INTROI%Cl)JCTlON
PROGRAMMIN

PDP-8 Family Computers

Prepared by
The Software Writing Group
Programming Department
Digital Equipment Corporation

SMALL COMPUTER HANDBOOK SERIES

First Printing, Yanuary 1969
Second Printing, July 1969

Copyright © 1968, 1969 by
Digital Equipment Corporation

PDP is a registered trademark
of Digital Equipment Corporation.

Foreword

The data processing industry has expanded so rapidly during the
past twenty years that there has always been a scvere shortage of
trained' personnel. Many new job openings are created each year be-
cause new ways for using the computer are continually being developed.
Consequently, the computer industry has a real problem training pro-
grammers and engineers fast enough to fill these newy jobs.

Fortunately, this situation is improving, primarily because our uni-
versities, high schools and training schools have greatly expanded their
abilities and facilities to train students in data processing. We are espe-
cially heartened by the great strides being made at the secondary school
level. Computers are now an integral part of modern life; high school
students are using computers to learn to solve Algebra I problems;
engineers are using the computer as an “electronic slide rule”; chemists
are using the computer to aid in analysis and control of chemical pro-
cesses; many businesses are using computers to process payroll records,
control inventories, and many other applications,

We anticipate that this book will be useful to both teachers and
students as a training text and reference handbook. For users of our
small computers, it will also be the basic programming reference source
for use in conjunction with the many small computer systems of the
PDP-8 family produced by DEC.

~ Introduction to Programming was prepared by the Software Writing
Group in the Programming Department at DEC, with the assistance
of many others, including instructors in our Training Department, many
DEC and user programmers who have reviewed the manuscript, and
teachers who are presently using a PDP-8 in their computer sciences
courses.

We are most grateful to everyone who has contributed.

e A L

Kenneth H. Olsen '
President :
Digital Equipment Corp.

iv

Preface

This textbook is an introduction to programming digital computers,
particularly Digital Equipment Corporation’s PDP-8 family of com-
puters (often referred to simply as PDP-81). Over 3,000 of these small,
gencral-purpose computers have proven their versatlllty in hundreds
of different applications.

Introduction to Programming can be used by students, programming
trainees, and experienced programmers. It offers two approaches to
learning computer programming: (1) learning to program in machine
language, that is, learning to write programs using the actual instruc-
tions that the computer was built to perform and (2) learning to pro-
gram in a common programming language that uses many English
words and standard mathematical notation. Although easier to learn,
common languages, such as FORTRAN, ALGOL or FOCAL, are not
as efficient as machine languages, in terms of program execution times
and core memory requirements. Of course, machine language and com-
mon language programming are complementary, so it is useful to learn
both.

Teachers and programming students will find Chapters 1 through 5
useful as an introductory text to machine-language programming.
Chapters 6 through 9 are devoted to the descriptions, uses, and oper-
ating procedures for PDP-8 system software; this software has proven
its ability to simplify the tasks of writing, editing, assemblmg, compil-
ing, debugging, and running user programs.

Chapter 6 describes PDP-8 system software and provides detailed
operating procedures for the Symbolic Editor, the assemblers, and other
commonly used software, These operating procedures can be used by
the computer operator or programmer mdependent of the remainder
of the book.

Chapters 7 and 8 describe the Disk Monitor System and the TSS/8
Time-Sharing System.

1 PDP stands for Programmed Data Processors and is a trade mark of Digital
Equipment Corporation.

Chapter 9 is a complete student’s text on the use of FOCAL
(FOrmula CALculator), a conversational interpreter for solving nu-
merical problems. FOCAL language consists of short, easy-to-learn,
imperative English statements. FOCAL puts the full calculating power
and speed of the computer at the user’s fingertips, providing an easy
way of simulating mathematical models, plotting curves, handling sets
of simultaneous equations in n-dimensional arrays, and much more.

Scientific programmung is explained in Chapter 10 along with a de-
tailed special program designed to gather physiological data.

After becoming familiar with PDP-8 programming, the user may
wish to join DECUS (Digital Equipment Computer Users Society).
DECUS is a user’s organization that exchanges ideas and programs;
it is described in Chapter 11 together with a list of programs available
from DECUS.

A detailed index/glossary, a summary of instructions, answers to
selected exercises, and tavles of conversion codes are included at the
back of the book. More experienced programmers will find the book
and its index useful as a reference guide.

Preface to the Second Printing

The text is unchanged, except for the correction of minor errors.
Most of these errors were reported by diligent readers, to whom we
are most grateful. As we expect to improve this book in future re-
visions, all readers are earnestly requested to send corrections and
comments to: ‘

Manager, Software Documentation
Programming Department

Digital Equipment Corporation
Maynard, Mass. 01754

vi

‘Contents

FOREWOIdc.oocovvririrriiirrereirinriressisisesnetvess sovevssenseesorsaessssnnesscses iii
Prefaceccovivvmnernrieisseecorenninenns sererett st rrees et eres et a e e aaeserens v
CONLLILScorvevrriiririniniinerecinerinneesenessrieonsissinssnsesinensnnnnns Vil
Chapter 1 Computer Fundamentalsc...ccoveiniviinnnnne. 1-1

Introduction to PDP-8 Family Computers, Ap-
plications, Computer Number Systems and Anth-
metic and Logical Operations

Chapter 2 Programming Fundamentalscccceereennnen. 2-1
Memory Reference Instructions and Operate Mi-
croinstructions and the Way They Are Used in
Programming the PDP-8 Family Computers

Chapter 3 Elementary Programming Techniques 3-1
Phases of Program Preparation, Programming
Symbols and Conventions, Arithmetic Opera-
tions, Subroutines, Address Modification and
Auto-indexing, Program Looping and Branching

Chapter 4 System Description and Operation 4-1
Entering and Storing Information in Core Mem-,
ory with the Operator’s Console and Teletype
Unit, followed by an Introduction to the More
Common Optional Equipment of the PDP-8
Family

Chapter 5 Input/Output Programmingccccecervrurennenn. 5-1
I/0 Transfer Instructions and I/O Programming
Techniques applied to the Teletype Unit Using the
ASCII Character Set, followed by Descriptions of
the Program Interrupt Facility and the Data Break
Option
Chapter 6 Operating the System Softwareccocevrnreee. 6-1
Descriptions of PDP-8 Family System Software
supplied by Digital Equipment Corporation and
Operating Procedures for the Symbolic Editor,
_Assemblers, and Other Commonly Used Software

Chapter 7

Chapter 8

Chapter 9.

Chapter 10

Chapter 11

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F

Disk Monitor Systemccococvvvennverrcenvecrvinnnens 7-1
Description of the Disk Monitor System, which
includes a Keyboard-Oriented Monitor, a FOR-
TRAN Compiler, an Editor, a Peripheral Inter-
change Program, and a Dynamic Debugging
Program

Time-Sharing Systemccoevvvvvirneverisreniiiennes 8-1
Description of the TSS/8 Time-Sharing System,
which includes a Monitor and a Comprehensive
Library with Facilities for Compiling, -Assembling,
Editing, Loading, Calling, and Debugging User
Programs

FOCAL Programmingcccevevcrninrvececreennns 9-1
Complete student’s text on the Use of FOCAL
(FOrmula CALculator), a Conversational Inter-
preter for Solving Numerical Problems, including
several Examples and Methods for Obtaining Spe-

cific Problem Solutions

PDP-8 Family Computers in the Sciences 10-1
Discussion of several general Scientific Applica-
tions Using PDP-8 Family Computers, followed by

a Detailed Description of a Special Program De-
signed to Gather Physiological Data

Digital Equipment Computer Users Society 11-1
Description of the Objectives and Functions of
DECUS, including the DECUS Program Library

and Catalog, DECUSCOPE, Activities, Member-

ship, and Policies and Administration

Answers to Selected Exercisesc..ceeverunnne. A-1
Character Codesccccocevveerrvemnreinnivinnienn, B-1
Flowchart Guidecccoovviviniriinniinnnnninnnn C-1
Tables of Instructionsccceevvvrinivcniciiinnin D-1
Legal Microinstruction Combinations E-1

Miscellaneous Tablescc.ccveevvveiiniivienrienneneens F-1

Index/Glossary reererens renreen ettt bae e sanrassnsans Index -1

Chapter

Computer
Fundamentals

INTRODUCTION

During the past 20 years, the computer revolution ‘has dramatically
changed our world, and it promises to bring about even greater changes
in the years ahead.

The general purpose, digital computers being built today are much
faster, smaller and more reliable and can be produced at lower cost
than the earlier computers. But even more significant breakthroughs
have come in the many new ways we have learned to use computers.

The first big electronic computers were usually employed as super
calculators to solve complex mathematical problems that had been im-
possible to attack before. In recent years, computer programmers
have begun using computers for non-numerical operations, such as
control systems, communicdtions, and data handling and processing.
In these operations, the computer system processes vast quantities of
data at high speed.

The Computer Challenge

It has been said that a computer can be programmed to do any
problem that can be defined. The key word here is defined, which
means that the solution.of the problem can be broken down into a
series of steps that can be written as a sequence of computer instruc-
tions. The definition of some problems, such as the translation of natu-
‘ral languages, has turned out to be very difficult. A few years ago it
was thought that computer programs could be written to translate
French into English, for example. As a matter of fact, it is quite easy
to translate a list of French words into English words with similar
meanings. However, it is very difficult to precisely translate sentences
because of the many shades of meanings associated with individual
words and word combinations. For this reason,-it is not practical to

1-1

try to communicate with a computer using a conventional spoken lan-
guage.

While natural languages are impractical for computer use, program-
ming languages, such as FOCAL, ALGOL, and FORTRAN with their
precisely defined structure and syntax, greatly simplify communication
with a computer. Programming languages are problem oriented and
contain familiar words and expressions; thus, by using a programming
language, it is possible to learn to write programs after a relatively
short training period. Since most computer manufacturers have adopted
standard programming languages and implemented the use of these
languages on their computers, a given program can be executed on a
large number of computers. PDP-8 programmers use FORTRAN and
ALGOL-8 for scientific and engineering problems and use FOCAL-8
and BASIC-8 for shorter numerical calculations. Computer languages
have been developed for programmed control of machine tools, com-
puter typesetting, music composition, data acquisition, and many other
applications. It is likely that there will be many more new programming
languages in the future. Each new language development will enable
the user to more easily apply the power of the computer to his partic-
ular problem or task.

Who can be a programmer? In the early days of computer program-
ming, most programmers were mathematicians. However, as this text
illustrates, most programming requires only an elementary ability to
handle arithmetic and logical operations. Perhaps the most basic re-
quirement for programming is the ability to reason logically.

The rapid expansion of the computer field in the last decade has
made the resources of the computer available to hundreds of thousands
of people and has provided many new career opportunities.

Computer Applications

A computer, like any other machine, is used because it does certain
tasks better and more efficiently than humans. Specifically, it can re-
ceive more information and process it faster than a human. Often,
this speed means that weeks or months of pencil and paper work can
be replaced by a method requiring only minutes of computer time.
Therefore, computers are used when the time saved by using a com-
puter offsets its cost. Further, because of its capacity to handle large
volumes of data in a very short time, a computer may be the only
means of resolving problems where time is of the essence. Because of
the advantages of high speed and high capacity, computers are being
used more and more in business, industry, and research. Most com-
puter applications can be classified as either business uses, which usually

1-2

rely upon the computer’s capacity to store and quickly retrieve large
amounts of information, or scientific uses, which require accuracy
and speed in performing mathematical calculations. Both of these are
performed on general purpose computers. Some examples of computer
applications are given below. -

Solving Design Problems. The computer is a very useful calculating
tool for the design engineer. The wing design of a supersonic aircraft,
for example, depends upon many factors. The designer describes each
of these factors in the form of mathematical equations in a program-
ming language. The computer can then be used to solve these equations.

Scientific and Laboratory Experiments. In scientific and laboratory
experiments, computers are used to evaluate and store information
from numerous types of electronic sensing devices. Computers are par-
ticularly useful in such systems as telemetry where signals must be
quickly recorded or they are lost. These applications require rapid and
accurate processing for both fixed conditions and dynamic situations.

Automatic Processes. The computer is a useful tool for manufac-
‘turing and inspecting products automatically. A computer may be pro-
grammed to run and control milling machines, turret lathes, and many
other machine tools with more rapid and accurate response than is
humanly possible. It can be programmed to inspect a part as it is being
made and adjust the machine tool as needed. If an incoming part is de-
fective, the computer may be programmed to reject 1t and start the
next part.

Training by Simulation. It is often expensive, dangerous and imprac-
tical to train a large group of men under actual conditions to fly a
commercial airplane, control a satellite, or operate a space vehicle. A
computer can simulate all of these conditions for a trainee, respond to
his actions, and report the results of the training. The trainee can there-
fore receive many hours of on-the-job training without risk to himself,
others, or the expensive equipment involved.

Applications, such as those given above and in Chapter 10, often
require the processing of both analog and digital information. Analog
information consists of continuous physical quantities that can be easily
generated and controlled, such as electrical voltages or shaft rotations.
Digital information, however, consists of discrete numerical values,
which represent the variables of a problem. Normally, analog values
are converted to equivalent digital values for arithmetic calculations
to solve problems. Some computers, such as the LINC-8, combine the
analog and digital characteristics in one computer system.

1-3

Computer Capabilities and Limitations

A computer is a machine and, as all machmes it must be directed
and controlled in order to perform a useful task. Until a program is -
prepared and stored in the computer’s core memory, the computer
“knows” absolutely nothing, not even how to receive input. Thus, no
matter how good a particular computer may be, it must be “told”
what to do. The usefulness of a computer therefore can not be fully
realized until the capabilities (and the llmltatlons) of the computer
are recognized.

Repetitive operation—A computer can perform similar operations
thousands of times, without becoming bored, tired or careless.
Speed—A computer processes information at enormous speeds,
which are directly related to the ingenuity of the designer and the
programmer. Modern computers can solve problems millions of
times faster then a skilled mathematician.

Flexibility—General purpose computers may be programmed to
solve many types of problems.

Accuracy—Computers may be programmed to calculate answers
with a desired level of accuracy as specified by the programmer.

Intuition—A computer has no intuition. It can only proceed as it
is directed. A 'man may suddenly find the answers to a problem
without working-out the details, but a computer must proceed as
ordered.

The remainder of this chapter is devoted to the general organization
of the computer and the manner in which it handles data. Included are
the number systems used in programming together with the arithmetic
and logical operations of the computer. This information provides a
necessary background for all who desire a basic appreciation of com-
puters and their uses, and it is a prerequisite to machine-language
programming, covered in chapters 2 through 5.

1-4

NUMBER SYSTEM PRIMER

The concept of writing numbers, counting, and performing the basic
operations of addition, subtraction, multiplication, and division has
been directly developed by man. Every person is introduced to these
concepts during his formal education. One of the most important
factors in scientific development was the invention of the decimal
numbering system, The system of counting in umits of tens probably
developed because man has ten fingers. The use of the number 10 as
the base of our number system is not of prime importance; any stand-
ard unit would do as well. The main use of a number system in early
times was measuring quantities and keeping records, not performing
~ mathematical calculations. As the sciences developed, old numbering
systems became more and more outdated. The lack of an adequate
numerical system greatly hampered the scientific development of carly
civilizations.

Two basic concepts simplified the operations needed to manipulate
numbers; the concept of pos1t10n and the numeral zero, The concept
of position consists of assigning to a number a value which depends
both on the symbol and on its position in the whole number. For
example, the digit 5 has a different value in each of the three numbers
135, 152, and -504. In the first number, the digit 5 has its original
value 5; in the second, it has the value of 50; and in the last number,
it has the value of 500, or 5 times 10 times 10. Sometimes a position
in a number does not have a value between 1 and 9. If this position
were simply left out, there would be no difference in notation between
709 and 79. This is where the numeral zero fills the gap. In the number
709, there are 7 hundreds, O tens and 9 units. Thus, by using the
concept of position and the numeral 0, arithmetic becomes quite easy.

A few basic definitions are needed before proceeding to see how
these concepts apply to digital computers. ‘

Unit—The standard utilized in counting separate items is the unit.
Quantity—The absolute or physical amount of units.
Number—A number is a symbol used to represent a quantity.

Number System—A number system is a means of representing
quantities using a set of numbers. All modern number systems use
the zero to indicate no units, and other symbols to indicate quan-
tities. The base or radix of a number system is the number of sym-

~ bols it contains, including zero. For example the decimal number
system is base or radix 10, because it contains 10 different sym-
bols (viz., 0,1,2,3,4,5,6,7,8, and 9).

1-5

Binary Number System

The fundamental requirement of a computer is the ability to physi-
cally represent numbers and to perform operations on the numbers
thus represented. Although computers which are based on other num-
ber systems have been built, modern digital computers are all based
on the binary (base 2) system. To represent ten different numbers
(0,1,2, . .., 9) the computer must possess ten different states with
which to associate a digit value. However, most physical quantities have
only two states: a light bulb is on or off; switches are on or off; holes
in paper tape or cards are punched or not punched; current is positive
or negative; material is magnetized or demagnetized; etc. Because it
can be represented by only two such physical states, the binary number
system is used in computers.

To understand the binary number system upon which the digital
computer operates, an analysis of the concepts underlying the decimal
number system is beneficial.

POSITION COEFFICIENT

In the decimal numbering system (base 10), the value of a numeral
depends upon the numeral’s position in a number, for example:

347 = 3 X 100 = 300
4 X 10 = 40

7 X 1= 7

347

The value of each position in a number is known as its position coeffi-
cient. 1t is also called the digit position weighting value, weighting value,
or weight, for short. A sample decimal weighting table follows:

. 108 102 10t 100
and, as shown above,
347 =3 x 102+ 4 X 101 + 7 x 10°,
Weighting tables appear to serve no useful purpose in our familar deci-
mal numbering system, but their purpose becomes apparent when we
consider the binary or base 2 numbering system. In binary we have
only two digits, 0 and 1. In order to represent the numbers 1 to 10, we

must utilize a count-and-carry principle familar to us from the decimal

1-6

system (so familiar we are not always aware that we use it). To count
from O to 10 in decimal, we count as follows:

0

O~ b W=

- 10 with a carry to the 101 column

Continuing the counting, when we reach O in the units column again,
we carry another 1 to the tens column. This process is continued until
the tens column becomes 0 and a 1 is carried into the hundreds column,
as shown below: '

0 10 90
1 11 91
2 12 92
3 13 93
4 .14 94
5 15 : 95
6 16 96
7 17 97
8 18 98
9 19 99
10 one carry 20 one carry 100 two carries

COUNTING IN BINARY NUMBERS

In the bihary number system, the carry principle is used with only
two digit symbols, namely 0 and 1. Thus, the numbers used in the
" binary number system to count up to a decimal value of 10 are the
following.

Binary Decimal Binary Decimal
0 () 110 (6)
1 (1) 111 (7)
10 2) . 1000 (8)
11 (3) 1001 (9
100 4) 1010 (10)
101 (5)

When using more than one number system, it is custorhary to subscript
numbers with the applicable base (e,g., 101;=51¢).

1-7

A weighting table is used to convert binary numbers to the more
familiar decimal system.

2423222120 (Weight Table)

101 01 (Binary Number) Position
l—’l Digit Coefficient

= 1 X 1 = 1

= 0 X 2 = 0

= 1 X 4 = 4

» — 1 X 16 = 16

Decimal Number = 21

It should be obvious that the binary weighting table can be extended,
like the decimal table, as far as desired. In general, to find the value
of a binary number, multiply each digit by its position coefficient and
then add all of the products.

ARRANGEMENTS OF VALUES

By convention, weighting values are always arranged in the same
manner; the highest on the extreme left and the lowest on the extreme
right. Therefore, the position coefficient begins at 1 and increases from
right to left. This convention has two very practical advantages. The
first advantage is that it allows the elimination of the weighting table,
as such. It is not necessary to label each binary number with weighting
values, as the digit on the extreme right is always multiplied by 1, the
digit to its left is always multiplied by 2, the next by 4, etc. The second
advantage is the elimination of some of the Os. Whether a 0 is to the
right or left, it will never add to the value of the binary number. Some
Os are required, however, as any Os to the right of the highest valued
1 are utilized as spaces or place keepers, to keep the 1s in their correct
positions. The Os to the left, however, provide no information about
the number and may be discarded, thus the number 0001010111 =
1010111.

The PDP-8 family computers operate upon 12-bit (binary digit)
numbers. This means that the numbers from 0 to 111111111111,
(4095,,) can be directly represented.

SIGNIFICANT DIGITS

The “leftmost” 1 in a binary number is called the most significanmt
digit. This is abbreviated MSD. It is called the “most significant” in
that it is multiplied by the highest position coefficient. The least sig-
nificant digit, or LSD, is the extreme right digit. It may be a 1 or 0,
and has the lowest weighting value, namely 1. The terms LSD and

1-8

MSD have the same meaning in the dec1mal system as in the bmary Sys-
tem, as shown below.

: 10110101 :
MSD - 1001010(00>LSD
45971

s

CONVERSION OF DECIMAL TO BINARY

There are two commonly used methods for converting decimal num-
bers to binary equivalents. The reader may choose whichever method
he finds easier to use. -

1. Subtraction of Powers Method—To convert any decimal number
to-its binary equivalent by the subtraction of powers method, proceed
as follows. ' :

Subtract the highest possible power of two from the decimal number,
and place a “1” in the appropriate weighting position of the partially
completed binary number. Continue this procedure until the decimal
number is reduced to 0. If, after the first subtraction, the next lower
power of 2 cannot be subtracted, place a 0 in the appropriate weight-
ing position. Example:

42, = ? binary
42 10 2
—32 — 8 -2
10 2 0

25 24| 231 22| 20} 29| Power
32 1 16 8 4 2 1 Value
1 0 1 0 1 0 Binary

Therefore, 42,, = 101010,. -

2. Division Method—To convert a decimal number to binary by
the division method, proceed as follows,

Divide the decimal number by 2. If there is a remainder, put a 1 in the

LSD of the partially formed binary number; if there is no remainder,

put a 0 in the LSD of the binary number. Divide the quotient from the
first division by 2, and repeat the process. If there is a remainder,

1-9

record a 1; if there is no remainder, record a 0. Continue until the
quotient has been reduced to 0. Example:

47, = 7 Binary

Quotient Remainder
2 547 = 23 1
2 323 = 11 1
2 T = 5 1
2 J% = 2 1
2 37 = 1 0
2 3T = 0 1 I
v

—
(=]
[y
ot
—
—

Therefore, 47,, = 101111,

EXERCISES
a. Decimal-to-Binary Conversion — Convert the following decimal
numbers to their binary equivalents.

1. 15, 11. 4095,
2. 18y 12, 1502,
3. 42, 13. 377,
4. 100, 14. 501y
5. 235, 15. 828,
6. 110 1 6. 90710
7. 294, 17. 4000,
8. 117, 18. 3456,
9. 86y, 19. 2278,
10. 4090, 20. 1967,

b. Binary to Decimal Conversion — Convert the following binary
numbers to their decimal equivalents.

1. 110, 9. 11011011101,
2. 101, 10. 111000111001,
3. 1110110, 11. 111010110100,
4. 1011110, 12. 111111110111,
5. 0110110, 13. 101011010101,
6. 11111, 4. 111111,

7. 1010, 15. 000101001,

8. 110111, 16. 111111111111,

1-10

Octal Number System

It is probably quite evident at this time that the binary number
system, although quite nice for computers, is a little cumbersome for
human usage. It is very easy for humans to make errors in reading and
writing quantities of Jarge binary numbers. The octal or base 8 num-
bering system helps to alleviate this problem. The base 8 or octal num-
ber system utilizes the digits O through 7 in forming numbers. The
count-and-carry method mentioned earlier applies here also, Table 1-1
shows the octal numbers with their decimal and binary equivalents.

Table 1-1. Decimal-Octal-Binary Equivalents

Decimal | Octal Binary Decimal | Octal Binary
0 0 0 7 7 111
1 1 1. 8 10 1000
2 2 10 -9 11 1001
3 3 11 10 12 1010
4 4 100 11 13 1011
5 5 101 12 14 1100
6 6 110 13 15 1101

The octal number system eliminates many of the problems involved
in handling the binary number system used by a computer. To make the
12-bit numbers of the PDP-8 computers easier to handle, they are
often separated into four 3-bit groups. These 3-bit groups can be rep-
resented by one octal digit using the previous table of equivalents as
seen below.,

A binary number 11010111101

is separated into 3-bit groups by starting with the LSD end of the
number and supplying leading zeros if necessary:

011 010 111 101
The binary groups are then replaced by their octal equivalents:

0l1,= 3,
010,= 2,
1= 7,
101,= 5, _
and the binary number is converted to its octal equivalent:
3 2 7 5.

Conversely, an octal number can be expanded to a binary num-
ber using the same table of equivalents.

5307.= 101 011 000 111,

1-11

OCTAL-TO-DECIMAL CONVERSION

Octal numbers may be converted to decimal by multiplying each
digit by its weight or position coefficient and then adding the resulting
products. The position coefficients in this case are powers of 8, which
is the base of the octal number system. Example:

2167,= ? decimal

2167,= 7 X 8 =7 X 1= 7
4+6 X 81 = 66X 8§ = 48

+1 X 82 =1 X 64 = 64

42 X 88 = 2 X 512 = +1024

1143

Therefore, 21675 = 1143,,.

DECIMAL-TO-OCTAL CONVERSION

There are two commonly used methods for converting decimal num-
bers to their octal equivalents. The reader may choose the method
which he prefers. '
SUBTRACTION OF POWERS METHOD. The following procedure
is followed to convert a decimal number to its octal equivalent. Sub-
tract from the decimal number the highest possible value of the form
a8?, where a is a number between 1 and 7, and n is an integer. Record
the value of a. Continue to subtract decreasing powers of 8 (recording
the value of a each time) until the decimal number is reduced to zero.
Record a value of a=0 for all powers of 8 which could not be subtrac-
ted. Table 1-2 may be used to convert any number which can be rep-
resented by 12-bits (4095,, or less). Appendix F contains a similar
table for converting larger numbers. Example:

2591,, = ? octal
2591

I «
—2560 — 5 X 8% = 5 X 512 5 0 3 7
31 r T 1
—_— 0=0 X 8 =0 X 64
31 f)
— 24 = 3 X 81 =3 X 8
7 |
—_ 7T =7 X 8 =7 X - 1
o ;

Therefore, 2591,, = 5037..

1-12

Table 1-2. Octal-Decimal Conversion

Octal Position Coefficients

Digit (Multipliers)
Position/

8n 0 1 2 3 4 5 6 7

I1st (89) 0 1 2 3 4 5 6 7
2nd (8) || o] 8| 16| 24| -32| 40| 48| 56
3rd (82) 0| 64 128 192 | 256 320| 384 448
4th (83%) 0 |512 1,024 | 1,536 | 2,048 | 2,560] 3,072 | 3,584

DIVISION -METHOD. A second method for converting a- decimal
number to its octal equivalent is by successive division by 8. Divide the
decimal number by 8 and record the remainder as the least significant -
digit of the octal equivalent. Continue dividing by 8, recording the re-
mainders as the successively higher significant digits until the quotient
is reduced to zero. Example: : '

137610 = ? OCtal
Quotient Remainder

8 51376 172 0 —
8 5T72 21 4
8)21 2 .5
832 0 2— l
' 2 5 4 0

Therefore, 1376, = 2540..

1-13

EXERCISES

a. Convert the following binary numbers to their octal equivalents.

1. 1110 9. 10111111

2. 0110 10. 111111111111

3. 111 11. 010110101011

4. 101111101 12. 111110110100

5. 110111110 13. 010100001011

6. 100000 14. 000010101101

7. 11000111 15. 110100100100 -
8. 011000 16. 010011111010

b. Convert the following octal numbers to their binary equivalents.

1. 354 9. 70

2. 736 10. 64

3. 15 11. 7777
4. 10 12. 7765
5 7 13. 3214
6. 5424 14. 4532
7. 307 . 15. 7033
8 1101 16. 1243

¢. Convert the following decimal numbers to their octal equivalents.

1. 796 7. 1080
2. 32 8. 1344
3. 4037 9. 1512
4. 580 10. 3077
5. 1000 11. 4056
6. 3 12. 4095

d. Conveft the following octal numbers to their decimal equivalents.

1. 17 7. 7773
2, 37 8. 7177
3. 734 9. 3257
4. 1000 10. 4577
5. 1200 . 1. 0012
6. 742 12. 0256

1-14

‘Fractions

The binary and octal number systems represent fractional parts of
numbers in a similar manner to the decimal system. Furthermore, frac-
tions may be converted from one number system to another by the
same techniques developed for converting whole numbers.

Before investigating the mechanics of fraction conversion, consider
what a fraction is. A fraction is a number between 0 and 1, or a num-
ber less than a unit. Until now only whole numbers in the following
three systems have been considered: decimal, binary, and octal. In
each of these systems, the position of the symbol in the number denotes
its power, and the symbol is the coefficient of that power. These are
positive powers. For example, in the decimal system the number 598,
5 is the coeflicient of 102, 9 is the coefficient of 101, and 8 is the coeffi-
cient of 10°% In binary and octal the same rule applies to using the
powers of the base of the system.

When working with fractions, an important point to keep in mind
is that fractions contain coefficients of negative powers, with the radix
point being the dividing line between the non-negative and negative
powers of the number system being used. Any number to the im-
‘mediate right of the radix point has a power of negative (minus) 1.
The first digit of the fractional number is the MSD. For example, in
the decimal fraction .637; 6 is the coefficient of 10, 3 is the coeffi-
cient of 10-%, and 7 is the coefficient of 10-*; The coefficient of a nega-
tive power of the base is actually the numerator of a proper fraction
whose denominator is the positive power of that base. For example,
.61, (6 x 107) is equivalent to 6 divided by 10* or 6/10, and also
.35 (3 x 8%) is equivalent to 3 divided by 8 or 3/8. It should be ap-
parent that this general rule applies to any base that may be considered.
Table 1-3 contains proper fractions which have been changed to’deci-
mal, binary, and octal for comparison purposes.

CONVERTING DECIMAL FRACTIONS TO
BINARY AND OCTAL FRACTIONS

SUBTRACTION OF POWERS METHOD. One method of converting
a decimal fraction to a different number system is the subtraction of
powers method. In this method, subtractions of the highest possible
negative power of a number in another system that is contained in the
decimal fraction, are performed. In each subtraction, recording the
power and its coefficient gives the equivalent number in the other sys-
tem. When no subtraction is possible, a 0 is recorded. To convert a
decimal fraction to a binary fraction, the powers of 2 are associated

1-15

Table 1-3. Fraction Equivalents

Proper Decimal . Octal Binary
Fraction Equivalent Equivalent Equivalent

1/2 5 4 1

1/4 25 20 01

1/8 25 .10 .001

1/16 0625 .04 .0001

1/32 03125 .02 .00001

1/64 ..015625 .01 .000001

1/128 .0078125 .004 .0000001

1/256 .00390625 002 00000001

1/512 001953125 .001 .000000001

/1024 .0009765625 .0004 0000000001

with coefficients of O or 1, since they are the only coefficients used in
this system. In the octal system, the coefficients O through 7 are used.
The following example and explanation will show the conversion of
the decimal fraction .5625 to binary.

5625 .0625
—.5000=2"1 —.0625=2"4
.0625 .0000

Negative Powers of 2 21 2-2 2-3 24

.5000] .2500{ .1250] .0625

Decimal Equivalents

.1001

Bit Values of Answer | 0 0 41 =

The largest negative power of 2 contained in the decimal fraction .5625
is 271, which is equivalent to decimal .5000; subtract .5000,, from
.5625,, and record a 1 in the 2! column. It is not possible to subtract
22 from the remainder, so record a 0 in the 272 column, 272 cannot be
subtracted from the remainder, so record a O in the 273 column; 27
can be subtracted from the remainder, so record a 1 in the 27¢ column.
Thus, the binary equivalent of a decimal .5625 is .1001,.

Conversion to octal fractions follows the same procedure, but more '
than one subtraction of a given power of the base is possible. The
number of times this subtraction is possible yields the coefficient of that
particular power of the base. This method will not be demonstrated
here, since it is very cumbersome, and easier methods are available.

1-16

MULTIPLICATION METHOD. This method of conversion is fre-
quently used to change from a decimal fraction to another base. To
convert, the decimal fraction is multiplied through by the base of the
system being converted to. For example, convert decimal fraction .5625
to binary. Multiply the decimal fraction by 2. Since a whole number is
obtained, record a 1 in the 2~ column, discard the whole number por-
tion of the number, and multiply the remainder by 2 again. No whole
number is obtained, so record a 0 in the 272 column, and multiply the
result by 2. No whole number is obtained, so record a O in the 2-%
column, and multiply by 2 again. A whole number is obtained, so record
a 1 in the 27 column, The remainder, now reduced to 0, completes the
conversion, and .5625, is .1001.. The following examples show the con-
version just described, and the same decimal fraction converted to octal.

