK
STORAGE

MULTQPLEXER

COMPUTER TELETYPE

. [I

tr“ 1

CLOCK

Figure 10-3. Computer-Based System for Mass Spectroscopy

Nuclear Magnetic Resonance (NMR) Spectroscopy
Adding a PDP—8 computer-based system to an NMR spectrometer ,

significantly benefits the analyst in the collection, analysis, and presen-

tation of the data. In the data collection phase, the computer system

provides for more capability than a hard—wired signal averager, allow-

ing online selection and examination of key areas. of interest and-

improved sensitivity. In the analysis phase, corrections may be applied,
and Fourieraanalyses performed directly without prior storage or read—

out of the data. The computer can also be used to reduce the spectra
to compact form so that they may be stored, retrieved, and compared
with other data. 'Spin simulation may be calculated on relatively
complex spectra.

10-7

Absorption: Spectroscopy
PDP-8 computer—based systems decrease noise by mathematical

smoothing, locate the position of maximum absorption, and auto-_

inaticallv record the absorption value. With the computer, the analyst

can easily apply background and frequency corrections: 100% and

zero line, wave number, ordinate (percentage transmittance), slit
function, and tracking error. The computer permits the analyst to

determine integrated band densities, resolve poorly separated bands,‘
and synthesize hypothetical spectra—all while the sample is being
run. The computer also performs difierence analyses (subtracting one

spectrum from another), automatically replots spectra, tabulates peak
data, and identifies peaks by searching a spectrum library in the

computer’s memory.

RECORDER

RATE VETER

’* -— —

VOLTAGE ma
CURRENT

—-—-Dl PRINT CONTROL P” — ——

DIGITAL PUNCHED

PRINTOUT PAPER
TAPE TAPE .

Figure 10-4. Computer-Based X—Ray Diffraction System

X-Ray Diffraction

A PEP-8 computer-based system enables the analyst to obtain more
‘

reliable data by allowing him to correct errors caused by accidental

changes m experimental setups; it also corrects for occasional slippage
of the sample as it is held in the *path of the X-ray. To do this, the 3

computer is directed to analyze the data as it is received and to com—
’

10-8

pare it with previously established Standards stored in memory. New

measurements that deviate from the stored information generate new

input control signals used in positioning the crystal.

Time-of-Flight Analysis
PDP—S systems are available for performing time—distribution studies

for three types of experimentation: velocity measurements to determine

energies, life-time measurements to determine identities of unstable

particles, and time-coincidence measurements to seek correlations be—

tween events occurring near each other in time. All systems provide
scalars that allow them to collect data at high neutron counting rates,

to process several events during each cycle of the accelerator, and to

eliminate cumbersome deadtime corrections. Time—measuring sections

are available for low—energy particle experiments with channel widths
,

down to 0.1 microsecond. For high—energy applications, there are total

systems that include commercially available time-measuring sections.

1

OTHER APPLICATIONS

The efficiency, accuracy and speed of any instrumental analysis can

be significantly increased by including a PDP-8 computer in the

experimental system to control the sequence of events and record and

analyze the accumulated data. A PDP-S computer can be easily inter—

faced to a wide range of analytical instruments, including tensile testers,

electron microprobes, ultracentrifuges, microdensitometers, liquid scin-

tillation counters, and, emission spectrographs. Extensive uses in the

physical, life, and natural sciences have included the following applica-
tions.

Field Typical Applications

PHYSICS High- and low-energy studies. Coupled to

flying spot scanners, nuclear detectors and

counters, mass spectrometers, bubble

chambers, X-ray diffractometers,
and ac-

celerators

NUCLEAR Used at a radiation lab online for readout,

REACTIONS . display, and graph plotting. Can monitor

a dual system at a nuclear reactor site.

10—9

Field

GAMMA—RAY

SPECTROSCOPY

ELECTROCHEMISTRY

CRYSTALLOGRAPHY

NEUROLOGY

CARDIOLOGY

CLINICAL

MEDICINE

Typical Applications
Used at a testing station in conjunction
with an oscilloscope and light pen, receiv-

ing gamma—ray spectra from high resolu-

tion detectors and A/D converters.
‘

Used to investigate electrochemical phe—
nomena at the electrode-electrolyte inter-

face and to determine the chemical com—

position of steel samples.
Sets individual crystal angles of diffracto—

meter, records X—ray reflection data, and

plots crystal structure on CRT.

Used to study and determine power spec-

tra of finger and hand tremors, inter-

actions of communities of neurons, time—

interval histograms from discharges in

cerebellar units, and the effect of electrical

stimulation upon activity in the human

ulnar nerve.

In brain mapping, single cell activity With—

in the brain of a monkey is recorded

and impedance measurement data from

the brain is digitized to map brain struc-

tures on a scope.

Used to average and store changes in

transmembrane voltage of cardiac muscle

cells after external electrical stimulation,
to study the hydrodynamics and trans-

mission characteristics of the mammalian

arterial system, to evaluate by Fourier

analysis complex pressure pulses in the

aorta of mammals, to measure micro-

circulation, to evaluate velocity profiles
and viscuous losses in blood vessel walls

during pulsatile flow, and to evaluate

pressure flow relations and propagation
of pressure pulses in arterial trees of a live

subject.

Used to perform routine data processing,
record handling, and statistical research,
to analyze ECG’s to aid the brain surgeon

10—10

Field

IMAGE

PROCESSING

, BEHAVORIAL

, SCIENCES

EARTH

SCIENCES

OCEANOGRAPHY

ATMOSPHERIC

SCIENCES
'

Typical Applications
in the operating room in locating the

cerebral area in which to work, to study
Parkinson’s disease, and to aid in endo-

crine analysis.
Used to analyze photos of cells and chro-

mosomes, to estimate karyotypes, to per-

form density measurements on autoradio-

graphs, to correlate photos of vocal cord

action with the sounds made, and to per-
form photogrammetric analyses.
Used to study interresponse times and the

social, behavior of primates, to study the

operant conditioning of pigeons, to con-

trol and monitor schedules of reinforce—

ment,-to determine auditory, tactile, and_
visual responses in the human, and to

perform online psychological and se-

quence pattern tests.
'

Used in seismology and paleontology to

identify small teleseismic disturbances, to

cerrelatemultiband images from airborne

or spaceborne cameras, to combine mul-

tiple polarization radar images, to group
and separate fossils, to aid in undersea

drilling by scanning and analyzing elec-

trical signals from sensors located on the

rig floor, and to compare and correlate

oil-field brines by means of pattern anal-

ysis.
Used to process data on sea conditions,

to assist in navigation and ship control,

V

to perform oceanographic surveys, to de—

termine the, biomass in the oceans, to

measure and correlate simultaneously the

total magnetic intensity of the earth’s field,
the gravity, and the sea surface tempera—
ture at a specific location While making a

profile of the subbottom structure.

,Used to analyze air polution, to aid in

micrometeorological studies, and to an-

alyze fluid mechanic interactions.

10-11

Field Typical Applications

GEOPHYSICS Used to investigate the ionosphere, to

process telemetry data from scientific in-

strumentation in sounding rockets and

balloons, and to aid in research of solar

phenomena.
_

SPACE Used to check out guidance and control

SCIENCES
'

equipment for the United States’ largest
rockets, to perform online testing of space

satellite hardware, to decode data from

orbiting satellites, to check out scientific

payloads, to develop a solar wind spec-

trometer, to process photographic and

other signals from lunar and planetary

space probes, to handle radio telescope
control systems and collect and reduce

radio astronomy data, and to automate

optical telescope operations.

AN EXAMPLE

To illustrate the adaptation of a PDP—S computer to a scientific ap—

plication, we have selected as’an example the collecting and preproc-

essing of physiological signals by a computer for subsequent analysis
by another computer.1

A PDP—8 program was writtentto receive and preprocess as many

as eight physiological signals simultaneously from a monitored patient
(or individual signals from up to eight patients). Inputs are analog

signals, which are sampled 500 times/sec. and digitized. The program

performs a code recognition of each signal and temporarily stores this

and subsequent data on a drum until the number points required for

the analysis have been accumulated. Concurrently with other instruc-

tions, the data break facility allows short blocks of data to be written

on the drum or long blocks read back into core. The long-block data

(referred to as a “lead”) ,
needed to perform the analysis, is relayed via

1 The information in this section was extracted from a paper in “DECUS Pro-

ceedings, Fall, 1967” submitted by Miss Maxine L. Paulsen of the Medical

Systems Development Laboratory, Washington, DC.

lO—12

an interface to the other computer, which transfers the data to magnetic

tape. The tape is then used as input to a third computer, which con-
_

solidates, analyzes, and interprets the signals for each patient. The

operations of all three computers are carried on simultaneously once

the first input tape is written.
‘

The Preprocessing Hardware

The equipment used in this application is a DIGITAL Preprocessing
System F, which includes the following components.

‘

A 12K PDP—8 Processor

One Type DMOI Data Channel Multiplexer
One Type RMOSE Serial Magnetic Drum

One Type 139E General Purpose Multiplexer Control

One Type 138E General Purpose A/D Converter

One Programmable Real Time Clock

One Signal Input "Routing Network Package (includes 24 Type
A103 Multiplexer Switches and 64 Amplifier Mounting Boards)
One High—Speed 2-Way Interface to the other computer
One Interrupt and Skip Logic feature with 8 Program Flags

Also included in the system, but not used in this particular application,

.
were one Type TCOl DECtape Control Unit, two Type TUSS DEC-

tape Transports, and one PCOI High~Speed Paper Tape Reader and

Punch.

. lnput/Output Specifications for the PDP-S Program
The input to this program is any physiological signal that is pre-

ceded by 3 or 13 BCD digits represented by square waves. Data. can

be received on up to eight channels simultaneously. The data are digi-
tized to a precision of 10 hits while being sampled at the rate of 500

times/sec. The output from this program is the “long block” transferred

to the other computer via the high-speed interface. The other computer

inputs the “long block” data, writes it on magnetic tape, and then sig—
nals the PDP—S that it is ready for another block. This long block. has

two words for channel identification, 13 words for the recognized BCD

digits, and ”2,032 data points from the signal. These data points are

used in the analysis of the signal by the other computer.

Timing and Storage Considerations

An input block size of 128 words was chosen; eight blocks this size

(allowing one for each channel) can be transferred from the core to

the drum faster than the next eight blocks Can be brought in from

the A/D converter (it takes the same amount of time to transfer one

or eight blocks into core, because of the sampling rate). Two blocks,

10-13

128 words each, are reserved in core for each channel and are utilized

in a double-buffered manner so that data is being written out of one

block onto the drum while at the same time data is being read into the

other block from the A/D converter. The block size was chosen from

the timing table given in Table 10-1.

Associated with these blocks is a “Block Ready Table,” which keeps
a record of all blocks to be written on the drum; because- of the al-

ternating use of the blocks as described above, only one block for each

channel should appear in this table at any one point in time. The en-

tries recorded in the table are in the form xxOc, where xxOO is the

starting address in core of. the block to be written, and c is the asso-

ciated channel and is used indirectly to determine the starting location

on the drum where the block is to be written. Once the block is writ-

ten, the entry in the table is replaced by zeros. Two pointers are asso-

ciated with this table to ensure that the first block read into core is

the first block written out on the drum. Pointer 2 gives the location in

the table where the next block ready is to be recorded; pointer 3 gives
the location in the table which contains the location in core of the next

block to be written on the drum. The pointers travel through the table,
with pointer 3 following pointer 2, until the end of the table is reached;
then the pointers circle back to the beginning of the table again (see

Figure 10-5).

For each channel, sixteen 128-word blocks are accumulated on the

drum in consecutive locations to make up a “lead” to be read back

into core, and then transferred to the other computer. As in the pre-

ceding discussion, there is an associated table, called a “Lead Ready
'

Table,” used to keep a record of all “leads” ready to be transferred.

This table has 64 entries. (the number of leads that can be stored on

the drum—a maximum of eight leads per channel). The entries in

this table are. of the form yny, where yyOO is the starting location on

the drum of the lead, and f is the field (f is set-to 4 for field 0 to avoid

having an entry of 0000 when the lead starts at location 0000, field 0).
When a lead has been read into PDP—S core from the drum and trans-

ferred to the other computer, that entry in the table is set to 0000.

As with the other table, two pointers are also associated with this table.

Pointer 0 points to the location in the table where the next lead to be

completed is to be recorded; pointer 1 points to the location in the

table which contains the location on the drum of the next lead to be

read and transferred. This arrangement ensures that the leads are

transferred in the same order they are completed (see Figure 10-5).

10-14

Program Initialization

The program begins by clearing all peripheral equipment flags.

Next, the usual initialization, such as clearing tables, setting counters

and initial exits, etc, is done. Then, the drum flag is set by writing a

sector on the drum. The clock is set to interrupt 500 times/sec. The

program halts and, when everything is ready, the CONT (continue)

switch is pressed. The clock is started, the interrupt turned on, and the

program is sent to the write routine, where the first interrupt will occur

(see Figure 10-6).

Program Interrupt Service Routines

The interrupt is oil during interrupt servicing.
Answer Interrupt Routine. The clock interrupt flag is cleared, the

contents of the accumulator are saved, and the return from interrupt
is set up (see Figure 10-7).

A /D Service Routines (one for each channel). A value from the signal
is digitized (0 through 10 bits) and stored, right adjusted. When all

channels have been serviced, the program goes on to test the eight
words just read in (see Figure 10—7).

Test Routines or Path Selector {one for each channel).
EXITl — “No data” path. Originally set to come to this exit. As soon

as a nonzero value is receiVed on this channel; EXIT2 is set

(see Figure 10—8).

EXIT2 — “Code recognition” path. While set to this path, the data

values are examined point by point, and the BCD digits rep-

resented by the square waves are recognized. After the re-

quired number of digits have been found and stored in the

first block for a “lead,” EXIT3 is set (see Figure 10-8).

EXIT3 — “Data store” path. The first block of data has two words

for channel identification; thenext 13 words are for the

BCD digits just recognized; the remaining 113 words are

filled with data points from the signal. When these 16 blocks

(a “lead”) have been input, EXIT2 is set to wait for the

next BCD code. As each block is filled, it is recorded in

the “Block Ready Table,” pointer<2 is incremented, and the

functions of Block 1 and Block 2 are switched (see Figure

'10-8).

Exit from Interrupt Service. When each of the eight words is processed,»
the interrupt is turned on, and the program returns to where it was

previously interrupted (see Figure 10—8).

10-15 .

Program I/O Routines

Drum Write. By using pointer 3, the program checks the “Block Ready
Table” to see if there are any blocks to write. If not, the program

goes to the Drum Read routine. If there are, the block is written from

the starting core location XXOO given in the table to a location on the

drum found indirectly by using the channel number c, which is also

found in the table entry. After writing, the entry in the table is set to

0000 and pointer 3 is incremented. The drum location for this channel

is appropriately advanced. When 16 blocks have been written, a “lead”

has been stored on the drum. It is recorded in the “Lead Ready Table”
in the location indicated by pointer 0; then pointer O is incremented.

The program then goes back to the beginning of this routine to see if

there are any more blocks to write. See Figure 10~9.

Drum Read. By using pointer 1, the program checks the “Lead Ready
Table” to see if there are any leads to read and transfer. If not, the

program goes to the Drum Write routine. If a “lead” is ready, and the

last transfer is completed, the “lead” is read in from location and

field yny of the drum into the space reserved for a “lead” in core.

Then, this entry in the “Lead Ready Table” is set to 0000, and pointer
1 is incremented. See Figure 10—9.

Transfer to Other Computer. The program sets up and initiates the
transfer of the “lead” from the PDP8 core to the core of the other

computer, then goes to the Drum Write routine. See Figure 10-9.

Table 'l0-l. Example Timing Table

Block Size Drum Transfer Time Data Input Time

(#1: words) Core Drum A/D Core

(max. access time = 17.3 ms)

1 Channel 8 Channels 1-8 Channels

16 17.3 + 0.25 : 17.55 ms 140.4 ms 32 ms

64 17.3 + 1.00 r: 18.3 ms 146.4 ms 128 ms

1281 17.3 + 2.00 : 19.3 ms 154.4 ms 256 ms

256 17.3 + 4.00 : 21.3 ms 170.4 ms 512 ms

512
‘

17.3 + 8.00: 25.3 ms 202.4 ms 1024 ms

1024 17.3 + 16.00 = 33.3 ms 266.4 ms 2048 ms

lThe input size used in this application, because 8 blocks in the least

number of blocks that can be written on the drum in less time (154.4 ms)
than it takes to read them into core (256 ms).

10—16

Example of block

ready table

LOC CONTENTS

0042 0165 (Pointer 2—where to

record next block

ready) .

0043 0161 (Pointer 3-—the next b]

to be written on the

drum) 3

________ xxOc

r xxOO =

i starting loo.

3' in core 0f

r0160‘0000
‘

block

'
, c 2 channel ‘

'
0161 4201

number (0-7)
I 0162 4402 '

I BLOCK

| 0163 5406
'

READY

} 0164 5607 TABLE

'. 0165 0000

:3 0166 0000

L0167 0000
J V

Example of lead

ready table

LOC CONTENTS

0040 3006 (Pointer O—where to

record next “lead"

ready)

0041 3002 (Pointer 14—016 “lead”

to be read and

transferred next)

r

' '

yy =‘=

[93000’0'000
N“

starting loc-
'

on drum of

:
3001 0000

‘ “lead” (2048

.
3002 0040

_

words

.
4 f = drum field

I 3003 0010 0(24) orl

l
'

.

I
3004 2210 LEAD

I 3005 4040 READY

i
3006 0000 v >

TABLE

I
O

l o

i .

I 3075 0000

g 3076 0000

l—3077 0000)
'

Figure 10—5. Examples of “Block Ready” and “Lead Ready” Tables

lOF INITIALIZE
'

(Ad)

SET DRUM FLAG

SET CLOCK T0

lNTERRUPT 500
TIMES/SEC.