Decimal to Binary Decimal to Octal
5625 5625
2 8
1.1250 - 4.5000
2 ' [8
0.2500 A4 &——— 4.0000
2

0.5000
l 2

.1001 ¢~——1.0000

CONVERTING BINARY AND OCTAL TO DECIMAL
FRACTIONS

EXPANSION METHOD:. This method can be used in converting frac-
tions from any base to a decimal fraction. Remember that the MSD is
the first digit to the right of the radix point in a fractional number, and
that it is multiplied by the base to the —1 power. The second digit is
that digit multiplied by the basc to the —2 power, etc. For example, to
convert the binary fraction .10001 to decimal, proceed, as follows. The
MSDis 1 X (2%) or 1/2, the second digit is 0 X (27%) or 0, the third
digit is 0 X (2%) or 0, the fourth digit is 0 X (2*) or 0, and the
fifth digit is 1 X (27%) or 1/32. The binary numbers are multiplied by
the respective powers and added together to get the answer. Thus
1/2 4+ 1/32 which is 16/32 4 1/32 equals 17/32 or .53125,,.

1-17

The octal fraction .42 can be converted in the same manner, as fol-

lows. The MSD is 4 X (87) or 4/8 and 2 X (8%) or 2/64. The frac-
tions are now added together to get the result; 4/8 4 2/64 or
16/32 + 1/32 = 17/32 or .53125,,. If you look carefully at the
binary fraction .10001, and divide it into groups of 3 to convert to
octal, you can see that .10001, does equal .42,. Zeros may be added
to the right of a fraction without changing the value.
“SHORT CUT” METHOD. This is another method of converting frac-
tions from another base to decimal. In this method, start at the LSD of
the fraction and proceed to the MSD of the fraction, counting the
powers of the base, the next higher power of the base will be utilized
as a common denominator. The number is assumed to be a whole num-
ber for counting purposes. The number .10001, would be converted
as follows:

d 0 0 0 1

2¢ 28 22 21 20
The MSD is 2* or 16, so the common denominator is the next higher
power of 2, or 32, The numerator is converted as if it were a whole
number. The result is then 17/32 which is .53125,,. The same method
with the octal fraction .42 should yield the same result.

4 2

8t 8¢
The MSD is 8, or 8, so the common denominator is the next higher
power of 8, or 64. Multiplying the digit values by the powers of the
base and adding the products gives us the value of the numerator; thus,
4 X (8Y) 4 2 X (8") = 34, and the fraction 34/64 equals .53125,,.

Arithmetic Operations with Binary and Octal Numbers

Now that the reader understands the conversion techniques between
the familiar decimal number system and the binary and octal number
systems, arithmetic operations with binary and octal numbers will be
described. The reader should remember that the binary numbers are
used in the computer and that the octal numbers are used as a means
of representing the binary numbers conveniently.
BINARY ADDITION

Addition of binary numbers follows the same rules as decimal or
other bases. In adding decimal 1 4 8 we have a sum of 9. This is the
highest value digit. Adding one more requires the least significant digit

1-18

to become a 0 with a carry of 1 to the next place in the number. Simil-
arly, adding binary 0 4 1 we reach the highest value a single digit can
have in the binary system, and adding one more (1 + 1) requires a
catry to the next higher power (1 4+ 1 = 10). Take the binary numbers
101 + 10 (5 4 2).)

101 = 5
+010 = 2,
111 = 710

0+4+1=1,1+40=1,and 0 4 1 = 1 with no carries required. The
- answer is 111, which is 7. Suppose we add 111 to 101.

11 &==—— carries

111 = Ty
+101 = 5,
1100 = 12,

Now 1 + 1 = O plus a carry of 1. In the second column, 1 plus the
carry 1 = 0, plus another carry. The third column is 1 4 1 = 0 with °
a carry, plus the previous carry, or 1 4 1 + 1 = 11, Our answer 1100
iseqghal to 1 X 2* + 1 X 22 or 8 + 4 = 12, which is the correct
solution for 7 -+ 5. ’

OCTAL ADDITION
Addition for octal numbers should be no problem if we keep in mind
the following basic rules for addition.

1. If the sum of any column is equal to or greater than the base
of the system being used, the base must be subtracted from the
sum to obtain the final result of the column.

2. If the sum of any column is equal to or greater than the base,
there will be-a carry to the next column equal to the number
of times the base was subtracted. ’

3. If the result of any column is less than the base, the base is

© not subtracted and no carry will be generated. Examples:

Ss - 510 3 5 = 29,
+ 3 = 3y 6 3 = 51,
-5 110 8
-8 —8-8
710, = 8, 1T 20 = 80

1-19

Negative Numbers and Subtraction

Up to this point only positive numbers have been considered. Neg-
ative numbers and subtraction can be handled in the binary system in
either of two ways: direct binary subtraction or by the two’s comple-
ment method.

BINARY SUBTRACTION (DIRECT)

Binary numbers may be directly subtracted in a manner similar to
decimal subtraction. The essential difference is that if a borrow is re-
quired, it is equal to the base of the system or 2.

110 = 6,
—-101 = 5,
001 = 1,

To subtract 1 from 0 in the first column, a borrow of 1 was made from
the second column which effectively added 2 to the first column. After
the borrow, 2 — 1 = 1 in the first .column; in the second column
0 — 0 = 0; and in the third column 1 — 1 = 0. The same numbers
which were subtracted using the twos complement method are sub-
tracted directly in the following example.

011 001 100 010 B
010 010 010 111 A
000 111 001 011 B-A

TWO'S COMPLEMENT ARITHMETIC

To see how negative numbers are handled in the computer, consider
a mechanical register, such as a car mileage indicator, being rotated
backwards. A S5-digit register approachlng and passing through zero
would read the following.

00005
00004
00003
00002
00001
00000
99999
99998
etc.

1-20

It should be clear that the number 99998 corresponds to —2. Fur-
ther, if we add

00005
99998
1 00003

and ignore the carry to the left we have effectively performed the
operation of subtracting

5—-2=3

The number 99998 in this example is described as the ten’s complement
of 2. Thus in the decimal number system, subtraction may be per-
formed by adding the ten’s complement of the number to be subtracted.

If a system of complements were to be used for representing negative
numbers,- the minus sign could be omitted in negative numbers. Thus
all numbers could be represented with five digits; 2 represented as
00002, and —2 represented as 99998, Using such a system requires
that a convention be established as to what is and is not a negative
number, For example, if the mileage indicator is turned back to 48732,
is it a negative 51268, or a positive 487327 With an ability to represent
a total of 100,000 different numbers (0 to 99999), .it would seem
reasonable to use half for positive numbers and half for negative num-
bers. Thus, in this situation, 0 to 49999 would be regarded as positive,
and 50000 to 99999 would be regarded as negative.

In this same manner, the two’s complement of binary numbers are
used to represent negative numbers, and to carry out binary subtraction,
in the PDP-8 computer. In octal notation, numbers from 0000 to 3777
are regarded as positive and the numbers from 4000 to 7777 are te-
garded as negative. ,

The two’s complement of a number is defined as that number which
when added to the original number will result in a sum of unity. The
binary number 110110110110 has a two’s complement equal to
001001001010 as shown in the following addition.

110 110 110 110
001 001 001 010
1 000 000 000 000

The easiest method of finding a two’s complement is to first obtain the

one’s complement, which is formed by setting each bit to the opposite
value.

101 000 110 111 Number ‘
010 111 001 000 One’s complement of the number

1-21

The two’s complement of the number is then obtained by adding 1 to
the one’s complement. '

110 001 110 010 Number

001 110 001 101 One’s complement of the number
+1 Add 1

001 110 001 110 Two’s complement of the number

Subtraction in the PDP-8 is performed using the two’s complement
method. That is, to subtract A from B, A must be expressed as its two’s
complement and then the value of B is added to it. Example:

010 010 010 111 A
101 101 101 001 Two’s complement of A
(carry is 011 001 100 010 B
ignored) 1 000 111 001 011 B-A
OCTAL SUBTRACTION

Subtraction is performed in the octal number system in two ways
which are directly related to the subtractions in the binary system. Sub-
traction may be performed directly or by the radix (base) complement
method.

OCTAL SUBTRACTION (DIRECT). Octal subtraction can be per-
formed directly as illustrated in the following examples.

3567—2533= ? 2022—1234=: ?
3567 2022
—2533 —1234
1034 v 0566

Whenever a borrow is needed in octal subtraction, an 8 is borrowed as
in the second example above. In the first column, an 8§ is borrowed
which is added to the 2 already in the first column and the 4 is sub-
tracted from the resulting 10. In the second column, an 8 is borrowed
and added to the 1 which is already in the column (after the previous
borrow) and the 3 is subtracted from the resulting 9. In the third
column the 2 is subtracted from a borrowed 1 (originally a borrowed
8), and in the last column 1—1=0,

EIGHT’S COMPLEMENT ARITHMETIC. Octal subtraction may be
performed by adding the eight’s complement of the subtrahend to the
minuend. The eight’s complement is obtained in the following manner.

3042 Number 1
4735 Seven’s complement of the number

+1 Add 1 to seven’s complement to obtain
4736 Eight's complement

1-22

The seven’s complement of the number is obtained by setting each digit
of the complement to the value of 7 minus the digit of the number, as
seen above. The eight’s complement of the number is then obtained by
adding 1 to the seven’s complement. To prove that the complement is
in fact a complement, the number is added to the complement and a re-
sult of zero and an overflow.of 1 is obtained.

3042
+4736
1 0000
The following example uses the eight’s complement to subtract a
number.)

3567—2533= ?
- 2533 - Number
5244 Seven’s complement
+1

5245 Eight’s comp]ement‘

3567 Minuend

(carry is \ +5245 Eight’s complement of subtrahend

ignored)—>1 1034 Difference

Multiplication and Division in Binary and Octal Numbers

Though multiplication in computers is usually achieved by means
other than formal multiplication, a formal method will be demonstrated
as a teaching vehicle.

BINARY MULTIPLICATION ‘

In binary multiplication, the partial product is moved one position to
the left as each successive multiplier is used. This is done in the same
manner as in decimal multiplication. If the multiplier is a O, the partial
product can be a series of Os as in example 2, or the next partial product
can be moved two places to the left as in example 3, or three places as
in example 4. '

Example 1. 462, Multiplicand
127, Muiltiplier
3234 First partial product
924 Second partial product
462) Third partial product
58674 Product

1-23

Example 2. 1110110,
1011,

1110110
1110110
(4000000
1110110

10100010010,

Example 3. 1110110,
1011,

1110110
1110110
1110110

10100010010,

Example 4. 11001110,
11001,

11001110
11001110
11001110

1010000011110,

Because of the difficult binary additions resulting from multiplica-
tions such as the previous examples, octal multiplication of the octal
equivalents of binary numbers is often substituted.

OCTAL MULTIPLICATION ‘ :

Multiplication of octal numbers is the same as multiplication of
decimal numbers as long as the result is less than 10,. Obviously this
could be a problem if it weren’t for the fact that an octal multiplication
table can be set up, similar to the decimal multiplication table, to make
the job of multiplication of octal numbers quite simple. Table 1-4
is a partially completed octal multiplication table that will be quite use-
ful once you have filled in the blank squares. '

Using the completed octal multiplication table, the following prob-
lems may be solved.

226, X 12, =17
226,
X12,

454
226

2734,

1-24

1247, % 305, =7
1247,
X305,

6503
0000
3765

405203,

Table 1-4, Octal Multiplication Table

JLO 1 2 3 4 5 | <6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 o | 2 4 6 | 10
3 0 3 6 | 11 | 14
4
5
6
7 0 7 | 16 | 25

BINARY DIVISION

Once the reader has mastered binary subtraction and multiplication,
binary division is easily learned. The following problem solutions illus-
trate binary division.)

Divide 10010,
1 Og

1001 10010, 18,

= = 1001, = 9
10 J10010 10, 2 : *
10 '

00
00

01
00

10
10

0

1-25

Divide 1110, - 14y

11.1

100911100 . 11.1; = 3.5,
100

110
100

“100
100

0

OCTAL DIVISION

Octal division uses the same principles as decimal division. All mul-
tiplication and subtraction must however be done in octal. (Refer to the
octal multiplication table.) The following problem solutions illustrate
octal division,

62 50, . 1714,

2, 2 22,
31 = 31, = 25, 66

2 62 22 714
6 154
02 154
2 154
0 0

EXERCISES

a. Perform the following binary additions.

1. 10110 6. 101 10. 100111
+101 1 111001
—_— +110 4101101

2. 100 e —_—
+10 7. 1110 11. 11011001
- 100 10010011

3. 11011 +11 +11100011
+0010 8. 1111 12. 11011011

4. 10110111 101 10111011
+ 1 11000 00101011
— 01010111

5. 1101 9. 110111 - +01111101
101 100100 —_—
+11 +110001

1-26

b. Find the one’s complement and the two’s complement of the fol- -
Jowing numbers. -

1. 011 100 110 010 7. 000 000 000 111
2. 010 111 o011 111 8. 100 000 000 000
3. 011 110 000 000 9. 100 000 010 010
4. 000 000 000 000 10. 100 001 100 110
5. 000 000 000 001 11. 111 111 111 110
6.

000 100 100 100 12, 111 111 111 111

c. Subtract the following binary numbers dirgctly.

1. 101000001 3. 101011010111
010111101 011111111101
2. 1010111010 4, 101111100111
0101110101 010101110010

d. Perform the following subtractions by the two’s complement
method. Check your work by direct subtraction, Show all work.

011 011 011 011 — 001 111 010 110
000 111 111 111 — 000 001 001 101
011 111 111 101 — 010 101 100 011
001 101 111 110 — 001 100 101 011
011 111 111 111 — 010 101 101 101

NFEwee

e. Multipiy the following binary numbers.

1. 11011 2. 1011101 3. 101011101011
X110 X101 - X10000

f. Divide the following binary numbers.

1. 100 2. 10000 3. 1100100

10 100 10100

-1-27

g. Add the following octal numbers.

1. 42 6. 127 7. 117
453 256 543
— +724 | +612

2. 45 4. 77 8. 437
423 +11 ' 426

— , 772

3. 34 5. 3357 747

+76 +562 +575

et —

h. Subtract the following octal numbers directly.

1. 42 4. 53 7. 2543
—23 —44 —2174
2. 76 5. 7474 8. 7500
—34 —4777 : —6373
3. 7 6. 7000
—11 —6573

i. Perform the following octal subtractions by the eight’s comple-
ment method. Check your work by subtracting directly. Show all
work. .

1. 0377 — 0233 5. 2311 — 2277
2. 2345 — 1456 6. 0044 — 0017
3. 1144 — 1046 7. 3234 - 2777
4. 3000 — 0011 8. 1111 — 0777

j. Multiply the following octal numbers.

1. 65 3. 77 5. 425
x4 X 65 X377

2. 14 4, 716 6. 571
x13 %472 X246

e —— e — m——

k. Prove the answers to the problems in (j) by division, as follows:

Multiplicand
X Multiplier Multiplicand
Product Multiplier) Product

1-28

LOGIC OPERATION PRIMER

Computers use logic operations in addition to arithmetic operations
to solve problems. The logic operations have a direct relationship with
the algebraic system to represent logic statements known as Boolean
algebra. In logic, there are two basic connectives that are used to ex-
press the relationship between two statements. These are the AND and
the OR.

The AND Operation

_ The following simple circuit with two switches illustrates the AND
operation. If current is allowed to flow through a switch, the switch is
said to have a value of 1. If the switch is open and current cannot flow,
the switch has a value of 0. If the whole circuit is considered, it will
have a value of 1 (i.e., current may flow through it) whenever both A
and B are 1. This is the AND operation.,

A B

The AND operation is often stated A * B = F. The multiplication sym-
bol (¢) is used to represent the AND connective. The relationship be-
tween the variables and the resulting value of F is summarized in the
following table.

—~~ ool
D = O ==}
- O oo

When the AND operation is applied to binary numbers, a binary 1 will
appear in the result if a binary 1 appeared in the corresponding position
of the two numbers,

The AND operation can be used to mask out a portion of a 12-bit
number,

" ToBe To Be Retained
Masked for Subsequent
Out Operation

010 101 010 101 (12-bit number)
000 000 111 111 (mask)
000 000 010 101 (result)

1-29

The OR Operation

A second logic operation is the OR (sometimes called the inclusive
OR). Statements which are combined using the OR connective are
illustrated by the following circuit diagram.

____/

o

o

Current in the above diagram may flow whenever either A or B (or
both) is closed (F=1if A=1, or B=1, or A=1 and B=1). This opera-
tion is expressed by the plus () sign; thus A4+B=F. The following
table shows the resulting value of F for changing values of A and B.

ATB[TF
(0 [0O Of
0 1 1
1 0 1
1 1 1

Thus, if A and B are the 12-bit numbers shown below, A-}B is eval-
uated as follows.

A = 011 010 011 111

B = 100 110 010 011

A+B = 111 110 011 111

Remember that the “-4” in the above example means “inclusive OR”,
not “add.”

The Exclusive OR Operation

The third and last logic operation is the exclusive OR. The exclusive
OR is similar to the inclusive OR with the exception that one set of
conditions for A and B are excluded. This exclusion can be symbolized
in the circuit diagram by connecting the two switches mechanically to-
gether. This connection makes it impossible for the switches to be closed

1-30

simultaneously, although they may be open simultaneously or individu-
~ ally.

Thus, the circuit is completed when A—1 and B=0, and when A=0
and B—1. The results of the exclusive OR operation are summarized
in the table below.

ml =] ol ofl >
=1 O =] ol W
ol =} =] ofl 1

The exclusive OR of two 12-bit numbers is ¢valuated and labeled F
in the following operation.

A = 011 010 011 111
B = 100 110 010 011

F = 111 100 001 100

GENERAL ORGANIZATION OF THE PDP-8

Almost every general purpose digital computer has the basic units

shown in Figure 1-1, on the following page.
If a machine is to be called a computer, it must have the capability of
performing some types of arithmetic operations. The element of a digital
computer that meets this requirement is called the arithmetic unit, In
order for the arithmetic unit to be able to do its required task, it must
be told what to do. Therefore, a control unit is necessary.

Since mathematical operations are performed by the arithmetic unit,
it may be necessary to store a partial answer while the unit is computing
another part of the problem. This stored partial answer can then be used
to solve other parts of the problem. It is also helpful for the control unit
-and arithmetic unit to have information immediately available for their
use, and for the use of other units within the computer. This require-
ment is met by the portion of the computer designated as the memory
unit, or core storage umit.

1-31

| contROL |
r - UNIT =1
i |] |
+ I ¥ ¥
INPUT ! INTERNAL OUTPUT
_—’ vl
UNIT Il STORAGE var [
|
I y
L4l ARITHMETIC
UNIT

Figure 1-1. PDP-8 General Organization

The prime purpose of a digital computer is to serve humans in some
manner. In order to do this there must be a method of transmitting our
wants to the computer, and a means of receiving the results of the com-
puter’s calculations. The portions of the computer that carry out these
functions are the input and output units.

Arithmetic Unit

The arithmetic unit of a digital computer performs the actual work
of computation and calculation. It carries out its job by counting series
of pulses or by the use of logic circuits. Modern computers use com-
ponents such as transistors and integrated circuits. Switches and relays
were used previously, and were acceptable as far as their ability to per-
form computations was concerned. Modern computers, however, be-
cause of the speed desired, make use of smaller electronic components
whenever possible. '

The arithmetic unit of the PDP-8 has, as its major component, a
12-bit accurmulator, which is simply a register capable of storing a num-
ber of 12 binary digits. It is called the accumulator because it accumu-
lates partial sums during the operation of the PDP-8. All arithmetic
operations are performed in the accumulator of the PDP-8,

Control Unit

The control unit of a digital computer is an administrative or switch-
ing section. It receives information entering the machine and decides
how and when to perform operations. It tells the arithmetic unit what
to do and where to get the necessary information. It knows when the
arithmetic unit has completed a calculation and it tells the arithmetic
unit what to do with the results, and what to do next.

1-32

The control unit itself knows what to tell the arithmetic unit to do by
interpreting a set of instructions. This set of instructions for the control
unit is called a program and is stored in the computer memory.

Memory Unit

The meinory unit, sometimes called the core storage unit, contains
information for the control unit (instructions) and for the arithmetic
unit (data). The terms core storage and memory may be used inter-
changeably. Some computer texts refer to exterrial units as storage, such
as magnetic tapes and disks, and to internal units as memory, such as
magnetic cores, The requirements of the internal storage units may vary
greatly from computer to computer.

The PDP-8 memory unit is composed of magnetic cores which are
often compared to tiny doughnuts. These magnetic cores record binary
information by the direction in which they are magnetized (clockwise
or counterclockwise). The memory unit is arranged in such a way that
it can store 4096 “words” of binary information. These words are ecach
12-bits in length. Each core storage location has an address, which is a
unique number used by the control unit to specify that location. Storage
of this type in which each location can be specified and reached as easily
as any other is referred to as random-access storage. The other type of
storage is sequential storage such as magnetic tape, in which case some
locations (those at the beginning of the tape) are easier to reach than
others (those at the end of the tape).

Input Unit

Input devices are used to supply the values needed by the computer
and the instructions to tell the computer how to operate on the values.
Input unit requirements vary greatly from machine to machine. A
manually operated keyboard may be. sufficient for a small computer.
Other computers requiring faster input use punched cards for data in-
puts. Some systems utilize removable plugboards that can be pre-wired
to perform certain instructions. Input may also be via punched paper
tape or magnetic tape, two forms of input common in PDP-8 systems,

Output Unit

Output devices record the results of the computer operations. These
results may be recorded in a permanent form (e.g., as a‘printout on the
teleprinter) or they may be used to initiate a physical action (e.g., to
adjust a pressure valve setting). Many of the media used for input, such
as paper tape, punched cards, and magnetic tape, can also be used for
output.

-

1-33

COMPUTER DATA FORMATS

The PDP-8 uses 12-bit words to represent data. Some of the formats
in which this data is represented are described in the following para-
graphs.

Alphabetic Characters

Computers are designed to operate upon the binary numbers which
it conveniently represents with electronic components. There are occa-
sions however when it is desirable to have the computer represent
characters of the alphabet and punctuation marks. Binary codes are
used to represent such characters. For example, the reader is familiar
with punched cards, which use a system of punched holes to represent
information. Each of these codes associates some character with a par-
ticular binary number. The computer can store the binary number (not
the character) in its memory. When so directed, the computer will out-
put the binary code to a device which will interpret the code and print
the character. Some specific binary codes used to represent alpha-
numeric information (letters, numbers, and punctuation symbols) are
presented in Appendix B.

Number Representations

The PDP-8 operates upon 12-bit words (namely 0 to 111 111 111
1114, or 0 to 7777s). By convention, one half of the numbers are con-
sidered positive (0 to 011 111 111 111,, or 0 to 3777;), and one
half (100 000 000 000, to 111 111 111 111, or 4000, to 7777¢) are
considered negative. Therefore the PDP-8 can directly represent the
portion of the number line shown in Figure 1-2.

40004
4001,y sooog o\ 2000,, 3777,
(-3777g) 20004} 5777
-1}

Figure 1-2. PDP-8 Octal Number Line

Notice that the first digit of the 12-bit binary numbers is in effect a
“sign bit.”” That is, bit O (the first bit) specifies the sign of the number
by the following rule. If bit 0 is a 0, the number is positive; if bit O is
a 1, the number is negative. This is the means by which the computer

1-34

tests for positive and negative numbers. Thus, the zero is considered
positive. In figure 1-2 it should be noted that the number 4000 is
peculiar in that it has no positive counterpart. (Expressed in octal, the
“two’s complement” of 3776 is 4002; of 3777 is 4001; of 4000 is

4000.)
When the octal to decimal conversions are performed, the number

line of Figure 1-2 is converted to the number line of Figure 1-3. Thus
the PDP-8 can represent directly the numbers between —2048,, and
+2047,,. This would seem to be a serious restriction. Through two
techniques however this limitation is overcome.

T f i T
o]

~2048 +2047

Figure 1-3. PDP-8 Decimal Number Line

DOUBLE PRECISION NUMBERS
~ The PDP-8 memory is made up of 12-bit storage locatiogs. Suppose
however that a number larger than 12-bits were to be stored. By using
two 12-bit storage locations, numbers between —8,388,608,, and
8,388,607,, may be represented directly. This method of representation
is appropriately called double precision. The method could be extended
to triple precision and further if necessary.

It should be noted that to add double precision numbers, two addi-
tions are needed. Double precision arithmetic is described in Chapter 3.

FLOATING POINT NUMBERS

Another méthod of representing numbers in the PDP-8 with more
than one 12-bit word is floating point notation. In this notation, a
number is divided into two parts, namely a mantissa (number part)
and an exponent (to some base). In the decimal number system for
example, the number 12 can be written in the following'ways.

~ MANTISSA EXPONENT

12 X 102

1.2 X 101

12. X 100

120. X 10-1
1200. X 10-2°

PDP-8 floating point notation makes useof a representation similar to the
above with the exception that the exponent and the mantissa are binary

1-35

numbers. The binary mantissa (number part) is stored in two locations
and a third location stores the exponent. The exponent is selected such
that the mantissa has no leading zeros, thereby retaining the maximum
number of significant digits. Further description of the floating point
systemn is contained in Chapter 6.

1-36

Chapter 2

- Programming
Fundamentals

This chapter describes the three general types of computer instruc-
tions and the way in which they are used in computer programs. The
first type of instruction is distinguished by the fact that it operates upon
data that is stored in some memory location and must tell the com-
puter where the data is located in core so that the computer can
find it. This type of instruction is said to reference a location in core
memory; therefore, these instructions are often called memory reference
instructions (MRI).

When speaking of memory locations, it is very important that a clear
distinction is made between the address of a location and the contents
of that location. A memory reference instruction refers to a location by
a 12-bit address; however, the instruction causes the .computer to take
some specified action with the content of the location. Thus, although
the address of a specific location in memory remains the same, the con-
tent of the location is subject to change, In summary, a memory refer-
ence instruction uses a 12-bit address value to refer to a memory
location, and it operates on the 12-bit binary number stored in the
referenced memory location.

The second type of instructions are the operate microinstructions,
which perform a variety of program operations without any need for
reference to a memory location. Instructions of this type are used to
perform the following operations: clear the accumulator, test for neg-
ative accumulator, halt program execution, etc. Many of these operate
microinstructions can be combined (microprogrammed) to increase the
operating efficiency of the computer.

The third general type of instructions are the input/output transfer
(JOT) instructions. These instructions perform the transfer of infor-
mation between a peripheral device and the computer memory. 10T
instructions are discussed in Chapter S.

2-1

PROGRAM CODING

Binary numbers are the only language which the computer is able
to understand. It stores numbers in binary and does all its arithmetic
operations in binary. What is more important to the programmer, how-
ever, is that in order for the computer to understand an instruction it
must be represented in binary, The computer can not understand in-
structions which use English language words. All instructions must be in
the form of binary numbers (binary code).

Binary Coding

The computer has a set of instructions in binary code which it “un-
derstands”. In other words, the circuitry of the machine is wired to react
to these binary numbers in a certain manner. These instructions- have
the same appearance as any other binary number; the computer can
interpret the same binary configuration of O’s and 1’s as data or as an
instruction. The programmer tells the computer whether to interpret
_the binary configuration as an instruction or as data by the way in which
the configuration is encountered in the program.

Suppose the computer has the following binary instruction set.

Instruction A 001 000 010 010 This binary number instructs the
computer to add the contents of
location 000 000 010 010 to the
accumulator.

Instruction B 001 000 010 111 This binary number instructs the
computer to add the contents of
location 000 000 010 111 to the
accumulator.

If instruction B is contained in a core memory location with an
address of 000 000 010 010 and the binary number 000 111 111 111
is stored in a location with an address of 000 000 010 111, the follow-
ing program could be written:

Location " Content
000 000 010 010 001 000 010 111
000 000 010 111 : 000 111 111 111

If this program were to be executed, the number 000 111 111 111
would be added to the accumulator.

Octal Coding ,

If binary configurations appear cumbersome and confusing, the
reader will now understand why most programmers seldom use the
binary number system in actual practice. Instead, they substitute the

22

octal number system which was discussed in Chapter 1. The reader
should not proceed until he understands these two number systems
and the conversions between them.

Henceforth, octal numbers will be used to represent the binary num-
bers which the computer uses. Although the programmer may use octal
numbers to describe the binary numbers within the computer, it should
be remembered that the octal representation itself does not exist within
the computer.

When the conversion to octal is performed, Instruction B becomes
1027, and the previous program becomes.

Location Content
0022, . C 1027,
0027, 0777,

TFS demonstrate that a computer cannot distinguish between a num- .
ber and an instruction, consider the following program.

Location Content

0021 . 1022 (Instruction A)
0022] 1027 (Instruction B)
0027 0777 (The number 777,)

Instruction A, which adds the contents of location 0022 to the accu- |
mulator, has been combined with the previous program. Upon execu-
tion of the program (assuming the initial accumulator value==0}, the
computer will execute instruction A and add 1027, as a number to the
accumulator obtaining a result of 1027;. The computer will then execute
the next instruction, which is 1027, causing the computer to add the
contents of 0027 to the accumulator. After the execution of the two
instructions the number 20265 is in the accumulator. Thus, the above
program caused the number 1027, to be used as an instruction and as
a number by the computer.

Mnemonic Coding

Coding a program in octal numbers, although an improvement upon
binary coding, is nevertheless very inconvenient. The programmer must
learn a complete set of octal numbers which have no logical con-
nection with the operations they represent. The coding is difficuit. for
the programmer when he is writing the program, and this difficulty is
compounded when he is trying to debug or correct a program. There is
no easy way to remember the correspondence between an octal number
and a computer operation.

2-3

To simplify the process of writing or reading a program, cach in-
struction is often represented by a simple 3- or 4-letter mnemonic
symbol. These mnemonic symbols are considerably easier to relate to a
computer operation because the letters-often suggest the definition of -
the instruction. The programmer is now able to wrife a program in a
language of letters and numbers which suggests the meaning of each
instruction.

The computer still does not understand any language except binary
numbers. Now, however, a program can be written in a symbolic lan-
guage and translated into the binary code of the computer because of
the one-to-one correspondence between the binary instructions and the
mnemonics. This translation could be done by hand, defeating the pur-
pose of mnemonic instructions, or the computer could be used to do the
translating for the programmer, Using a binary code to represent alpha-
betic characters as described in Chapter 1, the programmer is able to
store alphabetic information in the computer memory. By instructing
the computer to perform a translation, substituting binary numbers for
the alphabetic characters, a program is generated in the binary code
of the computer. This process of translation is called “assembling” a
program. The program that performs the translation is called an
assembler. ’

Although the assembler is described in detail in Chapter 6, it is well
to make some observations about the assembler at this point.

1. The assembler itself must be written in binary code, not
mnemonics.
2. It performs a one-to-one translation of mnemonic codes into
binary numbers.
3. It allows programs to be written in a symbolic language which
is easier for the programmer to understand and remember. -
A specific mnemonic language for the PDP-§, called PAL (Program
Assembly Language), is introduced later in this chapter. The next sec-
tion describes the general PDP-8 characteristics and components. This
information is necessary to an understanding of the PDP-8 instructions
and their uses within a program.

PDP-8 ORGANIZATION AND STRUCTURE

The PDP-8 is a high-speed, general purpose digital computer which
operates on 12-bit binary numbers. It is a single-address parallel
machine using two’s complement arithmetic. It is composed of the five
basic computer units which were discussed in Chapter 1. The com-

2-4

ponents of the five units and their interrelationships are shown in
Figure 2-1. For simplicity, the input. and output units have been
combined.

INPUT/ : armeveric | controL | MEMORY
OUTPUT . onit | UNIT I UNIT
uNITs | i I
. ' | MEMORY
consoLg| ! =] PROSRAM 1™ ADDRESS
——4————+L COUNTER le-} —*| REGISTER
: . LINK } : MEMORY
INPUT/ . | o] BUFFER
output | | t * REGISTER
DEVICES ACCUM- 1 | |
| JYULATOR Iy BinsTRUCTION]
TELE- | | | | REGISTER |y
TYPE,
oisk, | | | l |
DECTAPE,| | | | [
TC.
E ! | “g?;.?g | CORE MEMORY
: : GENERATOR : 4096 12-BIT WORDS

Figure 2-1. Block Diagram of the PDP-8

‘Input and Output Units ‘

The input and output units are combined in Figure 2-1 because in-
many cases the same device acts as both an input and an output unit.
The Teletype console, for example, can be used to input information
which will be accepted by the computer, or it can accept processed in-
formation and print it as output. Thus, the two units of input and output
are very often joined and referred to as input/output or simply 1/0.
Chapter 5 describes the methods of transmitting data as either input or
output; but for the present, the reader can assume that the computer is

. able to accept information from devices such as those listed in the block
diagram and to return output information to the devices. The PDP-8
console allows the programmer direct access to core memory and the
program counter by setting a series of switches, as described in detail
in Chapter 4.