SET CLOCK

ION

Figure 10-6. Example of Initialization

10-17

A/D SERVICE (0-7)

CLEtR CLOCK

INTERRUPT FLAG

SA‘IE (ACI
SET RETURN I

CONVERT AND

aSTORE EIGHT

C=O

WORDS
IO-BIT PRECISION)

Figure 10-7. Example of Interrupt Answering and A/D Service Routines

C=0,l,..-7 A=|.2.3

RESTORE (AC)
ION

—- -_-, ——~———o

STORE THE .

FINISHED YES fiflfgflgg’fi
WITH CODE DI TEST

neoommou INPUT BLOCK fen cH
YET THIS "LEAD'

SET A: 3
no

CONTINUE TO
‘_—‘

RECOGNIZE CODE

(3 OF! I3 DIGITS)

BLOCK DONE

(128 WORDS)
'7

READY ”0c IN

"BLOCK READY

TABLE"ADVANCE
POINTER 2

SWITCH BLOCKS

Figure 10-8. Interrupt Service

10-18

WRITE BLOCK ON

DRUM IN PROPER
LOCATION

“fie
CORD y

Q R
TABLE ADVANCE

POINTER 0

w

ADVANCE DRUM

LOCA'HONS

15 PREV.

TRANSFER TO "‘33

SET ENTRY= O

IN "BLOCK READV

TABLE" ADVANCE

POINTER 3

DRWRE

READ IN "LEAD"
(2049 WORDS)

SET ENTRY-O

IN "LEHAD READY
TABLE ADVANCE

POINTER 1

SET UP FOR

TRANSFER AND

INTERRUPT OTHER

COMPUTER

Figure 10-9. I/O Routines (Interrupt is on)

10-19

10 -20

Chapter II

Digital Ermipment
Computer Users

Society

OBJECTIVES

Digital Equipment Computer Users Society (DECUS) was estab-

lished to advance the effective use of Digital Equipment Corporation’s

computers and peripheral equipment. It is a voluntary, non—profit users

group supported by DEC, whose objectives are to:

advance the art of computation through mutual education and

interchange of ideas and information,

establish standards and provide channels to facilitate the free: ex-

change of computer programs among members, and

provide feedback to the manufacturer on equipment and program-

ming needs.

The Society publishes a newsletter, DECUSCOPE, every two

months, sponsors technical symposia twice a year (Spring and Fall),

maintains a program library, and publishes proceedings of its symposia.

DECUS PROGRAM LIBRARY

The DECUS Program Library1s one of the major functions of the

users group. It is maintained and operated separately from the DEC

library and contains programs contributed by users. Programs are avail-

.

able for the PDP—8/I,—8/L,-8/S, and -8. (Programs are also available

, for the PDP-l, PDP-4/7/ 9, PDP-6/ 10, PDP-S, LINC, and LING-8.)

The library contains many types of programs, such as executive

routines, editors, debuggers, special functions, games, maintenance, and

various other classes of programs.
»

11-1

Programs for the PDP-8 family and the PDP—S are listed later in

this chapter together with abstracts of a few programs that are fre-

quently requested by users.

Another feature of the program library is “Programs Available from

Authors.” This was initiated in order to allow users access to pro-

grams which are not fully documented or fully debugged but which

are working to a certain extent. These programs are announced period-
ically in DECUSCOPE with information as to where they may be ob-

tained. The Program Library Catalog'also contains a section describing
these programs.

Forms and information for submitting programs to the library may

be obtained from the Executive Secretary. Any user may submit a pro-

gram which he feels will be of use to others. Specifications for pro—

grams to be submitted are fairly simple. It is required, however, that

documentation and operating instructions be clear. An object and

symbolic tape of each program submitted is desirable.

Programs are available to all members on a request basis. Requests
for programs should be made on DECUS Library request forms and

directed to the DECUS Program Library.

Programs submitted to the library are reviewed by the Programming
Committee before being placed in the library. A review checklist is

sent out with each program for evaluation by the user. Noteworthy
comments and suggestions on DECUS programs are published in the

newsletter. Certification of programs is under the jurisdiction of the

Programming Committee.

The library presently contains 351 programs. In 1967, 8815 pro-

grams were issued to requestors, and 127 programs were submitted to

the library.

DECUSCOPE

DECUSCOPE is the Society’s technical newsletter, published since

April, 1962. The aim of this informal news “scope” is to facilitate the

interchange of information. The majority of articles are contributed

by the users who are invited to submit ideas, programming notes,

letters, and application notes for publication. DECUSCOPE is mailed

every two months to members and others interested in DEC’s compu-

ters and DECUS. Circulation reached 3,200 copies per issue in April,
1968.

Forms for submitting material to DECUS (newsletter or library) are

available from the Executive Secretary.

11-2

ACTIVITIES

Two nation-wide symposia are held each year—one in the SPRING

and the other in the FALL. Regional seminars and workshops are also

held periodically. The proceedings and papers presented at the sym-

posia and seminars are published shortly after each meeting and are

sent automatically to meeting attendees and upon request to others.

DECUS sponsored the first workshop meeting of the Joint Users

Group of the Association for Computing Machinery in April, 1966,

and has actively participated in workshops held each year since. The

purpose of the Joint Users Group meetings is to establish means for

intercommunication among user groups.

DECUS is also a member of the Joint User Group Library Catalog

Project sponsored by JUG. This catalog contains lists of programs

available from several major user groups. Members of the participating
user groups will be eligible to request program documentation from

other groups through their Program Interchange Chairman, i.e., for

DECUS members, the DECUS Executive Secretary. Specific details

on this interchange program are available from the DECUS office.

DECUS encourages subgroupng of users with common interests.

Special interest groups, such as the following, have been formed.

European Users have formed a group electing a committee to for-

mally organize meetings annually in Europe. They have held three

meetings to date with proceedings being published for each meeting.

The Education Sub-Group, organized in the early months of 1968,
held their first technical session and sub—group Workshop at the DECUS

Spring 1968 Symposium in Philadelphia, Enthusiasm ran high, and

- chairwoman Mrs. Judith Edwards of Computer Instruction NET-

WORKis highly confident that they will be an extremely active and

productive group.

UsersIn the Biomedical field have expressed the desire to hold meet-

ings specific to their field. Sessions with papers presented in this area

‘

were held at two DECUS meetings, and a separate Biomedical Seminar

was held in New York City in 1967. A formal sub—group with a chair-

man has not been formed at this time, but it is hoped that such a group

will be organized in the near future.

Information on how to join or formally organize a sub-group may

be obtained by contacting the DECUS Executive Secretary.

.11-3 .

MEMBERSHIP

Membership in DECUS is voluntary and does not require the pay—
ment of dues. Members are invited to take an active interest in the

. Society by contributing to the program library, to DECUSCOPE, and

‘vby participating in its meetings and symposia. There are two types of

membership in DECUS Installation Membership and Individual Mem-

bership.
'

I

Installation Membership
An organization which has purchased Or has on order a computer

manufactured by Digital. Equipment Corporation15 automatically eligi-
ble for installation membership in DECUS. Membership status is ac~

quired by submitting a written application to the Executive Secretary
.

for approval by the DECUS Board.
Y

An organization may appoint one delegate for each DEC computer
owned. The delegate should be one who is immediately concerned with

the operation of the computer he represents and who is willing to take

an active part in DECUS activities. He is entitled to vote on all DECUS

policies and during the election of. officers. The delegate receives

DECUS literature automatically and library programs upon request.

A three-ring binder containing information and forms pertinent to

the users group is sent to each delegate upon acceptance into the So-

ciety. The binder prov.:des a convenient means for maintaining and

updating DECUS literature. It contains such material as bylaws, news-

letters, library catalog, forms for submitting and requesting material,
indexes of newsletters and proceedings, etc.

Individual Membership
There are two classes for individual membership:

1. Individuals desiring membership in DECUS who are employed
at an installation but are not appointed delegates.

2. Individuals who have a direct interest in DECUS or DEC

computers but are not employees of a DECUS installation

member.

An individual member18 not entitled to vote on DECUS policies or

during elections. They receive on an automatic basis only the news—

letter and Program Library Catalog. They can, however, receive other

DECUS material on a request basis.

Written application indicating desire to join must be submitted to

the Executive Secretary for approval by the DECUS Board. There is

no limit to the number of individual members that may join from either
'

an installation or a non-installation.

11-4

MEMBERSHIP —— APRIL 1968

Installation Delegates —- 1136
"

Individual Members — 1238

EXECUTIVE BOARD, POLICIES AND ADMINISTRATION

The Society’s policies are formulated by an Executive Board elected

by vote of Installation Member delegates.

The board consists of a. President, Executive Secretary, Recording

Secretary, and Standing Committee Chairmen. In addition, anon-vot-

ing representative of Digital Equipment Corporation is a member of

the board The DECUS president for the preceding year is also in-

cluded as a non-voting member of the Executive Board. 1

The Administrative oflice is located at Digital Equipment Corpora-
tion, Maynard, Massachusetts 01754, and all correspondence should

be directed to the attention of the DECUS Executive Secretary,

DECUS PROGRAM LIBRARY CATALOG

The DECUS Program Library Catalog contains lists and abstracts of
’

all programs available from the DECUS Library. Programs for all

DECS computers are included. The catalog is divided into three sec-

tions: category index, abstracts and numerical index, and “Programs
Available from Authors.” The category index“ for PDP—S/S users pro—

grams and selected program abstracts are included below. Each mem-

ber of DECUS receives a catalog automatically. Additional copies may
be requested. The catalog is updated periodically and new additions

to the library are published in DECUSC’OPE.

PDP-S, PDP-B, -8/S, -8/I, -8/L Category Index

Category DECUS No. Title

Executive Routines, 5-13 POP-5 Assembler (for use on IBM 7044/ 7094)
Assemblers and 5/8—18A,B,C, Binary Tape Disassembly Programs

Compilers 5/ 8-20 Remote Operator FORTRAN System
5/8-288‘ PAL III Modifications - Phoenix Assembler

5/ 8-45’ PDP-5/8 Remote and Time-Shared System
5/8-46a Utility Programs for the PDP-S and PDP-S

8—59 PALDT—PAL Modified for DECtape (552 Control)
5/ 8-64 DECtape Programming System
8-67 PAL Modified for DECtape Input
8/ 85—77 PDP-8 Dual Process System
8-82 Library a, . for 580 M

g

‘

Tape (P.
" '

1 Version)
8-84 One-Pass PAL 111

8-91 MICROZE: An On-Line Assembler

8-102 A LISP interpreter for the PDP-S

8-7110 Directory Print (DIREC)
8-115 Double Precision Integer Interpretive Package
8-1 16 PDP-S/Automatic Tape Control (Type 57A) Library System
8-122 , SNAP (Simplified Numerical Analysis Program)
8-123 UNIDEC Assembler

'

8424' PDP-8 Assembler for IBM 360/67

8-125 PDP-8 Relocatable Assembler for IBM 360/ 67

6/ 8-12 . POP-8 Assembler for PDP-G

11-5

PDP-S, PDPoB, 4/8, ~8/I, -8/L Category Index (cont.)

'

Category DECUS No. Title

Editors 5-24 Vector Input/Edit
8-52 Tiny Tape Editor

8-66 Editor Modified for DECtape
8-97 GOOF

8-101 Symbolic Editor With View

Debuggers 5/ 8-1.] BPAK—A Binary Input/ Output Package
52.] OPAK~An On-Line Debugging Program
S-ll PDP-S Debug System
8~l9a DDT-UP—Octal-Symbolic Debugging Program
5/ EH l Tape to Memory Comparator
5-36 Octal Memory Dump Revised

5-41 Breakpoint
5/ 8—55 PALEX—An On-Line Debugging Program for the PDP-S/ 8

5—63 SBUG - 4

8.56 Fixed Point Trace No. 1

8-57 Fixed Point Trace No. 2

8-78 Diagnose: A Versatile Trace Routine for the PDP—B

Computer with EAE

8/SS-liBAth Octal Debugging Package (With and Without Floating Point)
8-89 XOD—Extended Octal Debugging Program
8-95 TRACE, for EAB

8-105 D-BUG

8-1 1 l DISKLOOK

Punch and Loaders 5-3 A Binary Relocatable Loader with Transfer Vector Options
5.12 for the PDP-S ‘

Packqunch Processor and Reader for the PDP-S

8-26A Compressed Binary Loader (CBL)
8-263 CBC (BlN to CBL) and CONV (CBL to BIN)
8-26C XCBL—Extended Memory CBL [loader

8~26D XCBL Punch Program
5/ 8»2','&27a Bootstrap Loader and Absolute Memory Clear

8—47 ALBINaA PDP-S Loader for Relocatable Binary Programs
5/ 84“ Modified Binary Loader MKIV

8406 Readable Punch

8-120 Disk/DECtape FAILSAFE

Duplicators and Verifiers 5-16 Tape Duplicator for the PDP-S

5-22 DECtape Duplicate
5/ 8-33 Tape to Memory Comparator
5/ 8-52; COPCAT (DECtape Copy 552)
8-113 Conversion of Friden (BIA) to ASCII

Arithmetic Routines 5~4 Octal Typeout of Memory Area with Format Option
Elementary Functions, 5-6 BCD to Binary Conversion of 3-Digit Numbers

Numerical Input/ Output 5/8~7 Decimal to Binary Conversion by Radix. Deflation on PDP—B

5-8 PDP-S Floating Point Routines

5/8-21 Triple Precision Arithmetic Package
5/8-25' BCD to Binary Conversion Subroutine (73.6 usec)
5/8-351 Binary Coded Decimal to Binary Conversion Subroutine and

Binary to Binary Coded Decimal Subroutine (Double

Precision)
SIS-SE: FTYPB—Fractional Signed Decimal Type-In
SI 8-39 DSDPRINT. DDTYPE—Double-Precision Signed Decimal

Input-Output Package
542 Alphanumeric Input
5/ 8-43 Unsigned Octal-Decimal Fraction Conversion

8-44 Modification to the Fixed Point Output in the PDP-8 Floating
Point Package

8-60 Square Root Function by Subtraction Reduction

8-61 Improvement to Digital 8-947 Square Root

5/ 8-69 ”38029 and 1155011
8-72' Matrix Inversion—Real Numbers

8-73 Matrix inversion—Complex Numbers

8-74 Solution of System of Linear Equations: AX = B. By Matrix

inversion and Vector Multiplication
8-75 Matrix Multiplication~lncluding Conforming Rectangular

Matrices

11-6

PDP-S, roe-s, .s/s, .s/r, -8/L Category Index (cont)

Category DECUS No. Title

8-80 Determination of Real Eigenvalues of a Real Matrix

8-93 CHEW—Convert Any BCD to Binary-Double Precision

8-96 I Bessel Function (FORTRAN)
8—l00 Double Precision Binary Coded Decimal Arithmetic Package
8-103 A“ Four Word Floating Point Function Package
8-103 B Four Word Floating Point Rudimentary Calculator

‘

8-103 C Four Word Floating Point Output Controller with Rounding
8-l03 D Additional Instructions for Use with Four Word Floating

Point Package
8-114 Rounded Decimal Output Modification for PDP-8 FORTRAN

8415‘ Double Precision Integer Interpretive Package

_

8-118 General Linear Regression

Special Functions 8/ 88—76 PDP NAVIG 2/2

Displays 5/ 8-23A PDP.5/8 Oscilloscope Symbol Generator (4 x 6 Matrix)
5/ 8-238 PDP~S/8 Oscilloscope Symbol Generator (5 X 7 Matrix)
8-99A Kaleidoscope
8-998 Kaleidoscope - 338

8-107 CHESSBOARD for the PDP-S/ 338

8-108 Increment Mode Compiler—INCMOD (338)
8-109 SEETXT Subroutlne (338)

Text Manipulation 8-121 DECtape Handler (552 DECtape)

Probability and Statistics 5/ 8-9' Analysis of Variance PDP-S/ 8

SvZS A Pseudo Random Number Generator

Scientific and Engineering 8-49 Relativistic Dynamics _

Applications 8-65 A Programmed Associative Multichannel Analyser
5/ 869 LESQZ9 and LESQll
5/ 8-90 Histogram on Teletype
8-92 Analysis of Pulse-Height Analyser Test Data With a Small

Computer
8-117 A‘ PDP-S Interface for a Charged-Particle Nuclear Physics

Experiment
8-l18 General Linear Regression

Hardware Control S/8-l7 Drum Transfer Routine for Use on the PDP-S/s

5-30 GENPLOT - General Plotting Subroutines

5-31 FORPLOT - FORTRAN Plotting Program for PDP-S
5-37 Transfer II

5-40 ICS DECtape Routines (One~Page)
8-58 One-Page DECtape Routines (552 Control)
8-70 EAE Routines for FORTRAN Operating System
8-82 Library System for 580 Magnetic Tape (Preliminary Version)
8-l04 Card Reader Subroutine for the PDP-S FORTRAN Compiler
8-120 DISK/DECtape FAILSAFE

8-121 DECtape Handler (552 DECtape)

Games and Demonstrators 5/8<14 Dice Game for the PDP‘S or roe-s

5/8-15 ATEPO (Auto Test in Elementary Programming and

Operation of a PDP-S/8 Computer)
5/ 8-54 Tic-Tac-Toe Learning Program
8-71 Perpetual Calendar

8-79 TIC-TAC-TOE (Trinity College Version)
8-94A a: B BLACKJACK

8~98 3D DRAW for 338

8-99A Kaleidoscope
8-993 Kaleidoscope - 338

8-l07 CHESSPOARD for the PDP-B/ 338

8-108 Increment Mode Compiler, INCMOD (338)
8-ll2 Sentence Generator

8-119 Off-Line TIC-TAC-TOE (PAL)

Desk Calculators 5-5 Expanded Adding Machine

Maintenance S-lO Paper Tape Reader Test

Miscellaneous 5/8-18A,B,C Binary Tape Disassembly Program
5/8-323 Program to Relocate and Pack Programs in Binary Format

Memory Halt—A PDP—S Program to Store Halt in Most5-34

Memory

11~7

PUP-5, PDP-S, -8/ S, -8/ l, -8/L Category Index (cont)

Category DEC .13 No. Title

5/8-51) Additions to Symbolic Tape Format Generator

SI’S-Sl Character Packing and Unpacking Routines

8~683 LABEL {or PDRS

8-81 A BIN or RIM Format Data or Program Tape Generator

5/8-85 Set Memory Equal to Anything
8‘87 XMAP

8-88 DECtape Symbolic Format Generator

8-l l2 Sentence Generator

NOTE: An asterisk beside the DECUS N0. indicates that the program

abstract is included on the following pages.
'

Abstracts of Frequently Requested Programs
The following program abstracts are representative examples taken

from the DECUS Program Library Catalog. They have been selected

from among the programs most frequently requested by users without

regard for their relative merits.