Arithmetic Unit

The second unit contained in the PDP-8 block diagram is the arith-
metic unit. This unit, as shown in the diagram, accepts data from input
devices and transmits processed data to the output devices as well. Pri-
marily, however, the unit performs calculations under the direction of
the control unit. The Arithmetic Unit in the PDP-8 consists of an
accumulator and a link bit,

2-5

ACCUMULATOR (AC)

The prime component of the arithmetic unit is a 12-bit register called
the accumulator. It is surrounded by the electronic circuits which per-
form the binary operations under the direction of the control unit. Its
name comes from the fact that it accumulates partial sums during the
execution of a program. Because the accumulator is only twelve bits in
length, whenever a binary addition causes a carry out of the most sig-
nificant bit, the carry is lost from the accumulator. This carry is re-
corded by the link bir.

LINK (L)

Attached logically to the accumulator is a 1-bit register, called the
link, which is complemented by any carry out of the accumulator. In
other words, if a carry results from an addition of the most significant
bit in the accumulator, this carry results in a link value change from 0
to 1, or 1 to 0, depending upon the original state of the link. -

Below is a diagram of the accumulator and link, The twelve bits of
the accumulator are numbered 0 to 11, with bit 0 being the most sig-
nificant bit. The bits of the AC and L can be either binary 0’s or 1’s as
shown below.

LINK : ACCUMULATOR
4 5 6 7 8 9 10 1.

2 3
% o Ao /1o /10 /1o /1o /1o /To /To /To /|6 /To
RV RVARVARVANARNVARVEVARTARVANE

MOST SIGNIFICANT BIT LEAST SIGNIFICANT BIT

Control Unit

The instruction register, major state generator, and program counter
can be identified as part of the control unit. These registers keep track
of what the computer is now doing and what it will do next, thus
specifying the flow of the program from beginning to end.
PROGRAM COUNTER (PC) , ‘

The program counter is used by the PDP-8 control unit to record
the locations in memory (addresses) of the instructions to be executed.
The PC always contains the address of the next instruction to be exe-
cuted. Ordinarily, instructions are stored in numerically consecutive
locations and the program counter is set to the address of the next in-
struction to be executed merely by increasing itself by 1 with each
_successive instruction. When an instruction causing transfer of command
ito another portion of the stored program is encountered, the PC is set

2-6

to the appropriate address. The PC must be initially set by input to
specify the starting address of a program, but further actions are con-
trolled by program instructions,

INSTRUCTION REGISTER (IR)

"The 3-bit instruction register is used by the control unit to specify
the main characteristics of the instruction being executed. The three
most significant bits of the current instruction are loaded into the IR
each time an instruction is.loaded into the memory buffer register from
core memory. These three bits contain the operation code which
specifies the main characteristics of an instruction. The other details
are specified by the remaining nine bits (called the operand) of the
instruction.

MAJOR STATE GENERATOR

The major state generator establishes the proper states m sequence
for the instruction being ¢xecuted. One or more of the following three
major states are entered serially to execute each programmed instruc-
tion. During a Fetch state, an instruction is loaded from core memory,
at the address specified by the:program counter, into the memory
buffer register. The Defer state is used in conjunction with indirect ad-
dressing to obtain the effective address, as discussed under “Indirect
Addressing” later in this chapter. During the Execute state, the instruc-
tion in the memory buffer register is performed.

Memory Unit

The PDP-8 basic memory unit consists of 4,096 12-bit words of
‘magnetic core memory, a 12-bit memory address register, and a 12-bit
memory buffer register. The memory unit may be expanded in units of
4,096 words up to a maximum of 32,768 words;

CORE MEMORY

The core memory provides storage for the instructions to be per-
formed and information to be processed. It is a form of random access
storage, meaning that any specific location can be reached in memory
as readily as any other. The basic PDP-8 memory contains 4,096 12-bit
magnetic core words. These 4,096 words require that 12-bit addresses
be used to specify the address for each location umquely
MEMORY BUFFER REGISTER (MB)

All transfers of instructions or information between core memory and
‘the processor registers (AC, PC, and IR) are temporarily held in the
memory buffer register. Thus, the MB holds all words that go into and
out of memory, updates the program counter, sets the instruction
register, sets the memory address register, and accepts information
from or provides information to the accumulator,

2-7

MEMORY ADDRESS REGISTER (MA)

The address specified by a memory reference instruction is held in
the memory address register. It is also used to specify the address of the
next jnstruction to be brought out of memory and performed. It can be
vsed to directly address all of core memory. The MA can be set by
the memory buffer register, or by input through the program counter
register, or by the program counter itself.

MEMORY REFERENCE INSTRUCTIONS

The standard set of instructions for the PDP-8 includes eight basic
instructions. The first six of these instructions are introduced in the
following paragraphs and are presented in both octal and mnemonic
form with a description of the action of each instruction.

The memory reference instructions (MRI) require an operand to
specify the address of the location to which the instruction refers. The
manner in which locations are specified for the PDP-8 is discussed in
detail under “Page Addressing” later in this chapter. In the following
discussion, the first three bits (the first octal digit) of an MRI are used
to specify the instruction to be performed. (The last nine bits, three
octal digits, of the 12-bit word are used to specify the address of the
referenced location—that is, the operand.)

The six memory reference instructions are listed below with their
mnemonic and octal equivalents as well as their memory cycle times.

Octal Memory

Instruction Mnemonic? Value Cyclest
Logical AND AND Onnn 2
Two's Complement Add TAD Innn 2
Deposit and Clear the Accumulator DCA 3nnn 2
Jump - IMP Snnn 1
Increment and Skip if Zero ISZ 2nnn 2
Jump to Subroutine IMS 4nnn 2

1 Memory cycle time for the PDP-8 and -8/I is 1.5 microseconds; for the PDP-
8/L, it i 1.6; for the PDP-8/S, it is 8 microseconds. (Indirect addressing re-
quires an additional memory cycle.)

2The mnemonic code is meaningful to and translated by an assembler into
binary code.

2-8

AND (Onnn,)

The AND instruction causes a bit-by-bit Boolcan AND operation
between the contents of the accumulator and the data word specified
by the instruction. The result is left in the accumulator as illustrated
below.

LINK Lﬂé}l]ﬂ]l!ﬂla} V] Te]e] ac
mltll(a}ﬂlﬁlllllliﬁlﬁlﬁ] DATAWORD
w[7] [e]e] 1 [e]e]e]a] []#]2]7] Ac esum

The following points should be noted with respect to the AND
instruction:

1. A 1 appears in the AC only when a 1 is present in both the AC
and the data word (The data word is often referred to as a
mask);

2. The state of the link bit is not affected by the AND mstrucnon,
and ‘

3. The data word in the referenced location is not altered.

TAD (1nmn,)

The TAD instruction performs a binary addition between the speci-
fied data word and the contents of the accumulator, leaving the result
of the addition in the accumulator. If a carry out of the most significant
bit of the accumulator should occur, the state of the link bit is comple-
mented. The add instruction is called a Two’s Complement Add to re-
mind the programmer that negative numbers must be expressed as the
two’s complement of the positive value. The following figure illustrates
the operation of the TAD instruction.

(1] ELREIEEEle e » +
Clef e e T | @] 1 | oata worp: -3
’ LINK (2] ¢[¢T¢T¢[¢[¢[¢J 8|01 |8] ac®esun:+2

2-9

The following points should be remembered when using the TAD
instruction:
1. Negative numbers must be expressed as a two’s complement of
the positive value of the number;
2. A carry out of the accumulator will complement the hnk and
3. The data word in the referenced location is not affected.

DCA (3nnn,)

The DCA instruction stores the contents of the AC in the referenced
location, destroying the original contents of the location. The AC is
then set to all zeroes. The following example shows the contents of the
accumulator, link; and location 225 before and after executing the in-
struction DCA 225.

DCA 225
AC Link Loc. 225
~ Before Execution 1234 1 7654
After Execution 0000 1 1234

The following facts should be kept in mind when usmg the DCA in-
struction:
1. The state of the link bit is not altered;
2. The AC s cleared; and
3. The original contents of the addressed location are replaced by
. the value of the AC.

JMP (5nnn,)

The JMP instruction loads the effective address of the instruction
into the program counter, thereby changing the program sequence since
the PC specifies the next.instruction to be performed. In the following
example, execution of the instruction in location 250 (JMP 300) causes
the program to jump over the instructions in locations 251 through 277
and immediately transfer control to the instruction in location 300,

Location Content .
250 IMP 300 {This instruction transfers program
. . control to location 300.)
300 DCA 330
NOTE:" The JMP instruction does not affect the contents of
the AC or link.

ISZ. (2nnng) ,
The ISZ instruction adds a 1 to the referenced data word and then

examines the result of the addition. If a zero result occurs, the instruc-

tion following the ISZ is skipped. If the result is not zero, the instruction

2-10

following the ISZ is performed. In either case, the result of the addition
replaces the original data word in memory. The example in Figure 2-2
illustrates one method of adding the contents of a given location to the
AC a specified number of times (multiplying) by using an ISZ instruc-
tion to increment a tally. The effect of this example is to multiply the
contents of location 275 by 2. (To-add the contents of a given location
to the AC twice, using the ISZ loop, as shown in Figure 2-2, requires
more instructions than merely repeating the TAD instruction. However,
when adding the contents four or more times, use of the ISZ loop re-
quires fewer instructions.) In the first pass of the example, execution of
ISZ 250 increments the contents of location 250 from 7776 to 7777
and then transfers control to the following instruction (JMP 200). In
the second pass, execution of ISZ 250 increments the contents of loca-
tion 250 from 7777 to 0000 and transfers-control to the instruction in
location 203, skipping over location 202.

. CODING FOR ISZ L.OOP
Location Content
200 TAD 275
201 1SZ 250
202 JMP 200
203 DCA 276
250 7776
275 0100
276 0000

SEQUENCE OF EXECUTION FOR ISZ 1.OOP
Content After Instruction Execution

Location - Content AC 250 275 276
FIRST PASS ‘ :

200 TAD 275 0100 - 7776 0100 0000
201 ISZ 250 0100 7777 0100 0000
202 JMP 200 0100 7777 0100 0000
SECOND PASS

200 © TAD 275 0200 7777 0100 0000
201 ISZ 250 0200 0000 0100 0000
202 IMP 200 (Skipped during second pass)

203 DCA 276 0000 0000 0100 02006

Figure 2-2. ISZ Instruction Incrementing a Tally

2-11

The following pomts should be kept in mind when using the ISZ
instruction:

1. The contents of the AC and link are not disturbed;

2. The original word is replaced in main memory by the incre-
mented value;

3. When using the ISZ for looping a specified number of times,
the tally must be set to the negative of the desired number; and

4. The ISZ performs the incrementation first and then checks for
a zero result.

JMS (dnnn,)

A program written to perform a specific operation often includes sets
of instructions which perform intermediate tasks. These intermediate
tasks may be finding a'square root, or typing a character on a keyboard.
Such operations are often performed many times in the running of one
program and may be coded as subroutines. To climinate the need of
writing the complete set of instructions each time the operation must be
performed, the IMS (jump to subroutine) instruction is used. The IMS
instruction stores a pointer address in the first location of the subroutine
and transfers control to the second location of the subroutine. After the
subroutine is executed, the pointer address identifies the next instruc-
tion to be executed; Thus, the programmer has at his disposal a simple
means of exiting from the normal flow of his program to perform an
intermediate task and a means of return to the correct location upon
completion of the task. (This return is accomplished using indirect ad-
dressing, which is discussed later in this chapter.) The following exam-
ple illustrates the action of the JMS instruction.

Location Content
PROGRAM
200 IMS 350 (This instruction stores 0201 in loca-

tion 350 and transfers program control
to location 351.)

201 DCA 270 (This instruction stores the contents of
the AC in location 270 upon return
from the subroutine.)

2-12

SUBROUTINE

350 0000 (This location is assumed to have an
_ initial value of 0000; after JMS 350 is
executed, it is 0201.)
351 iii (First instruction of subroutine)

375 JMP 1350 (Last instruction of subroutine)

The following should be kept in mind when using the JMS:

1. The value of the PC (the address of the JMS instruction +41)
is always stored in the first location of the subroutine, replacing
the original contents;

2. Program control is always transferred to the location designated .
by the operand 4-1 (second location of the subroutine);

3. The normal return. from a subroutine is made by using an in-
direct JMP to the first location of the subroutine (JMP 1 350
in the above example); (Indirect addressing, as discussed later
in this chapter, effectively transfers control to location 201.);

4. When the results of the subroutine processing are contained in
the AC and are to be used in the main program, they must be
stored upon return from the subroutine before further calcula-
tions are performed. (In the above example, the results of the
subroutine processing are stored in location 270.)

ADDRESSING

When the memory reference instructions were introduced, it was
stated that nine bits are allocated to specify the operand (the address
referenced by the instruction). The method used to reference a memory
location using these nine bits.will now be discussed.

. PDP-8 Memory Pages

As previously described, the. format of an MRI is three bits (0, 1,
and 2) for the operation code and the remaining nine bits the operand.
However, a full twelve bits are needed to uniquely address the 4,096
(10,000 octal) locations that are contained in the PDP-8 memory unit.
To make the best use of the available nine bits, the PDP-8 utilizes a
logical division of memory into blocks (pages) of 200, locations each,
as shown in the following table. ‘

2-13

Memory Memor
Page Locations Page Locatiogs
0 0-177 20 4000-4177
1 200-377 21 . 4200-4377
2 400-577 22 4400-4577
3 600-777 23 4600-4777
4 1000-1177 24 5000-5177
5 1200-1377 25 5200-5377
6 1400-1577 26 5400-5577
7 1600-1777 27 5600-5777
10 2000-2177 30 6000-6177
11 2200-2377 31 6200-6377
12 2400-2577 32 6400-6577
13 2600-2777 33 6600-6777
14 3000-3177 34 7000-7177
15 3200-3377 35 . 7200-7377
16 3400-3577 36 7400-7577 .
17 3600-3777 37 7600-7777

Since there are 200, locations on a page and seven bits can represent
2005 different numbers, seven bits (5 through 11 of the MRI) are used
to specify the page address. Before discussing the use of the page ad-
dressing convention by an MRI, it should be emphasized that memory
does not contain any physical page separations. The computer recog-
nizes only absolute addresses and does not know what page it is on, or
when it enters a different page. But, as will be seen, page addressing
allows the programmer to reference all of the 4,096,, locations of
memory using only the nine available bits of an MRI. The format of an
MRI is shown in Figure 2-3.

OPERAND
BIT [—L 1
POSITION O | 2 3 4 5 6 7 8 S 10 1
0 /1076716 /0,710,710 /]0./]0 /10 /10 /10
each et 1s VIV WALV A LAY VA
EITHER O 1 ; 14 L : !
oR 1 OPERATION PAGE ADDRESS BITS
CODE (0 TO 177g)
ADDRESS MODE BIT CURRENT PAGE OR PAGE O BIT
0 DIRECT ADDRESSING 0. PAGE O
| INDIRECT ADDRESSING 1. CURRENT PAGE

Figure 2-3. Format of a Memory Reference Instruction

2-14

As previously stated, bits O through 2 are the operation code for the
MRI. Bits 5 through 11 identify a specific location on a given page, but
they do not identify the page itself. The page is specified by bit 4, often
called the current page or page 0 bit, If bit 4 is a 0, the page address is
interpreted as a location on page 0. If bit 4 is a 1, the page address
specified is interpreted to-be on the current page (the page on which
the MRI itself is stored). For example, if bits 5 through 11 represent

" 123, and bit 4 is a 0, the location referenced is absolute address 123..
However, if bit 4 is a 1 and the current instruction is in a core memory
location whose absolute address is between 4,600, and 4,777, the page
address 123; designates the absolute address 4,723,. Note that, as
shown in the following example, this characteristic of page addressing
results in the octal coding for two TAD instructions on different
memory pages being identical when their operands reference the same
relative location (page address) on their respective pages.

Content
Location |Mnemonic Octal Explanation
200 TAD 250" 1250 TAD 250 and TAD 450 both
. . " mean add the contents of loca-
. . tion 50 on the current page (bit
400 TAD 450 1250 4 = 1) to the accumulator.

‘Except when it is on page 0, a memory reference instruction can refer-
ence 400, locations directly, namely those 200, locations on the page
containing the instruction itself and the 200, locations on page 0, which
can be addressed from any memory location.

NOTE: If an MRI is stored in one of the first 200, memory locations (0 to

177s), current page is page 0; therefore, only locations 0 to 177. are
directly addressable.

Indirect Addressmg

In the preceding section, the. method of directly addressing 400
memory locations by an MRI was described—namely those on page 0
and those on the current page. This section describes the method for
addressing the other 7400, memory locations. Bit 3 of an MRI, shown
in Figure 2-3 but not discussed in the preceding section, designates the
address mode. When bit 3 is a 0, the operand is a direct address. When
bit 3 is a-1, the operand is an indirect address. An indirect address
(pointer address) identifies the location that contains the desired address
(effective address). To address a location that-is not directly address-
able, the absolute address of the desired location is stored in one of
the 400, directly addressable locations (pointer address); the pointer
address is written as the operand of the MRI; and the letter I is written

2-15

between the mnemonic and the operand. (During assembly, the pres-
ence of the I results in bit 3 of the MRI being set to 1.) Upon execution,
the MRI will operate on the contents of the location identified by the
address contained in the pointer location.

The two examples in Figure 2-4 illustrate the difference between
direct addressing and indirect addressing. The first example shows a
TAD instruction that uses direct addressing to get data stored on page 0
in location 50; the second is a TAD instruction that uses indircct ad-
dressing, with a pointer on page 0 in location 50, to obtain data stored
in location 1275. (When references are made to them from various
pages, constants and pointer addresses can be stored on page 0 to avoid
the necessity of storing them on each applicable page.) The octal value
1050, in the first example, represents direct addressing (bit 3 = 0); the
octal value 1450, in the second example, represents indirect addressing
(bit 3 = 1). Both examples assume that the accumulator has previously
been cleared.

Location Content

200 TAD 50 (TAD 50 = 1050,)
Address
Instruction

50 1275

S~ Data (Number) To Be Acted Upon By
Instruction Address

1275 20 (Content of location 1275 is not used in
the execution of the instruction in loca-
tion 200.)

NOTE: AC = 1275 after executing the instruction in loca-
tion 200.
Location Content
200 TAD I 50 (TAD 150 = 1450,)
. ‘\\Pointer Address
. Designates Indirect Addressing
Instruction

50 1275
R . (\\Effective Address

. T Pointer Address
1275 2

1]
S\\\Data (Number) To Be Acted Upon By
Instruction
-Effective Address

NOTE: AC = 20 after executing the instruction in location
200.

Figure 2-4. Comparison of Direct and Indirect Addressing

2-16

The following three examples illustrate some additional ways in
which indirect addressing can be used. As shown in example 1, indirect
addressing makes it possible to transfer program control off page 0 (to
any desired memory location). (Similarly, indirect addressing makes it
possible for other memory reference instructions to address any of the
4,096,, memory locations.) Example 2 shows a DCA instruction that
uses indirect addressing with a pointer on the current page. The pointer
in this case designates a location off the current page (location 227) in
which the data is to be stored. (A pointer address is normally stored on
the current page when all references to the designated location are from
the current page.) Indirect addressing provides the means for returning
to a main program from a subroutine, as shown in example 3. Indirect
addressing is also effectively used in manipulating tables of data as de-
scribed and illustrated in conjunction with autoindexing in Chapter 3.

EXAMPLE 1

Location Content
75 IMP I 100 (JMP I 100 = 5500,)
. . \ Pointer Address
. Designates Indirect Addressing
100 6000 - Instruction
. \\ Effective Address
. Pointer Address
6000 DCA 100
. k;i\\—Next Instruction To Be Executed

. ‘Effective Address
NOTE: Executxon of the instruction in location 75 causes, pro-
~ gram control to be transferred fo location 6000, and
the next instruction to be executed is the DCA 6100

instruction,
EXAMPLE 2
Location - - Content

450 DCA 1 577 (DCA 1577 =3777:)
Pointer Address
Designates Indirect Addressing
Instruction

577

ST Effective Address

Pointer Address

227 nnnn
| \\Data (Number) Stored By Instructlon
Effective Address

NOTE: Execution of the instruction in location 450 causes the
contents of the accumulator. to be stored in location
227.

3
[\
[\'

2-17

EXAMPLE 3

Location Content

207 IMS 1 70 (JMS 170 = 4470,)

210 TAD 250 (The next instruction to be executed
. . upon return. from the subroutine.)

70 2000 (Starting address of the subroutine
. . stored here.)

2000 aaaa (Return address storéd here by IMS

instruction.)
2001 it (First instruction of subroutine.)
2077 JMP I 2000 (Last instruction of subroutine.)

NOTES: 1. Execution of the instruction in location 207 causes
the address 210 to be stored in location 2000 and
the instruction in location 2001 to be executed
next. Execution of the subroutine proceeds until
the last instruction (JMP I 2000) causes control
to be transferred back to the main program, con-
tinuing with the execution of the instruction stored
in location 210.

2. AJMS instruction that uses indirect addressing is
useful when the subroutine is too large to store on
the current page.

3. Storing the pointer address on page 0 enables in-
structions on various pages to have access to the
subroutine,

OPERATE MICROINSTRUCTIONS

The operate instructions (octal operation code = 7) allow the pro-
grammer to manipulate and/or test the data that is located in the
accumulator and link bit. A large number of different instructions are
possible with one operation code because the operand bits are not
needed to specify an address as they are in an MRI and can be used to
specify different instructions. The operate instructions are separated
into two gtoups: Group 1, which contains manipulation instructions,
and Group 2, which is primarily concerned with testing operations.
Group 1 instructions are discussed first.

Group 1 Microinstructions

The Group 1 microinstructions manipulate the contents of the accu-
mulator and link. These instructions are microprogrammable; that. is,
they can be combined to perform specialized operations with other
Group 1 instructions. Microprogramming is discussed later in this
chapter.

2-18

| 2 3 4 5§ 6 7 8 9 10 1

I 1 O |CLA|CLLICMAICMLIRAR|RAL % IAC

OPERATION T @ . ROTATE ONE PLACE
CODE ZERO SPECIFIES 1. ROTATE TWO PLACES
GROUP |

The preceding diagram illustrates the manner in which a PDP-8 in-
struction word is interpreted when it is used to represent a Group 1
operate microinstruction. As previously mentioned, 7; is the operation
code for operate microinstructions; therefore, bits 0 through 2 are all
1’s. Since a reference to core memory is not necessary for the operation
of microinstructions, bits 3 through 11 are not used to reference an
address. Bit 3 contains a 0 to signify that this is a Group 1 instruction,
and the remaining bits are used to specify the operations to be per-
formed by the instruction. The operation of each individual instruction
specified by these bits is described below.

CLA

WCLL
CMA

CML

RAR

RTR

Clear the accumulator, If bit 4 is a 1, the instruction sets
the accumulator to all zeroes.

Clear the link. If bit 5 is a 1, the link bit is set.to O.
Complement the accumulator. If bit 6 is a 1, the accumu-
lator is set to the 1’s complement of its original value; that
is, all 1’s become 0’s, and all 0’s become 1’s.

Complement the link. If bit 7 is a 1, the state of the link bit
is reversed, ’

Rotate the accumulator and link right. If bit 8 is a 1 and
bit 10 is a 0, the instruction treats the AC and L as a closed
Ioop and shifts all bits in the loop one position to the right.
This operation is illustrated by the following diagram.

L AC

uww1|Io|ﬂolololoﬂwow

AFTER RAR

Rotate the accumulator and link twice right. If bit 8 is a 1
and bit 10 is also a 1, a shift of two places to the right is
executed. Both the RAR and RTR instructions use what is
commonly called a circular shift, meaning that any bit
rotated off one end of the accumulator will reappear at the
other end. This operation is illustrated below.

2-19

RTL

IAC

NOP

L AC

Q [—l—[l l!lalo[ololololn{ulul BEFORE RTR
= =]

~.
\\\ AR AN

1oty et 10j10101010[0]1 | AFTERRTR

Rotate the accumulator and link left. 1f bit 9 is a 1 and bit
10 is a O, this instruction treats the AC and L as a closed
loop and shifts all bits in the loop one position to the left,
performing a circular shift to the left.

Rotate the accumulator and link twice left. If bit 9 is a 1
and bit 10 is a 1 also, the instruction rotates each bit two
positions to the left. (The RAL and RTL microinstructions
shift the bits in the reverse direction of that directed by the
RAR and RTR microinstructions.)

Increment the accumulator. When bit 11 is a 1, the con-
tents of the AC is increased by 1.

No operation. 1f bits O through 2 contain operation code
75, and the remaining bits contain zeros, no operation is
performed and program control is transferred to the next
instruction in sequence.

A summary of Group 1 instructions, including thelr octal forms, is

given below.

Mnemonic! Octal? Operation Sequence3
NOP 7000 No operation e
CLA 7200 Clear AC 1
CLL 7100 Clear link bit 1
CMA 7040 Complement AC 2
CML 7020 Complement link bit 2
RAR 7010 Rotate AC and L right one position 4
RAL 7004 Rotate AC and L left one position 4
RTR 7012 Rotate AC and L right two positions 4
RTL 7006 Rotate AC and L left two positions 4
T1AC 7001 Increment AC 3

1 Mnemonic code is meaningful to and translated by an assembler into bmary

code.

2 Octal numbers conveniently represent binary instructions.

8 Sequence numbers indicate the order in which the operations are performed
by the PDP-8/1 and PDP-8/L (sequence 1 operations are performed first,
sequence 2 operations are performed next, etc.).

2-20

Group 2 Microinstructions

Group 2 operate microinstructions are often referred to as the “skip
microinstructions” because they enable the programmer to perform
tests on the accumulator and link and to skip the next instruction de-
pending upon the results of the test. They are usually followed in a pro-
gram by a JMP (or possibly a JMS) instruction. A skip instruction
causes the computer to check for a specific condition, and, if it is pres-
ent, to skip the next instruction. If the condition were not present, the
next instruction w0u1d be executed.

! 2 3 4 5 6 7 8 9 10 il

SMA7ISZA ~1SNL~10/1
|
: 'jea SPAL~SNA|~SZL | ~SKP OSRHLT| ©

CONTAINS A OX

OPERATION VALUE OF BIT 8
CODE 7g ‘ DETERMINES THE
ACTION SPECIFIED TO SPECIFY
CONTAINS A | BY BITS 5,6,87 GROUP 2
TO SPECIFY
GROUP 2 REVERSE SENSING BIT

0. SMA, SZA,& SNL. ARE ENABLED.

|0 SPA,; SNA,& SZL ARE ENABLED.
(UNCONDITIONAL SKIP WHEN
BITS 5,6,8 7 ARE 0S)

The available instructions are selected by bit assignment as shown in
the above diagram. The operation of each 1nd1v1dual instruction speci-
fied by these bits is described below. '

CLA

SMA
SPA

SZA

SNA

Clear the accumulator. If bit 4 is a 1, the instruction sets
the accumulator to all zeros. |

Skip on minus accumulator. If bit 5isa 1l and bit 8isa v,
the next instruction is sklpped if the accumulator is less
than zero.,

Skip on positive accumulator. If bit 5 is a 1 and bit 8is a
1, the next instruction is skipped if the accumulator is
greater than or equal to'zero.

Skip on nonzero accumulator. If bit 6 is a 1 and bit 8 is a

1, the next instruction is skipped if the accumulator is not
zero.

‘Skip on nonzero accumulator. If bit 6is a 1 and bit 8 is a

1 also, the next instruction is skipped if the accumulator is

not zero.

2-21

SNL

SZL.

SKP

OSR

HLT

Skip on nonzero link. If bit 7 is a 1 and bit 8 is a 0, the
next instruction is skipped when the link bit is a 1.
Skip on zero link. If bit 7 is a 1 and bit 8 is a 1, the next
instruction is skipped when the link bit is a 0.
Unconditional skip. Tt bit 8 is a 1 and bit 5, 6 and 7 are
all zeros, the next instruction is skipped. (Bit 8 is a reverse
sensing bit when bits 5, 6 or 7 are used—see SMA, SPA,
SZA, SNA, SNL, and SZL. above.)

Inclusive OR of switch register with AC. If bit9is a 1, an
inclusive OR operation is performed between the content
of the accumulator and the console switch register. The re-
sult is left in the accumulator and the original content of
the accumulator is destroyed. In short, the inclusive OR
operation consists of the comparison of the corresponding
bit positions of the two numbers and the insertion of a 1 in
the result if a 1 appears in the corresponding bit position
in either number. See Chapter 1 for further discussion. The
action of the instruction is illustrated below.

LlNKD [JoloJoJo]To]1To]iTo]] accumuaror
{1]ofo]r]o] i Jofofoi]i]o]swrchresister
L|NKD Lrlofo]tJo o Jol i Ti]r]resurmac

Halt. If bit 10 is a 1, the computer will stop at the conelu-
sion of the current machine cycle. '

A summary of Group 2 instructions, including their octal representa-
tion, is given in the following table.

Mnemonic Octal Operation Sequence
CLA 7600 Clear the accumulator 2
SMA 7500 Skip on minus accumulator
SPA 7510 Skip on positive accumulator 1
. (or AC =0)
SZA 7440 Skip on zero accumulator 1
SNA 7450 Skip on nonzero accumulator 1
SNL 7420 Skip on nonzero link 1
SZL 7430 Skip on zero link 1
SKP 7410 Skip unconditionally 1
OSR 7404 Inclusive OR, switch register 3
. with AC
7402 Halts the program 3

HLT

2-22

MICROPROGRAMMING

Because PDP-8 instructions of Group 1 and Group 2 are determined
by bit assignment, these instructions may be combined, or micropro-
grammed, to form new instructions enabling the computer to do more
operations in less time,

Combining Microinstructions

The programmer should make certain that the program clears the
accumulator and link before any arithmetic operations are performed.
To perform this task, the program might include the following instruc-
tions (given in both octal and mnemonic form).

CLA 7200 (octal)
- CLL 7100 (octal)

However, when the Group 1 instruction format is analyzed, the follow-
ing is observed.

I | | O |CLA|CLL

OPERATION \ \'MUST BE A | TO SPECIFY CLL
CODE
MUST BE A | TO SPECIFY CLA

MUST BE A G TO SPECIFY GROUP |

Since the CLA and the CLL instructions occupy separate bit posi-
tions, they may be expressed in the same instruction, thus combining
the two operations into one instruction. This instruction would be writ-
ten as follows,

CLA CLL 7300 (octal)

In this manner, many operate microinstructions can be combined mak-
ing the execution of the program much more efficient. The assembler
for the PDP-8 will combine the instructions properly when they are
written as above, that is, on the same coding line, and separated by a
space.

Illegal Combinations
" Microprogramming, although very efficient, can also be troublesome
for the new programmer. There are many violations of coding which
the assembler will not accept.

2-23

One rule to remember is: “If you can’t code it, the computer can’t do
it.” In other words, the programmer could write a string of mnemonic
microinstructions, but unless these microinstructions can be coded cor-
rectly in octal representation, they cannot be performed. To illustrate
this fact, suppose the programmer would like to complement the accu-
mulator (CMA), complement the link (CML), and then skip on a
nonzero link (SNL). He could write the following.

CMA CML SNL
These instructions require the following bit assignments.

0 1 2 3 4 5 66 7 8 9 10U

evaltfifiefeol | DT T T T T
CMLlllllllol I I]']] ITj
SR EREDEEED

The three microinstructions cannot be combined in one instruction be-
cause bit 3 is required to be a 0 and a 1 simultaneously. Therefore, no
instructions may be used which combine Group 1 and Group 2 micro-
instructions because bit 3 usage is not compatible, The CMA and CML
can, however, be combined because their bit assignments are com-
patible. The combination would be as follows.

CMA CML : 7060 (octal)

To perform the original set of three operations, two instructions are
needed.