DECUS No. 5/8—9

Analysis of Variance PDP-S/S

Henry Burkhardt, Digital Equipment Corporation, Maynard, Massa-

chusetts

An analysis of variance program for the standard PDP—S/S con-

figuration. The output consists of :

A. For each sample:

1) sample number

2) sample size

3) sample mean

4) sample variance

5) sample standard deviation

B. The grand mean

C. Analysis of Variance Table:

1) the grand mean

2) the weighted sum of squares of class means about the

grand mean
'

3) the degrees of freedom between samples
4) the variance between samples
5) the pooled sum. of squares of individual values about the

means of their respective classes

6) the degrees of freedom within samples
7) the variance within samples
8) the total sum of squares of deviations from the grand

mean

11—8

9) the degrees of freedom

10) the total variance

II) the ratio of the variance between samples to the variance

with samples.

This is the standard analysis of variance table that can be used with
i

the F test to determine the significance, if any, of the differences be—

tween sample means. The output is also useful as a first description of

the data. \

All arithmeticmcalctilations are carried out by the Floating Point In—

terpretive Package (Digital-S—S-S).

DECUS No. 5/8—21 _,

Triple Precision Arithmetic Package for the PDP-S and the PUP-8

Joseph A. Rodnite, Information Control Systems, Ann Arbor, Mich-

gan
‘

.

An arithmetic package to operate on 36-bit signed integers. The

operations are add, subtract, multiply, divide, input conversion, and

output conversion. The largest integer which may be represented is

235-1, or 10 decimal digits. The routines simulate a 36-bit (3 word)
accumulator in core locations 40, 41, and 42 and a 36-bitmultiplier

, quotient register in core locations 43, 44, and 45. Aside from the few

locations in page 0, the routines use less core storage space than the

equivalent double-precision routines.

DECUS No. 5/8—28a

PAL III Modifications—Phoenix Assembler

Terrel L. Miedaner, Space Astronomy Laboratory, Madison, Wis-

consin
‘

This modification of the PAL IIII Assembler speeds up assembly
on the ASR-33/ 35 and operates only with this 1/0 device. Operation
is essentially the same as PAL 111, except that an additional pass has

been added, Pass 0. This pass, started in the usual manner, but with

the switches set to zero, reads the symbolic tape into a core buffer area.

Subsequent passes then read the tape image from storage instead of

from the Teletype.

11-9

DEC’US No. 5/8-45

PDP—S/ 8 Remote & Time—Shared System

James Miller, Dow Badische Chemical Company, Freeport, Texas

A time-shared programming system which allows remote stations

immediate access to the computer and a wide selection of programs.

DECUS No. 8-72

Matrix Inversion—Real Numbers

A. E. Sapega, Trinity College, Hartford, Connecticut

The program inverts a matrix, up to size 12 x 12, of real numbers.

The algorithm used is the Gauss—Jordan method. A unit vector of ap-

propriate size is generated internally at each stage. Following the Gauss

sweep--out, the matrix is shifted in storage, another unit vector is gen-

erated, and the calculation proceeds.

Other Programs Needed: FORTRAN Compiler and

FORTRAN Operating System

Storage: This program uses essentially all core not used by the FOR—

TRAN Operating System

Execution Time: Actual computation takes less than 10 seconds. Data

read-in and read-out may take up to five‘minutes,

DECUS No. 8-103 A

Four Word Floating Point Function Package

D.A. Dalby, Bedford Institute of Oceanography, Dartmouth, Nova

Scotia, Canada

This program package, written for use with Digital’s Four Word

Floating Point Package (DEC-OS—FMHA-PB), includes subroutines to

evaluate square, square root, sine, cosine, arctangent, natural logarithm,
and exponential functions.

11-10

DECUS No. 8-115

Double Precision Integer Interpretive Package

Roger E. Anderson, Lawrence Radiation Laboratory, Livermore,

California

This program is a Double Precision Integer Interpretive Package
similar in operation to the Floating Point Package (Digital 8—5-8). It

* consists of addition, subtraction, multiplication, division, load, store,

jump and branch subroutines coupled to an interpreter. It allows direct

and indirect addressing in the normal assembly language manner. The

operation is faster and more compact than the collected individual _.

double precision subroutines. The program requires fourteen words on

page zero and an additional two pages of memory.

Minimum Hardware: Basic PDP-S, —8, —8/S or —8/I

DECUS No. 8-124

PDP~8 Assembler for IBM 360/50 and up

V. Michael Powers, University of Michigan, Ann Arbor, Michigan

The 360/PDP-8 Assembler is a collection of programs written

mostly in FORTRAN IV (G) which operate on the IBM 360/67. It

assembles programs for PDP—S and PDP—8 computers. Once a program
has been assembled, it may be punched on cards, saved in a file, or

transmitted through the Data Concentrator over data lines. It is also

possible to obtain binary paper tapes by, use of the Data Concentrator.

The Assembler follows the PAL III operation code and addressing
conventions. The input format and program listing conventions are

slightly different from those of PAL III, because it is organized around

a line format, while PAL III is organized around a paper tape format.

NOTE; Source deck and documentation only available.

11-11

11—12

Appendix A

A'Answers To Selected Exercises

Chapter 1

Answers to selected exercises on page 1710.
-

a. 2. 10010 12. 10 111 011 110

4. 1100100 14. 111 110 101

6. 1 16. 1 110 001 011

8. 1110101 18. 110 110 000‘ 000

10. 111 111 111 010 20. 11 110 101 111

b. 2. 5 10. 3641

4. 94
.

12. 4087

6. 31 14. 63

8. 55 16.’ 4095

Answers to selected exercises on page 1-14

3.. 2. 6 10.. 7777

4. 575
’

12. 7664

6. 40 14. 255

8. 3O 16. 2372

b. 2. 111011 110 10. 110100 ,

4. 1000 12. 111 111110101

6. 101 100 010 100 14. 100 101 011 010

8. .1 001 000 001 16. 1 010 100 011

c. 2. 40 8. 2500

4. 1104 10. 6005

6. 3 12. 7777

d. 2. 31 8. 4095

4. 512 10. 2431

6. 482 12. 174

Answers to selected exercises on page 1-26

a. 2. 110 8. 11 100

4. 10 111 000 10. 10 001 101

6. 1 100 12. 1 010 010 101

b. One’s Complement
,

Two’s Complement
2. 101 000 100 000

'

101 000 100 001

4. 111 111 111 111 000 000 000 000

6. 111011011011 111011011 100

8. 011 111 111 111 100 000 000 000

10. 011 110 011 001 011 110 011 010

12. 000 000 000 000 000 000 000 001

c. 2. 101 000 101
“

4., 11 001 110 101

d. 2. 110 110 010 4. 1 010 011

F‘

czar-he

.QPNPPPPPNPS"
111 010 001

100

70

1 10

42

7

667

2767

204

433,254

172,166

Chapter 2

Answers to selected exercises on page 2-28

1. The locations listed in parts b, f, g, h, and i must be addressed in-
‘

directly. All others may be addressed directly.
2. a.

b

c.

d

e

f.

Group 2

. MRI

Group 1

. Group 1

. MRI

Group 2

6. 1331

8. 3623

6. 205

8. 1105

6. 25

8. 112

(SZL)

(AND)

(CLA CMA)

(NOP)

(JMS)

(SMA CLA)

. Parts a, c, and e contain digits which can not be represented with

binary numbers. Part b has too many digits to be represented by
12-bits. Part (1 is a legal instruction if a leading zero is assumed.

.a.

C.

r...

mops:

AND 0

152 Y

DCAIY

.TAD 30

JMP Y

SZA

. SPA SNA

. CLA SPA S-NA SZL

The logical AND of the AC with the contentsof

location 0 replaces the accumulator.

Increment the contents of location 100 on the

current page and skip the next instruction if the

contents become 0 after the incrementation.

Deposit and clear the accumulator indirectly into

the location whose address is contained in loca-

tion 100. .

Two’s complement add the contents of location 30

to the accumulator.

Transfer program control to location 73 on the

current page of memory.

. CLA CMA CML

6. Program:
» After Execution

7200 Location Content (octal)

,

1205 AC 0000

1206 205 1537

3207 206 2241

7402 207 4000'

1537

2241

0000

a. 7360

c. 7710

e. illegal One instruction may not be used to rotate once and
'

rotate twice at the same time. On the PDP-8 and

PDP-S/ S it is also illegal to combine an increment

and a rotate microinstruction, thus part d is legal on the

PDP-S/ I and PDP-S/ L but it is illegal on the PDP-8

and PDP-S/ S.

g. illegal Oneuinstruetion may not include members of both skip
groups.

i. illegal One instruction may not combine microinstructions from

Group 1 and Group 2.

. sZA
- SKP

10.

SNL

Instruction to be skipped

. Any testing of the accumulator is done before the OSR instruction

is executed. ,

a. Location Content , Octal

200 CLA
'

V,
7200

201 TAD 210 1210
202 TAD 211 » 1211

203 DCA 212
_

3212
,

204v HLT 7402

210 0002 0002

21 1
'

0010 0010

212 0000
'

0000

b. Location Content Octal

400 CLA 7200

401 , TAD 550 1350

402 DCA 552 3352

403 TAD 55 1 1 35 1

404 DCA 550 3350

405 TAD 552 1352

406 DCA 5517 3351

407
‘

.

HLT 7402

A—3

Chapter 3

Answers to selected exercises on page 3-34

1. / SUBROUTINE TO ,SUBTRACT TWO NUMBERS

*200 0

START, CLA CLL

TAD K1200

J MS SUB

1500

HLT

*300

SUB, 0

CIA

TAD I SUB

ISZ SUB

J MP I SUB

K] 200, 1200

$

23..

/ LOAD LOCATIONS 2000 TO 2777

*20()

START, CLA CLL

TAD K2000

DCA LOCPTR

DCA COUNT

DEPOSIT, TAD COUNT

DCA I LOCPTR

ISZ COUNT

ISZ LOCPTR

TAD LOCPTR

TAD M3000

SZA CLA

JMP DEPOSIT

HLT

COUNT, 0

K2000, 2000

LOCP'TR, 0

M3000, -—3000

$

4. / TRIPLE“, PRECISION ADD

*200

TRIADD‘, CLA CLL

TAD AL

TAD BL

DCA ANSL

RAL

TAD AM
'

TAD BM

DCA ANSM

A—4

RAL

TAD AH

TAD BH

DCA ANSH

HLT

AH, 1 21 1

AM, 03 14

AL, 71 25

BH,‘ ‘\ 0114

BM, 4157

BL, 0176

ANSH, 0

ANSM, O

ANSL, 0

$.

/DOUBLE PRECISION RESULT

*200»

START,
‘

CLA CLL

,

TAD A

CIA

DCA MINUSA

TAD B .

SZL

ISZ CH

NOP

CLL

ISZ MINUSA

JMP .'—6

DCA CL

HLT
MINUSA, 0

A, V 0011

B, 1234

CL, 0

CH, 0

$,

/ DOUBLE PRECISION MULTIPLE OF 2

*200 ,

START, CLA CLL
- DCA NH

TAD EXP

CIA

.

-

DCA MINUSE

ROTATE, TAD N

RAL

DCA N

TAD NH

RAL

DCA NH

A—S

CLL

ISZ MINUSE

J MP ROTATE

HLT

N, 1234

NH, 0

EXP, 3

MINUSE, 0

$ 0

/HOW MANY NEGATIVES?

*200

START, CLA CLL

DCA NEGS

TAD K2777
DCA 10

TAD M1000

DCA COUNT

TEST, TAD I 10

SPAV CLA

ISZ NEGS

ISZ COUNT

IMP TEST‘

TAD NEGS

HLT

NEGS, 0

K2777, 2777

M1000, —-1000

COUNT, 0

$

/ 20 SECOND DELAY

*200

START, TAD. CONST

DCA COUNT

TAD CONSTI

DCA COUNTI

ISZ COUNTI

JMP .-—1

182 COUNT

IMP .—-3

HLT

CONST, 5703 / —1084 DECIMAL

COUNT, 0

CONSTI, 44 /36 DECIMAL

COUNT], 0

9. / 20 OR 40 SECOND DELAY
*200

START,

, DELAY,

CONST,

COUNT,
CONSTl

,

COUNTI ,

M2

TW’ICE,

Chapter 4

CLA CLL ’

TAD M2

HLT

OSR

DCA TWICE

TAD CONST

DCA COUNT

TAD CONSTI

DCA COUNTl

ISZ COUNTl

JMP .—1

ISZ COUNT

JMP .—3

ISZ TWICE

JMP DELAY

HLT

V

5703

0

44

0

-—2

0

Answers to selecged exercises on page 4-23

/ SET LOCATIONS TO SWITCH REGISTER3.

LOC. CONT.

0200 7300

0201 1214

0202 3215

0203 1213

0204 3216

0205 7404

0206 3615

0207 2215

0210 2216

0211 5205

0212 7402

0213 7770

0214 2000

0215 0000

0216 0000

/VALUE

*200

CLA CLL

TAD K2000

DCA POINT

TAD M10

DCA COUNT

OSR

DCA I POINT

ISZ POINT «

ISZ COUNT

JMP .—4

HLT
\

M10, 7770

K2000, 2000

POINT, 0

COUNT, o

$

A-7

4. XADD TWO NUMBERS AND DISPLAY SUM
I IN AC .

LOC. CONT. *200

0200 7300 CLA CLL

0201 7402 HLT

0202 7404 OSR
0203 3211' DCA A

0204 7402 HLT

0205 7404 OSR

0206 1211 TAD A

0207 7402 HLT

0210 5200 JMP .-10

0211 0000 A, 0

$

Chapter 5

Answers to selected exercises on page 5-43

1. /SUBROUTINE ALARM AND CALLING FOR IT
*200

START,

ALARM,

TYPE,

M5,
RINGS,

KBELL,

CLA CLL

TLS

JMS ALARM

HLT

o

TAD} M5

DCA RINGS

TAD KBELL

JMS TYPE

ISZ RINGS

IMP .—3

JMP 1 ALARM

0

TS]?

JMP .—1

TLS

CLA CLL

JMP I TYPE

—5

0
.

207 /ASCII FOR THE BELL

.A-B

/TAB SPACE THE TELEPRINTER

*200

START, CLA CLL

TLS
‘

HLT
-

OSR
‘

/ACCEPT NUMBER OF

JMS TAB /-SPACES FROM SR

JMP .—3 /READY TO TAB MORE

TAB, 0
‘

»

v

CIA

DCA NUMTAB
TAD KSPACE

JMS TYPE

ISZ NUMTAB

JMP .-—3

JMP I TAB

TYPE, 0 .

TSF

JMP .—-1

us

CLA CLL

JMP I TYPE

0NUMTAB,

KSPACE, 240

$

/TEST ANSWER SHEET

*200

START, CLA CLL

TLS

HEADING, TAD HEADI

DCA POINTR

TAD AMOUNT

DCA COUNT

JMS CRLF

TAD I POINTR

JMS TYPE

ISZ POINTR

ISZ COUNT

JMP .—4

JMS CRLF

NUMBRS, TAD K260
DCA INTS

ISZ INTS

TAD INTS

JMS NUMTYP

TAD INTS

TAD M27]

SZA CLA

JMP .—6

A—9

TEN. TAD K260

lAC

J MS TYPE

TAD K260

JMS NUMTYP

HLT

HEADL HEAD

POINTR. 0

HEAD, 3 10 /H

31 1 / I

323 / S

324 /T

317 / O

322 /R

331 /Y

240 / SPACE

324 /T

305 /E

323 /S

324 /T

AMOUNT, — 14 /# OF HEADING CHARACTERS

COUNT, D

K260, 2.60

INTS, D

M271, ——271 /NEGATIVE OF ASCII FOR A 9A

K215, 215‘ /ASCII FOR CR

K212, 212 /ASCII FOR LF

K256, 256 /ASCII FOR PERIOD

TYPE, 0

TSF

IMP .‘——1

TLS

CLA CLL

JMP I TYPE

CRLF, O

TAD K215

JMS TYPE

TAD K212

JMS TYPE

IMP I CRLF

NUMTYP, 0

JMS TYPE

TAD K256

JMS TYPE

IMS CRLF

1MP I NUMTYP

A410

/TWO DIGIT OCTAL SQUARE CONVERSATIONAL
'

/ PROGRAM

*200

START,

MULT,

TYPSQU,‘

TYPANS,

UNPACK,

TYPOCT,

CLA CLL

TLS

JMS CRLF

JMS LISN
TAD M260

RAL CLL

RTL
DCA NUMBER

JMS LISN

TAD M260

TAD NUMBER

DCA NUMBER

TAD NUMBER

CIA

DCA TALLY

TAD NUMBER

182 TALLY

JMP __2

DCA NUMSQR
TAD MESAGI

DCA POINTR

TAD M10

DCA ENDCHK

JMS MESAGE

TAD M4 ,

DCA DIGCTR

DCA STORE
'

TAD NUMSQR
CLL RAL

TAD STORE

RAL

RTL

DCA STORE
TAD STORE

AND K7

TAD K260

JMS TYPE

ISZ DIGCTR

IMP UN-PACK

TAD MESAGZ

DCA‘ POINTR

TAD M7

DCA ENDCHK

JMS MESAGE

JMS CRLF

IMP START+2

A—ll

/GET FIRST DIGIT

/GET SECOND DIGIT
'

/NUMBER IS NOW IN AC

TYPE,

CRLF,_

LISN.