+MA CML 7060 (octal)
SNL 7420 (octal)

Because Group 1 and Group 2 microinstructions cannot be com-
bined, the commonly used microinstruction CLA is a member of both
groups. Clearing the AC is often required in a program and it is very
convenient to be able to microprogram the CLA with the members of
both groups. «

The problem of bit assignment also arises when some instructions
within a group are combined. For example, in Group 1 the rotate in-
structions specify the number of places to be rotated by the state of bit
10. If bit 10 is a 0, rotate one place; if bit 10 is a 1, rotate two places,
Thus, the instruction RAL can not be combined with RTL because bit
10 would be required to have two different values at once. If the pro-

2-24

grammer wishes to rotate right three places, he must use two separate
instructions.

RAR 7010 (octal)

RTR 7012 (octal)
Although he can write the instruction “RAR RTR”, it cannot be cor-
rectly converted to octal by the assembler because of the conflict in bit
10; therefore, it is illegal.

Combining Skip Microinstructions

Group 2 operate microinstructions use bit 8 to determine the instruc-
tion specified by bits 5, 6, and 7 as previously described. If bit 8 is a 0,
the instructions SMA, SZA, and SNL are specified. If bit 8§ is a 1, the
instructions SPA, SNA, and SZL are specified. Thus, SMA cannot be
combined with SZL because of the opposite values of bit 8. The skip
condition for combined microinstructions is established by the skip con-
ditions of the individual mcroinstructions in accordance with the rules
for logic operations (see “Logic Primer” in Chapter 1).

OR GROUP—SMA OR SZA OR SNL .

If bit 8 is a 0, the instruction skips on the logical OR of the condi-
tions specified by the separate microinstructions. The next instruction
is skipped if any of the stated conditions exist. For example, the com-
bined microinstruction SMA SNL will skip under the following condi-
tions:

1. The accumulator is negative, the link is zero.

2. The link is nonzero, the accumulator is not negative.

3. The accumulator is negative and the link is nonzero.
(It will not skip if all conditions fail,) This manner of combining the
test conditions is described as the logical OR of the conditions.
AND GROUP—SPA AND SNA AND SZL.

A value of bit 8 = 1 specifies the group of microinstructions SPA,
SNA, and SZL which combine to form instructions which act according
to the logical AND of the conditions. In other words, the next instruc-
tion is skipped only if all conditions are satisfied. For example, the in-
struction SPA SZL will cause a skip of the next instruction only if the
accumulator is positive and the link is zero. (It will not skip if either
of the conditions fail.)

NOTES: 1. The programmer is not able to specify the manner
of combination. The SMA, SZA, SNL conditions
are always combined by the logical OR, and the
SPA, SNA, SZL conditions are always joined by a
logical AND.

2. Since the SPA microinstruction will skip on either
a positive or a zero accumulator, to skip on a
strictly positive - (positive, nonzero) accumulator
the combined microinstruction SPA SNA is used.

2-25

Order of Execution of Combined Microinstructions

The combined microinstructions are performed by the computer in a
very definite sequence. When written separately, the order of execution
of the instructions is the order in which they are encountered in the pro-
gram. In writing a combined instruction of Group 1 or Group 2 micro-
instructions, the order written has no bearing upon the order of
execution. This should be clear, because the combined instruction is a
12-bit binary number with certain bits set to a value of 1. The order in
which the bits are set to 1 has no bearing on the final execution of the
whole binary word. ,

The definite sequence, however, varies between members of the
PDP-8 computer family. The sequence given here applies to the PDP-
8/1 and PDP-8/L. The applicable information for other members of
the PDP-8 family is given in Appendix E. The order of execution for
PDP-8/1 and PDP-8/L microinstructions is as follows.

GROUP 1 ,

Event 1 CLA, CLL—Clear the accumulator and/or clear the
link are the first actions performed. They are effectively
performed simultaneously and yet independently.

Event 2 CMA, CML—Complement the accumulator and/or com-
plement the link. These operations are also effectively
performed simultaneously, and independently.

Event 3 JAC—Increment the accumulator. This operation is per-
formed third allowing a number in the AC to be comple-
mented and then incremented by 1, thereby forming the
two’s complement, or negative, of the number.

Event 4 RAR,RAL,RTR, RTL—The rotate instructions are per-
formed last in sequence. Because of the bit assignment
previously discussed, only one of the four operations may
be performed in each combined instruction.

GROUP 2

Event 1 Either SMA or SZA or SNL when bit 8 is a 0. Both SPA
and SNA and SZL when bit 8 is a 1. Combined micro-
instructions specifying a skip are performed first. The
microinstructions are combined to form one specific test,
therefore, skip instructions are effectively performed
simultaneously.
Because of bit 8, only members of one skip group may be
combined in an instruction.

2-26

Event 2 CLA-—Clear the accumulator. This . instruction is per-
formed second in sequence thus allowing different arith-
metic operations to be performed after testing (see Event
1) without the necessity of clearing the accumulator with
a separate instruction before some subsequent arithmetic

. operation.

‘Event 3 OSR—Inclusive OR between the switch register and the
AC. This instruction is performed third in sequence,
allowing the AC to be cleared first, and then loaded from
the switch register.

Event 4 HLT—The HLT is performed last to allow any other
operations to be concluded before the program stops.

This is the order in which all combined instructions are performed.
In order to perform operations in a different order, the instructions
must be written separately as shown in the following example. One
might think that the following combined microinstruction would clear
the accumulator, perform an inclusive OR between the SR and the AC,
and then skip on a nonzero accumulator.

CLA OSR SNA
However, the instruction would not perform in that proper manner,
because the SNA would be executed first. In order to perform the skip
last, the instructions must be separated as follows.

CLA OSR
SNA
Microprogramming requires that. the programmer carefully code
mnemonics legally so that the instruction does in fact do what he desires
it to do. The sequence in which the operations are performed and the
legality of combinations is crucial to PDP-8 programming.
The following is a list of commonly used combined microinstructions,
~ some of which have been assigned a separate mnemonic.

Instruction Explanation
— CLA CLL Clear the accumulator and link.
CIA CMA IAC Complement and increment the accumulator.
. (Sets the accumulator equal to its own nega-
© tive)))

LAS CLA OSR Load accumulator from switches. '
(Loads the accumulator with the value of the
switch register.)
STL CLL CML Setthelink (toa1l).
—_— CLA 1IAC Sets the. accumulator to a 1.
STA CLA CMA Sets the accumulator to a —1.

2-27

are given below.

In summary, the basic rules for combining operate microinstructions

1. Group 1 and Group 2 microinstructions cannot be combined.

2. Rotate microinstructions (Group 1) cannot be combined with
each other.

3. OR Group (SMA, SZA, or SNL) microinstructions cannot be
combined with AND Group (SPA, SNA, or SZL) microin-
structions.

4. OR Group microinstructions are combined as the logical OR
of their respective skip conditions. AND Group microinstruc-
tions are combined as the logical AND of their respective skip
conditions. .

5. Order of execution for combined instructions (PDP-8/1 and
PDP-8/L only) is listed below.

Group 1 Group 2
1. CLA,CLL 1. SMA/SZA/SNL or
SPA/SNA/SZL

2. CMA,CML 2. CLA

3. IAC 3. OSR

4. RAR, RAL, RTR, RTL 4. HLT

EXERCISES

1.

The following is a list of current addresses and locations to be

addressed. Determine whether the second location should be di-
rectly or indirectly addressed from the first.

Current Address Location to be Addressed
a. 2456 2577
b. 1500 1600
c. 1230 0030
d. 0050 0120
e. 6555 6400
f. 6555 6600
g. 4343 4100
h. 2742 2450 -
i. 2507 5507

“j. 3200 3377

2-28

2. What type of instruction is each of the following (MRI, operate
Group 1 or operate Group 2 microinstruction)?

7430 - ' o

0024

7240

7000

4706

7700

3. Why are eachvof the following not legal instructions for the PDP-87
a. 6509 b. 15007 c. 1581 d. 635 e. 7778
4, What is the effect of each of the following octal instructions?

me e o

Octal) Mnemonic . Operation

0000
4010
2300
1777
3500
5400 -
1030
2577
5273
3150

5. Separate the following octal instructions into microinstruction
mnemonics. . '

7260

7112

7440

7632

7550

7007

7770

6. Write the octal representation for each location in the following
program. What are the contents of the accumulator and locations
205, 206, and 207 after execution of the program?

SR Mo Ae o

WO Qe oe

Location. Mnemonic Octal
0200 CLA
0201 TAD 0205
0202 TAD 0206
0203 DCA 0207
0204 HLT
0205 1537
0206 2241

0207 ' 0000 -

229

l

7. Write the octal form of the following microinstructions. Identify

TrFR e e op

any illegal combinations.

CLA CLL CMA CML
CLL RTL HLT

SPA CLA

CLA IAC RTL

CLA TIAC RAL RTL
SMA SZA CLA

SMA SZL

CLA OSR HLT

CLA OSR IAC

CLA SMA SZA

8. What instructions could be used to perform a skip only if the

9.

10.

11.

accumulator is zero and the link is nonzero?

Why is it not possible to write one combined microinstruction that

will load the accumulator from the console switch register, and

then test that number, skipping on a positive value?

Write the following programs,

a. Program starts in location 0200 and adds 2 and 8. Give both
mnemonic and octal representations,

b. Program beginning in location 400 which interchanges the con-
tents of locations 550 and 551. Give both mnemonic and octal
representations.

Write programs to add three numbers A, B, and C in the specified

locations below and put the result in the given address for the

SUM. All programs start in location 200. Give octal and mnemonic

coding.

A B C SUM

a. 0030 0031 0032 0033
b. 0300 0301 0302 0303
c. 3000 3001 3002 3003

2-30

Chapter 3

Elementary
Programming
Techniques

Mastery of the instruction set is the first step in learning to program
the PDP-8 family computers. The next step is to learn to use the in-
struction set to obtain correct results and to obtain them efficiently. This
is best done by studying the following programming techniques. Exam-
ples, which should further familiarize the reader with the instructions
and their uses, are given to illustrate each technique.

The modern digital computer is capable of storing information, per-
forming calculations, making decisions based on the results and arriving
at a final solution to a given problem. The computer cannot, however,
perform these tasks without direction, Each step which the computer is
to perform must first be worked out by the programmer.

The programmer must write a program, which is a list of instructions
for the computer to follow to arrive at a solution for a given problem.
This list of instructions is based on a computational method, sometimes
called an algorithm, to solve the problem. The list of instructions is
placed in the computer memory to activate the applicable circuitry so
that the computer can process the problem. This chapter describes the
procedure to be followed when wntmg a program to be used on the
PDP-8 family of computers.

3-1

PROGRAMMING PHASES

In order to successfully solve a problem with a computer, the pro-
grammer proceeds through the five programming phases listed below:

1. Definition of the problem to be solved,

2. Determination of the most feasible solution method,
3. Design and analysis of the solution—flowcharting,

4. Coding the solution in the programming language, and
5. Program checkout.

The definition of the problem is not always obvious, A great amount
of time and energy can be wasted if the problem is not adequately de-
fined. When the problem is to sum four numbers, the defining phase is
obvious. However, when the problem is to monitor and control a per-
formance test for semiconductors, a precise definition of the problem
is necessary. The question that must be answered in this phase is:
“What precisely is the program to accomplish?”

Determining the method to be followed is the second important
phase in solving a problem with a computer. There are perhaps an in-
finite number of methods to solve a problem, and the selection of one
method over another is often influenced by the computer system to be
used. Having decided upon a method based on the definition of the
problem and the capabilities of the computer system, the programmer
must develop the method into a workable solution.

The programmer must design and analyze the solution by identifying
the necessary steps to solve the problems and arranging them in a
logical order, thus implementing the method. Flowcharting is a graphical
means of representing the logical steps of the solution. The flowcharting
technique is effective in providing an overview of the logical flow of a
solution, thereby enabling further analysis and evaluation of alternative
approaches.

Having designed the problem solution, the programmer begins coding
the solution in the programming language. This phase is commonly
called programming but is actually coding and is only one part of the
programming process. When the program has been coded and the pro-
gram instructions have been stored in the computer memory, the prob-
lem can be solved. At this point, however, the programming process
is rarely complete. There are very few programs written which initially
function as expected. Whenever the program does not work properly,
the programmer is forced to begin the fifth step of programming, that
of checking out or “debugging” the program.

3-2

The program checkout phase requires the programmer to methodi-
cally retrace the flow of the instructions step-by-step to find any pro-
gram errors that may exist. The programmer cannot tell a computer;
“You know what I mean!”, as he might say in daily life. The computer
does not know what is meant until it is told, and once given a set of
instructions, the computer follows them precisely. If needed instructions
are left out or coding is done incorrectly, the results may be surprising.
These flaws, or “bugs” as they are often called, must be found and
corrected. There are many different approaches to finding bugs in a
program; however, the chosen approach must be organized and pains-
takingly methodical if it is to be successful. Several techniques for de-
bugging programs for the PDP-8 family of computers are described
in Chapter 6. : ’

FLOWCHARTING

A simple problem to add three numbers together is solved in a few,
easily determined steps. A programmer could sit at his desk and write
out three or four instructions for the computer to solve the problem.
However, he probably could have added the same three numbers with
paper and pencil in much less time than it took him to write the pro-
gram. Thus, the problems which the programmer is usually asked to
solve are much more complex than the addition of three numbers, be-
cause the value of the computer is in the solution of problems which are
inconvenient or time consuming by human standards.

When a more complex problem is to be solved by a computer, the
program involves many steps, and writing it often becomes long and
confusing, A method for solving a problem which is written in words
and mathematical equations is extremely hard to follow, and coding .
computer instructions from such a document would be equally difficult.
A technique called flowcharting is used to simplify the writing of pro-
grams. A flowchart is a graphical representation of a given problem,
indicating the logical sequence of operations that the computer is to
perform. Having a diagram of the logical flow of a program is a tre-
mendous advantage to the programmer when he is determining the
method to be used for solving a problem, as well as when he writes
the coded program instructions. In addition, the flowchart is often a
valuable aid when the programmer checks the written program for
eITOTS.

3-3

The flowchart is basically a collection of boxes and lines. The boxes
indicate what is to be done and the lines indicate the sequence of the
boxes. The boxes are of various shapes which represent the action to
be performed in the program. Appendix C is a guide to the flowchart
symbols and procedures which are used in this text.

The following are examples of flowcharts for specific problems, illus-
trating methods of attacking problems with a computer program as well
as illustrating flowcharting techniques. Example 1 adds three numbers
together. Example 2 puts three. numbers in increasing order.

Example 1 — Straight-Line Programming

Example 1 is an illustration of straight-line programming. As the
flowchart shows, there is a straight-line progression through the process-
ing steps with no change in course. The value of X, which is equal to
A-+4-B--C s in the accumulator when the program stops.

(START)

A
CLEAR
ACCUMULATOR

\

GET A INTO
ACCUMULATOR

y
[ADD B]

[apc |

A
‘ STOP

Example 1 — Add Three Numbers

Example 2 — Program Branching

Example 2 is designed to arrange three numbers in increasing order.
The program must branch to interchange numbers that are out of
order. (Branching, a common feature of programming, is described in
detail later in this chapter.) Note that the arithmetic operations of sub-
traction are done in the accumulator, which must be cleared initially.

3.4

(START)

CLEAR THE
ACCUMULATOR

3

GET FIRST
NUMBER INTQ
ACCUMULATOR

SUBTRACT .
SECOND NUMBER

IS AC

POSITIVE
?

INTERCHANGE
1ST AND 2ND
NUMBERS

COMPARE
2ND AND 3RD

NUMBERS
AS ABOVE

IS AC
POSITIVE
?

NO

INTERCHANGE
2ND AND 3RD
NUMBERS

COMPARE
1ST AND 2ND
NUMBERS
AS ABOVE

YES

IS AC
POSITIVE
?

NO

Example 2 — Arrange Three Numbers in Increasing Order

3-5

\

INTERCHANGE
1ST AND 2ND
NUMBERS

CODING A PROGRAM

The introduction of an assembler in Chapter 2 enabled the pro-
* grammer to write a symbolic program using meaningful mnemonic codes
rather than the octal representation of the instructions. The programmer
could now write mnemonic programs such as the following example,
which multiplies 18,, by 36,, using successive addition.

200/ CLA CLL » (Initialize)
201/ TAD 210 ~ (Setup aTally

- 202/ " CIA equal to —18,, to
203/ - DCA212 count the additions of 36)
204/ TAD 211 (Add 36) . g
205/ - 1SZ 212 (Skip if Tally is 0)
206/ JMP 204 (Add another 36 if not done)
207/ HLT (Stop after 18 times)
210/ - 0022 (Bqual to 18,,)
211/ 0044 (Equal to 36,,)
212/ 0000 (Holds the taliy)

Writing the above program was greatly simplified because mnemonic
codes were used for the octal instructions. However, writing down the
absolute address of each instruction is clearly an inconvenience. If the
programmer later adds or deletes instructions, thus altering the location
assignments of his program, he has to rewrite those instructions whose
operands refer to the altered assignments. If the programmer wishes to
move the program to a diffcrent section of memory, he must rewrite the
program. Since such changes must be made often, especially in large
programs, a better means of assigning locations is needed. The assem-
bler provides this better means,

Location Assfgnment

As in the previous program example, most programs are written in
successive memory locations, If the programmer assigned an absolute
location to the first instruction, the assembler could be told to assign
~ the next instructions to the following locations in order. In programming
the PDP-8, the initial location is denoted by a precedent asterisk (*).
The assembler maintains a current location counter by which it assigns
successive locations to instructions. The asterisk causes the current
location counter to be set to the value following the asterisk. With this
- improvement incorporated, the prevmus example appears as shown
in the following example.

36

*200

NOTE: In this example, CLA CLL is stored in location. 200 dnd the
successive instructions are stored in 201, 202 etc.

Symbolic Addresses

The programmer does not at the outset know Wthh locations he will
use to store constants or the tally. Therefore he must leave blanks after
each MRI and come back to fill these in after he has assigned locations
to these numbers. In the previous program, he must count the number
of locations after the assigned initial address in order to assign the
correct values to the MRI operands. Actually this is not necessary, be-
cause he may assign symbolic names (a symbol followed by a comma
is a symbolic address) to the locations to which he must refer, and the
assembler will assign address values for him. The assembler maintains
a symbol table in which it records the octal values of all symbolic
addresses.- With symbolic address name tags the program is as shown
below.

*200 :

START, CLA CLL
TAD A
CIA
" DCA TALLY

MULT, TAD B
ISZ TALLY
-JMP MULT
HLT

A, 0022

B, 0044

TALLY, 0000

$

NOTES: 1. The dollar sign is the te’rminaly character for the assembler.
2.. The comma after 'a symbol (e.g., START,) indicates to the
assembler that the symbol is a symbolic address. ’

3-7

Symbolic Programming Conventions ;

Any sequence of letters (A, B, C...,Z) and digits (0, 1,...,9)
beginning with a letter and terminated by a delimiting character (see
Table 3-1) is a symbol. For example, the mnemonic codes for the
PDP-8 instructions are symbols for which the assembler retains octal
equivalents in a permanent symbol table.

User-defined symbols (stored in the external symbol table) may be
of any length; however, only the first six characters are considered, and
any additional characters are ignored. (Symbols which are identical in
their first six characters are considered identical.)

Any sequence of digits followed by a delimiting character forms a
number. The assembler will accept numbers which are octal or decimal.
The radix is initially set to octal and remains octal unless otherwise
specified. The pseudo-instruction DECIMAL may be inserted in the
coding to instruct the assembler to interpret all numbers as decimal until
the next occurrence of the pseudo-instruction OCTAL in the coding.
These pseudo-instructions affect all numbers included in the symbolic
program including those preceeded by an * to denote change of origin.

- Each symbol or number written in a PDP-8 program must represent
a 12-bit binary value in ordér to be interpreted by the assembler.

The special characters in Table 3-1 are used to specify operations to
be performed by the assembler upon symbols or numbers in PDP-8
symbolic programs.

The comma after a symbol in a line of coding (e.g., MULT, TAD B)
indicates to the assembler that the value of MULT is the address of
the location in which the instruction is stored. When an instruction that
references MULT (now a symbolic address) is encountered, the assem-
bler supplies the correct address value for MULT. (Care must be taken
that a symbolic address is never used twice in the same program and
that all locations referenced by an MRI are identified somewhere in the
program.)

The space and tab are used to delimit a symbol or number. In a com-
bined microinstruction such as CLA CLL, the space delimits the first
mnemenic from the second, and the assembler combines the two mne-
monic into one instruction. The space and tab similarly delimit the mne-
monic from the symbolic address.

TAD_ A or TAD A
SPACE A CTRL/TAB

3-8

Table 3-1. Special Characters for the PDP-8 Symbolic Language

Character
Keyboard Name Use
SPACE space combine symbols or numbers
(nonprinting) (delimiting)
CTRL/TAB | tab (nonprinting) |combine symbols or numbers or for-
, {mat the symbolic tape (delimiting)
RETURN carriage return terminate line (delimiting)
(nonprinting)
o+ plus combine symbols or numbers
_ minus combine symbols or numbers
s comma assign symbolic address
= equals define parameters
* asterisk set current location counter
; semicolon terminate coding line (delimiting)
$ - dollar sign terminate pass (delimiting)
point has value equal to current location
counter
/ slash indicates start of a comment

The carriage return is used to terminate/a line of coding. The assem-
bler will also recognize a semicolon as a line terminating character.

:f.ﬁg g is the same as TAD A; TADB

One of these two characters -(i.e., semicolon or carriage return)
- must be used to separate each line of coding.

The assembler will recognize the arithmetic symbols -+ and — in
conjunction with numbers or symbols, thereby enabling “address arith-
metic”. For example, the instruction JMP START--1 will cause the
computer to execute the instruction in the next location after START,
The numbers specified in such instructions are subject to the pseudo-
instructions DECIMAL and OCTAL, therefore the number is inter--
preted as an octal number unless the pseudo-instruction DECIMAL is
in effect.

The decimal point, or period, is a character which is interpreted by
the assembler as the value of the current location counter. This special
symbol can be used as the operand of an instruction; for example, the
instruction JMP .—1 causes the computer to execute the preceding in-
struction.

The equal sign is used to define symbols. This character is used to
replace an undefined symbol with the value of a known quantity. For
example, the programmer could define a “new instruction” NEGATE

39

by writing that NEGATE = CIA. The programmer could then write
the following instructions to subtract B from A.

START, TAD B
NEGATE
TAD A
HLT

NEGATE = CIA

The above coding would be assembled as if the instruction CIA had
been included in the actual coding.

The slash is used to insert comments and headings as described later
in this chapter. ‘

The dollar sign as previously noted, is a terminal character for the
assembler itself. When this character is encountered, the assembler
stops accepting input and terminates the assembly pass, as described in
Chapter 6. ‘

“These characters and conventions will be used throughout the re-
mainder of this text to code programs in PAL III, the symbeolic lan-
guage of the PDP-8 family of computers. Thus, all examples given may
be directly punched on paper tape as described in Chapter 4 and
assembled by the procedure described in Chapter 6.

PROGRAMMING ARITHMETIC OPERATIONS

. 'The instructions for the PDP-8 may be used to perform the basic
azithmetic operations within the limits of the machine to represent the
mecessary numbers. That is, numbers may be added unless the sum ex-
ceeds 4095,, or 7777,. When a sum exceeds the size of the accumulator,
overflow occurs and incorrect -answers result. This condition can
usually be detected by checking the value of the link bit.

The following instructions will add numbers and check for overflow,
hatting the program if the link is 1.

ADD, CLA CLL :
TAD A
TAD B
SZL
HLT
DCA SUM

3-10

Since the link is initially cleared in the above example, a link value
equal to 1 is an indication that the sum of the contents of locations A
and B is too large to be represented by the 12-bit accumulator alone.
The computer will halt if the overflow is detected with the actual sum
in the combined 13 bits of the accumulator and link.

Arithmetic Overflow :

Since the PDP-8 regards the numbers O through 3777, as positive
numbers and the numbers 4000, through 7777, as negative numbers,
the addition of two positive numbers could result in cither a positive
or a negative number depending upon the size of the numbers added.
Arithmetic overflow is said to occur whenever two positive numbers
add to form a negative number, as shown in the following example.

2433, (a positive number)
+2211, (a positive number)

4644, (considered a negative number by the
PDP-8)
Likewise, two negative numbers could be added to yield a positive num-
ber as in the following example.

5275, (—2503,)
+5761, (—2017,)

Disregarded—>1" 3256 (considered a positive number by the
PDP-8)

- Because of situations like those illustrated in the two preceding ex-
amples, the programmer must consider the size of the numbers used
in programmed arithmetic operations. If the programmer suspects that
overflow may occur in the result of an arithmetic operation, he should
follow such an operation by a set of instructions to correct the error or
at least to indicate that such an overflow occurred.

The conditions outlined below may be used to test for arithmetic
overflow. ' '

Signs of Numbers Added Overflow and Link Value

Positive 4+ Negative No overflow possible; link value ignored.
Positive 4 Positive May result in negative sum; no change in
link value.
Negative -+ Negative May result in positive sum; link is always
: complemented regardless of the sign of the
result.

The program coding on the next page uses the following facts, as-
suming an initially cleared link, to quickly determine the sign of the
sum of two unknown quantities, A and B.

3-11.

Sign
of A

Positive
Negative
Positive
Negative

Sign

Result of Adding only Bit 0 of A to all of B

of B
Negative
Positive
Positive
Negative

Link Value Bit 0 of AC

000
O QO ped b

/CODING TO ADD TWO NUMBERS
/TESTING FOR ARITHMETIC OVERFLOW.

START,

OPPSGN,

BTHNEG,

BTHPOS,

SUM,
MASK,
A,
B,
" POSERR,

NEGERR,

CLA CLL
TAD A

AND MASK
TAD B

SZL

JMP BTHNEG
RAL

SZI. CLA
JMP OPPSGN
JMP BTHPOS
TAD A

TAD B

DCA SUM
HLT

CLA CLL
TAD A

TAD B

SMA

JMP NEGERR
DCA SUM
HLT

TAD A

TAD B

SPA

JMP POSERR
DCA SUM
HLT

0

4000

nnnn

nnnn

3-12

/MASK OUT ALL BUT BIT 0.
/ADD B TO BIT 0 OF A.
/LINK = 1 IMPLIES BOTH
/ARE NEGATIVE.

/ROTATE BIT 0 INTO LINK.
/BIT 0 =1 IMPLIES
/OPPOSITE SIGNS.

/BIT 0 = 0, BOTH POSITIVE.
/1IF A AND B ARE OF OPPOSITE
/SIGNS, THE ADDITION
/CANNOT RESULT IN
/OVERFLOW.

/IF TWO NEGATIVE NUMBERS
/ADD TO FORM A

/POSITIVE NUMBER,

/IMP TO ERROR ROUTINE.
/OTHERWISE, STORE SUM.

/IF TWO POSITIVE
/NUMBERS ADD TO FORM
/A NEGATIVE NUMBER, IMP
/TO ERROR ROUTINE.

- /OTHERWISE, STORE SUM.

/ANY NUMBERS A AND B

/ROUTINE TO SIGNAL
/ARITHMETIC OVERFLOW
/OF POSITIVE NUMBERS.
/ROUTINE TO SIGNAL
/ARITHMETIC OVERFLOW
/OF NEGATIVE NUMBERS.

Subtraction

Subtraction in the PDP-8 family of computers is accomplished by
negating the subtrahend (replacing it by its two’s complement) and
then adding it to the minuend, ignoring the overflow if any. The follow-
ing example shows the contents of the accumulator for each step of the
subtraction process.

Subtraction Program Resulting Contents
Link Accumulator
CLA CLL 0 000 000 000 000 {0000)
TAD B 0 000 000 011 111 (0037)
CMA 0 111 111 100 000 (7740)
IAC 0 111 111 100 001 (7741)
TAD A 1 000 000 000 111 (0007)

A, 0046 (000 000 100 110)
B, 0037 (000 000 011 111)

Note that the number to be subtracted (subtrahend) is brought into
the accumulator, complemented (1’s complement) and incremented by
1 (to form the 2’s complement). (The 2’s complement could be ob-
tained directly through the one microinstruction CIA.) The number
from which A is to be subtracted (minuend) is then added to the ac-
cumulator and the difference is obtained.

If A were already in the accumulator from a previous calculation, an
alternate procedure could be followed. The number A could be negated
first, then B added to it to get B—A. Negating this result yields the same
answer because — (B--A) is equal to A-B.

Multiplication and Division

A previous example illustrated the method of performing multiplica-
tion with the basic PDP-8 instructions, namely by repeated addition.
Obviously, multiplication by this method is also subject to the limita-
tion of overflow. The largest positive number which can be directly
represented is 2047, or 3777,.

Multiplication by repeated addition will properly handle positive and
negative numbers within the limits of positive or negative arithmetic
overflow. For example 7777, is the PDP-8 representation for —1. If it
is multiplied by itself the answer should be 1. In other words, adding
1777 to itself 7777, times should leave (after carries from the most
significant bit) the accumulator equal to 1. _

3-13

7777 1st

+7777 2nd
1 7776
+7777 3rd
Disregarded 31 7775
Carries .
1 0003
+7777 7776th
1 0002 ’
+7777 7777th
1 0001

Thus, successive addition will work pfoperly as a method of multiply-
ing negative as well as positive numbers in the PDP-8 family of com-
puters.

Similarly, division could be performed by repeated subtraction. This
method of division could be used to obtain a quotient and remainder,
because only whole numbers are directly represented in the PDP-8.
There are, however, much more efficient means of multiplying and di-
viding numbers in the PDP-8. One means is through the extended arith-
metic element (EAE) option, which is described in Chapter 4. Multi-
plication and division can also be performed through use of the floating
point packages, mathematical routines, and interpretive languages of
the system software for the PDP-8. These “software” approaches to
multiplication and division are described in Chapter 6 of this book.

Double Precision Arithmetic

Two memory location (24 bits) are used to express double precision
numbers. Using these 24 bits allows the representation of numbers in
the range —810% to 8X 108, The following program adds two double
precision pumbers, obtaining a double precision result.

Note that if the addition of AL and BL produces a carry, it will
appear in the link. The accumulator is cleared by the DCA CL instruc-
tion, and the RAL instruction moves the value of the link into the least
significant bit position. The values of AH and BH are then added to
the carry (if any) and the higher part of the answer is deposited in CH.

3-14

P

“This technique may be extended to. any order of multiple precision.

*200
DUBADD,

AH,
AL,
BH,
BL,
CH,
CL,
$

CLA CLL
TAD AL
TAD BL

- DCA CL

RAL
TAD AH
TAD BH
DCA CH
HLT
1345
2167
0312
0110

0

0

A similar procedure is followed to subtract two double precision
numbers. The following program illustrates the technique.

*200
DUBSUB,

AH,
AL,
BH,
BL, -
CH,
CL,
KEEP,
$

'CLA CLL

TAD BL
CIA

TAD AL
DCA CL
RAL

DCA KEEP
TAD BH
CMA
TAD AH
TAD KEEP
DCA CH
CLL

HLT

1345

2167

0312

0110

0

0

0

The location KEEP is used to save the contéi;ts of the link while the
value of BH was complemented in the accumulator. To form a double
_ precision two’s complement number, a double precision one’s comple-

3-15

ment is formed and the 1 is added to it once. Thus, the value of BL is
complemented using the CIA instruction, while the value of BH is
complemented with the CMA instruction. The CLL instruction is used
to clear the link and disregard the carry resulting from using two’s com-
plement numbers to perform subtraction,

Powers of Two

In the decimal number system, moving the decimal point right (or
left) multiplies (or divides) a number by powers of ten. In a similar way,
rotating a binary number multiplies (or divides) by powers of two. How-
ever, because of the logical connection between the accumulator and
the link bit, care must be taken that unwanted digits do not reappear in
the accumulator after the passage through the link. Multiplication by
powers of two is performed by rotating the accumulator left; division is
performed by rotating the accumulator right. Multiplication and division
by this method are subject to the limitation of 12-bit numbers (unless
double precision is used). That is, significant bits rotated out of the
accumulator by multiplication or division are lost and incorrect results
are therefore obtained. For example, the followmg program multiplies a
number by 8 (23).

*200

MULTS, CLA CLL
TAD NUMBER
CLL RAL
CLL RAL
CLL RAL
DCA NUMBER
HLT

NUMBER, 0231

$

The program will replace the number 0231; by 2310.. Notice that
multiplying any number with four significant octal digits (such as
1234;) using this program will yield incorrect results.

WRITING SUBROUTINES

Included in the memory reference instructions, given in Chapter 2,
was the instruction JMS (jump to subroutine). This instruction is a
modified JMP command which makes return to the point of departure
from the main program possible. The JMS instruction automatically
“stores the location of the next instruction after the JMS in the location
to which the program is instructed to jump, thereby enabling a return.

3-16

The programmer need only terminate the subroutine with an indirect
JMP to the first location of the subroutine in order to retumn to the
next instruction following the JMS instruction. The following simple
program illustrates the use of a subroutine to double a number con-
tained in the accumulator,

(Main Program)
START, CLA CLL
TAD N (Get the number in the AC)
- IMS DOUBLE (Jump to subroutine to double N)
DCA TWON (First instruction after the subrou-
’ tine)
N, pnnn (Any number, N)
TWON, nnnn (2N will be stored here)
(Subroutine)
DOUBLE, 0000
DCA STORE (Save value of N)
TAD STORE (Get N back in the AC)
CLL RAL (Rotate left, multiplying by 2)
SNL (Did overflow occur?)
JMP I DOUBLE
CLA CLL (If overflow occurs, display the
TAD STORE number to be doubled in the AC
HLT and then stop the computer.)
STORE, 0000
$

Notice that the first instruction of the subroutine is located in the second
location of the subroutine, Any instruction stored in location DOUBLE
would be lost when the return address is stored. Also note that the sub-
routine as it is written must be located on page O or current page, be-
cause it is directly addressed. (A subroutine is often located on another
page and addressed indirectly as the next example demonstrates.)

The following program multiplies a number in the accumulator by a
number stored in the location immediately following the JMS instruc-
tion,

3-17

(Main Pfogram)

*200

START, CLA CLL
TAD A
DCA +3
TAD B
IMS I 30
0000
DCA PRDUCT

PRDUCT, 0000

A, 0051

B, 0027

*30
MULT

(Subroutine)

*6000

MULT, 0000
CIA
DCA MTALLY
TAD I MULT
ISZMTALLY
JMP .—2
ISZ MULT
IMP 1 MULT

MTALLY, 0000

The preceding example illustrates the following important points,

1. The JMS I 30 instruction could be used anywhere in core
memory to jump to this subroutine because the pointer word
(stored in location 30) is located on page O and all pages of
memory can reference page 0.

2. The period was used to denote the current location in the in-
structions DCA .-}-3 and JMP .—2.

3. Since the result of the subroutine is left in the AC when jump-
ing back to the main program, the next instruction should store
the result for future use.

4. The first instruction of the subroutine is in location MULT -1
since the next address in the main program is stored in MULT
by the JMS instruction.

3-18

5. The first two instructions of the subroutine set the tally with'
the negative of the number in the AC.

6. The second number to be multiplied is brought into the sub-
routine by the TAD 1 MULT instruction since it is stored in
the location specified by the address that the JMS instruction
automatically stores in the first location of the subroutine. This
is a common technique for transferring information into a sub-
routine.

7. The ISZ MTALLY instruction is used in the subroutine to
count the number of additions. The ISZ MULT instruction is
used to increment the contents of MULT by one, thereby mak-
ing the return jump (JMP I MULT) proceed to the next in-
struction after the location which held the number to be multi-
plied.

8. An interesting modification of the previous program is achieved
by defining a “new operation” MLTPLY by including in the
coding the statement MLTPLY==JMS 1 30. The assembler
would make a replacement such that any time the programmer
writes MLTPLY, the computer would perform a jump to the
subroutine and return to the program with the product in the
AC.

ADDRESS MODIFICATION

A very powerful tool often used by the programmer is address modi-
fication, meaning the inclusion of instructions in a program to modify
the operand portion of a memory reference instruction. It is a particu-
larly useful technique when working with large blocks of stored data
as illustrated by the two programs that follow.

The first program sums 100; numbers in locations 300; to 377,. The
program begins in location 200;. The block of 100; numbers is sum-
med using only one TAD instruction merely by repeatedly mcrement—
ing and performing the instruction.

. The second example program moves data between memory pages as
well as performing an operation upon the data. The program computes
the square of the 200, numbers in locations 4000 to 4177,. The pro-
gram starts in location 200,. All numbers to be squared must not ex-
ceed 45,, or the square is too large to be represented in the normal
format. '

3-19

*200
START,

ADD,

K100,
TALLY,
SUM,

CLEAR AC

400 FIRST NUMBER

ADD NEXT NUMBER

ADD 1 TO THE ADD
INSTRUCTION

Program

CLA CLL
TAD K100
CIA

DCA TALLY
TAD 300
ISZ ADD
ISZ TALLY
JMP ADD
DCA SUM
HLT

0100

0000

0000

3-20

The second example illustrates the method of using indirect address-
ing in an address modification situation. It should be noted that in the
first example the actual instruction was incremented to perform the
modification. In the second example, the modification was done by
incrementing the contents of a location which was used for indirect
addressing. The second example could be simplified further through
use of autoindexing, a feature that will.be discussed later.

*200

START, CLA CLL
TAD K200
CIA
DCA TALLY
TAD K4000
DCA NUM
TAD K4200
DCA RESULT

AGAIN, TAD I NUM
JMS SQUARE
DCA 1 RESULT
ISZ RESULT
ISZ NUM
ISZ TALLY
IMP AGAIN
HLT

K200, 0200

TALLY, 0000

K4000, 4000

NUM, 0000

K4200, . 4200

RESULT, 0000

*300 :

SQUARE, 0000
DCA STORE
TAD STORE-
CIA .
DCA COUNT
TAD STORE
ISZ COUNT
IMP .—2
JMP I SQUARE

STORE, 0000

COUNT, 0000

3-21

The reader should note that the first eight instructions of the second
example are concerned with intializing the program. This intializing
enables the stored program to be restarted several times and still oper-
ate on the correct locations, If the program had merely incremented
locations K4000 and K4200 and utilized those locations for indirect
addressing the program would only operate on the correct locations of
the first running, On successive runnings the program would be opera-
ting on successively higher locations in memory. With the program
written as shown however the pointer words are automatically reset.
This procedure is often referred to as “housekeeping.”

INSERTING COMMENTS AND HEADINGS

Because programs very seldom are written, used, and then forgotten,
the programmer should strive to document his procedure and coding
as much as is reasonably possible. There are many instances where
changes or corrections must be made by people unfamiliar with a pro-
gram, or more commonly the original programmer is asked to modify
a program months after his original effort. In both cases, the success of
the attempt to change the program depends largely upon the documen-
tation provided by the original programmer. A complete and accurate
flowchart is the first form of documentation. It is extremely important
to document modifications made in the program by incorporating these
changes in the flowchart as well.

Many times it is desired to include headings and dates to identify a
program within the actual coding of the symbolic program. It is often
helpful to add comments to simplify the reading of a symbolic program
and to indicate the purpose of any less than obvious instruction. PDP-8
programming allows comments and headings to be inserted simply by
preceding any comments with a slash (/).

The following example illustrates the method used to insert com-
ments and headings in a PDP-8 program, It also illustrates the use of
a rotate instruction. The program takes a binary word stored in memory
and counts the number of non-zero bits. Although the program may
have no useful application, it does serve to familiarize the reader with
the structure of the accumulator and link bit and the action of a rotate
instruction. The flowchart and comments will aid the reader to under-
stand the program. '

3-22

(START)

[sET THE NUMBER |

»| rOTATE LEFT |

|
NO YES
YES NO (STOP)
¥
[cLear Link Il
y
¢——————————————] INCREASE COUNT |

/COUNT THE BINARY ONES PROGRAM
/20 SEPTEMBER 1968

*200
START,

ROTATE,

COUNT,
WORD, -

CLA CLL . -
DCA COUNT

TAD I
SNA
HLT
RAL
SNL

IMP -2

CLL

WORD

ISZ COUNT

SNA
HLT

JMP ROTATE

0
3000

/SET COUNT TO 0.
/GET THE WORD.

/STOP IF THE WORD IS 0.
/ROTATE ONE BIT INTO LINK.
/WAS THE BIT = 0?

/YES: ROTATE AGAIN.

/NO: CLEAR LINK.
/COUNT THE NUMBER OF 1'S,

/STOP IF THE WORD IS NOW 0.

/ANY 12-BIT NUMBER.

3-23

The following points should be observed in the preceding example.
1. The word was checked to see that it was non-zero to begin
with. If this check were not made, a zero word would be rotated

endlessly by the remaining instructions in the program.

2. Because a rotate right instruction (RAR) would transfer the

~ bits into the link just as the RAL instruction does, either could

be used in the above program. Both instructions use a circular
shift of the accumulator and link bits.

3. Because. the link bit is rotated into the accumulator by the
rotate instructions, the link must be cleared each time a 1 is
rotated into it.

LOOPING A PROGRAM

As many of the examples given have already shown, the use of a
program loop, in which a set of instructions is performed repeatedly,
is common programming practice. Looping a program is one of the
most powerful tools at the programmer’s disposal. It enables him to per-
form similar operations many times using the same instructions, thus
saving memory locations because he need not store the same instructions
many times. Looping also makes a program more flexible because it is
relatively easy to change the number of loops required for differring
conditions by resetting a counter. It is good to remember that looping
is little more than a jump to an earlier part of the program; however,
the jump is usually conditioned upon changing program conditions.

There are basically two methods of creating a program loop. The
first method is using an ISZ (2nnn,) instruction to count the number
of passes made through the loop. The ISZ is usually followed by a JMP -
instruction to the beginning of the loop, This technique is very efficient
when the required number of passes through the loop can be readily
determined. '

The second technique is to use the Group 2 Operate Microinstruc-
tions to test conditions other than the number of passes which have
been made. Using this second technique, the program is required to
loop until a specific condition is present in the accumulator or link bit,
rather than until a predetermined number of passes are made.

To illustrate the use of an ISZ instruction in a program loop situa-
tion, consider the following program which simply sets the contents of
all addresses from 2000 to 2777 to zero.

3-24

*200

CLEAR, CLA -
TAD CONST i
DCA COUNT /SET'COUNT TO ~-1000.
TAD TTABLE
DCA STABLE /SET STABLE TO 2000.
DCAISTABLE /CLEAR ONE LOCATION.
ISZ STABLE /SELECT NEXT LOCATION.
ISZ COUNT /IS OPERATION COMPLETE?
JMP .3 /NO: REPEAT.
HLT /YES: HALT.

CONST, 7000 /2'S COMP OF 1000.

COUNT, 0

TTABLE, TABLE

STABLE, 0 /POINTER TO TABLE.

*2000)

TABLE, 0

$

Several points should be carefully noted.

1. The first five instructions -initialize the loop, but are not in it.
The location COUNT is set to —1000 at the beginning, and 1
is added to it during each passage of the loop. After the 1000th
- (octal) passage, COUNT goes to zero, and the program skips
the JMP instruction, and executes the HLT instruction. On
each previous occasion, it executed the JMP instruction.

. In the list of constants following the HLT instruction, TTABLE
contains TABLE, which is in turn defined below as having the
value 2000, and containing 0. Therefore, STABLE contains
2000 initially. In order to understand this point it must be re-
membered that an asterisk character causes the first location
after the asterisk to be set to the value after the asterisk. There-
fore, in the previous example CLEAR equals 200 and TABL
equals 2000. :

. ISZ STABLE adds 1 to the contents of location STABLE,
forming 2001 on the first pass, 2002 on the second pass, and
so on. Since it never reaches zero, it will never skip. This is a
very common use. It is said to be indexing the addresses from
2000 to 2777. (When using an ISZ instruction in this way, the
programmer must be. certain that it does not reach 0. Follow
the ISZ instruction with a NOP if necessary.)

3-25

4. For every ISZ instruction used in a program, there must be
two initializing instructions before the loop, and there must be
a constant and a counting location in a table of constants. This
procedure allows the program to be rerun with the counting
locations reset to the correct values.

The following program utilizes a Group 2. skip instruction to create
a loop. The program will search all of core memory to find the first
occurrence of the octal number 1234.

*0
NUMBER, 1234
*200
BEGIN, CLACLL
: TAD NUMBER
CIA
DCA COMPARE /STORES MINUS NUMBER.
DCA ENTRY /SETS ENTRY TO 0.
REPEAT, ISZ ENTRY /INCREASES ENTRY.
CLA
TAD I ENTRY /COMPARISON IS
TAD COMPARE /DONE HERE.
SZA CLA
JMP REPEAT
TAD ENTRY
HLT /ENTRY IS IN AC.
COMPARE, 0
ENTRY, 0
$

The previous example is not very useful perhaps but it is interesting
to note that the program will search itself as well as all other core
memory locations,

Also notice the following points with regard to the example.

1. The ISZ ENTRY instruction is used to index the locations to
be tested. The next instruction (CLA) is unnecessary, thus if
ENTRY becomes zero during the course of the program, the
program will not be affected. It is very important to protect
against an ISZ instruction going to zero and skipping a neces-
sary part of a program, if the ISZ is being used to simply
index, .

3-26

=

2. The number to be searched for was stored in location 0, and
the search starts in location 1. Therefore, the program will find
at least one occurrence of the number and will halt after one
complete pass through memory if not before.

3. The program could be modified to bound the area of the search.
By setting the contents of ENTRY equal to one less than the
desired start location and putting the number being searched for
in the location following the last location to be searched, the
program will search only the designated area of memory.

4. The program could be restarted at location REPEAT in order
to find a second occurrence of 1234 after the program had
halted with the first occurrence.

AUTOINDEXING

The PDP-8 family computers have eight special registers in page 0,
namely locations 0010 through 0017. Whenever these locations are
addressed indirectly by a memory reference instruction, the content of
the register is incremented before it is used as the operand of the in-
struction. These locations can therefore be used in place of an ISZ in-
struction in an indexing application. Because of this unique action these
eight locations are called autoindex registers. It is important to realize
that autoindex registers act as any other location when addressed
directly. The autoindexing feature is performed only when the location
is addressed indirectly.

The following example is a modification of the first program example
in the preceding section with an autoindex register used in place of the
ISZ instruction, (The purpose of the program is to clear memory loca-
tions 2000 through 2777.)

-

~ Carefully notice the difference between the two examples, especially
that TABLE now has to be set to TABLE-1 since this is incremented
by the autoindexing register before being used for the first time. This

3-27

point must be remembered when using an autoindex register. The
register increments before the operation takes place, therefore it must
always be set to one less than the first value of the addresses to be

indexed.

*10
INDEX,
*200
CLEAR,

CONST,
COUNT,
TTABLE,
*2000
TABLE,

0

CLA

TAD CONST
DCA COUNT
TAD TTABLE
DCA INDEX
DCA 1 INDEX
ISZ. COUNT
JMP .—2

HLT

7000

0

TABLE-1

0

The memory search example of the preceding section could also be
simplified using an autoindex register as shown below.

*0
NUMBER,
*10
ENTRY,
*200
BEGIN,

REPEAT,

COMPARE,
$

1234

0 Notice that in this case ENTRY
originally equals 0 because its

CLA CLL content is incremented before

TAD NUMBER being used to obtain data for

CIA the comparison,

DCA COMPARE

DCA ENTRY

TAD I ENTRY

TAD COMPARE

SZA

JMP REPEAT

TAD ENTRY

HLT

0

3-28

PROGRAM DELAYS

Because the development of a computer was primarily sparked by a
desire for speed in performing calculations, it seems inconsistent and
self-defeating to slow the computer down with program delays. How-
ever, there are many occasions when a computer must be told to slow
down or to wait for further information. This is because most peripheral
equipment, and certainly.the human operator, is very much slower than
the computer program. A temporary delay may be introduced into the
execution of a program when needed by causing the computer to enter
one or more futile loops which it must traverse a fixed number of times
.before jumping out. It is often necessary to have a computer perform a
temporary delay while a peripheral device is processing data to be sub-
mitted to the computer. The delays can be accurately timed so as not
to waste any more computer time than necessary.

The following is a simple delay routine using the ISZ instruction for
an inner loop and an outer loop. The reader should remember when
analyzing the example that the PDP-8 represents only positive numbers
up to 37775 or 2047,,. Therefore, the computer counts up to 2047,
and then continues to count starting at the next octal number 4000;,
which the computer interprets as —2048;, Successive increments of
“this number will finally bring the count to zero. Thus, a location could
be used to count from 1 up to O by using an ISZ instruction.

(main program)

TAD C.ONST /START OF DELAY ROUTINE

DCA COUNT
ISZ COUNT1 - /INNER
IMP —1 /LOOP
ISZ COUNT
JMP .—3
CONST, 6030 /SETS DELAY
COUNT, 0 ’
"COUNT1, O

The inner loop consists of an ISZ instruction with an execution time
on the PDP-8/1 of 3.0 microseconds (a microsecond is 1076 seconds)
and a JMP instruction with an execution time of 1.5 microseconds.
Therefore, the inner loop takes 4.5 microseconds for one pass, and each
time it is entered the program will traverse it 4096, times before leav-
ing. This means that a delay of 18.432 milliseconds (a millisecond is

3-29

107 seconds) has occurred. If, as in the example above, the value of
CONST is 6030,, this loop will be entered 1000,, times giving a total
delay of 18.432 seconds. For any given purpose, a desired delay of
from milliseconds to seconds can be obtained precisely by varying the
values of CONST and the initial value of COUNT1. Similar reasoning
can be used to design delays for other members of the PDP-8 family,

A second type of delay, which waits for a device response, is dis-
cussed in Chapter 5. This type is not a timed delay but causes the com-
puter to wait until it receives a response from an external device.

PROGRAM BRANCHING

Very few meaningful programs are written which do not take ad-
vantage of the computer’s ability to determine the future course the
program should follow based upon intermediate results. The procedure
of testing a condition and providing alternative paths for the program
to travel for each of the different results possible is called branching a
program. The Group 2 microinstructions presented in Chapter 2 are
most often used for this purpose. The ISZ instruction also provides a
branch in a program. These instructions are often referred to as con-
ditional skip instructions. The ISZ instruction operates upon the con-
tents of a memory location, while the Group 2 microinstructions test
the contents of the AC and L.

A typical example of a conditional skip would be a program to com-
pare A and B and to reverse their order if B is larger than A.

FORM A-B

SAVE A
IN OUMMY

STORE B IN
A'S LOCATION

STORE DUMMY IN
B'S LOCATION

3-30

*200

TEST, =~ CLACLL 3

TADB /SUBTRACT B

CIA /FROM A

TAD A /HERE.

SMA CLA .

HLT /STOP HERE IF A IS GREATER

OR EQUAL

TAD A /THE REMAINDER OF

DCA DUMMY /THE PROGRAM

TAD B /DOES THE SWITCH.

DCA A ’

TAD DUMMY

DCA B

HLT : . o
A, 1234 /SUBSTITUTE ANY POSITIVE
B, 2460 /VALUES FOR A AND B.
DUMMY, 0
$

If A is less than B, their difference will be negative and the HALT will
be skipped. The program will proceed to reverse the order of A and B.
If A is greater than or equal to B, the program will halt,

~ The concept illustrated by the above example can be included in a
larger program that will take a set of elements and arrange them in
increasing order. The following important concepts should be learned

~ from the example.

1.

The program contains two loops to perform the. sort. The inner
loop starts at TEST and is traversed 20, times to switch ad-
jacent elements of the set. The outer loop begins at START
and is re-entered until the elements are in the correct order.

. A “software flag” was created to signal the program that a

switch has been performed on the last pass. The flag is checked
upon every exit from the inner loop. If the flag is non-zero
(equal to —1), a reverse was performed on the last pass and
the next pass is started. If the flag is zero, the set is now in
order and the program halts. '

. The flag is set to zero on each pass through the outer loop by

depositing: AC=0 in it. It can only be set to-a non-zero value
by a pass through the REVERSE subroutine.

The TALLY had to be set to —(AMOUNT) +1 or in this
case to —20; because if the set contains n elements there are

“n—1 comparisons-between an element and the immediately

succeeding element, thus, in this case, TALLY—=—20.

13-31

5. The following sort of five elements illustrates the technique

used in the program.

INITIAL

®
®
O]
®
®

PASS |

® 06

Iac

PASS 2

ONO,

®

®
@

ONONONO,

In performing the above sort, the program maxes three passes.
On the third pass through the table of data, the flag is not
raised; therefore, the program stops.

‘ START }

FORM

X-X2
NO 15 - YES
SyircH RESULT O,
12 OR NEG,
?
y
SET FLAG INCREMENT
Xi. X2
YES DONE ~_ NO

{ STOP)

ALL X'S

RESET
Xy, X2
CLEAR FLAG

3-32

*200
START, CLA
’ TAD
ClA
IAC
DCA
DCA
TAD
DCA
TAD
1aC
bDca
TEST. TAD
cia
TAD
SPA
SKP
JMS
152
182
152
JMP
TAD
SZA
JMP
HLT
AMOUNT, 21
TaLLY, @0BG
BEGIN, - 2000
X1 0909
X2, a06a3
FLAG, anan
HOLD» ANAG
REVERSE,Q000
- TaD
DCA
TaD
© beaAa
TAD
DCa
CLA
DCA
JMP

CcLL
AMOUNT

TALLY
FLAG
BEGIN
X1
BEGIN

X2

1 X2

I X1
SNA CLA

REVERSE

I X1

HOLD

1 X2

I X1

HOLD

I X2
CLL - CMA
FLAG

I REVERSE

/THESE INSTRUCTIONS SET
sUP A TALLY EQUAL TO
/AMOUNT -1 TOQ COUNT THE

/PASSES THRU TEST LOOP.

/CLEARS FLAG BEFORE EACH PASS
/THESE INSTRUCTIONS

/SET THE POINTERS

/X1 AND X2 TO THE

/PROPER VALUES

ZINITIALLY -

/SUBTRACTION FOR THE

/TEST 1S

/DONE HERE.

/DO SWITCH IF AC IS POSITIVE.
/SET UP THE X'S FOR

/THE NEXT PASS.

/HAVE ALL X'S BEEN TESTED?
/NO: KEEP TESTING. -

/YES: WERE ANY SWITCHES

/DONE ON THE LAST PASS?

/YES: GO THRU PROGRAM AGAIN.
/N0t STOP, TABLE IS IN ORDER.

/SUBROUTINE TO SWITCH X'S

.

/SETS AC EQUAL TO -1.
/SET FLAG=-1 ON A SWITCH.

6. This program can perform a sorting for any specified block of
data merely by specifying the octal number of entries to be
sorted in the location AMOUNT and by specifying the begin-
ning address of the block in BEGIN. The data to be sorted
must be placed in consecutive memory locations.

3-33

Exercises,

1. Write a subroutine SUB to subtract the number in the AC from
the number in the location after the JMS instruction that calls the
subroutine. Return to the main program with the difference in the
AC. Use a flowchart and comments to document the procedure.

2. Write two programs to put 0 into memory location 2000, 1 into
2001, 2 into 2002, etc., up to 777, into 2777 using (a) an ISZ
instruction for indexing and (b) autoindexing. Use flowcharts
and comments to document the procedure.

3. The following program was previously given to multiply two num-

bers together.
*200
START, CLA CLL
TAD A
CIA
DCA TALLY
MULT, TAD B
ISZ TALLY
JMP MULT
HLT
A, 1 substi bers for A and B
B, jsu stitute any numbers for A an
TALLY, 0000
$.

a. What is the largest product that the PDP-8 can compute using
this program? :

Using the following value for A and B, verify that the program will-
obtain the correct answers. Remember that any carry from the most
significant bit is lost from the accumulator.

A B AXB
b. 7756(—18,) 0027(23,)
c. 0000 0005
d. 7700(~—64,,) 0000

4, Write a program TRIADD which will add two triple precision
numbers A-+-B=C. There are three parts to each number, namely
AH (A high) AM (A medium), and AL (A low); BH, BM, and
BL; CH, CM, and CL. Use a flowchart and comments to docu-
ment the procedure.

3-34

10.

. Write a program to perform a multiplication between two single-

precision numbers to yield a double-precision product. Use com-
ments and a flowchart to document the procedure.

. Write a program to multiply any number n by a power of 2 (the

exponent is stored in location EXP), the product being expressed
in double precision. Use comments and a flowchart to document
the procedure,

. Write a program to find how many of the numbers stored in a

table from address 3000 to address 3777 are negative. Use a flow-
chart and comments to document the procedure,

. Write a program that will run for exactly 20 seconds on the PDP-8

or PDP-8/1 before it halts. Use a flowchart and comments to
document the procedure.

. Modify the program written for exercise 8 such that if bit 11 of

the console switch register is a 1, the program runs for 20 seconds,
and if it is a 0, the program runs for 40 seconds.
Hint: The OSR instruction must be used to check the switch

register.

The program on the next page rotates a bit left or right depend-
ing on the value of bit 0 and faster or slower depending on the
value of the remaining bits. Analyze the program and comment
each instruction to indicate its use in the program.

3-35

*200
ROTATE,

BEGIN,

GO,

INSTR,

SAVEAC,
SAVEL,
MASK,
COUNTR,
COUNT,
LEFT,

RIGHT,

KRAR,
KRAL,

CLA CLL CML

HLT

DCA SAVEAC
RAL

DCA SAVEL
TAD MASK
OSR

DCA COUNT
OSR

RAL -
SZL CLA

JMS LEFT -~
JMS RIGHT
CLL

TAD SAVEL
RAR

TAD SAVEAC
RAR

ISZ COUNTR
IMP .1

ISZ. COUNT
IMP -3

JMP BEGIN

0

0

7000

0

0

0

ISZ LEFT
TAD KRAL
DCA INSTR
JMP I LEFT
0

TAD KRAR
DCA INSTR
JMP I RIGHT
7010

7004

3-36

- Chapter 4

System Description
and Operation

The PDP-8 system is composed of the computer console, a Teletype
console (usually an Automatic Send Receive Model 33) and possibly
other peripheral equipment. While normal operation of a computer sys-
tem is by programmed control, manual operation is necessary for many
tasks. This chapter describes the manual control and operation of the
PDP-8/1 and PDP-8/L specifically asrepresentative of the PDP-8 com-
puter family. This chapter also provides an introduction to the more
common peripheral devices which may be included in a PDP-8 system. .
Chapter 5 describes the programmed control of peripheral devices and
the means for transferring information between peripheral equipment
and the central processor.

CONSOLE OPERATION _

The operator console allows manual control of the computer and
provides the most clementary means of storing a program in memory.
It is a collection of switches and indicator lamps which enable the pro-
grammer to examine the contents of locations in memory, alter the
contents of memory locations, and determine the current status of a
running program.

Console Components

The PDP-8/1 operator console is shown in Figure 4-1. The PDP-8/L
operator console is significantly different from the PDP-8/I console
and is shown in Figure 4-2. The following discussion applies to both .
console diagrams except where differences are noted. For reference
purposes, the switches and indicators are identified in the following
tables,

4-1

Switch
POWER

PANEL LOCK

START

LOAD ADD

DEP

EXAM

CONT

Explanation

This key-operated, switch controls the com-
puter’s primary power supply. This switch has
“on” and “off” positions. In the PDP-8/L,
however, the switch includes a third position
‘which performs the function of the PANEL
LOCK switch, below.

This key-operated switch disables all console
switches except the switch register. (This fea-
ture is provided in the PDP-8/L by the third
position of the POWER switch.)

The START switch initiates execution of the
computer program beginning in the location
currently held in the PROGRAM COUNTER
register. The START switch clears the ACCU-
MULATOR, LINK, MEMORY BUFFER
and instruction registers.

The LOAD ADD (load address). switch sets
the contents of the switch register (SR) into
the PROGRAM COUNTER (PC). (The PC
is an internal register which is not displayed
on the PDP-8/L console.) The computer
should be halted before operating this switch.
The DEP (deposit) switch sets the contents of
the switch register into the location currenily
specified in the PROGRAM COUNTER. De-
pressing this switch also results in the PRO-
GRAM COUNTER being incremented by 1,
and the address of the location previously
specified by the PC is displayed in the MEM-
ORY ADDRESS register. Successive opera-
tion of the switch stores contents of the switch
register in successive locations because the
PROGRAM COUNTER is incremented each
time the DEP switch is depressed.

The EXAM (examine) switch displays the
contents of the location specified by the
PROGRAM COUNTER in the MEMORY
BUFFER and ACCUMULATOR displays.
Depressing this switch also results in the PRO-
GRAM COUNTER being incremented by 1;
thus, repeated manipulation of the EXAM-
switch displays the contents of successive
memory locations.

The CONT (continue) switch initiates execu-
tion of the stored program at the location
specified by the PROGRAM COUNTER. The
CONT switch does not clear any active regis-
ters. (The START switch does.)

4-2

Figure 4-1. PDP-8/1 Computer Console

Figure 4-2. PDP-8/L Computer Console

Switch
STOP

SING STEP

SING INST

SWITCH REGISTER
(SR)

MEM PROT

DATA FIELD (DF)
and
INST FIELD (IF)

Explanation

The STOP switch halts program execution at
the end of the instruction in progress.

When the SING STEP (single step) switch is
set, the computer executes instructions one

memory cycle at a time for each depression o
the CONT switch. '

When the SING INST (single instruction)
switch is set, the computer will execute one
instruction at a time for each depression of the
CONT switch. This switch is not present on
the PDP-8/PDP-8/L console.

The SWITCH REGISTER is a set of twelve

toggle switches used to specify binary numbers

which are loaded into registers when other
console switches are operated. LOAD ADD
sets the contents of the SR into the PRO-

GRAM COUNTER. DEP sets the contents of

the SR into memory through the MEMORY

BUFFER register, The twelve positions repre-

sent a 12-bit binary word.

PDP-8/1 When the top of a switch is out, it
represents a binary 1 and is con-
sidered set; conversely, when the
bottom of the switch is out it rep-
resents a binary O and is not set.

PDP-8/L, When the switch is up, it repre-

PDP-8/S, sents a binary 1 and is considered

PDP-§ set; conversely, when the switch is
‘down it represents a binary 0 and
is not set.

This switch is provided on the PDP-8/L only.

When set (depressed), the MEM PROT

(memory protect) switch prevents the storing

or changing of information in the upper 200,

locations (7600 to 7777) of core memory (the

upper 200, locations of field 1 in an 8K com-
puter).

NOTE: IMS, DCA, ISZ instructions and
all input transfers are not per-
mitted, thus protecting programs
or data stored in this area.

These two console elements (switches and dis-
plays) are enabled and used when the basic
computer is equipped with extended memory.
Their function is described later in this chap-
ter.

L]

4-4

Indicator Display

PROGRAM
COUNTER
(PC)

MEMORY ADDRESS
(MA)

MEMORY BUFFER
(MB)

ACCUMULATOR
(AC)

'LINK (L)

MULTIPLIER
QUOTIENT

’ (MQ)
Instruction and
Status Indicators

‘Manual Program Loadmg

Explanation

“The -contents of this 12-bit display represent

the address of the next instruction to be exe-
cuted. This display is not present on the PDP-
8/L console.

-Contents represent the address of the word

being obtained from or stored in memory.
After depressing the DEP or EXAM switches,
the contents represent the address of the word
previously read or written.

The contents of this 12-bit display represent
the word currently being obtained from or
stored in memory.

This display indicates the current contents of
the ACCUMULATOR. After depressing the
DEP or EXAM switch, this display-indicates
the contents of the location whose address is
displayed in the MA.

This display -indicates the contents of the

LINK, a 1-bit register which serves as an ex-

tension of the ACCUMULATOR.
This display is activated by the EAE option

:described later in this chapter. The option is

not available on the PDP-8/L.

These indicators are located in the upper right
of the console. The display indicates the status.
of the program being executed and the opera-
tion code of the instruction being executed.

Havmg written a program, the programmer must store the instruc-
tions in memory before they can be executed. The octal value of the
instructions may be directly loaded into memory from the computer
‘console. Once the POWER switch has been turned on to energize the

45

computer, the programmer loads the instructions into memory ysing
the console switches. The location in which the instruction is to be
stored is identified by setting the SWITCH REGISTER to the desired
address, and then operating the LOAD ADD switch. The address will
be placed in the program counter register and displayed in the PRO-
GRAM COUNTER indicator.

To load an instruction or data into the -location specified by the
PROGRAM COUNTER, a similar procedure is followed. The
SWITCH REGISTER is set to the binary representation of the instruc-
tion (or data) and then the DEP switch is depressed. The instruction
(or data) is displayed in the MB and AC displays and the address of
the location is displayed in the MA display. Loading a program into
sequential memory locations is simplified by the fact that the DEP
switch will automatically increment the program counter register by 1.
Thus, once an initial address is specified, instructions and data may be
loaded into sequential memory locations by alternately setting the binary
representations on the SWITCH REGISTER and operating the DEP
switch,

Once loaded into memory, a program may be checked by using the
EXAM switch. To check the contents of a location, the desired address
is entered on the SWITCH REGISTER .and the LOAD ADD switch
is depressed. The EXAM switch is used to display the contents of the

- specified location in the MEMORY BUFFER display. Because opera-
tion of the EXAM switch will increment the program counter by 1 (as
does the DEP switch), sequential locations may be examined by re-
peated use of the EXAM switch, once the initial location is specified
using the SWITCH REGISTER and LOAD ADD switch. Thus, a
stored program may be checked to see that it was correctly loaded by
displaying each program location.