MESAGE,

NUMBER,

M260,

TALLY,

NUMSQR,
MESAG] ,

POINTR,

M10,

ENDCHK,

STORE,

M4,

DIGCTR,

K7,

M7,

K260.

K212,

K215,
MESAGZ,

STARTl ,

0

TSF

JMP .——1

TLS
CLA

PIMP 1 TYPE

0

TAD K215

.IMS TYPE

TAD K212

.IMS TYPE

IMP I CRLF

D

KSF

JMP .-—1

KRB

TLS

IMP I LISN

0

TAD I POINTR

JMS TYPE

ISZ POINTR

ISZ ENDCHK

IMP .——4

JMP I MESAGE

O

—260

O

o

STARTl

0

—10

0

0

—4

0

7

—7

260

212

215

STARTZ

323 /s

321 /Q

325 ./U

301 /A

322 /R

305 /E

304 /D

275 =

A-12

STARTZ, 240

317

303

324

301

314

256

/SPACE

/0

/C

/T

/A

/L

/PERIOD

A—13

A-l4

ASCII* Character Set

Appendix B

_

Character Codes

8-Bit 6—Bit
I

8-Bit 6-Bit

Character Octal Octal Character Octal = Octal

A 301 01 ! 241 41

B 302 02
”

242 42

C 303 03 # 243 43

D 304 ‘04 $ 244 44

E 3 05 05 % 245 45

F 306 O6 & 246 46

G 307 07
'

247 47

H 3 10 10 (250 50

I 3 1 l 1 1) 251 5 1

J 312 12 * 252 52

K 313 13 + 253 53

L 3 14 14
’

254 54

M 3 15 1 5 - 255 55 .

N 316 16 . 256 56

O 317 17 / 257 57

P 320 20 ‘. 272 72

Q 3 21 21 ; 273 73

R 3 22 22 < 274 74

S 3 23 23 = 275 75

T 324 24 > 276 76

U 325 25 ? 277 77

V 326 26 @ 300

W 3 27 27 [333 3 3

X 330 30 \ 3 34 34

Y 1 33 1 3 1] 3 35 35

Z 33 2 32 T 3 36 36

0 260- 60 <- ~

‘

3 37 37

1 261 61 Leader/Trailer 200

2 262 62 LINE FEED 212

3 263 63 Carriage RETURN 21 5

4 264 64 SPACE 240 40

5 265 65 RUBOUT 377

6 266 66 Blank 000

7 267 67 BELL 207

8 270 70 TAB '- 21 1

9 271 71 4“ FORM 214

*An abbreviation for USA: Standard Code for Information Interchange.

B—l

Card Reader Code

The following table gives the octal representation of the internal

(binary) codes for the listed punch combinations. These internal codes

are generated by the card reader and are transmitted to the PDP-S

upon execution of the appropriate IOT instruction. Any combination

of punches which is not shown in the table is invalid, and the card

reader will not detect invalid combinations.

IBM 26

Keyboard Character

IBM 29

Keyboard Character

Card Code

Zone Num.

Internal

Code

00 NONE SPACE SPACE

01

02

03

O4

05

O6

07

-10 enigmassmw—
11 \oooxlcxmpmww \Omflmmpri—I
12‘ - 8'2 Colon“ None Assigned

13, — 8'3 Number Sign 2 Equal Sign

14 _ 8'4 At Sign
’

Apostrophe

15 —— 8'5 Apostrophe“ None Assigned

16 8'61 Equal Sign" None Assigned

17 8'7 Quotation Mark* None Assigned

20 CD

21 \ Slash Slash

22

23

24

25

26

27

30 OOOOOOOOO DONONUI-PMNH
31 O 9 Nh<j>$€<jthjm N~<><€<C1~1m\o

*Not all available IBM 29 Keyboard arrangements contain these graphic char—

acters .

B-2

Internal Card Code IBM 29 IBM 26

Code Zone Num.
I

Keyboard Character Keyboard Character

32
'

0 8 -2 None Assigned None Assigned

33 O 8 ' 3
, Comma , ,

Comma

34 0 8 ' 4 % Percent (Parenthesis

35 0 8 ' 5 __ Underscore* None Assigned

36 0 8 ‘ 6 > Greater Than* None Assigned

37
'

0 8 ' 7 ? Question Mark* None Assigned

'40 11 — —- Minus or Hyphen — Minus or Hyphen

41 11 1 J
‘

J

42 1 1 2 K K

43 1 1
'

3 L L

44 ll 4 M M

45 1 1 5 N N

46 1 1
'

6
.
O O

47 11 7 P P

50 11 8 Q Q

51 1 l 9
'

R R

52 11 8 ° 2 ! Exciamation* None ASSigned
53 ll 8 ' 3 $ Dollar Sign $ Dollar Sign

54 11 8 ' 4 * Asterisk * Asterisk

.

55 11 8 ' 5) Parenthesis“ None Assigned

56 11 8 ' 6 ; Semicolon* None Assigned

57 11 8 - 7 —-.> Logical NOT* None Assigned

6O 12 — & Ampersand 1+ Plus

61 12 1 . A A

62 l 2‘ 2 B B

63 12 3 C C

64 12 4 D D

65 1 2 5 E E

66 12 6 F F

67 12 7 G G

70 12 8 H
‘

H

7 1 1 2 9 I
'

I

72 12 8 ‘ 2 ¢ Cent Sign* None Assigned
*Not all available IBM 29 keybbard arrangements contain these graphic char-

acters. ,

B-3

Internal Card Code IBM 29 IBM 26

Code Zone Num. Keyboard Character Keyboard Character

73 12 8 - 3 Period Period

"

74 12 8 ' 4 '< Less than) Parenthesis

75. 12 8 ' 5 (Parenthesis "‘ None Assigned

76 12 8 ' 6 + Plus Sign”°‘ None Assigned

77 12. 8 ' 7 1 Vertical Bar“ None Assigned

*Not all available IBM :9 keyboard arrangements contain these graphic char-

acters.

3-4

Appendix C

Flowchart Guide

.
The following is a partial list of flowchart symbols which can be used

to diagram the logical flow of a
program.

The symbols may be made

sulficiently large to include the pertinent information.

REPRESENTATION

OF FLOW .

LEFT TO RIGHT

0R

___—____—__—-_'

RIGHV TO LEFT

TOP

To OR

BOTTOM

BOTTOM
TO

TOP

TERMINAL

PROCESSING

The direction of flow in a program is repre-
sented by lines drawn between symbols. These

lines indicate the order in which the opera-
tions are to be performed. Normal direction

of flow is from left to right and top to bot-

tom. When the flow direction is not from left

to right or top to bottom, arrowheads are

placed on the reverse direction flowlines.

Arrowheads may also be used on normal flow

lines for increased clarity.

The oval symbol represents a terminal point
in a program.. It can be used to indicate a

start, stop, ,or interrupt of program flow. The

appropriate word .is included within the .

symbol.

The rectangular symbol represents a process—

ing function. The process which the symbol
is used to represent could be an instruction or

a group of instructions to carry out a given
task. A brief description of the task to be per-

formed is included within the symbol.

or

DECISION

PREDEFINED

PROCESS

CONNECTOR

O

"

ANNOTATION
—-

INPUT/ OUTPUT

MANUAL

INPUT

PUNCHED

TAPE

MAGNETIC

TAPE (>ng

A diamond is used to indicate a point in a

program. where *a choice must be made to de-

termine the flow of the program from that

point. A test condition is included within the

symbol and the possible results of the test are

used to label the respective flows from the

symbol.

This symbol is used to represent an opera-

tion or group of operations not detailed in

the flowchart. It is usually detailed in another

flowchart. A subroutine is often represented
in this manner.

The circular symbol shown below represents
an entry from or an exit to another part of

the program flowchart. A number or a letter

is enclosed to label the corresponding exits

and entries. This symbol does not represent a

program operation.

An addition of descriptive comments or ex-

planatory notes for clarification is included

within this symbol.

This symbol is used in a flowchart to repre-

sent the input or output of information. This

symbol may be used for all input/ output

functions, or symbols for specific types of in-

put or output (such as those which follow)

may be used.

This symbol may be used to represent the

manual input of information by means of on-

line keyboards, switch settings, etc.

The input or output of information in which

the medium is punched tape may be repre-

sented by this symbol.

This symbol is used in a flowchart to repre-
sent magnetic tape input or output.

C-2

Appendix D

Tables Of instructions

The instruction tables of this appendixepply in general to all PDP-8

family computers, except where differences are noted for specific
'

machines.

PDP-S/ I Memory Reference Instructions1

Direct Addr. indirect Addr.

Mne- Opera-
- . Execu- Execu-

momc tron States . States . .

Symbol Code En— ‘30" En- 9°“ Operation

tered
Time

tered
Time

(nsec) . (usec)

AND Y O F, E 3.0 F, D, E 4.5 Logical AND. The AND
‘

operation is performed
between the content of

memory location Y and
~ the content of the AC.

‘

The result is left in the

AC, the original content

of the AC is lost, and

the content of Y is re-

stored. Corresponding
bits of the AC and Y

are operated upon inde-

pendently.

TAD Y 1 F, E 3.0 F. D,JE 4.5 Two’s complement add.

The content of memory

location Y is added to

the content of the AC

in two's complement
arithmetic. The result of

this addition is held in

the AC, the original
content of the AC is

lost, and the content of

Y is restored. If there

is a carry from ACO, the

link is complemented.

1A11 MRI’s operate on all PDP-8 family compoters; execution times, however,

apply to PDP-S/I.
2Y is the address of a memory location;

D-l

PDP-B/ I Memory Reference Instructions (continued)

Mne-

monic

Symbol

Opera-
tion

Code

Direct Addrs Indirect Addr.

States

En-

tered

Execu-

tion
Time

(usec)

States

En-

tered

Execu-

tion

Time

(usec)

Operation

.lSZ Y

DCAY

JMS Y

JMP Y

2

4

5

F,E

F,E

3.0 F; D. E

3.0 F, D, E

3.0

1.5

F,D.E

F,D

4.5

4.5

4.5

3.0

Increment and skip it

zero. The content of

memory location Y is in-

cremented by one. If

the resultant content of

Y equals zero, the con-

tent of the PC is incre-

mented and the next

instruction is skipped.
lf the resultant content

of Y does not equal
zero. the program

proceeds to the next

instruction. The incre-

mented content of Y is

restored‘to memory. If

Deposit and clear AC.

The content of the AC

is deposited in core

memory at address Y

and the AC is cleared.

The previous content of

memory location Y is

lost.

Jump to subroutine. The

incremented content of

the PC is deposited in

core memory location Y,
and the next instruction

'is taken from core‘ mem-

ory location Y + 1.

Jump to Y. Address Y

is set into the PC so

that the next instruc-

tion is taken from core

memory address Y. The

original content of the

PC is lost.

PDP-S/I Group 1 Operate Miozyroinstructions1

Mnemonic Octal

Symbol Code . Sequence Operation
NOP 7000 -- No operation. Causes a 1.5 usec program de-

.

lay.
lAC 7001 3 Increment AC. The content of the AC is incre-

mented by one in two's complement arith-

metic.

RAL 7004 4 Rotate AC and L left. The content of the AC

and the L are rotated left one place
RTL '7006 4 Rotate two places to the left. Equivalent to

two successive RAL operations.
RAR 7010 4 Rotate AC and L right. The content of the AC

and L are rotated right one place.
RTR 7012 4 Rotate two places to the right. Equivalent to

two successive RAR operations.
CML 7020 2 Complement L.

CMA 7040 2 Complement AC. The content of the AC is set

to the one's complement of its current con~

. tent.

CIA 7041 2. 3 Complement and increment accumulator.

Used to form two’s complement.
CLL 7100

‘

1 Clear L.

CLL RAL 7104.
CLL RTL 7106
CLL RAR 7110

CLL RTR 7112

Shift positive number one left.

Clear link, rotate two left.

Shift positive number one right.
Clear link, rotate two right.Hr—Ier—I thP-h-fiSTL 7120

, Set link. The L is set to contain a binary l.

CLA 7200 1 Clear AC. To be used alone or in CPR 1 com—

binations.
CLA MC 7201 1, 3 Set AC = 1.
GLK 7204 1, 4 Get link. Transfer L into AC 11.
CLA CLL 7300 1

'

Clear AC and L.
STA’ 7240 2 Set A0 = —1. Each bit of the AC is set to

contain a 1.

lGroup I operate microinstructions operate on all PDP-8 family computers. (See
Appendix E for the event times of each model.)

D-3

PDP-8/I Group 2 Operate Microinstructions1

Mnemonic Octalv .

Symbol Code Sequence

HLT 7402 3 Halt. Stops the program after completion of

the cycle in process. if this instruction is

combined with others in the OPR 2 group the

other operations are completed before the
end of the cycle.

OSR 7404 3 OR with switch register. The OR function is

performed between the content of the SR

and the content of the AC, with the result

Operation

left in the AC.

SKP 7410 1 Skip, unconditional. The next instruction is

skipped.
SNL 7420 1 Skip if L + 0.

SZL 7430 1 Skip if L = 0.

SZA 7440 1 Skip if AC = 0.

SNA 7450 1 Skip if AC at 0.

SZA SNL 7460 1 Skip if AC = 0, or L = 1, or both.
SNA SZL 7470 1 Skip if AC ~+ 0 and L = 0.

SMA 7500 1 Skip on minus AC if the content of the AC is

a negative number the next instruction is

skipped.
SPA 7510 1 Skip on positive AC. if the content of the AC

is a positive number. the next instruction is

skipped.
SMA SNL 7520 1 Skip if AC < 0. or L = 1, or both.

SPA SZL 7530 1
‘ Skip if AC > 0 and if L = 0.

SMA SZA 7540 1 Skip if AC < 0.

SPA SNA 7550 1 Skip if AC > 0.

CLA 7600 2 Clear AC. To be used alone or in CPR 2 com-

binations.

LAS 7604 1, 3'. Load AC with SR.
SZA CLA 7640 1, 2 Skip if AC = 0, then clear AC.

SNA CLA 7650 1, 2 Skip if AC 4: 0, then clear AC.

SMA CLA 7700 1, 2 Skip if AC < 0, then clear AC.

SPA CLA 7710 1, 2 Skip if AC > 0, then clear AC.

1Group 2. microinstructions operate on all PDP—8 family computers.

13—4

PDP-S/I Extended Arithmetic Elementl Microinstructions

Mnemon

Symbol

MUY

DVI

NMl

SHL

ASR

ic Octal

Code

7405

7407

7411

7413

7415

Sequence

3

Operation

Multiply. The number held in the MO is mul-

tiplied by the number held in core memory

location PC + 1 (or the next successive core

memory location after the MUY Command).
At the conclusion of this command the most

significant 12 bits of the productare con-

tained in the AC and the least significant 12

bits of the product are contained in the MG.

Divide. The 24-bit dividend held in the AC

(most significant 12 bits) and the MO (least

significant 12 bits) is divided by the number

held in core memory location PC + 1 (or the

next successive core memory location follow-

ing the DVI command). At the conclusion of

this command the quotient is held in the

M0 the remainder is in the AC, and the L

contains a 0. if the L contains a 1, divide

overflow occurred so the operation was con-

cluded after the first cycle of the division.

Normalize. This instruction is used as part
of the conversion of a binary number to a

fraction and an exponent for use in floating-

point arithmetic. The combined content of the

AC and the MO is shifted left by this one

command until the content of ACO is not

equal to the content of AC1, to form the frac—

tion. Zeros are shifted into vacated M011

positions for each shift. At the conclusion of

this operation, the step counter contains a

number equal to the number of shifts per-
formed. The content of L is lost.

Shift arithmetic left. This instruction shifts

the combined content of the AC and M0 to

the left one position more than the number

of positions indicated by the content of core

memory at address PC + 1 (or the next suc-

cessive core memory location following the

SHL command). During the shifting, zeros

.are shifted into vacated MQll positions.

Arithmetic shift right. The combined content

of the AC and the MO is shifted right one

position more than the number contained in

memory location PC + 1 (or the next suc—

cessive core memory location following the

.ASR command). The sign bit, contained in

ACO, enters vacated positions, the sign bit

is preserved, information shifted out of M011

is lost, and the L is undisturbed during this

operation.
1This option is not available with the PDP-S/L.

D—S

PDP-8/I Extended Arithmetic Element Microinstructions (continued)

Mnemonic Octal

Symbol Code
Sequence Operation

LSR

MQL

SCA

SCL

MQA

CLA

CAM

7417

742 1

7441

7403

7501

7601

7621

’3

1,2

Logical shift right. The combined content of

the AC and MO is shifted left one position
more than the number contained in memory
location PC + 1 (or the next successive core

memory location following the LSR command).
This command is similar to the ASR com-

mand except that zeros enter vacated posi-
tions instead of the sign bit entering these

locations. Information shifted out of M011

is lost and the L is undisturbed during this

operation.

Load multiplier quotient. This, command

clears the M0. loads the content of the AC

into the MG, then clears the AC.

Step counter load into accumulator. The con-

tent of the step counter is transferred into

the AC. The AC should be cleared prior to

issuing this command or the CLA command

can be combined with the SCA to clear the

AC. then effect the transfer.

Step counter load from memory. Loads com-

plement of bits 7 through 11 of the word in

memory following the instruction into the

step counter.

Multiplier quotient load into accumulator.

The content of the MO is transferred into the

AC. This command is givenrto load the 12

least significant bits of the product into the

AC following a multiplication-or to load the

quotient into the AC following a division. The

AC should be cleared prior to issuing this

command or the CLA command can be com-

bined with the MQA to clear the AC then

effect the transfer.

Clear accumulator. The AC is. cleared during

sequence 1. allowing this command to be

combined with the other EAE commands that

load the AC during sequence 2 (such as

SCA and MQA).

Clear accumulator .and multiplier quotient.

D—6

Basic IO’I’ Microinstructions

Mnemonic Octal
_

Operation

Program interrupt

ION 6001 Turn interrupt on and enable the computer to re-

spond to an interrupt request. When this instruction

is given, the computer executes the next instruction,
then enables the interrupt. The additional instruc—

.

tion allows eitit from the interrupt subroutine before
*

allowing another interrupt to occur.

lOF 6002 Turn interrupt off i.e. disable the interrupt.