To run a stored program, the binary value of the starting address of
the program is toggled on the SWITCH REGISTER and then the -
LOAD ADD is depressed. (The starting address appears in the PC.)
Depressing the START switch causes the computer to execute the pro-
gram beginning with the instruction specified by the address in the
PROGRAM COUNTER register. A program may be manually halted
by the operation of the STOP switch.

Console switch positioning and procedures for initializing the console
are outlined below. Figures 4-3 through 4-5 summarize the procedures
for loading, checking, and running a program.

4-6

INITIALIZE

SET SR TO
PROGRAM'S FIRST
ADDRESS

v

DEPRESS LOAD ADD
SWITCH
SET SR TO
PROGRAM'S FIRST
INSTRUCTION

v

DEPRESS DEP

SWITCH

ALL
INSTRUCTIONS
; IN
?

SET SR TO

PROGRAM'S NEXT

INSTRUCTION

PROGRAM
IS LOADED

Figure 4-3.

CONSOLE SWITCH POSITIONING

PDP-8/1 When the top of a switch is out,

' it represents a binary 1-and is con-
sidered set; conversely, when the
bottom of the switch is out it rep-
resents a binary 0 and is not set.

PDP-8/1, When the switch is up it represents

PDP-8/S, a binary 1 and is considered set;

PDP-8 conversely, when the switch is
down it represents a binary 0 and
is not set.

INITIALIZING THE CONSOLE

Computer POWER is on.

PANEL LOCK is off.

SWITCH REGISTER equals zero.

Both SING STEP and SING INST are
not set.

All peripheral devices turned off.

b ol A

Manually Loading a Program

4-7

SET SR 10
THE FIRST
ADDRESS

y

DEPRESS
LOAD ADD
SWITCH

v

DEPRESS EXAM

SWITCH

v

SET SR TO
VALUE OF MA

CONTENTS OF MA
S DISPLAYED
IN MB

v

M8 =

CORRECT

INSTRUCTION
?

DEPRESS
LOAD ADD
SWITCH

v

SET SR
TO CORRECT
INSTRUCTION

y

ALL
INSTRUCTIONS
CHECKED
?

PROGRAM
1S CHECKED

DEPRESS DEP
SWITCH

Figure 4-4. Checking a Stored Program

Figure 4-5.

4-8

INITIALIZE

SET SR TO

ADDRESS

OF FIRST
INSTRUCTION

v

DEPRESS LOAD ADD
SWITCH

y

DEPRESS START
SWITCH.

PROGRAM
15 RUNNING

Running a Stored Program

TELETYPE OPERATION

The ASR 33 Teletype console is the basic input/output device for
the PDP-8 computer family. It consists of a printer, keyboard, paper
tape reader, and paper tape punch. The Teletype unit can operate :
under program control or under manual control. Programmed operation
of the Teletype unit is described in detail in Chapter 5. Operation of the
Teletype unit as an independent device for generating paper tapes is
described later in this section. ‘

Teletype Unit Components
The ASR 33 Teletype unit commonly used in conjunction with the
PDP-8 computer family is pictured in Figure 4-6 with the major features

noted.

OFF

REL.

START -
STOP—
FREE—

OFF
Line (O LOGAL

Figure 4-6. ASR 33 Teletype Console

4-9

The components of the Teletype unit and their functions are de-
scribed in the following paragraphs. :
CONTROL KNOB

The control knob of the ASR 33 Teletype console (see Figure 4-6)
has the following three positions.

LINE The Teletype console is energized and connected to the
computer as an input/output device under computer con-
trol.

OFF The Teletype console is de-energized.

LOCAL The Teletype console is energized for off-line operation
under control of the Teletype keyboard and switches ex-

clusively.

OCOOOOOLOOLLVWOO®
HOOOOOLLOOOG®
DLOOOOOLLOOOB®O®®
.@@@@.@@@@@.

SPACE

Figure 4-7. Teletype Keyboard

KEYBOARD

~ The Teletype keyboard shown in Figure 4-7 is similar to a type-
writer keyboard, except that some nonprinting characters are included
as upper case elements. For typing characters or symbols, such as $,
% , #, which appear on the upper portion of numeric keys and certain *,
alphabetic keys, the SHIFT key is held depressed while the desired
key is operated.

Designations for certain (nonprinting) operational functions are
shown on the upper part of some alphabetic keys. By holding the
CTRL (control) key depressed and then depressing the desired key,
these functions are activated. Table 4-1 lists several commonly used
keys that have special functions in the symbolic language of PDP-8
family computers.

4-10

PRINTER

The printer provides a typed copy of input and output at ten char- .
acters per second maximum rate. When the Teletype unit is online
(LINE), the copy is generated by the computer; when the Teletype

_ unit is offline (LOCAL), the copy is automatically- generated when-
ever a key is struck. o

PAPER TAPE READER

The paper tape reader is used to input into memory data punched
on eight-channel perforated paper tape at a maximum rate of ten
characters per second. The reader control positions are shown in Fig-
ure 4-6 and are described below.

START ~ Activates the reader; reader sprocket wheel is engaged and

operative.
STOP Deactivates the reader; reader sprocket wheel is engaged
but not operative. '
FREE Deactivates the reader; reader sprocket wheel is disengaged.
Table 4-1. Special Keyboard Functions
Key Function Use]
SPACE ~ space used to combine and delimit symbols
or numbers in a symbolic program
RETURN ‘carriage return used to terminate line of symbolic
program
HERE IS ‘blank tape used for leader/trailer (effective only
in LOCAL)
RUBOUT rubout used for deleting characters, punches
: all channels on paper tape
CTRL/REPT/P code 200 used for leader/ trailer of binary pro-
‘ gram paper tapes (keys must be re-
leased in reverse order: P, RE‘PT,i
CTRL)
LINE FEED line feed follows carriage return to advance

printer one line

4-11

PAPER TAPE PUNCH

The paper tape punch is used to perforate eight-channel rolled oiled
paper tape at a maximum rate of ten characters per second. The punch
controls are shown in Figure 4-6 and described below.

REL. Disengages the tape to allow tape removal or loading.
B. SP. Backspaces the tape one space for each firm depression of
the B. SP. button.
ON Activates the paper tape punch.
OFF Deactivates the paper tape punch,
CHANNELS

A
8 Y
876 54 3 21

%

Data is recorded (punched) on paper

“— COLUMN tane by groups of holes arranged in a
definite format along the length of the
tape. The tape is divided into channels,
which run the length of the tape, and
into columns, which extend across the
width of the tape, as shown in the ad-
jacent diagram. The paper tape read-
ers and punches used with PDP-8
family computers accept eight-channel
paper tape.

:

L— SPROCKET

HOLE

Generating a Symbolic Tape ;

The previously described components may be used to generate a
symbolic program paper tape through the following procedure.

When switched to LOCAL, the Teletype unit is independent of the
computer and functions like an electric typewriter. Any character
struck on the keyboard is printed, and also punched on paper tape if
the tape punch is ON. Each character struck on the keyboard is rep-
resented in code by one row of holes and spaces according to the
ASCII code described in the following section and given in Appendix B.

4-12

A section of leader-trailer code several inches long is punched at
the beginning of the symbolic tape, by pressing the HERE IS key on
the Teletype keyboard. The symbolic program is then carefully typed,
following the conventions used in PDP-8 symbolic programs as de-
scribed in Chapter 3. :

A typing error can be corrected using the B SP. button of the paper
tape punch and the RUBOUT key on the Teletype keyboard. The B.SP.
button backspaces the paper tape one column for each depression of
- the button, and the RUBOUT key perforates all eight channels of a
column (this perforation is ignored by the computer). Therefore,
errors are removed by backspacing the tape to the error and typing
rubouts over the error and all following characters. After typing rub-
~outs, the correct infomation must be typed beginning where the error
occurred.
~ Once the symbolic tape is punched more leader-trailer tape is gen-
erated by striking the HERE IS key. The tape is removed from the
punch unit by tearing against the plastic cover of the punch. The sym-
bolic program thus generated is the input to the assembler described
in Chapter 6.

The program may be listed (typed out) by placing the paper tape
in the paper tape reader, This is done by releasing the plastic cover
of the reader unit and placing the eight-channel tape over the reader
head with the smaller sprocket holes over the sprocket wheel, and
replacing the cover. If the Teletype control is switched to LOCAL and
the reader is switched to START, the tape will advance over the reader
head and a printed copy of the program will be typed on the Teletype
printer. If the tape punch is also ON, a duplicate of the tape will be
generated at the same time,

Paper Tape Formats

Manual use of the toggle switches on the operator console is a
tedious and inefficient means of loading a program. This procedure is
necessary in some instances, however, because the PDP-8 family of
computers must be programmed before any form .of input to the
memory unit is possible. For example, before any paper tape can be
used- to input information into the computer, the memory unit must
have a stored program which will interpret the paper tape format for
the computer. This loader program must be stored- in memory with
the console switches. A loader program consists of input.instructions
to accept information from the Teletype paper tape reader and instruc-
tions to store the incoming data in the proper memory locations.

4-13

Before the loader program can be written to accept information,
the format in which the data is represented on the paper tape must
be established. There are three basic paper tape formats commonly
used in conjunction with PDP-8 family of computers. The following
paragraphs describe and illustrate these formats,

?5

r CHANNEL 7

f

*
L N . ® | 61
. 0 L] 32
L [] i2
L N BN BN B BN BE BN J 77
[] [3 [] 52
.o LN] 13
L 2N [1
L 3N 28 BN BN N A N J 77
L] [* @ 53
L L N) 13
e 10
® ¢ 60+ 000 7
3 00
[2R BN K I B N) 77
s &6 00 o7
* L2 2B BN J Q7
NN N A

\f\/\/\/\l\/

LN [) « o 324
o e [2N 310
.o . ® 311
[2% L] L4 [N 323
[] o . 240
[N J [I] L] 3N
e [3N ® & | 323
[] [] . 240
[. ® | 301
[2 J *] [2N J 323
L 2N] . LN J 303
[N L ® 311
L 2N J [BN L J 311
[] [] . 240
[N LR N 306
[N] ® s 000 317
[y [. [] 322
. e ® * 9 L 315
¢ . ® |30t

[] U 324

w w - T~

-0 WD

-~ TOM

LOCATION

CONTENTS

LOCATION

CONTENTS

LOCATION

CONTENTS

LOCATION

CONTENTS

LOCATION

ASCII FORMAT

The USA Standard Code for Informa-
tion Interchange (ASCII) format uses
all eight channels® of the paper tape to
represent a single character (letter,
number, or symbol) as shown in the
diagram at left. The complete code is
given in Appendix B.

RIM (READ IN MODE)
FORMAT

RIM format tape uses adjacent col-
umns to represent 12-bit binary infor-
mation directly. Channels 1 through 6 -
are used to represent either address or
information to be stored. A channel 7
punch indicates that the adjacent col-
umn and the following column are to
be interpreted as an address specifying
the location in which the information
-of the following two columns is to be
stored. The tape leader and trailer for
RIM format tape must be punched in
channel 8 only (octal 200).

1 Channel 8 is normally designated for parity check. The Teletype units used
with PDP-8 family computers do not generate parity, and Channel 8 is always

punched.

4-14

k

° . : L 3R N] (‘,?7 ORIGIN
RN T3 P, BIN (BINARY) FORMAT
¢ ok I BIN format tape is similar to RIM
. oo | WSTRUCTION “format except that only the first ad-
. 00 dress of consecutive locations is speci-
R .
* oo [METRUETION ged. An address is designated by ‘a
e o+es |octmsmmucron channel 7 punch and information fol-
ececrece |77 lowing an address is stored in sequen-
. o |or [MSTRUCTION ol locations after the designated
¢ee®=-e® |78 Lnstrucrion address, until another location is speci-
eescose 33 fied as an origin. The tape leader/
e o 6o [NSTRUCTON - ¢rajler for BIN format tape must be
. e fo1 | o rucrioy PUDched in channel 8 (octal 200)
eeeco0e0e |77 only.
. .o e 435 INSTRUCTION
L *

Paper Tape Loader Programs

The three previously- described paper tape formats are each used
for a separate purpose in conjunction with PDP-8 family ‘computers,
The ASCII format is used to represent symbolic programs on paper
tapes, which are then used as input to the assembler. As described in
Chapters 2 and 3, the assembler translates the mnemonic instructions
and symbolic addresses into binary instructions and absolute addresses.
Once this translation has been performed by the assembler, a binary
format tape is generated.

The binary format tape is the common means of loading an as-
sembled program into the core memory of a PDP-8 family computer.
The BIN (Binary) loader is the program used to load these binary
format paper tapes. Program instructions are stored in successive lo-
cations beginning with an origin which is signaled by a channel 7 punch
on the paper tape. The BIN loader is a lengthy program requiring 83
memory locations. As an alternative to manually entering the contents
of all 83 locations, the RIM (Read In Mode) format is used.

' The RIM loader is simpler than the BIN loader because the memory

unit is supplied with a location for each incoming instruction. It con-
sists of 17 instructions which must be toggled into memory. The BIN
loader is punched in RIM format, and is loaded by the RIM loader;
but it is used to load tapes punched in the BIN format, which is the
output of the assembly program.

The RIM loader is listed in Table 4-2. The instructions are toggled
in, and checked by following the flowcharts given in Figures 4-3 and

4-15

4-4. The instructions are given for use with both the low speed reader
(included in the Automatic Send Receive Model 33 Teletype) and
for the high speed reader (an option described later in this chapter).

Table 4-2, RIM (Read In Mode) Loader

Instruetion
Location Low-Speed Reader High-Speed Reader
7756 6032 6014
7757) 6031 : 6011
7760 5357 5357
7761 6036 6016
7762 7106 7106
7763 7006 . 7006
7764 7510 7510
7765 5357 5374
7766 7006 7006
7767 6031 6011
7770 5367 - 5367
7771 6034 6016
7772 7420 7420
7773 3776 3776
7774 3376 3376
7775 5356 5357

Note: Location 7776 is used for temporary storage.

The RIM loader will load into memory any program punched.on
paper tape in the RIM format. Because paper tapes in the RIM and
BIN formats cannot be used until the user understands the material
in Chapter 6, further discussion of the use of paper tape loaders is
contained in that chapter.

PERIPHERAL EQUIPMENT AND OPTIONS

PDP-8 family computers are used in many different environments
and are interfaced with many different peripheral devices. The Teletype
unit is the most common peripheral device, but other equipment and
options often incorporated in a system with the PDP-8 include high
speed paper tape reader and punch units, DECtape, DECdisk, ex-
tended memory, and the extended arithmetic element (EAE). These
options give the basic PDP-8 new capabilities of which the program-
mer should be aware. The purpose and features of each of these op-
tions is described in the following paragraphs.

All of the options listed above and many others may be directly
connected to' the PDP-8/1. The PDP-8/L may be directly equipped
~with the high speed paper tape reader and punch unit only. Other

4-16

peripherals must be interfaced to the PDP-8/L through an I/0O con-
version panel and/or a peripheral expansion panel. EAE is not avail-
able with the PDP-8/L. '

High Speed Paper Tape Reader and Punch Unit
Loading a long paper tape program into the PDP-8 core memory
with the low-speed reader of the ASR 33 Teletype unit is very time
consuming. Punching a long program on paper tape from an assembly
- program likewise is very slow. If handling lengthy paper tapes is com-
monly required, much computer time is wasted while these low-speed
170 devices read or punch data. The high-speed paper tape reader
and punch unit, shown in Figure 4-8, performs paper tape input and
output at a considerably faster rate. It is of great value in a system
that relies on paper tape as a primary medium of data and program
storage. ’

READER PUNCH

Figure 4-8. High-Speed Paper Tape Unit

The high-speed paper tape reader is used to input data into core
memory from eight-channel, fan-folded (non-oiled), perforated paper
tape. The reader inputs information photoelectrically at a rate of 300.
characters per second (ASR 33 reader inputs at ten characters per
second maximum). Primary power is applied to the reader when the
computer console POWER switch is on. The reader is controlled by
the computer, although the operator may indirectly control the reader
from the keyboard through the computer, Tape may be advanced,
without being recorded by the photoelectric sensors, by pressing the
white advance button. '

4-17.

Paper tapes are manually positioned in the high speed reader with
the following steps.

1. The paper tape is placed in the right-hand bin such that the
beginning of the tape will pass over the sensors first.

2. Several folds of leader tape are placed in the left-hand bin
with the tape passing under the tape retainer cover.

3. The retainer cover is closed over the tape such that the feed
holes are engaged in the teeth of the sprocket wheel.

4. Tape is advanced and read by programmed computer in-
structions.

Once the paper tape has been properly placed in the reader and the
leader/ trailer has been positioned as outlined in the preceding steps,
the tape is normally read under control of system software.

The high speed paper tape punch is used to record computer out-
put on eight-channel, fan-folded paper tape at 50 characters per sec-
ond. All characters are punched under program control from the com-
puter. Primary power is available to the punch when the computer
console POWER switch is turned on. Power is supplied when the
POWER button is depressed on the punch unit itself. In addition to
the POWER button, a FEED button is located on the punch enclosure
to advance feed-hole-only punched tape for leader/trailer purposes.

The loader programs, symbolic assemblers, Symbolic Editor, and
other system software presented in Chapter 6 include instructions for
using the high speed reader/punch, as well as for using the Teletype
reader/ punch. (By incorporating the appropriate instructions for the
high speed unit (see Appendix D), the user may write his own 1/O
routines for this device as outlined in Chapter 5.)

Extended Memory

The PDP-8 family of computers have a memory unit composed of
12-bit magnetic core locations. The basic configuration stores 4,096
12-bit words; however, the memory unit of the PDP-8/1, -8/8, or -8
can be expanded into a maximum storage of 32,768 words by adding
4,096-word memory modules. The PDP-8/1. may be expanded to
8,192 words. Each module is called a field, with field O being the
original 4,096 words and other fields designated 1, 2, . . ., 7. (The
PDP-8/L can have only fields O and 1.)

Expansion of the basic memory introduces data field and instruction
field registers into the memory unit. Related to these registers are the
DATA FIELD and INST FIELD switches and displays of the com-
puter console. Since the 12-bit word of the PDP-8 is capable of rep-
resenting only 4,096 locations uniquely, the data field and instruction

4-18

field registers are used to designate the field of 4,096 words which
contains a particular address.

INSTRUCTION FIELD

The content of the instruction. field register determines the instruc-
tion field (field of 4,096 words) that the instructions are to be taken
from. Any directly addressed AND, TAD, ISZ, or DCA instruction
will obtain its operand from the instruction field. In indirectly ad-
dressed instructions, however, the pointer address is taken from the
instruction field, but the operand (specified by the effective address)
is obtained from the data field.

DATA FIELD .

The content of the data field reglster spec1ﬁes the data field (field of
4,096 words) from which operands (specified by the effective address)
are taken in indirectly addressed AND, TAD ISZ or DCA instructions.
(The pointer addresses are obtained from the instruction field.)

INITIAL FIELD ASSIGNMENTS

The original setting of the data field and instruction field registers

are by the DATA FIELD and INST FIELD switches of the computer
“console (see Figure 4-1). Thus, to run a program beginning in loca-
tion 200 of field 1 and operating on data in field 0, the INST FIELD
(IF) switches are set to 001, and the DATA FIELD (DF) switches
set to 000 (on the PDP-8/L, set to 1 and O respectively). The switch
register is then set to 200s. When the LOAD ADD switch is operated,
the values for the data field and instruction field are entered as well
as the starting address. When the START switch is depressed, the pro-
gram.beginning in location 200 of field 1 is executed.

A common use of extended memory is the storage of system soft-
ware. For example, the Binary Loader may be stored in field 1. By
setting IF = 1 and DF = 0, the Binary Loader runs in field 1, but de-
posits the program (which is simply data to the loader) in ﬁeld 0.
CHANGING FIELD ASSIGNMENTS

The instructions for extended memory (see Appendix D) may be
used to change instruction and data fields during the execution of a
program. The instructions are written in the following format.

Symbolic Instruction Explanation
CIF+30 change to instruction field 3
CDF+10 change to data field 1

The field being changed to is épeciﬁed by adding its value to the second
octal digit position of the change field instruction. The CDF instruction

- 4-19

causes all future indirectly-addressed operands to be taken from the
specified data field. The CIF (change instruction field) instruction does
not take effect immediatcly, but waits for a JMP or JMS instruction to
be encountered in the program execution. When the JMP or JMS is
encountered, control is transferred to the new instruction field. Thus,
if the instruction field is originally field O, the following instructions
transfer control to field 1.

CIF+10
IMP 20

The next instruction to be executed in the program is contained in
location 20 of field 1. If the JMP is indirectly-addressed, the pointer
word is obtained from the old field, but the JMP is to a location in the
new field.

DECtape System

DECtape is an option of the PDP-8 family of computers which
serves as an auxiliary magnetic tape storage facility and updating de-
vice, The standard DECtape transport unit is pictured in Figure 4-9.
The DECtape system stores and retrieves information at fixed positions
on magnetic tape. The advantage of DECtape over conventional mag-
netic tape is that information is stored at fixed positions which may be
addressed. Allocation of fixed, addressable positions for information
storage is a unique feature of DECtape storage facilities, while con-
ventional magnetic tape stores information in sequential (not directly
addressable), variable-length positions. DECtape incorporates timing
and mark information to reference the fixed positions. The 10-channel
DECtape records five channels of information: a timing channel, a
mark channel, and three information channels. These five channels are
duplicated on the remaining five nonadjacent channels to minimize
any possibility of loss of information from the other channels. The
DECtape is organized in blocks of data words with control words to
identitfy each block. The tape is bidirectional; that is, it can be written
or read in the forward or reverse direction. Information should be read
in the same direction that it was written.

The DECtape control unit performs the transfer of information be-
tween the PDP-8 and the transport unit. The control can operate as
many as eight separate DECtape transport units,

4-20

-

Figure 4-9. DECtape Transport Unit

The DECtape transport unit shown in Figure 4-9 is a bidirectional
magnetic tape transport which reads and writes the 10-channel mag-
netic tape. Tape movement can be controlled by programmed instruc:
tions from the computer or by the manual operation of switches located
on the front panel of the transport. Data is transferred only under pro-
gram control. '

The transport controls are identified below.

Transport Control Explanation
REMOTE ‘ This switch position energizes the DECtape
: , transport and places it under program control.
OFF : This switch position disables the DECtape
transport.
LOCAL This switch position energizes the DECtape

transport and places it under operator control
from external transport switches.

WRITE ENABLED This switch position enables the DECtape for
search, read, and write activities.

WRITE LOCK This switch position limits the DECtape trans-
port to search and read activities only. (This
prevents accidental destruction of permanent
data.) '

Unit Selector The value specified by this eight-position ro-
tary switch identifies the transport to the con-
trol unit.

NOTE: Position 8 on the Unit Selector
switch corresponds to DECtape
unit 0.

4-21

With the transport in LOCAL mode, depress-
ing this switch causes tape to feed onto the
right-hand spool.

With the transport in LOCAL mode, depress-
ing this switch causes tape to feed onto the
left-hand spool. The REMOTE and WRITE
ENABLED lamps indicate whenever their re-
spective conditions are present.

DECdisk System

The DECdisk file is a fast, random -access, bulk storage device for
the PDP-8 computer family. It has a considerably faster access time
than DECtape and offers storage of 32,768 words on each disk (as
many as four disks are possible). The DECdisk comprises a storage
unit with electronics to perform the read and write functions, and the
computer interface logic which participates in the transfer of informa-
tion between the central PDP-8 and the DECdisk unit. '

The storage unit contains a motor-driven, nickel/cobalt-plated disk.
The disk has 16 data tracks, with 2,048 words per track. There are
two timing tracks plus two spares. Data is recorded on a single disk by
fixed position read/write heads. Transfer of information between the
DECdisk and the PDP-8 is controlled by programmed instructions as
outlined in Chapter 5.

A fast, convenient, keyboard-oriented Disk/DECtape Monitor is
available for use with the PDP-8 family computers to allow the pro-
grammer to efficiently control the flow of programs through any PDP-8
having a DECdisk or DECtape. This monitor system is described in
more detail in Chapter 7.

Extended Arithmetic Element

The EAE option of the PDP-8 computer family (not available on
the PDP-8/L.) provides circuitry to perform arithmetic operations which
can not be directly performed with the basic PDP-8 instruction set.
The option includes microinstructions to perform multiplication and
division. Other microinstructions perform arithmetic and logical shifts
and normalize both positive and negative two’s complement numbers.

The option provides a 12-bit multiplier quotient register (MQ)

which is used in conjunction with the AC to perform direct multiplica-
tion and division. The content of this register is displayed on the PDP-8
console.

The EAE option is essentially an increase in instruction capability.
The instructions, which are microprogrammable, are included in Ap-
pendix D.

4-22

NOTE TO READER

The following exercises are intended for readers who have access to
a computer of the PDP-8 family. Readers who do not presently have
access to such a computer should begin study of Chapter 5.

Upon completion of the following excrcises, readers with access to
a PDP-8 would benefit from reading the sections of Chapter 6 which
describe loaders, the Symbolic Editor, and the PAL III Symbolic
Assembler. Although knowledge of this material is not necessary to
understand the subject matter of Chapter 5, this knowledge will facili-
tate the running of programs presented therein.

EXERCISES

1, Toggle into memory and run the programs written in Chapter 2,
for exercises 6 and 10.

2. Toggle into memory the RIM Loader (Table 4-2) using the con-
sole switches. Verify the contents of the registers with the EXAM
switch.

3. Write a program to set the contents of locations 2000 through
2007 to the value of the switch register and then halt. Toggle it in
and verify that it works.

4. Write a program to accept two numbers from the switch register
and add them displaying their contents in the accumulator. (Hint:
precede each OSR instruction by a HLT. After seeing the switch
register activate the CONT key.) Translate the program into octal
and toggle it into memory. Verify that it works properly.

4-23

4-24

Chapter 5

lnput/ Output
Prograsmmmg

Being able to program a computer to do calculations is of little use
if there is no way of getting the results of calculations from the
machine. Likewise, the programmer often must supply the computer
with information to be processed. A programmer must be provided
with the means to transfer information between the computer and the
peripheral devices that supply input or that serve as a means of output.

Before a transfer of information can be executed, a control function
must be supplied to specify when the exchange will occur, with what
peripheral device the exchange will occur, and where in core storage
the information will be stored (or obtained from). In general, this con-
trol function may be served by either the PDP 8 or the penpheral de-
vice itself.

There are three basic methods for the transfer of information be-
tween input/output (I/0) devices and the PDP-8. The first two
methods provide for PDP-8 control over the transfer. One method is
programmed transfer, in which instructions are included at some point
in the program to accept or transmit information. Thus, programmed
transfers are program initiated and are under program control.

Information may also be transferred through program interrupt, a
standard feature of the PDP-8 computer family that provides for de-
vices to signal the PDP-8 when they are ready to transfer information;
the program will then interrupt its normat flow and jump to a routine
to process the information, after which it will return to the point in the
main program at which it was interrupted. Thus, program interrupt
transfers are device initiated but are under program control.

5-1

These first two methods (i.e., programmed transfers and program
interrupt) use the accumulator as the buffer, or storage area in the
computer, for all data transfers. Therefore, only one 12-bit word of
input or output may be transferred at one time by a programmed
transfer, or by program interrupt.

The third method of information transfer is data break, an option
for the PDP-8/L but standard for other PDP-8 computers. Data break
is essentially device controlled and allows for direct exchange of large
quantities of information between the device and the PDP-8 memory.
It differs from the previous two types of transfer in that there are no
program instructions to handle the transfer and the accumulator is not
used as a buffer. Data break transfers are device mmated and device
controlled.

INPUT/OUTPUT INSTRUCTIONS

As the name implies, programmed transfers: of information are ac-
complished with a set of program instructions. The instructions are
similar to the operate microinstructions in that there is no need to
specify an address in memory. The operation code 6, is used to specify
an input/output transfer (IOT) instruction. All programmed transfers
are between the accumulator and the device. Since many different de-
vices could be connected to one computer and each device may at
some time transfer information, the instruction must identify the proper
device for each transfer. The instruction must also specify the exact
nature of the function to be performed.

IOT Instruction Format

An IOT instruction is a 12-bit word that is in the following format.
The first three bits represent the operation code 6;. The remaining nine
bits may be either binary 0°s or 1’s.

o] [¢] o [¢] o] 0 o o o
] 1
0 1 1] 1 1 1 1 1 1
™ A A /
Ad Y
OPERATION DEVICE SELECTION OPERATION
CODE CODE SPECIFICATION

BITS

Figure 5-1. The 10T Instruction

5-2

The IOT instruction is divided into three parts: operation code, de-
vice selection code, and operation. specification bits.

Device Selection

The device selection code is transmitted to all peripheral equipment
whenever the IOT instruction is executed. A device selector within
each peripheral device monitors the device codes. When the device
selector recognizes a device code as the device’s assigned code, the de-
vice receives the last three bits of the instruction, Each of the last three
bits specifies an-action associated with the device. When one of the last
three bits is set to a 1, the specified action-is performed. Since there
are three bits, only three different actions can be specified for each de-
vice code, although microprogramming is possible. When more instruc-
tions are necessary for a given device, more than one code is assigned
to the device,

Checking Ready Status

Because there is a great difference in the processing speed of a com-
puter and the speed of most peripheral devices, the computer must
check the recadiness of a device before any transfer of information is
performed. The input device must signal the computer that it has com-
pletely assembled the information and is now ready to transfer the in-
formation to the computer memory. The output device must signal its
readiness to accept the next piece of information from the computer.
Without such signals, the computer would input and output informa-
tion at a faster rate than the device could process it and some infor-
mation would be lost. '

To prevent any loss of information, the computer program checks
the ready status of the transmitting or receiving device as part of pre-
paring for a normal data transfer. The ready status is usually checked
with a skip instruction such that if the device is ready, the following
instruction is skipped. The ready status is signaled through a system
of flags, which are 1-bit registers within the device. All I/O devices
‘have a device flag which is set to a 1 when the device is ready; that is,
when it can be used (if it is an output device), or when it has informa-
tion (if it is an input device). If the flag is cleared (set to 0), the device
is busy. If a program initiates a device action, the flag associated with
that device will be set to a 1 when the device action is completed.

5-3

Instruction Uses
In general, for each device there are three instructions:
1. An instruction to transfer information and operate the device.

2. An instruction to test the ready status of the device and skip
on the ready (or not-ready) status of the device.

3. An instruction to clear the device flag.

'The above instructions may be microprogrammed. In particular, the in-
structions to clear the flag and to operate the device often are com-
bined. '

The specific instructions for devices are given in the following
sections, The Teletype unit is described in depth to explain the fun-
damentals of programming data transfers. The general techniques
developed for the Teletype unit may be extended to handle other de-
vices.

ASCH Cede

The ASCII (U.S.A. Standard Code for Information Interchange) is
presented in Table 5-1. Many of the programs written in this chapter
use this code to transmit information to the PDP-8. The fact that the
ASCII code for the octal digits O through 7 is the sum of that digit
plus 260, should be observed.

PROGRAMMING THE TELETYPE UNIT

One of the most common [/O devices is the Teletype unit, which
contains 2 keyboard, printer, paper tape reader, and paper tape punch.
The Teletype unit can use either the keyboard or the paper tape reader
to input information to the computer and can use either the printer or
the paper tape punch to accept output information from the computer.
The Teletype unit is therefore assigned two device codes.

Teletype Input/ Output Transfer Instructions

Functioning as an input device, the keyboard/reader is assigned the
device code 03,, and functioning as an output device, the printer/
punch is assigned the device code 04,.

54

Table 5-1. The 8-Bit ASCH:! Code

, : 8-Bit 8-Bit
Character Octal Character Octal
e e
A 301 - ! . 241
B 302 S “ 242
C 303 # 243
D 304 $ - 244
E 305 % 245
F 306 & 246
G 307 ! 247
H 310 (250
1 311) 251
- J 312 * 252
K 313 + 253
L 314 , 254
M 315 — 255
N 316 . 256
O 317 /- 257
P 320 : 272
Q 321 s 273
R 322 < 274
S 323 = 275
T 324 > 276
U 325 ? 277
Vv 326 @ 300
w 327 [333
X 330 \ 334
Y 331] 335
Z 332 1 336
0 260 - 337
1 261 : Leader/Trailer - 200
2 262 LINE FEED 212
3 263 Carriage RETURN 215
4 264 ~ SPACE 240
5 265 RUBOUT 377
6 266 Blank 000
7 267 BELL 207
3 270 - TAB o211
9 271 FORM . 214

1 An abbreviation for USA Standard Code for Information Interchange.

KEYBOARD/READER INSTRUCTIONS

The instruction format for the keyboard/reader is shown in Figure
5-2. The mnemonic instructions generated by bits 9, 10, and 11 are
noted, The sequence in which the mnemonic instructions are executed
when microprogrammed is noted below.