High Speed Perforated Tape Reader and Control

RSF 6011 Skip if reader flag is a 1.

RRB 6012 Read the content of the reader buffer and clear the

readerflag. (This instruction does not clear the AC.)
RFC 6014 Clear reader flag and reader buffer, fetch one char-

acter from tape and load it into the reader buffer,
and set the-reader flag when done.

High Speed Perforated Tape Punch and Control

PSF 6021 Skip if punch flag is a 1.

PCF 6022 Clear. punch flag and punch buffer.

PPC 6024 Load the punch buffer from bits 4 through 11 of the

AC and punch the character. (This instruction does

, not clear the punch flag or punch buffer.)
PLS 6026 Clear the punch flag, clear the punch buffer. load

the punch buffer from the content of bits 4 through
11 of the accumulator, punch the character, and set

thepunch flag to 1 when done._

Teletype Keyboard] Reader

KSF 6031 Skip if keyboard flag is a 1.
KCC 6032 Clear AC and clear keyboard flag.
KRS 6034 Read keyboard butter static. (This is a static com—

mand in that neither the AC nor the keyboard flag is

cleared.)
KRB 6036 Clear AC, clear keyboard flag, and read the content

of the keyboard buffer into the content of AC 4 11.

Teletype Teleprinter/ Punch

TSF 6041 Skip if teleprinter flag is a 1.

TCF 6042 Clear teleprinter flag.
TPC 6044 Load the TTO from the content of AC 411 and

print and/ or punch the character,
‘

TLS 6046 Load the TTO from the content of AC 4- 11, clear

the teleprinter flag. and print and/or punch the

character.

Oscilloscope Display Type V081! and Precision CRT Display Type 30N

DCX 6051 Clear X coordinate buffer.

DXL 6053 Clear and load X coordinate butter.

D-7
_

Basic [0T Microinstructions (continued)

Mnemonic Octal Operation

DlX 6054 Intensify the point defined by the content of the X

and Y coordinate buffers.

DXS 6057 Executes the- Combined functions of DXL followed

by DIX.

DCY 6061 Clear Y coordinate buffer.

DYL 6063 Clear and load Y coordinate buffer.

ON 6064 intensify the point defined by the content of the X

and Y coordinate buffers.

DYS 6067 Executes the combined functions of DYL followed

by DIY.

Oscilloscope Display Type vcalx

DSB 6075 ‘Set minimum brightness.
DSB 6076 Set medium brightness.
DSB 6077 Set maximum brightness.
DSB 6074 Zero brightness.

Precision CRT Display Type 30M

pm 6074 Load brightness register (BR) from bits 9 through
[1 of the AC.

Light Pen Type 310

DSVF 6071 Skip if display flag is a 1.

DCF 6072 Clear the display flag.

Memory Parity Type MP8/1

3MP 6101 Skip if memory parity error flag = 0.

CMP 6104 Clear memory parity error flag.

Automatic Restart Type KPtl/I
_

SPL 6102 Skip if power is low.

Memory Extension Control Type M08]!

CDF 62N1 Change to data field N. The data field register is

loaded with the selected field number (0 to 7). All

subsequent memory requests for operands are auto—

matically switched to that data field until the data

field number is changed by a new CDF command.

CIF 62N2 Prepare to change to instruction field N. The in-

struction buffer register is loaded with the selected

field number (0 to 7). The next JMP or JMS in-

struction causes the new field to be entered.

RDF 6214 Read data field into AC 6-8. Bits 0-5 and 9-11 of

the AC are not affected.

RlF 6224 Same as RDF except reads the instruction field.

RlB 6234 Read interrupt butter. The instruction field and data

f'eld stored during an interrupt are read into AC

6-8 and 9-11 respectively.
RMF 6244 Flestore memory field. Used to exit from a program

interrupt.

D-8

Basic IOT Microinstructions (continued)

Mnemonic
'

Octal Operation

Data Communications Systems Type 680

TTlNCR

TTl

TTO

TTCL

TTSL

TTR L

TTSKP

TTXON

TTXOF

640 1

6402

6404

6411

6412

6414

642 1

6424

6422

The content of the line select register is incre-

mented by one.

The line status word is read and sampled. if the

line is active for the fourth time, the line bit is

shifted into the character assembly word. if the line

is active for a number of times less than four, the

count is incremented. lf the line is not active, the

active/ inactive status of the line is recorded.

The character in the AC is shifted right one posi-
tion, zeros are shifted into vacated positions, and

the original contentof AC11 is transferred out of

_

the computer on the Teletype line.

The line select registerIs cleared.

The line select register is loaded by an OR transfer
from the content of ACE-11, then the AC is cleared.

The content of the line select register is read into

ACS—ll by an OR transfer.

Skip if clock 1 flagIs a 1.

Clock 1 is enabled to request a program interrupt
and clock 1 flag is cleared.

Clock 1 is disabled from causing a program inter-

rupt and clock 1 flag is cleared.

Incremental Plotter 'and control Type veal!
PLSF

PLCF
PLPU

PLPR

PLDU

PLDD

PLPL

PLUD
. PLPD

6501

6502

6504

6511

6512

6514

6521

6522

6524

Skip if plotter flag is a 1.

Clear plotter flag.
Plotter pen up. Raise pen off of paper.
Plotter pen right.
Plotter drum (paper) upward.
Plotter drum (paper) downward.
Plotter pen left.

Plotter drum (paper) upward. (Same as 6512.)
Plotter pen down. | nwer pen on to paper.

Serial Magnetic Drum system Type 251

DRCR

DRCW

DRCF

6603

6605

6611

Load the drum core location counter» with the core

memory location- information in the accumulator.

Prepare to read one sector of information from the

drrumcinto
the specified core location. Then clear

t e A

Load the drum core location counter with the core

memory location information in the acoumulator.

Prepare to write one sector of information into the

drum from the specified core location. Then clear

the AC
. Clear completion flag and error flag.

D-9

Basic [GT Microinstr'uctions (continued)

Mnemonic Octal Operation

DREF 6612
'

Clear the AC then load the condition of the parity
error and data timing error flip-flops of the drum

control into accumulator bits 0 and 1 respectively
to allow programmed evaluation of an error flag.

DRTS 6615 Load the drum address register with the track and
sector address held in the accumulator. Clear the

completion and error flags, and begin a transfer

(reading or writing). Then clear the AC.

DRSE 6621 Skip next instruction if the error flag is a 0 (no

error).

DRSC 6622 Skip next instruction if the completion flag is a 1

(sector transfer is complete).
DRCN 6624 Clear error flag and completion flag, then initiate

transfer of next sector.

Serial Magnetic Drum System Type RMOB

DRCR

DRCW

DRCF

DRES

DRTS

DRSE

DRSC

DRFS

6603

6605

6611

6612

6615

662]

6622

6624

Lead the drum core location counter with the core

memory location information in the accumulator.

P-epare to read one sector of information from the

drum into the specified core lecation. Then clear

the AC.

Load the drum core location counter with the core

rremory location information in the accumulator.

Prepare to write one sector of information into the

drum from the specified core location. Then clear

the AC.

Clear completion flag and error flag.
Clear the AC then load the condition of the parity
error and data timing error flip-flops of the'drum

control into accumulator bits 0 and 1 respectively
to allow programmed evaluation of an error flag.
The contents of the drum sector counter are trans- .

ferred into bits AC 6-11.

Load the drum address register with the track and

sector address held in the accumulator. Clear the

completion and error flags, and begin a transfer

(reading or writing). Then clear the AC.

Skip next instruction if the error flag is a 0 (no

error).

Skip next instruction if the completion flag is a 1

(sector transfer is complete).

Loads the drum field register with the contents of

the accumulator bits, 10 and 11. Loads the sector

number register with the contents of the accumu-

lator bits 0.5, to specify the number of sectors to

be transferred. Loads the three most significant bits

of the drum core location register (DCLH) with the

contents of the AC bits 6, 7, 8 to specify the core

memory block to be used during the drum transfer.

D—lO

Basic IOT Microinstructions (continued)

Mnemonic Octal

‘

Operation

Random Access Disc File (Type DF32)

DCMA

DMAR

DMAW

DCEA

DSAC

DEAL

DEAC

DFSE

DFSC

DMAC

6601

6603

6605

6611

6612

6615

6616

6621

6622

6626

Clears memory address register, parity error and

completion flags. This instruction clears the disc

memory request flag and interrupt flags.
The contents of the AC are loaded into the disc

memory address register and the AC is cleared.

Begin to read information from the disc into the

specified core location. Clears parity error and

completion flags. Clears interrupt flags.
The contents of the AC are loaded into the disc

memory address register and the AC is cleared. Be-

gin to write information into the disc from the

specified core location. Clears parity error and

completion flags.
Clears the disc extended address and memory ad-

dress extension register.
Skips next instruction if address confirmed flag is

a 1. (AC is cleared.)
The disc extended address extension registers are

cleared and loaded with the track data held in the

AC.

Clear the AC then' loads the contents of the disc
extended address register into the AC to allow pro-

gram evaluation. Skip next instruction if address

confirmed flag is a 1.

Skips next instruction if parity error, data request
late, or write lock switch flag is a zero. indicates
no errors.

Skip next instruction if the completion flag is a 1.

Indates data transfer is complete.
Clear the AC then loads contents of disc memory
address register into the

AC
to allow program evalu-

ation.

Automatic Line Printer and Control Type 7645
LSE

LCB

LLB

LSD

LCF

LPR

6651

6652

6654

6661

6662
6664'

Skip if line printer error flag is a 1.

Clear both sections of the printing buffer.

Load printing buffer from the content of AC 611
and clear the AC.

Skip if the printer done flag'Is a 1.

Clear line printer done ahd error flags.
Clear the format register. load the format register
from the COntent of AC 9-11, print the line contained

in the section of the printer buffer loaded last. clear

the AC, and advance the paper in accordance with

the selected channel of the format tape if the con-

tent of AC 8 = 1. If the content of AC 8 = 0. the

line is printed and paper advance is inhibited.

D-11

Basic IOT Microinstructions (continued)

Mnemonic Octal Operation

“Maps Transport Type TUSS and DECtape Control Type Tcnt

DTRA

DTCA

DTXA

DTSF

DTR B

DTLB

6761

6762

6764

6771

6772

6774

The content of status register A is read into AGO-9

by an OR transfer. The bit assignments are:

AGO-2 = Transport unit select number

AC3-4 2 Motion

A05 = Mode

A068 = Function

A09 : Enable/disable DECtape control flag
Clear status register A. All flags undisturbed.

Status register A is loaded by an exclusive OR trans—

fer from the content of the AC, and A010 and A011

are sampled. lf A010 = 0, the error flags are

cleared. lf A011 = 0, the DECtape control flag is

cleared.

Skip if error flag is a 1 or if DECtape control flag
it; a .1.

The content of status register B is read into the AC

by an OR transfer. The bit assignments are:

00 2 Error flag
01 = Mark track error

A02 = End of tape
A03 = Select error

AC4 = Parity error

AC5 = Timing error

ACG—B : Memory field

A09—10 = Unused

A011 =DECtape flag
T1e memory field portion of status register 8 is

loaded from the content of Ace-8.

Card Reader and Control Type CRHII

Skip if card reader data ready flag is a 1.

The alphanumeric code for the column is read into

ACE-11, and the data ready flag is cleared.

The binary data in a card column is transferred into

AGO-11. and the data ready flag is cleared.

Skip if card reader card done flag is a 1.

Clear the card done flag, select the card reader and

start card motion towards the read station, and skip
it the reader-not-ready flag is a 1.

Clear card done flag.

Automatic Magnetic Tape Control Type T058

RCSF 6631

RCRA 6632

RCRB 6634

RCSP 6671

RCSE 6672

RCRD 6674

MTSF 6701

MTCR 671 1

Skip on error flag or magnetic tape flag. The status

of the error flag (EF) and the magnetic tape 'flag
(MTF) are sampled. If either or both are set to 1
the content of the PC is incremented by one to skip
the next sequential instruction.

Siip on tape control ready (TCR). if the tape con-

trol is ready to receive a command, the PC is incre—

mented by one to skip the next sequential instruc-
tion.

D-12

Basic IOT Microinstructions (continued)

Mnemonic , Octal Operation

MTTR 6721 Skip on tape transport ready (TTR). The next se-

quential instruction is skipped if the tape trans-

port is ready.
MTAF 6712 Clear the status and command registers, and the

EF and MTF if tape control ready. If tape control

not ready, clears MTF and EF flags only.
—— 6724 lnclusively OR the contents of the command regis-

ter into bits 0-11 of the AC.

MTCM 6714 lnclusively OR the contents of AC bits 0-5, 911

into the command register; JAM transfer bits 6. 7.
8 (command function).

MTLC 6716 Load the contents of AC bits 0—11 into the com-

mand register.
—— 6704 lnclusively OR the contents of the status register

into bits 0-11 of the AC.

MTRS 6706 Read the contents of the status register into bits

0-11 of the AC.
’

MTGO 6722 Set “go" bit to execute command in the command

register if command is legal.
-—— 6702 Clear the accumulator.

General Purpose Converter and

Multiplexer Control Type AFOIA

ADSF

ADVC

ADRB

ADCC

ADSC

ADIC

6531

6532

6534

6541

6542

6544

Skip if AID converter flag is a 1.

Clear A/D converter flag and convert input voltage
to a digital number, flag will set to 1 at end of con-

version. Number of bits in converted number deter-

mined by switch setting, 11 bits maximum.

Read A/D converter buffer into AC, left justified,
and clear flag.
Clear multiplexer channel address register.
Set up multiplexer channel as per AC 6-11.

Maximum of 64 single ended or 32 differential in-

put channels.

lndex multiplexer channel address (present address

+ 1). Upon reaching address limit. increment will

cause channel 00 to be selected.

Guarded Scanning Digital Voltmeter Type AFO4A
VSEL

VCNV

VINX

6542

6541

6544

The contents of the accumulator are transferred to

the AFO4A control register.

The contents of the accumulator are transferred

to the AFO4A channel address register. Analog sig-
nal on selected channel is automatically digitized.

The last channel address is incremented by one

and the analog signal on the selected channel is

automatically digitized.

D-13

Basic 101' Microinstructions (continued)

Mnemonic Octal Operation

VSDR 653 1

VRD 6532

VBA 6534

VSCC 657 1

Skip if data ready flag is a 1.

Selected byte of voltmeter is transferred to the

accumulator and the data ready flag is cleared.

BYTE ADVANCE command requests next twelve

bits, data ready flag is set.

SAMPLE CURRENT CHANNEL when required to

digitize analog signal on current channel repeatedly.

D-14

Appendix E

Legal Microinstruction Combinations

The following tables identify the legal operate microinstruction com-

binations for the PDP-8 family computers, It should be noted that each

possible pair of mnemonics within a mic'roprogrammed instruction

should be checked for legality.

GROUP 1 MICROINSTRUCTION COMBINATIONS

Logical
Event Times

‘

8/I,
CLA CLL CML CMA RAR RAL RTR RTL IAC BIL 8/5 8

CLA — ‘All A11 All All All All All. All

1 1 1

CLL All — All All All All All All All

CML All All —- All All All All 'All All 2

8 8 8 8
I

2 2

CMA All All All — 8/118/I 8/1 8/1 All

8/ L 8/ L '8/L 8/L

8
t

8/1
RAR All All All 8/I -— None None None

8/L
‘ 3/L

8
8/1

RAL All All All 8/1 None — None None
8 IL

8/L _ 3 3 3

8
8/ I

RTR All All All 8/1 None None — None
8/L

8/1. i

8
8/1

RTL All All All 8/1 None None None ——

8 L
8/L.

/

*

8/1 8/1 8/1 3/1
IAC All All All All

8/1; 8IL 8/L SIL
-—- 4

0R Group

(Skip if A

city)

AND Group

(Skip if

all)

I
1

JA
1

Logical
Event

GROUP V; MICROINSTRUCTION COMBINATIONS Times

(All
PDP-8

SPA SNA SZL SKP LT)SMA SZA SNL

AI

A“

All

None

—« All

Al

ne

Mme 1e

None

ne

AH

AH

All

All

All

All

Appendix F

. Miscellaneous Tables
Powers of Two

n '-n

2 n 2

1 O 1.0
'

2 1 0‘5

4 _2 0.25

a 3 0.125

16 4 0.062 5

32 5 0.031 25

54 a 0.015 625

125 7 0.007 812 5

255 a 0.003 906 25

512 9 0.001 953 125

1 024 10 0.000 976 562 5 -

2 048 11 0.000 438 281 25

4 096 12 0.000 244 140 625

8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25

32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5

131 072 17 0.000 007 629 394 531 25

262144 18 0.000 003 814 697 265 625

524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25

2 097 152 21 0.000 000 476 837 158 203 125

4 194 304 22 0.000 000 238 418 579 101 562 5

8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625

33 554 432 25 01000 000 029 802 322 387 695 312 5

67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0,000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5

536 870 912 29 @000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
,

2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25

8 589934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 .207 660 913 467 407 226 562 5

34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625

F-l

Octal-Decimal Conversion
'

The following table gives the multiples of the powers of 8. To con-

vert a number from octal to decimal using the table, add the decimal

number opposite the digit value for each digit position. To convert

402773 to decimal, the following numbers are obtained from the table

and added.

16384

0

128

56

7

16575

Thus, 402778 is converted. to 1657510.

To convert a number from decimal to binary, thehighest number

which appears in the table is subtracted from the number. The highest
number which can be subtracted from the remainder is subtracted

until the number is reduced to 0. The octal number is obtained by re-

cording the multipliers of the numbers which were subtracted in the

proper digit positions. To convert 2336510 to its octal equivalent, the

following procedure is followed.

23365

—20480 2 5X84

2885

~2560 = 5X 83

325
_

—320 ._—_—_ 5 X 82

0x 81

:g: ///W
55505

Thus, 233651., is converted to 555053.

Octal-Decimal Conversion Table

Position Coefficients

(Multipliers)

Octal

Digit
Position/

8!! 0
'

1 2, 3 4 5 6 7

151: (30) 0 2 3 4 5 6 7'

2nd (81) O 8 16 24 32 40 48 56

3rd (82) O 64 128 192 256 320 384 448

4th (83) 0 512 1,024 1,536 2,048 2,560 3,072 3,584

5th (84) 0 4,096 8,19212,288 16,384 20,480 24,576 28,672

6th (85) 0 32,768 65,536 98,304 131,072 163,840 196,608 229,376

Octal-Decimal Fraction Conversion Table

I0cm Decima! Octal Decimal Oclal Decimal Dual Decimal
..

.000 .000000 .100 . 125000 .200 . 250000 .300 .315000

.001 .001053 .101 .125053 .201 .251033 .301 .310053

.002 .003305 .102 .121005 .202 3253000 .302 .310300

.003 00.5533.- .103 . 130053 . 203 .255053 .303 .300050

. 001 .001512 .101 .132012 .201 .251012 .301 .302012

.005 .000155 .105 .134155 .205 .250155 .305 .301155

.005 .011115 .105 .130110 .205 .201110 .305 .305110

.001 .013511 .101 .130511 .201 .203511 .301 .300511

.010 .015025 .110 .110525 .210 .255525 .310 .310025

.011 .011510 .111 .112315 .211 .201510 .311 .302510

.012 .015531 .112 .111531 .212 .200531 .312 .301331

.013 .021101 .113 .115101 .213 .211101 .313 .300101

.011 .023131 .111 .115131 .214 . 213131 .311 .300131

.015 .025350 .115 . 150350 . 215 . 215330 .315 . 100300

.015 .021313 .115 .152313 .215 . 211313 .315 .102313

.011 .020255 .111 .151255 .211 .210205 .311 .101205

.020 .031250 .120 .155250 .220 . 201250 .320 . 400250

.021 .033203 . 121 .150203 .221 . 203203 .321 . 100203

.022 .035155 .122 .150155 .222 .205155 .322 .110130

.023 .031105 .123 . 152100 .223 .201105 .323 .112100

_021 .033052 . 121 . 151052 .221 .200052 .321 .111002

.025 .011015 .125 .100015 .225 .201015 .325 .410015

.025 .012055 . 125 .151050 . 225 .232050 .320 . 111050

.021 .011021 .121 .100021 . 221 .201021 . 321 .110021

.030 .015015 .130 . 111515 . 230 .205515 .330 .421015

.031 .010020 .131 .113523 .231 .250020 .331 .123020

:032 .050151 .132 .115101 .232 .300101 .332 .125101

.033 .052131 . 133 . 111131 .233 .302131 . 333 .121134

.031 .051501 .131 .113501 . 231 . 301501 . 331 .120001

.035 .055510 .135 .101510 . 235 .305510 . 3:10 .131010

. 035 . 050553 . 135 . 103553 . 235 .300533 . 335 .133503

.031 .050515 .131 .105510 . 231 . 310515 .331 .135515

.010 .052500 .140 .101500 .210 .312500 .310 .131500

. 011 .051153 .111 .150153 .241 . 311153 .311 .135153

. 012 .000105 . 142 . 151405 .212 .315105 . 312 .411105

.043 . 005359 . 113 .103350 .213 .310355 . 313 .113355

.011 .010312 .141 .103312 .211 .320312 .311 .115312

.015 . 012255 .115 . 10121.5 . 215 . 322255 . 315 .111255

. 010 .011210 .115 .105215 .215 .324210 .315 .110210

.011 .010111 ..141 .201111 .211 .325111 .311 .151111

.050 . 015125 .150 .203125 . 250 .325125 . 550 .153125

.051 . 000010 .151 . 205015 . 151 . 330010 .351 . 155015

. 052 . 002031 .152 . 201031 .252 . 332031 . 352 .151031

. 053 . 003501. . 153 . 200551 . 253 . 333501 . 353 . 150501

. 051 . 055531 .154 . 210531 . 254 . 335031 . 351 . 100931

.055 . 051000 .155 .212090 . 255 .331050 , 335 .152050

. 055 . 005013 .155 .211513 .250 .335013 . 350 .151013

.051 .001155 .151 . 215155 . 251 .311105 . 351 .1051»

.000 .093150 .150 . 215150 . 250 .343150 . 350 .400150

.001 . 005103 .151 .220103 .201 .315103 .301 .110103

. 052 . 051555 . 102 . 222550 .252 . 311555 . 302 .112555

. on: . 0035115 . 153 . 221003 . 253 . 315505 . 303 .114500

. 051 . 101552 .101 . 220552 . 201 .351552 . 351 .115502

.055 . 103515 .105 . 220515 . 205 .353515 . 355 .110513

.005 . 105450 .155 .230105 . 255 . 355150 5355 .150150

.051 .101121 .151 .232121 .251 .351121 . 301 .402121

.010 . 109315 . 110 . 231315 . 21o . 355315 . 310 .101315

.011 .111320 .111 .235320 .211 .351320 .311 .100325

. 012 . 113251 .112 . 230201 .212 .353201 . 312 .«mx

. 013 . 115234 . 113 . 210231 . 213 .355234 . 313 .150231

.011 . 111151 .114 .242151 . 211 . 351151 . 311 .152151

.015 .110140 .115 .214110 '.215 :350110 .315 . 151110

. 015 . 121053 . 115 . 215053 . 210 . 311053 . 315 . 555053

. 011 . 123045 .111 .210015 .211 .313015 .311 .155015

Scales of Notation

'2K in Decimal

x 2' x 2' x 2'

0001 100069 33874 62561 0.01 1.00695 55500 56719 0.1 1.07177 34625 36293
0.002 100138 72557 11335 0.02 1.01395 94797 90029 0.2 1.14669 83549 97035
0.003 1.00206 15050 79633 0.03 1.02101 21257 07193 0.3 1.23114 44133 44916
0.004 102 901078 0.04

1.0g811
6266 56067 0.4 1.31950 79107 72894

0.005 1.0034 6743509503 0.05 1.0 526 49236 41377 0.5 1.41421 35623 73095
0.006 1.0041 75432 35973 0.06 1.04246 57605 41121 0.6 1.51571 65665 10398
0.007 1.0 5 23785 0.07 1.04971 66636 23067 0.7 1.62450 47927 12471
0.006 1.0055 05603 96466 0.06 1.05701 50405 61380 0.8 174110 11265 92248
0.009 1.0062 70234 97782 0.09 1.06437 01024 53360 0.9 1.86606 59830 736-15

in -

10 In Octal
10- n 10-» 10" n 1o~~

1 0 1.0 0 000 000 000 000 000 00 112 402 762 000 10 0.000 000 000 006 676 337 66
12 1 0.0 3 146 314 631 463 146 31 1 351 035 564 000 11 0.000 000 000 000 537 657 77

2 0.0 5 075 341 217 270 243 66 16 432 451 210 000 12 0.000 000 000 000 043 136 32
1 750 3 0.0 0 406 111 564 570 651 77 221 411 634 520 000 13 0.000 000 000 000 C03 411 35

23 420 4 0.0)!) 032 155 613 530 704 15 2 657 142 036 440 000 14 0.000 000 000 O 264 11

303 240 5 0.0 0 002 476 132 610 706 64 7 724 461 500 000. 15 0.000 000 000 000 000 022 01
3 641 100 6 0.0 0 000 206 157 364 0 7 4157 115 760 200 000 16 0.000 000 000 000 0 1 63

46 113 200 7 0.01 0 000 015 327 745 152 75 2127 413 542 400 000 17 0.000 000 000 000 C00 000 14
575 360 400 8 0.0 0 000 001 257 143 561 06 67 405 553 164 731 000 000 18 0.000 000 000 000 000 000 01

7 346 545 000 9 0.0 0 000 000 104 560 276 41

n log... 2, n 10g2 10 in Decimal

n n log... 2 111083 10 n n log”. 2 n log; 10

1 0.30102 9957 3.32192 80949 6 1. 0617 99740 19.93156 85693”
2 0.60205 9913 6.64305 61898 7 2 0720 99696 23.25349 66642
3 0.90306 9670 9 578 2847 - 8 26.57542 47591
4 1.20411 9827 13. 28771 23795 9 0926 99610 9.69736 265440
5 150514 9783 16 0964 04744 10 301029 99566 3321925 09489

Addition and Multiplication Tables

Addition
_ Multiplication

Binary Scate

0 0 = 0 0 X 0 = 0

O+l=1$0=1 0X1=1X0=0
1 1 = 10 1 X 1 = 1

OctalScale

0101 02 03 04 05 06 07 1 l 02 03 O4 05 06 07

1 02 03 04 05 06 07 10 2 04 06 10 12 14 16

2 03 04 05 06 O7 10 11 3 06 11 14 17 22 25

3' 04 05 06 O7 10 11 12 4 10 14 20 24 30 34

4 05 06 07. 10 11 12 13
V

5 12 17 24 31 36 43

5 06 O7 10 11 12 13 14 6 14 .22 30 36 44 52

6 07 10 11 12 13 14 15 7 16 25 34 43 52 61

7 10 11 12 13 14 15 16

Mathematical Constants in Octal Scale

7r = 3.11037 552421. 9 = 2.55760 521305. 7 = 0.44742 147707.

1r" = 0.24276 301555.
_

a" = 0.27426 530661. My 2 - 0.43127 233502.

w = 1.61337 611067. v7: 1.51411 230704. 10327 = ~ 0.52573 030645.

'" " = 1-11206 404435. 103:» e = 0.33626 754251. xi? =

1.32404 746320.
1

.

'0‘” = 1-515“ 163223. log. a = 1.34252 166245. In 2 = 0.54271 027760.

V75 = 312305 407267. log: 10 = 3.24464 741136. In 10 = 2.23273 067355.

F—S

Common Abbreviations

The following list of abbreviations includes many abbreviations used

in conjunction with the PUP—8 family of computers.

Abbreviation Meaning

AC _. . . Accumulator

ADDR
'

............. Address

B. SP. Back Space
BIN Binary
CLC Current Location Counter

CONT Continue

CR Carriage Return

CR/LF Carriage Return—Line Feed

CTRL/L Control/L (represents holding down the CTRL

key while depressing the L key or the key fol-

lowing the slash)
DEC Digital Equipment Corporation
DEP Deposit
DF Data Field

EAE Extended Arithmetic Element

EXAM Examine

IF Instruction Field

INST Instruction

L Link

LF Li:1e Feed

LOAD ADD Lead Address

LOC Lccation

LSP LoIw-Speed Punch

LSR Lew-Speed Reader

HSP High-Speed Punch

HSR High-Speed Reader

KBRD Keyboard
PC Program Counter

PROG Program
MA Memory Address

MB Memory Buffer

MQ M ultiplier Quotient
REL Release

RIM Read-In Mode

SA Starting Address

SHIFT/P Shift/P (similar to CTRL/L)
SING INST. Single Instruction

SING STEP Single Step
SR Switch Register
SW Console Switches

TTY Teletype

A

Abbreviations. common, F—6.

Absolute address: A binary number that

is permanently assigned as the ad-

dress of a storage location;

Accumulator: A 12-bit register in which

the result of an operation is formed;
Abbreviation: AC; 1-32, 2-6, 4-5

Addition exerciser, FOCAL, 9-32

Addition tables, binary and octal, F-S

Address: A label, name, ,

or number

which designates a location where in-

formation is stored.

Addressing, 2-13; direct, 2-16; indirect,

2-16
Address modification, 3-19

ALGOL-s, 6-3

Algorithm: A prescribed set of well-de-

fined rules or processes for the solu-

tion of a problem in a finite number

or steps.

Alphanumeric: Pertaining to a character

set that centains both letters and

numerals, and usually other charac-

ters-

Alphabetic data, 1-34

Analysis, pulse-height,10-6; scientific

data, 10-3; time-of-flight (TOF),
10-9

Analysis of Variance

PDP-5/8 (DECUS No.5/8-9),11-8
AND group of skip microinstructions,

2-25

AND instruction, 2-9; logical opera-

tion 1-29

Answers to exercises, A-l

Applications, scientific, see PDP-S fam-

ily computers in' the sciences

Arithmetic operations, programming,
3-10

arithmetic overflow, 3-11

double precision arithmetic, 3-14

multiplication and division, 3-13

powers of two, 3-16

subtraction, 3-13

Arithmetic operations with binary and

octal numbers, 1-18

Arithmetic overflow, 3-11

. Index/Glossary
Arithmetic unit: The component of a

computer where arithmetic and log-
ical operations are performed, 1-32,
2-5

.

ASCII: An abbreviation for USA Stan-

dard Code for Information Inter-

change.
code, 5-4, B-l

converting to binary, 5-13

converting to 4-digit numbers, 5-16

paper tape format, 4-14

printing characters, 5-8, —11

typing 4-digit numbers, 5-15

Assemble: To translate from a sym-
bolic program to a binary program

by substituting binary operation
codes for symbolic operation codes
and absolute or relocatable addresses
for symbolic addresses.

Assemblers, see symbolic assemblers

PAL-D, 7-6

PAL III, 6-27
MACRO—8, 6-36

SABR, 8K, 6-2

Assembling a symbolic program, 6-25

Assembly language programming, see

symbolic language programming

Assembly procedures,

MACRO—8, 6-36, -37‘

PAL III, 6-27, -28

Autoindex registers, 3-27

Automatic processes, 1-3

Automation, laboratory, 10-4

B

Background program, 5-23

BASIC-8, 6-4

Binary: Pertaining to the number sys-
tem with a radix of two.

Binary coding, 2-2

Binary digit: One of the symbols 1 or

0; called a bit.

Binary (BIN) Loader, 6-11 to -14

core requirements, 6-13

loading, 6-12

loading using BIN, 6-14

paper tape format, 4-15

Binary Loader, Disk System, 7-14

Index—1

Binary number system, 1-6

Binary numbers

addition, 1-1'8‘ -

counting, 1-7

division, 1-25

multiplication, 1-23

subtraction, 1—20

Bootstrap: A technique or device de—

signed to bring itself into a desired

state by means of. its own action, e.g.,

a routine whose first few instructions

are sufficient to bring the rest of

itself into the computer from an, in-

put device.

Branch: A point in a routine where one

of two or more choices is made under

control of the routine.

Branching, program, 3-30

Buffer: A storage area.

Byte: A group of binary digits usually
operated upon as a unit.

C

Call: "1:0 transfer control to a specified
routine.

CALL command, Disk System, 7-19

Calling sequence: A specified set of in-

structions and data necessary to set

up and call a given routine.

Card reader code, B—Z

Careers in programming, 1-2

Carriage return/ line feed subroutine,
5-9

Central processing unit: The unit of a

computing system that includes the

circuits controlling the interpretation
and execution of instructions-”the

computer proper, excluding I/O and

other peripheral devices.

Character: A single letter, numeral, or

symbol used to represent informa—

tion.

Checking a. stored program, 48

Checking ready status of device, 5—3

CIA (complement and increment AC),
2—27

Circles and spheres, formula'evaluation

for, FOCAL, 9-42

CLA (clear the AC), 2—19, -20, -21, -22

Clear: To erase the contents of a stor-

age location by replacing the con-

tents, normally with zeros or spaces.
CLL (clear the link), 2-19, -20

CMA (complement the AC), 2-19, -20

CML (complement the link), 2-19, -20

Coding: To write instructions for a

computer using symbols meaningful
to the computer, or to an assembler,
compiler, etc.

Coding a program, 3-6

Combined microinstruction mnemonics,
2-27

Combining

microinstructions, 2-23

skip microinstructions, 2-25

Command: A control signal, usually
written as a character or group of

characters, to direct action by a sys—
tem program.

Command strings, Disk System, 7-10

Commands, TSS/S Monitor, 8-10 to -19

Comments, inserting, 3-22

Compile: To produce a binary-coded
program from a program written in

source (symbolic) language, by se-

lecting appropriate subroutines from
a subroutine library, as directed by
the instructions or other symbols of

the source program. The linkage is

supplied for combining the subrou—
tines into a workable program, and
the subroutines and linkage are trans-

lated into binary code.

Compiler, FORTRAN-D, 7—6

Computer console operation, 4-1

console components, 4-1

console switch positioning, 4—7

initializing the console, 4-7

manual prdgram loading, 4-5

Computer fundamentals, 1-1

Console: Usually the external front side

of a device where controls and indi-
cators are available for manual oper-
ation of the device. See computer
console or Teletype console.

Constants, mathematical, in octal, F—S

Control unit, 1-32, 2-5, 2-6

Conversion, of decimal to binary, 1-9;

of fractions, 1-15, 1-17, F-4; octal-

decimal, 1—12, F-2

Core and disk allocation, T88/8, 8-1

Core memory, 2-7

Counting, in binary numbers, 1-7

Current location counter, 3-6

Current page or page Obit: bit 4 of an

MRI, 2-15.

DD

Data: A general term used to denote

any or all facts, numbers, letters, and

Index—2

symbols. It connotes basic elements
of information which can be pro-
cessed or produced by a computer.

Data break: A facility which permits
I/O transfers to occur on a cycle-

. stealing basis Without disturbing pro-

gram execution.
.

Data break, 5-41; single cycle, 5—42;
three cycle, 5-42

Data field, 4-4, 4-19

Data flow, TSS/S, 8—8 to -10

Data formats, computer, 1—34

Data, scientific, analysis, 10-3; collec~

tion, 10-2; display, 103

DCA (deposit and clear AC), 2-10

DDT, Disk System, 7-8

DDT—8, 6-40 to ~50

appending to symbol table, 6-43

debugging notes, 6-47, -48

error detection, 6-48
'

example of use, 6-44 to -47

loading and executing, 6-40, -41

loading user symbol table, 6-4l,-42

special keys and commands, 6-48 to

starting address, 648

Debug: To detect, locate, and correct

mistakes in a program.
Debugging notes,

DDT—8, 6~47, ~48

ODT-8, 653 to -55

Debugging Programs, 6—6, 6-39 to ~55

DDT-8, 6-40 to —50

CDT-8, 6—50 to ~55

Debugging without DDT-8 or ODT-S,
6-39, -40

DECdisk, 4-22

,DECIMAL, pseudo-op, 6-29, ~34

DECtape, 4-20

DECUS, 11- 1, see Digital Equipment
Computer Users Society

activities, 11~3

administration, 11—5

biomedical seminars and meetings,
11-3

Education Sub-Group, 11-3

European Users Subgroup, 11-3

executive board, 11-5

membership, 11-4

newsletter, 11-2, see DECUSCOPE

objectives, 11-2

policies, 11-5

program abstracts, 11-8

Analysis of Variance

PDP—5/8 (DECUS
No. .5/8-9), 11-8

Double Precision

Integer Interpretive

Package (DECUS

No.8-115),11-11

Floating Point

Function Package,
Four Word (DECUS

.