A A A : l
Y YT
OPERATION DEVICE CODE KSF
COOE 3
KCC

KRS

Figure 5-2. Teletype Keyboard/Reader Instructions

Sequence Mnemonic Qctal Effect

] KSF 6031 Skip the next instruction when
the keyboard buffer register is
loaded with an ASCII symbol
(causing the keyboard flag to be

raised).
2 KCC 6032 Clear AC, clear keyboard flag,
KRS 6034 Transfer the contents of the key-
board buffer into the AC.
2,3 KRB 6036 Transfer the contents of the key-

board buffer into the AC, clear
the keyboard flag.

The fourth instruction (KRB) is a microprogrammed combination of
the mnemonics KCC and KRS. If the paper tape reader is loaded with
a paper tape and switched to START, the KRB instruction accepts one
character from the reader.

A program using the above instructions to read in one ASCII char-
acter from the keyboard or paper tape reader is shown in Figure 5-3.
Note that this program does not type the character on the teleprinter, it
merely stores the ASCII code for the character in the location STORE.

5-6

*200

INPUT, KCC /CLEAR KEYBOARD FLAG
JMS LISN
DCA STORE
HLT

LISN, 0 '
KSF /SKIP ON KEYBOARD FLAG

JMP .—1
KRB /READ KEYBOARD BUFFER-

JMP I LISN
STORE, 0
$

Figure 5-3. Coding to Accept One ASCII Character

The main program begins with KCC. In general, the main program
should begin by clearing the flags of all devices to be used later in the
program. If the above program is started at location 200, it will pro-
ceed to the KSF, JMP .—1 loop, and stay in this loop endlessly until a
key on the Teletype unit is pressed or a paper tape is loaded into the
reader. When the ASCII code for the character is assembled in the
keyboard/reader buffer register, the flag will be set to a 1 and the pro-
gram will skip out of the loop. The contents of the buffer will be trans-
ferred into the accumulator, and the buffer and flag will be cleared.

PRINTER/PUNCH INSTRUCTIONS

The instruction format for the Teletype printer/punch 10T instruc-
tions is given in Figure 5-4. The mnemonic instructions generated by
bits 9, 10, and 11 are discussed on the following page.

1 1 o] o] o] Q 1 0 (o]

- :
" — v -
. .OPERATION DEVICE CODE TSF
- 4
: TCF

TRC

Figure 5-4. Teletype Printer/Punch Instructions

5-7

Sequence Mnemonic Qctal Effect

1 TSF 6041 Skip the next instruction if the
printer flag is set to 1.

2 TCF 6042 Clear the printer flag.

3 TPC 6044 Load the printer buffer register

with the contents of the AC, se-
lect and print the character. (The
flag is raised when the action is
completed.)

2,3 TLS 6046 Clear the printer flag, transfer
the contents of the AC into the
printer buffer register, select and
print the character. (The flag is
raised when the action is com-
pleted.) '

The last instruction is a microprogrammed combination of TPC and
TCF, such that the flag is cleared, the character is printed, and then
the flag is again raised. Whenever the paper tape punch is turned on,
the character is punched on paper tape as well as printed on the
teleprinter.

Figure 5-5 illustrates a program to print out one ASCII character
which is held in a memory location.

*200
OUTPUT, CLA CLL
TLS
TAD HOLD
JMS TYPE
HLT
TYPE, 0
'JI“SF /SKIP ON TELEPRINTER FLAG
MP .—1 '
TLS /PRINT THE CHARACTER
CLA CLL
JMP I TYPE
HOLD, 0
$

Figure 5-5. Coding to Print One ASCIH Character

The program in Figure 5-5 begins by clearing the accumulator and
executing a TLS instruction (which has the effect of clearing the printer
buffer), after which the printer flag will be set, thereby signifying
readiness to accept a character. If the initial TLS instruction were not

5-8

executed, the flag would not be raised (the START key clears all flags),
and the program would remain in the TSF, JMP .—1 loop endlessly.
In the previous case, however, the program uses the printer with a cleared
accumulator such that no character is printed. However, the flag is set
when this action is complete enabling the printing of meaningful infor-
mation in the TYPE subroutine. The TYPE subroutine clears the
accumulator since the TLS instruction does not. It is advisable to clear
the accumulator after any subroutine unless meaningful data is con-

tained in it.

Format Routines

Input and output routines are very often written in the form of sub-
routines, as the TYPE subroutine in the previous example. The exam-
ple in Figure 5-6 is a carriage return/line feed subroutine that calls
the TYPE subroutine to execute a carriage return and line feed on the
printer, thus advancing to a new line for the-printing of information.

CRLF, 0

TAD K215

IMS TYPE

TAD K212

JMS TYPE

IMP I CRLF
K215, 215 /ASCII FOR CARRIAGE RETURN
K212, 212 /ASCII CODE FOR A LINE FEED
TYPE, 0

TSF

IMP .—1

TLS

CLA CLL

JMP 1 TYPE

Figure 5-6. Carriage Return/Line Feed Subroutihe

Subroutines similar to the one in Figure 5-6 could be written to tab
space the carriage a given number of spaces, or to ring the bell of Tele-
type Model ASR 33 by using the respective codes for these nonprinting
characters. Such subroutines, if commonly used in a program, should
be placed on page 0 (or else a pointer word to the subroutine should
be placed on page zero) to facilitate reaching the routine from all
memory locations.

5-9

Text Routines

The examples in Figures 5-3 and 5-5 may be expanded to accept
and type more than one character, Figures 5-7 and 5-8 illustrate one
expansion. These two programs are compatible in that the characters
accepted by the first program are typed out by running the second pro-
gram. The program to accept characters, in Figure 5-7, will continue
to accept character input until a dollar sign ($) is struck on the key-
board, at which time the program will store all zeros in the next loca-
tion and then halt. The program in Figure 5-8 will type the characters
whose ASCII code was stored by the first program. The second pro-
gram will halt when a location with contents equal to zero is reached.
Both programs use locations beginning with 2000 as the buffer for the
storage of ASCII characters. The following flowcharts introduce the
techniques used in the program coding.

START

SET BUFFER POINTER
TO FIRST LOCATION

[2 P,

CHECK FLAG KEYBOARD U

AGAIN FLAG SET AND SET FLAG
?

SET BUFFER POINTER
TO FIRST LOCATION
RETURN
CARRIAGE

GET NEXT
ASCI1 CODE

ACCEPT ONE
CHARACTER

STORE ONE
HARACTER IN BUFFER]
PRINT THE
CHARACTER

INCREASE THE
BUFFER POINTER

TYPE DUT
CHARACTER
INCREASE BUFFER
POINTER

1S THE
CHARACTER
XYY

?

YES
STORE ZEROS
OVER"$"

| *5000
START,

LISN,

DONE»

BUFF .,
BUFFPT,
MDOLARS
$

CLA
TAD
DCA
KSF
JMP
KRB
TLS
DCA
TAD
TAD
SNA
JMP
152
JMP
cLA
pca
HLT

CLL
BUFF
BUFFPT "

e-1

I BUFFPT
I BUFFPT
MDOLAR

DONE
BUFFPT
LISN

CLL

I BUFFPT

2000

4]

7534

/SET UP BUFFER SPACE.

/KEYBOARD STRUCK YET?

/NQO: CHECK AGAIN. .
/YES: READ CHARACTER.
/ACKNOWLEDGE IT ON PRINTER.
/STORE CHARACTER.

/CHECK FOR TERMINAL §.

/CHARACTER IS A 8.
/CHARACTER IS NOT A 8.
/GET ANOTHER CHARACTER.
/STORE » IN LAST LOCATLON.

Figure 5-7. Routine to Accept and Store ASCII Characters

*5200
START»

CHRTYP,

CRLF»

TYPE,

BUFF»
BUFFPT,
K215,
Ke12s,
1

Figure 5-8.

CLA
TLS
TAD
DCA
JMS
TAD
SNA
HLT
JMS
152
JMP

TAD
JMS
TAD
JMS
JMP

TSF
JMP
TLS

‘CLA

JMP
2000

215
212

CLL

BUFF
BUFFPT
CRLF

1 BUFFPT

TYPE
BUFFPT
CHRTYP

K215
TYPE
K212
TYPE
I CRLF

I TYPE

_/TLS TO SET PRINTER FLAG.

/SET UP BUFFER SPACE.

/RETURN CARRIAGE.

/GET A CHARACTER.

/18 1T ALL ZEROS?

/YES: STOP.

/NO: TYPE OUT THE CHARACTER.
/INCREMENT BUFFER POINTER.
/TYPE ANOTHER CHARACTER.
/CARRIAGE RETURN & LINE FEED.

/TYPE CR FIRST.

/TYPE LINE FEED-.

/SUBROUTINE TO TYPE CHARACTER.
/PRINTER READY YET?

/NO: CHECK AGAIN.

/YES: TYPE CHARACTER.

/CLEAR .ASCII FROM AC.

Routine to Print Stored ASCII Characters

5-11

The program to print characters may be specialized to print a
specific word as in the program of Figure 5-9. The example is a
subroutine which uses autoindex registers in place of the ISZ instruc-
tion. The subroutine types “HELLO!”

HELLO> @) /HELLO SUBROUTINE
CLA CLL ‘
. TLS ’ /TLS TO SET PRINTER FLAG.
TabD CHARAC /SET UP INDEX REGISTER
DCA IRI /FOR GETTING CHARACTERS.
TAD M6 /SET UP COUNTER FOR
DCA COUNT /TYPING CHARACTERS.
NEXTs TAD I IR1 /GET A CHARACTER.
JM3 TYPE /TYPE IT.
ISZ COUNT /DONE YET?
“JMP NEXT /NO: TYPE ANOTHER.
JMP 1 HELLO /YES: RETURN TO MAIN PROGRAM.
TYPE, 2 /TYPE SUBROUTINE
TSF
JMP . -1
TL.S
CLa
JMP 1 TYPE
CHARAC, - /USED AS INITIAL VALUE OF IR}
3te /H
305 /E
314 /L
314 /L
317 /0
241 I4
M6 -6
COUNT, 0
IR1=10

Figure 5-9. Routiné to Print One Word

Numeric Translation Routines

The ASCII codes of octal numbers may be transmitted to the PDP-8
memory as in the program of Figure 5-3. However, the ASCII code
for the number must be converted to true octal representation before
the computer may use this input. For example, 6 is represented by the
ASCII code 266. When the Teletype key is struck for 6, the code 266
is transmitted to the computer upon execution of the KRB instruction.
To remove the 260 from the coded number to obtain the octal number
itself, two methods could be used. ‘

5-12

The first method is to examine the binary form of the ASCII code.
000 010 110 110

Setting the first eight bits to zero by using the AND instruction with
the appropriate mask results in the binary value for 6. The appropriate.
mask for this purpose is 175 as shown below.

Instruction Operation Comment
000 010 110 110 ASCII Code 266 in

accumulator

AND MASK 000 000 001 111 MASK: 17,

000 000 000 110 Contents of accumulator after
. AND instruction is executed.

The second method of stripping an ASCII coded numbef is to sub-
tract 260, from the character code. The instruction TAD M260 is used
for this operation as shown in the following example.

Instruction Operation Comment
TAD M260 - 000 010 110 110 ASCII Code 266 in accumulator
111 101 010 000 M260: 7520, (2’s comp of 260)

000 0600 000 110 Contents of accumulator after
TAD instruction is executed.

Programs to accept and store an octal digit, using the LISN sub-
routine previously given, are shown in Figure 5-10.

*200 *200
/USING AND /USING TAD /LISN SUBROUTINE
/INSTRUCTION /INSTRUCTION
NUMIN, KCC NUMIN, KCC LISN, 0
JMS LISN IMS LISN KSF
AND MASK TAD M260 JMP .—1
- DCA HOLD DCA HOLD KRB
) HLT HLT JMP I LISN
HOLD, o HOLD, 0
gIASK, 17 M260, 7520
$)

Figure 5-10. Two Methods of Converting ASCII to Binary

When an octal digit stored in memory is to be printed on the tele-
printer, the octal number 260 must be added to it. The routine in Fig-
ure 5-11 uses the TYPE subroutine previously introduced to print out
the binary number 7.

5-13

*200
NUMOUT,

NUMBER,
K260,
$

Figure 5-11.

The routines presented thus far have been designed to handle only
single-digit octal numbers. The PDP-8 core storage location, how-
ever, is able to represent octal numbers up to four digits. The routine
in-Figure 5-12 takes a number that is stored in a PDP-8 location and
prints it on the printer as four octal digits. The routine in Figure 5-13
accepts four octal digits from the keyboard and converts them to one
octal number and stores it in a location, after which it accepts another
four digits, etc. The following flowcharts illustrate the procedure ‘used

in:the programs.

CLEAR A
STORAGE LOCATION

CLA CLL

TLS

TAD NUMBER
TAD K260
JMS TYPE
HLT

7

260

¢

GET CONTENT OF
STORAGE LOCATION
iN AC

1 EXECUTE TLS
TOCLEAR BUFFER

AND SEY FLAG

SET FIRST 9
#iTS 70 ZERQ

GET THE
NUMBER IN AC
ROTATE THE NUMBER
' PLACE LEFT

ADD THE CONTENTS
OF STORAGE
LOCATION

ADD 260
TO THE AC

TYPE QUT
THE DIGIT

/TYPE SUBROUTINE
TYPE, 0

TSF

IMP —1

TLS

CLA CLL

JIMP 1 TYPE

Routine to Type One Stored Digit

STORE DIGIT
TEMPORARILY

ACCEPT A DIGIT
FROM KEYBOARD

RECEIVED
FOUR DIGITS
?

BRING STORED RESULT
INTG AC
YES

BRING FIRST DIGIT ROTATE LEFT
INTD AC THREE PLACES

ROTATE AC THREE
PLACES LEFT
STORE AC IN

STORAGE LOCATION

5-14

ADD NEXT
DIGET

¥
Lsug;g:cr H ‘l

PACKED
4 0IGITS
?

NO

STORE NUMBER
IN BUFFER

*200)
START.,

UNPACK.

TYPE,

CRLF,

NUMBER.»
MASK7.,
M4,
DIGCTR.,
STORE
K212,
K215,
K260 ,

$

CLA CLL
DCA STORE
TLS

JMS CRLF
TAD M4

DCA DIGCTR
TAD NUMBER
RAL

TAD STORE
RAL

RTL

DCA STORE
TAD STORE

"AND MASK7

TAD K260
JMS . TYPE
1SZ DIGCTR
JMP UNPACK
JMS CRLF
HLT :

?

TSF™

JMP .-
TLS

cLA

JMP 1 TYPE
7]

Tab Keis
JMS TYPE
TAD K212
JMS TYPE
JMP I CRLF
1234

7

-4

@

U]

212

215

269

/CLEAR OUT STORAGE LOCATION.
/TLS TO SET PRINTER FLAG.
/RETURN CARRIAGE.

/SET LOCATION TO COUNT NUMBER
/0F TYPED DIGITS.

/GET NUMBER TO BE TYPED.
/ROTATE ONE PLACE (INTO LINK).
/4DD STORED .LOCATION TO AC.
/ROTATE THREE

/PLACES LEFT.

/STORE ROTATED NUMBER.

/MASK OUT ALL BUT

/FIRST THREE BITS OF NUMBER,
/ADD IN 260,

/AND TYPE DIGIT.

/TYPED FOUR DIGITS YET?

/NO: GO TYPE ANOTHER

/YES: RETURN CARRIAGE

/AND HALT.

/TYPE SUBROUTINE

/CARRIAGE. RETURN & LINE FEED

5

/NUMBER TO BE TYPED

/ASCII FOR LF
/ASCI11 FOR CR

Figure 5-12. Routine to Type a 4-Digit Number

©5.1%

*200
STarRT, CLA CLL

TLS . /TLS. TO SET PRINTER FLAG.
TAD K1777 /SET INDEX REGISTER FOR
DCA 1IR1 /STORING PACKED NUMBERS.
JMS CRLF /RETURN CARRIAGE.
NXTNUM, TAD M4 /SET COUNTER FOR 4 DIGITS.
DCA COUNTR ~
TAD K358 /SET UP TEMPORARY STORAGE
] DCA TEMP /FOR THE ASCII INPUTS.
NXTDIG, JMS LISN /GET CHARACTER FROM KEYBOARD.
DCA I TEMP /STORE IT TEMPORARILY.
I15Z TEMP /INCREMENT STORAGE LOCATION.
I15Z COUNTR /GOT 4 DIGITS YET?
"JMP NXTDIG /NO: GET ANOTHER.)
JMS CRLF - /YES: RETURN CARRIAGE
JMS PACK /AND PACK THE 4 DIGITS.
DCA I IRI1 /STORE PACKED NUMBER.
JMP NXTNUM /GET A NEW NUMBER.
PACK.» 17/ /7PACK SUBROUTINE.
DCA STORE /CLEAR OUT STORAGE LOC.
TAD M4 /SET COUNTER FOR
DCA COUNTR /4 DIGITS.
TAD K350 /SET POINTER TO
DCA TEMP /ASCII INPUT CHARACTERS.
PAKDIG> TAD STORE /GET STORE IN AC.
CLL RAL /ROTATE INTO CLEARED LINK.
RTL /ROTATE IT TWICE MORE.
TAD I TEMP /ADD NEXT STORED CHARACTER.
TAD M260 /STRIP OFF THE 260.
DCA STORE /STORE STRIPPED NUMBER. :
1S8Z TEMP /INCREMENT POINTER TO ASCII.
I1SZ COUNTR /PACKED 4 DIGITS?
JMP PAKDIG /NO: PACK NEXT DIGIT.
TAD STORE /YES: TAKE PACKED NUMBER
JMP 1 PACK /BACK TO MAIN PROGRAM.
CRLF» a /CARRIAGE RETURN LINE FEED.
TAD K215
JMS TYPE
TAD K212
JMS TYPE
JMP 1 CRLF

Figure 5-13. Routine to Pack and Store 4-Digit Octal Numbers

5-16

LISN, * /SUBROUTINE TO ACCEPT ASCII«

KSF
JMP a'l
KRB
TLS
JMP 1 LISN
TYPE> 4] /SUBROUTINE TO TYPE ASCII.
TSF
JMP =1
TLS
cLA
JMP I TYPE
K1777, 1777
IR1=10 :
M4, 7774
COUNTR, 2 ’
K358 » 350 /TEMPORARY STORAGE (358-353).
TEMP » %]
STORE, 0

M260 » 7520
K215, 215
K212, 212
$.

Figure 5-13. (cont.) Routine to Pack and Store 4-Digit Octal Numbers

Sample Program

The previously described routines for typing text and numeric trans-
lation are combined in the following program example which is similar
to the final program of Chapter 3. This program performs the same
numeric sort; however, the numbers to be placed in order are supplied
from the keyboard. o

Any number of elements may be supplied; the end of input is sig-
naled by typing a dollar sign ($). The program includes routines to
exclude any nonoctal digits from input and type a question mark. Only
positive octal numbers (0-3777;) are allowed as input to the program.

The program is presented in four illustrations. The following flow-
chart diagrams the program.

5-17

@——————D

ACCEPT ASCH TYPE 7"
> CODE FOR AND IGNORE oMBERE
ONE DIGIT THAT ENTRY

K
NUMBER
NEGQ?TIVE

1S 1T

A NONOCTAL

CHARACTER
?

YES

PUT THE
NUMBERS IN
INCREASING ORDER

TYPE ONE
DIGIT

TYPED
4 DIGITS
?

PACK AND
STORE AS —’@
ONE NUMBER

RETURN
CARRIAGE

Figure 5-14A. Sample Program: Flowchart

5-18

e

*200

JINITIALYIZATION

START, CLA
TLS
TAD
DCA
DCA
/ACCEPT ONE
ACCEPT, JMS
TAD
DCa
TAD
DCA
NEWDIG, JMS
DCA

CLL

BUFF
BUFFPT
AMOUNT
DIGIT.
CRLF
M4
DIGCTR
TEMP
TEMP
LISN

I TEMP

/CHECK THE CHARACTER.

CHECKs TAD
TAD
SNA
JMP
TAD
TAD
SPA
JMP
TAD
SMA
JMP
I15Z
15z
JMP

/YES: PACK THE 4 DIGITS

PACK>» TAD
DCA
DCA
TAD
DCca

DIGPCK, TAD
CLL
RTL
TAD
TAD
DCA
1Sz
182
JMP
. TAD
DCA
TAD
TAD
SMA
JMP
ISZ
I15Z
JMP

Figure 5-14B.

I TEMP
MDOLAR
CLA
ORDER
1 TEMP
M260

ERROR
M1Q
cLA
ERROR
TEMP
DIGCTR
NEWDI G

TEMP1
TEMP
HOLD
M4
DIGCTR
HOLD
RAL

I TEMP
M260
HOLD
TEMP
DIGCTR
DIGPCK
HOLD

I BUFFPT
I BUFFPT
K4B89
cLA
ERROR
AMOUNT
BUFFPT
ACCEPT

/TLS TO SET PRINTER FLAG.

- /SET UP STORAGE AREA.,

/SET AMOUNT TO 0.

/RETURN CARRIAGE.

/SET UP COUNTER

/FOR 4 DIGITS.

/SET A POINTER TO
/TEMPORARY INPUT STORAGE.
/GET A CHARACTER.

/STORE IT.

/1S CHARACTER A s 7

/YES: ORDER INPUT.
/NO: CHECK FOR OCTAL INPUT.
/1S ASCII LESS THAN 260?

/YES: ERROR.
/NO: SUBTRACT 10.

/A5CII IS GREATER THAN 267.
/INCREMENT STORAGE POINTER.
/4 DIGITS YET?

/NO: GET ANOTHER.

INTO ONE NUMBER.

/SET POINTER TO STORAGE LOC.

/CLEAR LOCATION HOLD.
/SET COUNTER FOR 4 DIGITS.

/CONTENTS OF HOLD INTO AC.
/ROTATE INTO CLEARED LINK.
/ROTATE TWICE MORE.

/ADD ONE ASCII CHARACTER.
/SUBTRACT OUT THE 260.
/STORE AC IN HOLD.
/INCREMENT .STORAGE POINTER.
/PACKED 4 DIGITS YET?

/N@: PACK ANOTHER.

/YES: STORE PACKED NUMBER.

/NEGATIVE INPUT?

/YES: REJECT ENTRY.

/NO: COUNT THE ENTRIES.
/SET UP FOR A NEW ENTRY.
/GET A NEW ENTRY.

Sample Program: Initialization and Input Coding

5-19

/PUT THE NUMBERS IN INCREASING ORDER.

ORDER, TAD AMOUNT /SET UP A TALLY
CIA /TO COUNT THE
IAC /NUMBER OF
DCA TALLY /COMPARI SONS .
DCA FLAG /CLEAR THE FLAG.
TAD BUFF /SET THE POINTERS
DCA X1 /(X1 AND X2) TO THE
TAD BUFF /PROPER DATA LOCATIONS.
IAC /X2=X1+1
DCA X2
TEST, TAD I X2 /COMPARE X1 AND X2.
CIA
TAD I X1 :
SMA SZA CLA /REVERSE ENTRIES IF
JMS REVERSE /X2 1S LESS THAN X1.
1Sz X1 /INCREMENT THE POINTERS.
1Sz X2 . 4
1SZ TALLY /DONE COMPARING YET?
JMP TEST /NO: COMPARE MORE ENTRIES.
TAD FLAG /YES: IS FLAG SET?
SZA CLA
JMP ORDER /YES: MAKE ANOTHER PASS.
JMP PRINT /NO: TYPE THE ORDERED DATA.
REVERSE,® /SUBROUTINE TO SWITCH X'S.
TAD 1 X1
DCA HOLD
TAD 1 X2
DCA I X1
TAD HOLD
DCA 1 X2
CLA CLL CMA /SET FLAG WHENEVER
pca FLAG /6 SWITCH IS MADE.

JMP I REVERSE

Figure 5-14C. Sample Program: Ordering Coding

5-20

/PRINT OUT THE ORDERED NUMBERS .

PRINT, JMS CRLF /RETURN THE CARRIAGE.
TAD BUFF /SET THE BUFFER POINTER.
DCA BUFFPT :
TAD AMOUNT /SET LIMIT FOR OUTPUT.
CcIa :
DCA PRNTCT ‘
ANOTHR, JMS CRLF /RETURN CARRIAGE.
TAD M4 JCOUNT THE DIGITS OUTPUT.
DCA DIGCTR
DCA HOLD /CLEAR HOLD LOCATION.
TaD 1 BUFFPT /GET A CHARACTER.
CLL RAL /ROTATE INTO CLEARED LINK.
MOREs TAD HOLD /ADD HOLD TO AC.
: RAL /ROTATE THREE TIMES LEFT.
RTL
DCA HOLD /STORE AC IN HOLD.
TAD HOLD
AND MASK7 . /MASK OUT FIRST 9 BITS.
TAD K268
JMS TYPE /TYPE OUT ONE DIGIT.
152 DIGCTR /TYPED 4 DIGITS?
JMP MORE /NO: TYPE ANOTHER.
152 BUFFPT /YES: INCREMENT BUFFER LOC.
1SZ PRNTCT /TYPED ALL ENTRIES?
JMP ANOTHR' /NO: TYPE ANOTHER ENTRY.
JMS CRLF /YES: RETURN CARRIAGE AND
JMP START /ACCEPT MORE NUMBERS TO SORT.
ERROR, CLA :
TAD QUEST
JMS TYPE :
JMP ACCEPT 7/ DISREGARDS ILLEGAL ENTRY.
END= - R

Figure 5-14D. Sample Program: Qutput Coding

5-21

*100

TYPE., @ /TYPE OUTPUT SUBROUTINE.
TSF ’
JMP . -1
TLS
cLa
JMP 1 TYPE
CRLF, @ /CARRIAGE RETURNELINE FEED.
TAD K215
JMS TYPE
TaD K212
JMS TYPE
JMP I CRLF
LISN, 14} /LISN INPUT SUBROUTINE.
KSF
JMP . -1
KRB
TLS
JMP I LISN
BUFF» END
BUFFPT, 0@
M4, 7174
DIGCTR, @
TEMP15, - ++2 .
TEMP » 4]
4]
a
1]
MDOLAR, 7534
M10 ., -12
K4an@a, 4092
HOLD» @
M264 » -260
AMOUNT, @
FLAG, 2
TaLLY. @
Xt 14}
X2, [}
PRNTCT, @
MASK7» 7

K260 » 260
K212, 212
K215 215
QUESTs 277
]

Figure 5-14E. Sample Program: Subroutines and Constants Coding

5.22

PROGRAM INTERRUPT FACILITY

The running time of programs using input and output routines is
primarily made up of the time spent in waiting for the device to accept
or transmit information. Specifically, this time is spent in loops such as:

TSF
JIMP .—1

Waiting loops waste a large amount of computer time. In those cases
where the computer can be doing something else while waiting, these
loops can be removed and useful routines can be included to use this
waiting time. This sharing of a computer between two tasks is often
accomplished through the program interrupt facility, which is standard
on all PDP-8 family computers.

The following two instructions control the interrupt facility.

Mnemonic Octal Operation
ION 6001 Turn interrupt facility on.
IOF 6002 Turn interrupt facility off.

The program interrupt facility allows a running program to proceed
until a peripheral device connected to the interrupt facility sets its
- ready flag. The running program is often referred to as the background
program. Whenever a flag is set to 1 by a device that is connected to
the interrupt facility, the PDP-8 completes execution of the instruction
.in progress and then acknowledges the interrupt, The interrupted com-
puter will automatically execute a JMS O instruction. The result of this
action is that the program counter register, which contains the address
of the next instruction to be performed in the main program, is stored
in location 0. The instruction in location 1 is then performed, which
usually initiates a service routine for the peripheral device.

The service routine, sometimes called .the foreground program, is
usually contained elsewhere in memory and an indirect jump to the
start of the program is contained in location 1. The service routine is
terminated by a JMP I 0 instruction, to return to the background pro-
gram.

The occurrence of an interrupt disables the facility from further in-
terrupts, The TON instruction must be included in the interrupt service
routine to enable further interrupts. This is usually done immediately
before returning to the background program. The ION instruction does
not take effect until one instruction following it has been completed.

5-23.

N
y

Thus, the ION instruction is usually followed by the JMP I 0.

INTRTE, —
SERVICE .
ROUTINE .
EXIT, TON Enables interrupt facility
. IMP T O . again after execution of
. JMP10.
0000, 0202
0001, JMP INTRTE
0200, ISZ COUNT
- 0201, TAD A Interrupt request oc-
curred during the execu-
tion of this instruction;
caused a JMS 0 to be ex-
ecuted immediately after
completion of the TAD
A instruction execution.
0202, RAL Interrupt is turned on
before this instruction is
executed.
Programming an Interrupt

The program presented in Figure 5-15 includes a program to rotate -
one bit through the accumulator as the background program. The fore-
ground program, which is initiated by the service routine, accepts
ASCII characters from the Teletype unit and, upon receipt of the
ASCII code for a period, prints out the characters which have been
stored.

The program begins with an initialization routine to set up buffer
space to store the incoming characters and to set the mode for input.
(The program signals input mode by a value of MODE = 0 and out-
put mode by a value of MODE = 1.} Once the initialization routine
has enabled the interrupt facility, the background program is started.

The background program is a routine to rotate one bit through the
accumulator and link. The first instruction clears all bits but bit 11. The
program then counts through the two 1SZ loops, after which it rotates
the bit one place left and then returns to the count loops, The accumu-

5-24

lator and link displays will exhibit a quickly rotating light while waiting
for an interrupt to initiate the foreground program.

The first instruction to be executed after an interrupt request is an
antomatic JMS O, thereby storing the return address to the background
program in location 0. The program then executes the instruction in
location 1 which is an indirect jump to the service routine location 2
which contains SERV).

Since an interrupt occurs during the running of the background pro-
gram, the service routine must save the active registers of the back-
ground program. The service routine stores the link and accumulator,
so that they may be restored after the service routine is completed.

The service routine must determine the source of the interrupt request
" by determining which device flag is set and then jump to a routine to
service the appropriate device. The service routine ends with a HLT,
which would be encountered only if the service routine is entered and
neither flag is set—a condition that should never exist.

I3

The keyboard input routine is entered when the keyboard flag is set.
The flag is cleared to prevent further interruptions when the interrupt
system is re-enabled. If the mode is not set for input, program control
is transferred to the background program. Otherwise, the program
accepts the character (KRB), acknowledges its receipt by printing it
on the printer (TLS), and stores it in the buffer. (Notice that no KSF,
JMP .—1 loop is necessary.) The routine then checks for the ASCII
code for a period, returning to the background program if it is not a
period. Upon receipt of a period, the routine resets the buffer and sets
.. the mode for output. Program control then returns to the background
program. (Since a TLS instruction was éxecuted previously, an interrupt
will be requested when this action is complete, and the stored ASCII
codes will be typed out by the printer output routine.)

The printer output routine is entered when its flag is set. The routine
clears the device flag and checks for output mode. When in output
mode, the routine prints one character from the buffer. (Notice that no
TSF, JMP .—1 loop is necessary.) If the character is not a period,
control returns to the background program while the printer finishes
typing the character. If the character is a period, the routine resets the
buffer, sets the mode for input, and returns to the background program.

5-25

The exit routine to return to the background program must restore
the link and accumulator to the values at the time of interrupt. The
program turns the interrupt on (ION) and then returns to the rotate
program via a JMP I O instruction (location O contains the value of
the program counter when the interrupt occurred). The ION instruc-
tion does not take effect until the instruction following it has been
executed.

The constants used by the routines conclude the program listing.

C=D o C7o

SET MODE RESTORE CLEAR
FOR INPUT ACAND L KEYBOARD FLAG
RESERVE TURN
BUFFER SPACE INTERRUPT ON
FOR CHARACTERS -
RETURN TO
TURN BACKGROUND
INTERRUPT ON PROGRAM
‘ TYPE ONE
CHARACTER
ROTATE BIT FROM BUFFER
ENDLESSLY THROUGH
ACCUMULATOR
CODE 1N
BUFFER

SAVE AC
AND L

KEYBOARD
FLAG SET
?

ENTER KEYBOARD
SERVICE ROUTINE
KB)

PRINTER
FLAG SET
?

ENTER PRINTER
SERVICE ROUTINE
e

CHANGE MODE
TO QUTPUT

Figure 5-15A. Program to Operate on Program Interrupt Facility:
Flowchart

5-26

*0
/FIRST INSTRUCTIONS AFTER AN INTERRUPT.

2 /STORES RETURN ADDRESS.
JMP I 2 /.JUMP TO SERVICE ROUTINE.
SERV .