No. 8-103A), 11-10

Matrix Inversion—Real Numbers

(DECUS No. 8-72), 11--10

PAL III Modifications—~Phoenix

Assembler (DECUS No.5/8-28a),
1 1-9

PDP-S/ 8‘Remotel&Time~Shared Sys—
tem (DECUS No.5/M5), 11—10

‘PDP~8 Assembler for IBM 360/50

and up (DECUS No. 8-124),
1 1-1 1

Triple Precision Arithmetic Package
for the PDP-S and the PDP-8

(DECUS No. 5/8 -21), '11-9

program category index, 11-5
‘

arithmetic routines, 11-6

debuggers, 11-6

desk calculators, 11-7

displays, 11-7

duplicators and verifiers, 11-6

editors, 11-6

engineering applications, 11-7

games and demonstrators, 11-»7

hardware control, 11-7

loaders, 11—6

maintenance, 11-7

miscellaneous, 11-7

punch and loaders, 11-6

scientific applications, 11-7

special functions, 11-7

text manipulation, 11-7

Program Library, 11-1

program request forms, 11-2

program submittal, 11-2

ProgramLibrary catalog, 11-5

DECUSCOPE, user’s publication, 11—2

Defer state, major state generator, 2-7

DEFINE, pseudo-op, 6—32, -34

Delimiter: A character that separates

Index—3

and organizes elements of a program.

Device flags: l-bit registers which _re-
cord the current status of a devrce,
5-3.

Device selection code: A 6-bit number

which is used to specify the device

referred to by an IOT instruction,
5-3.

Device selector, 5-3

Diagnostic: Pertaining to the detection

and isolation of a malfunction or

mistake.

Dice game, FOCAL program, 9-48

Digital computer: A device that oper-
ates on discrete data, performing
sequences of arithmetic and logical
operations on this data.

Digital Equipment Computer Users

Society (DECUS), ll-l

activities of, 11—3

DECUS Program Library, ll-l

DECUS Program Library catalog,
”—5

DECUSCOPE, 11-2

executive board, policies and adminis-

tration, 11-5

membership, individual, 11-4; instal-

lation, 11-4

program abstracts, 11-8

program category index (PDP-S,

PDP-S, ~8/S, -8/I, -8/L), 11-5

Digit: A character used to represent
one of the non-negative integers
smaller than the radix, e.g., n binary
notation, either 0 or 1.

Digits, significant, 1-8

Direct address: An address that speci-
fies the location of an instruction

operand.
Direct addressing, 2-16

Disk Monitor

CALL command, 7-19

error messages, 7-21

initialization, 7-10

LOAD command, 7-l4

residence, 7-2

SAVE command, 7-17

system modes, 7—2

Disk Monitor System, 7-1

binary loader, 7—14

calling a program, 7-19

command strings, 7-10

Dynamic Debugging Technique

(DDT), 7-8

editor, 7-4

equipment requirements, 7-9

error messages, 7-21

FORTRAN-D compiler, 7-6

general description, 7-2

initializing the monitor, 7-10

[/0 programming, 7-21

loading programs, 7-14

PAL—D assembler, 7-6

Peripheral Interchange Program

(PIP), 7-3

program library, 7-3

saving programs, 7-17

Displays, computer console, 4-5

Division in binary and octal, 1-23

Division, programming, 3-14

Double precision: Pertaining to the use

of two computer words to represent
one number.

Double precision arithmetic, 3-14

Double Precision Integer Interpretative

Package (DECUS No. 8-115), 11-11

Double precision numbers, 1-35

Downtime: The time interval during
which a device is, inoperative.

Dump:_ To copy the contents of all or

part of core memory, usually onto

an external storage medium.

Dynamic Debugging Technique, see,

DDT

E

Edit: To arrange information for ma-

chine input or output.
Editors

Disk System , 7-14

symbolic, 6-24

Eflective address: The addre55 actually
used in the execution of a; computer
instruction.

Eight’s complement arithmetic, 1-22

Elementary Programming Techniques,
3-1

address modification, 3-19

arithmetic overflow, 3-11

autoindexing, 3-27

coding a program, 3-6

double-precision arithmetic, 3-14

flowcharting, 3-3

inserting comments and headings,
3-22

Index—4

location assignment, 3-6

looping a program, 3-24

multiplication and division, 3-13

powers of two, 3-16

program branching, 3-30

program delays, 3-29

programming arithmetic operations,
3- 10 «

programming phases, 3-2

subtraction, 3-13

subtraction, 3-13

symbolic addresses, 3-7

symbolic programming conventions,

3-8

writing subroutines, 3-16

End-around carry: The action of add-

ing the most significant bit of a

binary number to the least significant
_ bit.

Error messages

Disk System, 7-21

FOCAL programs, 9—56

TSS/S, 8-20, -21

Equipment requirements
Disk System, 7-9

FOCAL, 9-1

TSS/S, 8-4

Equivalents, decimal-octaI-binary, 1—11

Exclusive OR, 1-30

Execute: To carry out an instruction
or run a program on the computer.

Execute state, major state generator,
2-7

Executive routine: A routine that con-

trols or monltors the execut1on of

other routmes.

Exerctses

answers to, A-1

arithmetic operations, 1-26 to ~28

elementary programming techniques,
3-34

input/output programming, 5-43

number systems, 1-10, -14

programming fundamentals, 2-28

system operation, 4-23

Exponent, in floating—point numbers,
1-35

EXPUNGE, pseudo-op, 6-29, -34

Extended arithmetic element, 4-22; in-

structions, D-S
'

Extended memory, data field, 4-19; in-

struction field, 4-19

F

Fetch state, major state generator, 2-7

FIELD, pseudo-op, 6-29

Fields, extended memory, 4-19

File: A collection of related records

treated as a unit.

Files, TSS/8 user, 8-3

Fixed point: The position of the radix

point of a number system is constant

according to a predetermined con-

vention.

FIXMRI, pseudo-op, 6-29

FIXTAB, pseudo-op, 6-29, -34

Flags, see device flags
Flip-Flop: A basic computer circuit or

device capable of assuming e1ther
one of two stable states.

Floating point: A number system in

which the positionof the radix point
is indicated by one part (the expo-
nent part), and another part repre-
sents the significant digits (the frac—

tional part).

Floating-point numbers, 1-35

Flowchart: A graphical representation
of the sequence of instructions re-

quired to carry out a data processingoperation.

Flowcharting, 01, 3-3

FOCAL

alphanumeric numbers, 9-12

arithmetic operations, ‘9-5

characters, special, 9-55

commands, 9-3, —13 to -30, -52

comments, 9-21

corrections, 9-11

error detection, 9-10

error diagnostics, 9-56

equipment required, 9-1

expressions, 9-6

floating-point, 9-5

getting online, 9—1
‘

high-speed reader, reading from,99-29

indirect commands, 9-8

initial dialogue, 9-2

language, 9-3

letters, used as numbers, 9-12

length of user’s program, estimating,
9-57

loading procedure, 6-55

mathematical functions, 9-26, -54

operating procedures, 6-56

operations, summary. 9-53

Index—5

FOCAL (cont.)

output format, 9-4

program examples, 9—31 to 9-51

program tapes, generating 9-32

scope functions, 9-55

symbols, 9-6

text strings, 9-8

trace, 9-25, —54

trig functions, 9-58.

variables, subscripted, 9-7

Foreground program, 5-23

Format: The arrangement of data.

Formatting Teletype output, 59

FORTRAN (4K), 63

FORTRAN (8K), 6-3

FORTRAN-D Compiler, Disk System,
7-6

Fractions

binary and octal, 1-15

converting binary and octal to deci-

mal, 1-17

table of decimal, octal and binary
equivalents, l~16

G

Group 1 microinstructions, 2-18, D-3

CLA (clear AC), 2-19, —20, -21, -22

CLL (clear L), 2-19, —20

CMA (complement AC), 2-19, -20

CML (complement L), 2-19, ~20

Format, 2—19
I

IAC (increment AC), 2-10

legal combinations, E-l

NOP, (no operation), 2-20

RAL (rotate AC and L left), 2-20

RAR (rotate AC and L right), 2-19,

-20

RTL (rotate AC and L twice left),
2-20

RTR (rotate AC and L twice right),

2—19,-20
Group 2 (skip) microinstructions, 2—21,

D~4

Format, 2-21

HLT (halt), 2-22

legal combinations, E-2

OSR (inclusive OR of AC with switch

register), 2-22

SKP (unconditional skip), 2-22

SMA (skip on minus AC), 2-211, -22

SNA (skip on nonzero AC), 2-21, -22

SNL (skip on nonzero L), 2-22

SPA (skip on plus AC), 2-21, —22

SZA (skip on zero AC), 2-21, -22

SZL (skip on zero L), 2-22

I-I

Hardware: Physical equipment, e.g.,

mechanical, electrical, or electronic
devices.

Head: A component that reads, records,
or erases data on a storage device.

Headings, inserting, 3-22

High—speed paper tape unit, 4-17

HLT (halt), 2-22

I

IAC (increment the AC), 2-20

Illegal combinations of microinstruc-

tions, 2-23

Inclusive OR, 1-30

Incrementing a tally (152), 2-11

Indexing, see autoindex

Indirect address: An address in a com-

puter instruction which indicates a

location where the address of the

referenced operand is to be found.

Indirect addressing, 2-15, -16

Initialize: To set counters, switches,
and addresses to zero or other start-

ing values at the beginning of, or

at prescribed points in, a computer
routine.

Input: The transferring of data from

auxiliary or external storage into the
internal storage of the computer.

Input/Output programming
advanced program interrupt use, 5-28

ASCII code, 5—4

data break, 5-41

device flags, 5-3

device selection, 5-3

input/output transfer (IOT) instruc-

tions, 5-2, D—7

IOT instruction format, 5-2

IOT instruction, user, 5-4

keyboard/reader instructions, 5-6

multiple device interrupts, 5-28

printer/punch instructions, 5-7

program/punch instructions, 5-7

program interrupt demonstration pro-

gram, 5-32

Index—6

program interrupt facility, 5-23

programming an interrupt, 5-24

programming the Teletype unit, 5-4

sample program for Teletype unit,
5-17

software priority interrupt system,

5-30

Teletype format routines, 5-9

Teletype input/output
5-4

Teletype numeric translation routines,

5-12

Teletype text routines, 5-10

Input/output programming, Disk

Monitor System, 7-21

Input/output transfer (IOT)
instructions

general description, 5-2

list of, D—7

Teletype instructions, 5-4

TSS/8 I/O instructions, 8-19

Input and output units, 2-5

Inserting comments and headings, 3-22

Instruction field, 4—4, 4-19

Instruction register (IR), 2-7

Instructions, see group 1 microinstruc-

tions, group 2 microinstructions,

memory reference instructions, in-

put/output transfer instructions.

1/0: Abbreviation for input/output.
IOF (turn interrupt facility Off), 5-23

ION (turn interrupt facility 01%), 523

IOT instructions, see input/output
transfer instructions.

Input unit, general organization of

PDP—S, 1-32, 1-33

Intercept and plot of two functions,

FOCAL program, 9-40

Interest payments, FOCAL program,

9-37
'

Internal storage: The storage facilities

forming an integral physical part of

the computer and directly controlled

by the computer. Also called main

memory and core memory.
Internal storage, in PDP-S computer,

1-32 .

Inter-system communication, TSS/8,

8-19

IR (instruction register), 2-7

ISZ (increment and skip if zero), 2-10

instructions, -

I

IMP (jump), 2-10

JMS (jump to subroutine), 2-12

JUG (Joint User GrOUP), 11-3, see

,DECUS activities.

Jump: A departure from the normal

sequence of executing instructlons in

a computer.

K

KCC (clear AC, keyboard buffer regis—

ter, keyboard buffer flag), 5-6

Keyboard/reader instructions,

type, 5-6

KRB (transfer keyboard buffer register
to AC and clear keyboard register

and flag), 5-6

KRS (transfer keyboard buffer register
to AC), 5-6

'

KSF (skip if keyboard register loaded

with ASCII symbol; i.e., flag raised),

5—6

Tele-

L

L (link), 2-6,‘4-5

Laboratory automation, 10-5

Language: A set of representations,
conventions, and rules used to con—

vey information.

Languages, natural, 1—1

Languages, programming

conversational, interpretive, BASIC,

6~4; FOCAL, 9-1

‘scientific, problem oriented, ALGOL,

6-3; FORTRAN, 6-3; FORTRAN-

D, 7-6

machine, symbolic PDP-S, PAL 111,

1-1 to 5—43
'

LAS (load AC from switch register),
2-27

Leader: The blank section of tape at

the beginning of the tape.

Least significant digit (LSD):
rightmost digit of a npmber.

Least significant digit of a binary num«

ber, 1-8

LING-8, computer system, 1-3

LINK (L), 2-6, 4-5

Literals, 6-33, -34

Load: To place data into internal

storage.

The

Index—7

LOAD command, Disk System, 7-14

Loaders, binary (BIN) loader, 6-11 to

—14; Disk System binary loader, 7-14;
list of, 6-5; read-in mode (RIM)

loader, 6-8 to -11

Loading address of a program, see

origin.

Loading manually, 4-5

Location: A place in storage or mem-

ory where a unit of data or an

instruction may be stored.

Location assignment, 3-6

Location counter, see current location

counter

Logging in & out, TSS/S, 8-12 , ~11

Logic operations, primer, 1-29

Loop: A sequence of instructions that

is executed repeatedly until a termi-
nal condition prevails.

Looping a program, 3-24
,

Low~speed paper tape reader, 4-11

LSD: least significant digit.

M

MA (memory address register), 2-8

Machine language programming: In

this text, synonymous with assembly
language programming (the term is

sometimes used to mean the actual

binary machine instructions), 1-1 to

5-44.

Macro instruction: An instruction in a

source language that is equivalent
to a specified sequence of: machine

instructions,
MACRO-8 Symbolic Assembler, 6-31

to 6-38

assembly procedures, 6-36, ~37

error messages, 6—38

I/O options, 6-35

literals, 6-33, —34

macros, 632, -33

off—page referencing, 6-35

pseudo-ops, 6-35

special features, 6-31

Macros, 6-32, -33

MAINDEC’s, 6-7

Major state generator, 2—7

Mantissa, in floating-point numbers,

1-35

Manual input: The entry of data by
hand into a device at the time of

processmg.

Manual operation: The processing of

data in a system by direct manual

techniques. ,

Mask, use of AND in masking, 1—29

Mathematical constants, in octal, F-S

Mathematical subroutines, library of,

6-7

Matrix Inversion-Real numbers

(DECUS No. 8-72), 11-10

MB (memory buffer register), 2-7

Memory: (1) The erasable storage in

the computer. (2) Pertaining to a

device in which data can be stored

and from which it can be retrieved.

Memory address, 4-5

Memory address register (MA), 2-8

Memory buffer, 4-5

Memory buffer register (MB), 2-7

Memory pages, 2-13

Memory reference instructions (MRI)
AND (Boolean AND), 2~9

DCA (deposit and clear AC), 2-10

format, 2—14

182 (increment and skip if zero), 2—10

list of, D-l

JMP (jump), 2-10

JMS (jump to subroutine), 2-12

TAD (two’s complement add), 2-9

Memory unit, 1-33, 2-5, -7

MEM PROT, 4-4
‘

Microinstructions (microprogram-

ming), 2-23, see group 1 microin-

structions or group 2 microinstruc-

tions

Mnemonic coding, 2—3

Monitor functions, TSS/8, 8-2; Disk
System, 7-2

Monitor Initialization, Disk System,
7-10

Monitors

Disk Monitor, 7—1

TSS/S Monitor, 8-5 to —21

commands, console manipulation,

8-12; device allocation, 8-12; file

control, 8-13; format, 8-10; log-

ging in & out, 8-11; permission
and switchboard tables, 8-17, —18;

user program control, 8-15, —16

(saving and restoring, 8-16)

data flow, applications, 8-9, ~10; il-

lustration of, 8-9

Index—8

error messages, system interpreter,
8-21; user program, 8-20, -21

phantom routines, 8-8

round-robin scheduling, 8-6 to -8

states, user program, 8-6

subprograms, 8-5

System interpreter, 8-7

Most significant digit:
nonzero digit, 1-8.

MRI, see memory reference instruc-

tions

MSD: Most significant digit.

Multiplication in binary and octal, 1-23

Multiplication, programming, 3-13;

tables, binary and octal, F—S
’

The

.

leftmost

N

Negative numbers and subtraction,
1-20

NOP (no operation), 2-20

Numbers, double precision, 1-35; float-
,

ing point, 1-35; representation in

PDP-8,1-34

Number systems, definitions of basic
concepts, 1-5, primer, 1-5

Numeric input/output routines, 5-12

0

Object program: The binary coded

program which is the output after

translation from the source language.
(The binary program which runs on

the computer.)
Octal: Pertaining to the number system

.

with a radix of eight.
OCTAL, pseudo-op, 6-29, —34

Octal coding, 2-2

Octal number line, 1-34

Octal number system, 1-11

Octal numbers, addition, 1-19; divi-

sion, 1-26; multiplication, 1-24; mul-

tiplication table. 1-25; subtraction,

1-22

Octal-to-decimal conversion, 1-12

CDT-8, commands, 6-52, -53;_ debug-

ging notes, 6-53 to -55; error detec-

tion, 6-55; generating binary tape,

6-54; loading & executing, 6-51;

starting address, 6-50

Ofi‘lz‘ne: Pertaining to equipment or de-

vices not under direct control of the

computer.