*200
ZINITIALIZATION ROUTINE.
START» CLA CLL

DCA MODE /SET MODE FOR INPUT.
TAD K1777 _
DCA BUFFER /SET UP BUFFER SPACE.
10N /TURN ON INTERRUPT FACILITY.
/BACKGROUND PROGRAM
ROTATEs CLA CLL IAC /SET ONE BIT IN AC.
1SZ COUNT /ROTATING DELAY INSTRUCTIONS.
JMP 0‘1
1SZ COUNT
JMP -1
RAL /ROTATE BIT LEFT.
JMP ROTATE+1 /EXECUTE DELAY INSTRUCTIONS.
/SERVICE ROUTINE ’
SERV, DCA AC /SAVE ACCUMULATOR.
RAL
DCA L /SAVE LINK. :
KSF /KEYBOARD INTERRUPT?
SKP /NO: CHECK PRINTER.
JMP KB /YES: SERVICE KEYBOARD.
TSF /PRINTER INTERRUPT?
SKP /NO: SKIP PRINTER ROUTINE JMP.
JMP TP /YES: SERVICE THE PRINTER.
HLT /FATAL HALT IF NO FLAG SET.
/KEYBOARD INPUT ROUTINE
KB KCC /CLEAR KEYBOARD FLAG.
TAD MODE ~ /INPUT MODE?
SzA CLA :
JMP EXIT /NO: RETURN TO BACKGROUND.
‘152 BUFFER /YES: INCREMENT BUFFER.
KRB /READ THE CHARACTER-
TLS. /ACKNOWLEDGE ON THE PRINTER.
DCA 1 BUFFER /STORE CHARACTER.
TAD I BUFFER /1S CHARACTER A PERIOD?
TAD MPER
SZA CLA :
JMP EXIT /NO: RETURN TO BACKGROUND.
TAD K1777 /YES: RESET BUFFER
DCA BUFFER /TO TYPE THE CHARACTERS.
CLA CMaA
DCA MODE /SET MODE FOR OUTPUT AND
JMP EXIT /RETURN TO BACKGROUND.

Figure 5-15B. .Program to Operate on Program Interrupt Facility: Coding

5-27

/PRINTER OUTPUT ROUTINE

TP TCF /CLEAR PRINTER FLAG.
TAD MODE /0UTPUT MODE?
SNA CLA
JMP EXIT /NO: RETURN TO BACKGROUND.
1SZ BUFFER /YES: INCREMENT BUFFER.
TAD I BUFFER /GET CHARACTER FROM BUFFER.
TLS /TYPE IT OUT.
TAD MPER /18 CHARACTER A PERILOD?
SZA CLA
JMP EXIT /NO: RETURN TO BACKGROUND.
DCA MODE /YES: SET MODE FOR INPUT.
TAD K1 777 /RESET BUFFER, AND
DCA BUFFER
. JMP EXIT /RETURN TO BACKGROUND.
/ROUTINE FOR RETURNING TO BACKGROUND PROGRAM.
EXITs Tab L /RESTORE LINK.
CLL RAR
TAD AC /RESTORE ACCUMULATOR.
I0ON /RE-ENABLE INTERRUPT FACILITY.
JMP I @ /7% CONTAINS RETURN ADDRESS.
COUNT, @ -
MODE » ?
Ki777, 1777
BUFFER, 9
AC>» 14
s a
MPER: "256
k3

Figure 5-15B (cont.) Program to Operate on Program Interrupt Facility:
Coding

Advanced Use of the Program Interrupt Facility

The following paragraphs entitled “Multiple Device Interrupt Pro-
gramming” and “A Software Priority Interrupt System” are intended
for programmers making extensive use of the program interrupt facil-
ity. The reader who merely desires a general knowledge of the interrupt
facility may omit these topics from his reading.

MULTIPLE DEVICE INTERRUPT PROGRAMMING

Many programming applications use the interrupt facility to service
several devices. For example, a PDP-8 may use the program interrupt

5-28

facility to control the operation of DECtape and DECdisk systems
through a Teletype console. Systems of this type require a service
routine that determines the source of the interrupt request (i.e., which
device flag is set). The following example is an instruction sequence
which uses dummy skip instructions to determine the device requesting
the interrupt.

- DASF
SKP .
JMP SERVA /DEVICE A REQUESTED THE INTERRUPT
DBSF '
SKP :
JMP SERVB /DEVICE B REQUESTED THE INTERRUPT
DCSF
SKP . v
IMP SERVC /DEVICE C REQUESTED THE INTERRUPT

i

.

DNSF
SKP ' , .
JMP SERVN /DEVICE N REQUESTED THE INTERRUPT

The dummy skip instructions (DASF, DBSF, etc.) are skip-on-flag
instructions for each of the devices in the interrupt system. (Usually,
these instructions skip the next instruction if the device flag is set to a
1. Instructions for some devices, however, may skip if the flag is a 0,
i.e., skip-on-non-flag. Instructions of this type should not be followed
by the unconditional SKP instruction.) Because of the predominance
of SKP instructions, the instruction sequence which determines the
source of an interrupt request is often called a skip chain.

As the previous example implies, the skip chain may be enlarged to
test for almost any number of device flags. However, an important
limitation upon the size of a skip chain is imposed by the devices which
the chain serves. The chain must be traversed and the device serviced
before the desired information is lost. High-speed devices, such as mag-
netic tapes, disks, or drums, must be serviced quickly or the informa-
tion will not be available, On the other hand, low-speed devices, such
as paper tape readers and punches, have a relatively long period of
time in which they may be serviced before any loss of information
occurs. The programmer must take these time factors into account
whenever he programs a multiple device interrupt system.

5-29

High-speed devices should be tested and serviced first by the skip
chain. Thus, the chain should begin by checking the device flags of the
high-speed devices of the system, such as DECtape and DECdisk, and
conclude by checking the flags of the low-speed devices such as the
Teletype keyboard or paper tape readers and punches. Thus, a high-
speed device is not required to wait while a long set of device flags
is checked.

In the case of two interrupt requests occurring simultaneously, the
high-speed device is serviced first. The second device may be serviced
simply by returning to the background program and waiting for an-
other request, or it may be serviced by checking the flags through a
skip chain before returning to the background program.

A SOFTWARE PRIORITY INTERRUPT SYSTEM

A service routine may be written in such a way that a priority of de-
vice interrupts is established through software. The programmer sets
priorities by allowing the service routine for a particular device to be
interrupted by the interrupt request of a higher priority device. This
may be necessary in a system that includes high-speed devices that re-
tain information for a short time and that require immediate attention.
A lower-priority device would be serviced by a routine that would re-
enable the interrupt facility at its beginning. The higher-priority device
would not re-endble the interrupt until it had completed its task.

The service routine of a multiple interrupt system must include in-
structions to save the contents of the accumulator and link for each
interrupt. The contents of the program counter must also be removed
from location O before a new interrupt occurs. To save the contents of
these active registers, the programmer must establish a “push down”
list of accumulators, links, and program counters. The instructions to
handle such a list could be the following.

SERV, DCAIACPTR /SAVE AC

RAL

DCAILPTR /SAVE L

TAD 0 :
DCAIPCPTR /SAVE PROGRAM COUNTER
ISZ ACPTR /INCREMENT POINTERS FOR
ISZ LPTR /NEXT USE.

ISZ PCPTR

5-30

The above instructions would then be followed by the chain of instruc-
tions to test the flags and jump to the service routine for the device
whose flag is set. . ’

The service routine for a high-priority device in such a system is
similar to the preceding program examples, in that the interrupt facility
is not enabled until processing is complete.

The low-priority device would be serviced by a routine which would
re-enable the interrupt system immediately after clearing its device
flag. A low-priority keyboard routine might start as follows,

KB, KCC /CLEAR DEVICE FLAG.
ION /TURN INTERRUPT ON.
/SERVICE PROGRAM WILL

TAD MODE

/PROCEED UNTIL
/INTERRUPTED OR COMPLETED.

.

Thus, the keyboard could be interrupted during the process of trans-
mitting a character. The service routine would save the status of the
routine by storing the program counter accumulator and link in the
push-down list described before. After the high priority device had
been serviced, the following exit routine would return control to the
low priority device.

EXIT, IOF
CLA CMA
TAD ACPTR
DCA ACPTR
CLA CMA
TAD LPTR
DCA LPTR
" CLA CMA

TAD PCPTR

"DCA PCPTR
TAD I PCPTR
DCA O

TAD I LPTR
CLL RAR
TAD I ACPTR
IMPIO

/INTERRUPTS NOT ALLOWED. ,
/FOLLOWING INSTRUCTIONS WILL
/DECREASE THE POINTERS

/BY 1 AND THEN

/USE THEM. 4

Through this approach, multiple interrupts could occur and would be
serviced on a priority basis specified by the programmer.

5-31

Program Interrupt Demonstration Program

The program presented in Figures 5-16A through 5-16F is a dem-
onstration program to run on the program interrupt facility. It contains
a bit rotating program, the speed and direction of which is determined
by the switch register settings. (This same program is presented in
Exercise 10 of Chapter 3.) The foreground program is the ordering
program which was given in Figure 5-14. This program has the capac-
ity to accept 4-digit positive octal input from the Teletype keyboard,
automatically terminating each 4-digit number with a carriage return
and line feed. Upon receipt of a typed dollar sign ($), the program will
place the data in increasing order, and type the ordered data on the
printer. The program will not accept negative numbers or nonoctal
digits.

The example is useful as a demonstration and illustration of the
power of program interrupt as the computer will seem to be perform-
ing two tasks at the same time. The programmer knows that this is not
possible and that the two tasks are sharing the computer time; how-
ever, the appearance indicates simultaneous actions.

When an interrupt request occurs, locations 0, 1, and 2 of page 0
provide the storage for the program counter and the jump to the service
routine,

The constants which are stored on page O include four “software
switches” to record the conditions within the running program. MODE
is used to specify the input or output status of the running program.
SW1 is used to signal the input of the first digit of a new number (0)
or the input of successive digits of a continuing number (1). SW2 is
used to control the input and output of data by separating each number
with a carriage return and line feed. SW3 is used to bypass the output
mode and allow the typing of carriage returns, line feeds, and question
marks (to denote errors of input) during the input of data.

Other constants include pointers which permit off-page jumps to
routines elsewhere in memory. The constant BUFF is a pointer to the
storage area for the packed input numbers. It contains END which is
defined as END = . in the last line of Figure 5-16F. Thus, the buffer
is all of memory following the last instruction.

5-32

*

/FIRST INSTRUCTIONS AFTER AN INTERRUPT.

/CONSTANTS STORED ON PAGE Q.

4]

JMP I 2

SERV
*50
MODE, @
SWi, (%]
SW2., (0]
SW3» @
AC» @
Ls 2
PRINTR, TP
KEYBRD, KB
ORDPTR» ORDER
EXITPT, EXIT
M7000 » 1000
BUFF» END
BUFFPT, @
M4, 71774
DIGCTR, 0
TEMP1 ., «+2
TEMP, . 4]

%]

4}

[4]

g .
MDOLARs 7534
M13 > -10
HOLD, (4]
HOLDbL, @
M2 60, -7520
AMOUNTs @
FLAG, 4]
TALLY, @
X1, [}
X2, 7]
PRNTCT, @
K7, 7
K269, 260
K212, 212
K215, 215
QUEST, 277
KaBaa » 4090

/INPUT=03 OUTPUT=-1.
/NUMBER STATUS SWITCH
/0UTPUT:sCR=@,LF=-1,DATA=1.
/MODE BYPASS SWITCH

/SAVE AC AND

/L DURING AN INTERRUPT.
/FOLLOWING ARE POINTERS FOR
/THE RESPECTIVE ROUTINES.

/0RDER SUB-PROGRAM CONSTANTS

Figure 5-16A. Program Interrupt Demonstration Program
(Constants Located on Page 0)

5-33

/SUBROUTINES STORED ON PAGE 0.
CR» TAD K215 /CARRIAGE RETURN ROUTINE
TLS
cLA CMA
DCA SW2 /SET SW2 FOR A LF. .
JMP 1 EXITPT
LF, TAD K212 /LINE FEED ROUTINE
TLS :
cLA
TAD SW3
SNA CLA
JMP SW2SET
DCA SW3 /TURN OFF MODE BYPASS.
DCA SW2 /SET SW2 FOR CR.
JMP I EXITPT
SW2SET, CLA CLL IAC o
DCA SW2 /SET SW2 FOR DATA.
JMP 1 EXITPT

Figure 5-16B. Program Interrupt Demonstration Program
(Subroutines Located on Page 0)

The location TEMP is used as a pointer to the four locations after
it; these locations are used for the storage of incoming ASCII codes.

The subroutines CR and LF type the carriage returns and line feeds
when called for by the setting of SW2.

The program begins in location 200 as shown in Figure 5-16C, The
initialization routine sets each of the software switches to zero. After
the initialization is completed, the interrupt facility is turned on and the
background program is started.

The rotate subprogram begins by checking the setting of the switch
register to determine the direction of rotation. The value of bit 0
specifies a rotate right when it is a O, or a rotate left when itis a 1. The
last nine bits of the switch register determine the speed of the rotation.
They are stored in COUNT and determine the number of passes
through the ISZ COUNTR, JMP .—1 loop.

The BEGIN routine determines the speed and direction and the GO
routine establishes the bit position after each check of the switch regis-
ter setting. The INSTR routine executes the delay and the rotation of
the bit.

5-34

*200
/NEXT INSTRUCTIONS INITIALIZE THE PROGRAM.
/FURTHER INITIALIZATION DONE BY RESTART.

START, I0OF /INTERRUPT OFF DURING INITIALIZATION.

CLA CLL
DCA MODE
DCA SWi
DCA SwW2
DCA SW3
TAD BUFF
DCA BUFFPT
DCA AMOUNT
10N ' .
/ROTATE SUB-PROGRAM BEGINS HERE.
ROTATE, CLA CLL CML
BEGIN, DCA SAVEAC
RAL
DCA SAVEL
TAD K7000 /ALWAYS SET BITS M,1 AND 2.
OSR
DCA COUNT /MAX COUNT 1S -1008.
OSR
RAL /PUT BIT @ IN LINK.
SZL CLA
JMS LEFT
JMS RIGHT
CLL
GO» TAD SAVEL
RAR
TAD SAVEAC
INSTR, HLT /OVERWRITTEN BY RAR OR RAL.
1SZ COUNTR
JMP INSTR+1
I1SZ COUNT
JMP INSTR+1
JMP BEGIN
SAVEAC, O
SAVEL, @
K700 » 7000
COUNTR, @
COUNT, @
/SUBROUTINES TO DETERMINE DIRECTION.
LEFT» 2
1SZ LEFT /SKIP INSTR AFTER JMS LEFT.
TAD KRAL .
DCA INSTR
JMP I LEFT /STORE 'RAL* IN 'INSTR'.
RIGHT, O
TAD KRAR ‘
DCA INSTR /STORE 'RAR' IN °*INSTR'.
JMP I RIGHT
KRAR» RAR
KRAL» RAL

Figure 5-16C. Program Interrupt Demonstration Program
(Initialization Routine and Rotate Subprogram)

5-35

/SKIP CHAIN TO SERVICE ROUTINES
SERV, DCA AC

RAL
DCa
TSF
SKP
JMP
KSF
SKP
Jmp
HLT

L

I PRINTR

1 KEYBRD

/0RDER SUB-PROGRAM

ORDER, CLA
TAD
cia
1AC
pca
Dca
TAD
Deca
TAD
1AC
pca

TEST., TAD
cla
TAD
SPA
JMP

REVERSE, TAD
DCa
TAD
DCA
TAD
Dca
cLAa
pDca

INCPTR, ISZ
15z
1S5z
JMp
TAD
5za
JMP
CcLa
DCA
TAD
DCA
Dca
TAD
cia
pDca
TLS
JMP

CLL
AMOUNT

TALLY
FLAG
BUFF
X1
BUFF

X2
I X2

I X1
SNA CLA
INCPTR
1 X1
HOLD
1 X2
1 X1
HOLD
1 X2
CLL cMA

AMOUNT
PRNTCT

1 EXITPT

/SAVE AC AND L
/DURING AN INTERRUPT.

/15 INTERRUPT CAUSED

/BY TELETYPE PRINTER?
/SERVICE TELETYPE PRINTER.
/1S INTERRUPT CAUSED

/BY KEYBOARD?

/SERVICE KEYBOARD.

/SHOULD NEVER REACH HERE.

/SET TALLY FOR COMPARISONS.

/CLEARS FLAG FOR EACH PASS

/15 X2 LESS THAN X17?

/NO: DON'T REVERSE.
/YES: REVERSE X2 AND X1.

/SET FLAG TO SIGNAL
/THAT A REVERSE WAS DONE
/INCREMENT X POINTERS.

/COMPARED ALL ENTRIES?
/NO: COMPARE NEXT X'S.
/YES: ORDER DONE YET?

/NO: MAKE ANOTHER PASS.

/YES:s SET QUTPUT MODE.
/SET POINTER TO FIRST ENTRY.

/CLEAR NUMBER STATUS SWITCH.
/SET A TALLY FOR OUTPUT.

/TO TRIGGER NEXT INTERRUPT.

Figure 5-16D. Program Interrupt Demonstration Program
(Skip Chain to Service Routines and Order Subprogram)

5-36

The service routines are reached through the skip chain in Figure
5-16D. These service routines are located on a separate memory page
and are reached through pointer words stored on page 0.

The order subprogram is initiated when input is complete. The
routine sorts the positive octal numbers stored in the buffer into in-
creasing order. The technique is the same as that used previously in the
program of Figure 5-14.

These routines conclude the instructions placed on page 1 of mem-
ory. The service routines begin on the next memory page.

* 4000
KB T Kee .
TAD MODE /INPUT MODE DOES NOT
Sza CcLa . /HONOR KEYBOARD REQUEST.
JMP EXIT)
TAD SW1
SZA CcLAa /CHECK FOR A NEW NUMBER
JMP CNTDIG /0R A CONTINUED DIGIT.
TAD M4
DCA DIGCTR
TAD TEMP1
DCA TEMP
CNTDIG, KRS /READ KEYBOARD CHARACTER.
TLS /TYPE IT ON PRINTER.
: DCA 1 TEMP /STORE DIGIT TEMPORARILY.
CHECKs TAD I TEMP
TAD MDOLAR . /CHECK FOR TERMINAL $
SNA CLA -
JMP I ORDPTR
TAD 1 TEMP
TAD M260 /ASCII LESS THAN 26072
sSPaA i
JMP ERROR /YES: ERROR.
TAD Mi@ /NO: SUBTRACT 10.
SPA) /GREATER THAN 2677
JMP LEGAL " /NO: DIGIT IS LEGAL.
ERRORs. CLA 1AC /NOT AN OCTAL NUMBER.
DCA SW3 " /SET TO TYPE ?,CR,LF.
.Dca SW1 /SET FOR A NEW NUMBER.
TLS

Figure 5-16E. Program Interrupt Demonstration Program -
(Keyboard Service Routine)

5-37

The service routines begin in location 400 as presented in Figure
5-16E. The keyboard service routine honors an interrupt only if the
mode is set to 0. The routine uses SW1 to specify number status, re~
setting the digit counter if a new number is started. The routine accepts
the incoming digit and types it on the printer.

The input of a non-octal character or terminal symbol ($) is checked
after cach character is received. Whenever the terminal $ is received
by the program, control is transferred to the grder subprogram. If the
character is not an octal digit, the program types a question mark and

JMP EXIT
LEGAL, CLA CMA /SET SW1 TO SIGNAL

DCA SW1 /A CONTINUED NUMBER.

15Z TEMP

1SZ DIGCTR /HAVE 4 DIGITS?

JMP EXIT /NO: GET NEXT DIGIT.
PACK, TAD TEMPI1 /YES: PUT NUMBER TOGETHER.

DCA TEMP

DCA HOLD

TAD M4

DCA DIGCTR
DIGPCK» TAD HOLD /NEXT 7 INSTRUCTIONS

RAL CLL /COMBINE THE 4 OCTAL DIGITS

RTL /INTO ONE MEMORY WORD.

TAD I TEMP

TAD M260

DCA . HOLD

1SZ TEMP

1SZ DIGCTR

JMP DIGPCK /PACK ANOTHER DIGIT.

TAD HOLD

DCA 1 BUFFPT /STORE THE OCTAL NUMBER.

TAD 1 BUFFPT /CHECK FOR NEGATIVE ENTRY.

TAD K4000

SPA CLA

JMP NOTNEG /ENTRY IS LEGAL.

1AC /SET SW3 TO TYPE A "2".

JMP DISALO /DISALLOW NEGATIVE ENTRY.
NOTNEG, I1SZ BUFFPT

1SZ AMOUNT /COUNT THE ENTRIES.

CLA CMA /TYPE A CR,LF
DISALO, DCA SW3 /AFTER THE ENTRY.

DCA Su1 /CLEAR SW1 FOR NEXT PASS.

TLS

JMP EXIT

Figure 5-16E (cont.). Program Interrupt Demonstration Program
(Keyboard Service Routine)

5-38

ignores the whole entry in which it occurred. The program requests a
new 4-digit number by typing a carriage return and line feed.

When four digits have been received, the pack routine combines the
four ASCII codes into one octal number and stores the number in the
buffer. If the number is negative, the entry is disallowed. (The next
packed number will be deposited in the same location, thus destroying
the negative number.) A running count of the entries is kept and later
used when ordering is performed. The software switches are finally set
to return the carriage for the next number to be input.

The printer service routine in Figure 5-16F is used to output the
ordered numbers and to type carriage returns, line feeds and question
marks during input. The “mode bypass switch”, SW3, is used in con-
junction with the subroutines on page 0 to type carriage returns and
line feeds. If the program is in output mode, the results of the sorting
will be typed by the printer service routine. The stored numbers will be
unpacked, translated into ASCII codes and.typed out.

/PRINTER SERVICE ROUTINE

TP, . TCF
TAD SW3 /CHECK MODE-BYPASS-SWITCH.
SNA CLA-
JMP MODCHK /N0 BYPASS, CHECK MODE.
TAD SW3
SPA CLA
JMP RETLF /MODE~-BYPASSs DO A CR & LF.
TAD QUEST /MODE BY PASS SET FOR *7?'.
TLS
cLa cma "/AFTER TYPING THE ? SET SW3.
DCA SW3 /TO TYPE THE CR &LF.,
JMP EXIT
MODCHK, TAD MODE /CHECK MODE.
SNA CLA
JMP EXIT /INPUT MODE: IGNORE REQUEST!
RETLF, TAD 5Wg /OUTPUT MODE: BEGIN OUTPUT.
SNA CLA) .
, JMP CR /FIRST PASS,CARRIAGE RETURN.
TAD SW2
SPA CLA
JMP LF /LINE FEED ON SECOND PASS.
DATAS TAD SW1 /PRINT DATA ON THIRD PASS.
SZA CLA " /NEW NUMBER?
JMP DIGTYP /NO: TYPE ANOTHER DIGIT.
TAD M4 /YES: RESET DIGIT COUNTER.
DCA DIGCTR
DCA HOLD /CLEAR THESE LOCATIONS.
DCA HOLDL

Figure 5-16F. Program Interrupt Demonstration Program
(Printer Service, Exit and Restart Routines)

5-39

When the action of either service routine is completed, the exit rou-
tine returns control to the background program until the next interrupt
occurs. This routine restores the accumulator and link and turns the
interrupt on before jumping to the interrupted background program.

The restart routine initializes the software switches for the ordering
of a new set of data input from the keyboard. The mode is set for input
and control returns to the background ‘program until new input is
supplied.

TAD I BUFFPT - /GET NUMBER TO BE PRINTED.
DIGTYP, TAD HOLDL L
‘ CLL RAL /ROTATE INTQ THE LINK.
TAD HOLD /THESE TWELVE INSTRUCTIONS
RAL /PRINT OUT THE NEXT DIGIT.
RTL
DCA HOLD
RAR
DCA HOLDL
TAD HOLD
AND K7
TAD K260
TLS
CLA CMA /SET FOR ANOTHER DIGIT.
DCA SW1
ISZ DIGCTR /WORD COMPLETE?
JMP EXIT /NO: GET ANOTHER DIGIT.
CLA /YES: SIGNAL A NEW NUMBER.
DCA SW!
DCA SW2 /TYPE A CR & LF.
1SZ BUFFPT
15Z PRNTCT /ALL NUMBERS PRINTED?
JMP EXIT /NO: WAIT FOR NEW NUMBER.
RESTART,CLA CLL /YES: SET UP FOR NEW INPUT.
DCA MODE
DCA SW1
DCA SW2
cMA /SET BYPASS SWITCH
DCA SW3 /TO TYPE A CR & LF.
TAD BUFF

DCA BUFFPT

DCA AMOUNT

JMP EXIT
/ROUTINE TO RETURN TO ROTATE PROGRAM
EXITs CLA CLL

TAD L

RAR

TAD AC

10N

JMP 1 @ /@ CONTAINS RETURN ADDRESS.
END=.
&

Figure 5-16F (cont.). Program Interrupt Demonstration Program
(Printer Service, Exit and Restart Routines)

5-40

DATA BREAK

Programmed transfers of data, including program interrupt transfers,
pass through the accumulator, The accumulator must therefore be
cleared while the transfer is performed. This type of transfer is often
too slow for use with extremely fast peripheral devices. Devices which
operate at very high speed, or which require very rapid response from
the computer, use the data break facility (standard on all PDP-8
family computers except the PDP-8/L). Use of these facilities permits
an external device to insert or extract words from the computer mem-
ory, bypassing all program control. Because the computer program has
no cognizance of the transfers made in this manner, the program must
check for the presence of this data prior to its use. The data break is
particularly well-suited for devices that transfer large amounts of data
in block form, for example, random access disk files, high-speed mag-
netic tape systems, or high-speed drum memories.

The data break facility allows a peripheral device to transfer infor-
mation directly with the PDP-8 core memory on a “cycle stealing”
basis. Input/output equipment operating at high speed can transfer in-
formation with the computer through the data break facility more
efficiently than through programmed means. In contrast to programmed
operations, the data break facilities permit an external device to con-
trol information transfers.

Data breaks are of two basic types: single-cycle and 3-cycle. In a
single-cycle data break, registers in the device specify the core memory
address of each transfer and count the number of transfers to deter-
mine the end of the “block. In the 3-cycle data break, two computer
memory locations perform these functions, simplifying the device in-
terface by omitting the two hardware registers.

In general terms, to initiate a data break transfer of information, the
control must do the following tasks.

Specify the affected address in core memory.
Provide the data word.
Indicate direction of data word transfer.

Indicate a single-cycle or -3-cyc1e break.

I N

Request the data break.

5-41

Single-cycle data break is a device-controlled transfer of information
which steals one memory cycle from the PDP-8, When a device that is
connected to the data break facility wishes to transfer a word of infor-
mation, it requests a data break. The PDP-8 computer completes the
current instruction and enters the break state. For one memory cycle,
the device has access to the PDP-8 and transfers the data word into
(or out of) the memory unit at a location specified by the device con-
trol. The device controls the number of words to be transferred and
the locations in memory to be affected by the transfer. The device con-
tinues to request breaks and transfers one word per break until the
block transfer is complete.

The 3-cycle data break facility provides a current address register
and a word count register in core memory for each connected device,
" thus eliminating the necessity for registers in the device control. When
several devices are connected to the facility, each is assigned a different
pair of core locations for word count and current address, allowing
interlaced operations of the devices. The device specifies the location
of these registers in memory. Since these instructions are in memory,
they may be loaded and unloaded without using IOT instructions.

The 3-cycle data break facility performs the following sequence of
operations.

1. An address is read from the device to indicate the location of
the word count register. This location specifies the number
of words in the block yet to be transferred. The address is
always the same for a given device.

2. The content of the specified word count register is read from
memory and is incremented by 1. To transfer a block of n
words, the word count is set to —n during the programmed
initialization of the device. When this register is incremented
to 0, a pulse is sent to the device to terminate the transfer.

3. The location after the word count register contains the cur-
rent address register for the device transfer. The content of
this register is set to 1 less than the locatidn to be affected by
the next transfer. To transfer a block beginning at location
A, the register is originally set to A-1.

4. The content of the current address register is incremented by
1 and then used to specify the location affected by the trans-
fer.

5-42

After the transfer of information has been accomplished through the
data break facility, input data (or nmew output data) is processed,
usually through the program interrupt facility. An interrupt is re-
quested when the data transfer is completed and the service routine
will process the information.

EXERCISES

1. Write a subroutine ALARM which rings the teleprinter bell
five times.

2. Write a format subroutine for the teleprinter to tab space the
teleprinter carriage. The subroutine is entered with the num-
" ber of spaces to be tabbed in the accumulator.

3. Write a program that will type a heading at the top of the
paper and then type the numbers 1 through 20 down the left
hand side of the page with a period after each number.

4. Write a program which will accept a 2-digit octal number
from the Teletype keyboard and type “SQUARED=" and
the value for the number squared, followed by “OCTAL”
and a carriage return and line feed.

S. Extend the program written in Exercise 4 by adding routines
to disallow the input of an 8 or 9 and type out an appropriate
message.

6. Combine the program of Exercise 5 with a bit-rotating pro-
gram to use the program interrupt facility.

5-43

NOTE TO READER

This chapter concludes the introduction to machine-language pro-
gramming on the PDP-8. The remaining chapters deal primarily with
software supplied by Digital Equipment Corporation as an aid to the
programmer. Chapter 6 describes the software available to assist the
PDP-8 programmer in writing machine-language programs. Later
chapters describe specialized software systems and a conversational
language, FOCAL, which can be used to write programs on the PDP-8.

The programming of advanced input/output devices and options
(e. g., EAE, DECtape, DECdisk, A/D Converters) are beyond the
scope of this publication. The applicable PDP-8 Users Handbook
should be consulted when programming these devices.

5-44

Chapter 6
Operating the
System Software

This chapter contains brief descriptions of the PDP-8 family systems
programs and selected program operating procedures. The major por-
tion of the chapter is devoted to detailed operating procedures for the
most frequently used system software—the loaders, symbolic editor, the
assemblers, the dynamic debugging programs, and FOCAL.

DESCRIPTIONS :

A comprehensive package of systém software accompanies each com-
puter in the PDP-8 family. (Software is the collection of programs and
routines associated with the computer.) The package contains many
programs and routines furnished on punched paper tape or stored on
DECtape in binary coded format, as well as associated manuals and
documents describing the use and operation of each program and rou-
tine.

The system software, supplied by Digital Equipment Corporation,
allows. the programmer to write, edit, assemble, compile, debug, and
run his programs, making the full data processing capability of the
computer immediately available. System software comes from past,
present, and continuing programming efforts of DEC programmers and

. users (see Chapter 11). i

The system programs furnished with each computer in the PDP-8
family are those capable of operating with that specific computer and
its I/O devices. If, for example, 4 computer has 4K of core memory,
the set of programs in the accompanying software package are those
designed to run in 4K of core memory, and the package accompanying
computers with 8K of core memory include those programs capable of
operating in 8K of core memory, i.e., both 4K and 8K programs, and
so on.

Many of the frequently used software programs are briefly described
ou the following pages.

6-1

Symbolic Editor

The Symbolic Editor is a program which allows the programmer to
prepare, edit, and generate a symbolic program tape online from the
Teletype keyboard. Using Editor, the programmer may enter his sym-
bolic program into core from the keyboard or paper tape reader, and:
then issue certain commands to edit his program. When used properly,
Editor can substantially ease the labor of writing and editing symbolic
programs and reduce the number of passes necessary to correct sym-
bolic program tapes. Symbolic Editor is further described later in this
chapter and in the DEC manual entitled Symbolic Editor, Order No.
DEC-08-ESAB-D.

PAL III Symbolic Assembler

The PAL IIT Symbolic Assembler is a two-pass assembler which
translates symbolic programs written in the PAL II1 symbolic language
into binary-coded programs, producing the binary tape acceptable to
the computer. The assembler offers an optional third pass which pro-
duces an octal/symbolic printout and/or punchout of the assembled
program. The assembler is described in more detail later in this chapter
and in PAL III Symbolic Assembler, Order No. DEC-08-ASAC-D.

MACRO-8 Symbolic Assembler

-The MACRO-8 Symbolic Assembler accepts . symbolic programs
written in the MACRO-8 symbolic language and translates them into
binary-coded programs in two passes. An optional third pass is avail-
able for an octal/symbolic assembly program listing. MACRO-8 is
compatible with PAL III and has the following alditional features:
user-defined macros, double-precision integers, floating-point constants,
writhmetic and Boolean operators, literals, text facilities, and automatic
off-page linkage generation. The MACRO-8 Symbolic