Off—page referencing, 6-35

Omline Pertaining to equipment or

devices under direct control of the

computer; also to programs operat-
ing directly and immediately to user

commands, e.g., FOCAL and DDT.

Operand: That which is effected, mani-

pulated, or operated upon.

Operate microinstructions, 2-18

Operating procedures, 6-8 to -56

Assemblers, Symbolic, 6-23 to -39

MACRO-8, 6-31 to -38

assembly procedures (flowcharts),

6-36,-37‘
'

error messages; 6-38

high and low versions, 6-31; flow-

charts of, 6-36, -37

PAL 111, 6—24 to -30

an assembly, 6-25 to -29
‘

assembly passes, 6-24, -25

assembly procedures (flowcharts),

6-27, -28

error messages, 6-30

Debugging Programs, Dynamic, 6-39

to -55

description of, 6-39

DDT-8 (Dynamic Debugging Tech-

nique), 6-40 to —50

adding new symbols (flowchart),
6-43

debugging notes, 6-47, -48

debugging with DDT-8, 6-44 to -47

error detection, 6-48

loading &
‘

executing (flowchart),
6-41

loading symbol table (flowchart),
6-42

V

-

software required, 640

specie}. keys & commands, 6-48 to

-55

CDT-8 (Octal Debugging Tech-

nique), 6-50 to -55

commands, 6-52, -53

error detection, 6-55

loading & executing (flowchart),
6-51

punching debugged program tape

(flowchart), 6-54

software required, 651

Index—9

Operating procedures (cont.)

Editor, Symbolic, 6-15 to -23

commands, 6-16

error detection, 6-21

[/0 control, 6-21

modes, 6—15

punching program tapes, 6—18,, ~19;

flowchart of, 6-19

search feature, 6-20

special keys & commands, 6-21 to

-23

writing a program, 6-16 to -18

FOCAL, loading .5: executing

(flowchart), 6-55,- 56

initializing the system, 6-8

loaders, 6-8 to ~14

Binary (BIN), 6-11 to -14; loading
BIN (flowchart), 6-112; loading
with BIN (flowchart), 5-14

Read-In Mode (RIM), 6—8 to ~11;

checking RIM (flowchart), 6-11;

instructions, 6—9; loading RIM

(flowchart), 6-10

Operator’s console, see Computer con-

sole

Options, TSS/8 hardware, 85

OR group of microinstructions (SMA

0R SZA 0R SNL), 2-215

OR, logical operation, 1-30

Order of execution of combined micro-

instructions, 2-26

Origin: The absolute address of the

beginning of a program, 3-6.

OSR (inclusive OR of switch register
and AC), 2-22

,.

Output: Information transferred from

the internal storage of a computer
to output devices or external storage.

Output unit, in PDP-8 computer, 1—32

Overflow: The generation of a quan-

tity beyond the capacity of the stor-

age facility.

P

Page: In the PDP—8, a unit of 200

(octal) memory locations.

PAGE, pseudo-op, 6-34

PAL-D Assembler, Disk System, 7-6

PAL III Modifications-Phoenix As-

sembler (DECUS No.5/ 8 v28A),11-9
PAL III Symbolic Assembler, 6-24 to

~30

assembly, 6-25 to -30

assembly procedures, 6-27, -28

error messages, 6-30

output control, 6-30

pass 1, 2, and 3, 6-24, ~25

pseudo-ops, 6-29, -30

Patch: To modify a routine in a rough
or expedient way.

PAUSE, pseudo-op, 6-29, -34

PC (program counter), 2—6

PDP—5/8 Remote & Time-Shared Sys-
tem (DECUS No.5/8-45), 11-10

PDP—S, see specific item or topic

PDP-S Assembler for IBM 360/50 and

Up‘ (DECUS No. 8—124), 11-11

PDP-S family computers in the sciences

applications in behavioral sciences,
10-11; life sciences, 10-10; natural

sciences, 10-11; physical sciences:
10-9

data. analysis, 10—3

data collection, 10-2

data display, 10-3

example of scientific

application, 10-12

gamma-ray spectroscopy, 10—10

gas chromatography, 10-6

infrared and ultraViolet

,

spectroscopy, 10—8w
instrumentation control, 10-4

laboratory automation, 106

mass spectroscopy, 10-7
,

nuclear magnetic resonance (NMR)
spectroscopy, 10-7

offline and 'online uses, 10-1

pulse—height analysis, 10-6
time-of-flight (TOF) analysis, 10—9

x-ray diffraction, 10'-8

PDP-8 organization and structure, 1-31,

2-4, -5

Peripheral Equipment and options,
4-16

DECdisk system, 4-22

DECtape system, 4—20

extended arithmetic element, 4-22

extended memory, 4-18

high speed paper tape unit, 4-17

Peripheral Interchange Program (PIP),

Disk System, 7-3

Permission table, TSS/8, 8-17 to ~19

Index—10

Phantom routines, TSS/S, 8—8-

Plotting, one-line functions, FOCAL

program for, 9-39

Plotting on the Oscilloscope, FOCAL

program, 9-42
‘

Pointer address: Address 'of a core

‘

memory location containing the ac-
‘

tual (effective) address, 2-15, see

indirect addressing.

Position coefficient, used in number

systems, 1-6

Powers of two, 3-16; table of, El

Predefined process: A named process

consisting of one or more operations
'

or program steps that are specified
elsewhere in a routine,

Procedure: The course of action taken

for the solution of a problem; also

called an algorithm.

Program: The complete sequence of in-

structions and routines necessary to -

solve a problem.

Program counter (PC), 2-6, 4-5

Program interrupt facility, 5-1, -23

advanced use of, 5-28

background program, 5-23

basic programming, 5-24

demonstration program, 5-32

foreground-program, 5-23

instructions, 5—23

multiple device interrupts, 5-28

service routines, 5—23

skip chain, 5-29

Program library: A collection of avail-
‘

able computer programs and routines.

Program Library, Disk System, 7-3

Programming fundamentals, 2-1

accumulator (AC), 2-6

addressing, 2-13

AND group of microinstructions-

(SPA AND SNA AND SZL), 2-25

AND (Boolean AND), 2-9

arithmetic unit, 2-5

binary coding, 2-2

CLA (clear the accumulator), 2-19,

-20, -21, -22

CLL (clear the link), 2-19, -20

CMA (complement AC), 2-19, -20

CML (complement the link), 2-19,
‘

.-20

Printer/punch instructions, Teletype,

combining microinstructions, 2-23

combining skip microinstructions, 2-25

control unit, 2-5, -6

core memory, 2-5, -7

current page or. page 0 bit, 2-15

DCA (deposit and clear AC), 2-10

exercises, 2-28

group 1 microinstructions, 2—18

group 2 microinstructions, 2-21

HLT (halt), 2-22

.IAC (increment the AC), 220

incrementing a tally (ISZ), 2-11

illegal combinations of

microinstructions, 2-23

indirect addressing, 2-15

input and output units, 2-5

instruction register (IR), 2-7

ISZ (Increment and skip if zero), 2-10

JMP (jump), 2-10
' JMS (jump to subroutine), 2-12

link (L), 2-6

major state generator, 2-7

memory address register (MA), 2-8

memory buffer register (MB), 2-7

memory pages, 2-13
‘

memory reference instructions

(MRI), 2-8, -14

memory unit, 2-5, -7

microprogramming, 2-23

mnemonic coding, 2-3

NOP (no operation), 2-20

octal coding, 2-2

OR group of microinstructions

(SMA OR SZA 0R SNL), 2,-25

order of' execution of combined

microinstructions, 2-26

OSR (exclusive OR switch register
with AC), 2-22

PDP-8 organization and structure,

2-4, -5

pointer address(indirect addressing),
2-15

program counter (PC), 2-6

RAL (rotate AC and L left), 2-20

RAR (rotate AC and L right), 2-19,

-20

RTL (rotate AC and L twice left),
2-20

RTR (rotate AC and L twice right),

2-19, -20

Index—4 1

Programming fundamentals (cont.)

Rules for combining mic roinstruc-

tions, 2-23

SK? (unconditional skip),l.'-22

SMA (skip on minus AC), 2-21, -22

SNA (skip on nonzero AC), 2-21, -22

SNL (skip on nonzero L), 2-22

SPA (skip on plus AC), 2-21, -22

SZA (skip on zero AC), 2-2.1, -22

SZL (skip on zero L), 2-22

TAD (two’s complement add). 2~9

Programming, techniques, 3-1; see type

of operation to be programmed.

Pseudoioperators, MACRO-3, 6-34;
PAL Ill, 6-39 , -30

Punched paper tape: A paper tape on

which a pattern of holes is used to

represent data.

Quadratic Equations, finding roots with

FOCAL program, 9—35

R

Radix: The quantity of characters for

use in each of the digital positions
of a number system.

RAL (rotate AC and L left), 2-20

RAR, (rotate AC and L right), 2-19,

-20

Read: To transfer information from an

input device to internal storage; also

refers to the internal acquisition of

,
data from memory.

Read-In Mode (RIM) Loader, 6-8 to

~11

core requirements, 6—9

instructions, 6-9

loading, 6-10

Referencing, off-page, 6-35

Register: A device capable of storing
a specified amount of data, such as

one word.

Registers, autoindex, 3—27

Round-robin scheduling, TSS/S, 8—6

to -8
‘

Routine. A set of instruction; arranged
in proper sequence to cause the com-

puter to perform a desirec task

RTL (rotate AC and L twice left),

2,20
RTR (rotate AC and L twice right),

2-19, -20

Rules for combining microinstructions,
2-28

Run: A single, continuous execution of
a program.

Running a stored program, 4-8

S

SABR, 8K assembler, 6-2
SAVE command, Disk System, 7-17

Scales of notation, F-S

Schroedinger equation solver, FOCAL

program, 9-50

Scientific applications, see PDP-S fam-

ily computers in the sciences.
Service routine, program interrupt,

5-23 to -24

Simultaneous equations and matrices,
FOCAL programming, 9-44

Skip chain, 5-29

Skip microinstructions, see group 2

microinstructions

SKP (unconditional skip), 2-22

SMA (skip on minus AC), 2—21, -22

SNA (skip on nonzero AC), 2-21, -22

» SNL (skip on nonzero L), 2-22

Software: The collection of programs
and routines associated with the

computer.

Software, system, 6—1

availability of, 6-8

descriptions of:

ALGOL-8, 6—3

BASIC-8, 6-4

Disk/DECtape Monitor System, 6-4

dynamic debugging programs,

DDT-8, 6-6; DDT-8, 6-6

FOCAL, 6-4

FORTRAN (4K), 6—3

FORTRAN (8K), 6-3

FORTRAN compilers, 6-2 & -3

loaders, binary (BIN),'-6-5; ,

Disk

System Binary, 6~6; HELP, 6—5;

Read-In Mode (RIM), 6—5; TCOl

Bootstrap, 6-5

MACRO-8 symbolic assembler, 6-2

MAINDEC programs, 6-7

mathematical subroutines, 6‘7

PAL III Symbolic Assembler, 6-2

Symbolic Editor, 6-2

TSS/S (Time-Sharing System), 6-4

utility subroutines, 6-6

Index— 1 2

Sorting program, 3-31

Source language: A symbolic language
that is an input to a given translation

process.
SPA (skip on plus AC), 2-21, -22

Spectroscopy, PEP-8 applications in

gamma-ray, 10-10

infrared, 10-8

mass, 10-7 ,

nuclear magnetic resonance (NMR),

19-7
ultraviolet, 10-8

Square completer, FOCAL
program,

9-36

Starting address, of a program, 3-6

Statement: A meaningful expression or

generalized instruction in a source

language.

Step: One operation in a routine.

STL (set link to 1), 2-27

Store: To enter data into a device,
where it can be held and from which

it can be retrieved.

String: A connected sequence of enti-

ties, such as characters in a com—

mand string.

Subprograms, TSS/S Monitor, 8-5

Subroutine, closed: A subroutine not

stored in the main part of a pro-

gram.'Such a subroutine is entered

by a Jump operation and provision
1s made to return control to the main

routine at the end of the subroutine.

Subroutine, open: .A subroutine that
must be relocated and inserted into

a routine at each place it is used.

Subroutines, writing, 3—16

Subtraction, programming, 3- 13

Switch: A device or programming tech-

nique for making selections.

Switchboard table, TSS/S, 8-17 to -19

Switch register,I4-4
Switch register options,

6-35; PAL 111, 6-21

Switches, computer console, 4—2

Symbol table, PAL III, 6-29, -30

Symbolic address: A set of characters
used to specify a memory location
within a program, 3-7 .

Symbolic assemblers, 6-23 to -30

MACRO-8, 6-31 'to -38

PAL III, 6-24 to ~30

Symbolic coding: Writing instructions
us1ng symbolic notation instead of

MACRO-8,

actual machine (binary) instruction

notation.

Symbolic Editor, 6-2, 6-24 to -30

commands, 6-16

error detection, 6-20, -21

1/0 control, 6-21

loading '& starting, 6-16

modes of operation, 6-15

punching a program tape, 6—18 to -20

search feature, 6-20

'special keys & commands, 6-21 to -23

writing a program, 6-16 to -18

Symbolic language, conventions, 3-8;

special characters, 3-9

Symbolic-language programming: Writ-

ing program instructions in a lan-

guage which facilitates the transla-

tion of programs into binary code by
making use of mnemonic conven-

tions (also called assembly language
programming), see assemblers.

System configuration, TSS/8, illustra-

tion of, 8-4; inter-system communi-

cation, 8-19; options, hardware, 8-5

System description and operation, 4-1

ASCII paper tape format, 4-14

BIN (binary) paper tape format, 4-15

computer console components, 4-1

computer console operation, 4-1

computer console switch positioning,
4-7

data field, 4-19

DECdisk system, 4-22

DECtape system, 4-20

extended arithmetic element, 4-22

extended memory, 4-18

generating a symbolic tape, 4-12

high-speed paper tape unit, 4-17

initializing the computer console, 4-7

instruction field, 4-19

low-speed paper tape punch, 4-12

low-speed paper tape reader, 4-11

manual program loading, 4-5

paper tape formats, 4-13

paper tape loader programs, 4-15

peripheral equipment and options,
4-16

RIM (read-in mode) paper tape for-

mat, 4-14

Teletype control knob, 4—10

Teletype keyboard, 4—10

Index—1 3
p

System description (cpnt.)
Teletype operation, 4—9

Teletype printer, 4-11

Teletype unit components, 4-9

System initialization, 6-8

System interpreter, TSS/S, 8—7, -21

System software, description, 6-1 to ~8;

operating procedures, 6-8 to -56; see

software.

SZA (skip on zero AC), 2-21, -22

SZL (skip on zero L), 2-22.

T

Table generation, FOCAL, 9—31

TAD (two‘s complement add), 2-9

TCF (clear Teletype printer flag), 5-8

Teletype unit, programming, 5-4

format routines, 5-9

TOT routines, 5—9

keyboard/reader instructions, 5-6

numeric translation routines, 5-12

printer/punch instructions, 5—7

sample program, 5-17

text routines, 5-10

Temperature conversion, FOCAL pro-

gram, 9—38

Terminal: A device in a system through
which data can either enter or leave.

Text input/output routines, 3—9

Three-cycle data break, 5-42

Time sharing: A method of allocating
central processor time and other

computer services to multiple users

so that the computer, in effect, proc-
esses a number of programs simul-

taneously.

Time-Sharing System, TSS/S, 8-1

Introduction, 8-1

core and disk allocation, 61—1

monitor functions, 8—2

system configuration; illustration of,

8-4; inter-system communication,

8-19; options, hardware, 8~5

system programs, 8—3

user & console, TSS/8, 8-2.

user files, 8-3

user programs, 8—3

1/0 transfer instructions, 8019, -20

Monitor, 8—5 to -21

commands, 8-10 ;console to anipulation,

8-12; device allocation, 8-12; file

control, 8-13, format, 8-10; for-

mat, 8-10; logging in & out, 8-11;

permission & switchboard tables,

8-17, -18; user program control,

8-15, -16 (saving & restoring, 8-16)
data flow, 8-8 to ~10; applications,

8—9, -10; illustration of, 8-9
‘

error messages, system interpreter,

8-21; user program, 8-20, -21

phantom routines, 8-8

round-robin scheduling, 8-6 to -8

states, user program, 8-6

subprograms, 8-5

system interpreter, 8-7

TLS '(clear printer flag, transfer AC

to print buffer register, select and

print character), 5—8

Toggle: Using switches to enter data
into the computer memory.

TPC (transfer AC to print buffer reg-

ister, select and print character), 5'8

Training by'simulation, 1-3

Translate: To convert from one lan~

guage to another.

Triple Precision Arithmetic Package
for the PDP—S and "the PDP-S

(DECUS No. 5/8-21), 11-9

TSF (skip if printer flag set), 5-8

TSS/Sg see Time-Sharing System
Two’s complement arithmetic, 1—20

Types of IOT instructions, 5-4

U

USASCII, see ASCII

Utility subroutines, library of, 6-6

W

Weighting tables, used in number sys-

tems, 1-6, 1—8

Word: A 12-bit unit of data in the
PDP—8 which may he stored in one

addressable location.

Word length: The number of bits in a

word.

Write: To transfer information from

internal storage to an output device

or to auxiliary storage.

Index—«l 4

NOTES

I Contents

I Computer Fundamentals

Programming Fundamentals

Elementary Programming Techniques

a System Description and Operation

5 Input/Output Programming

3 Operating the System Software

Disk Monitor System

a Time-Sharing System

a FOCAL Programming

a PDP-8 Family Computers in the Sciences

I Digital Equipment Computer Users Society

fl Answers to Selected Exercises

3 Character Codes

I Flowchart Guide

I Tables of Instructions

Legal Microinstruction Combinations

I Miscellaneous Tables

I Index/ Glossary

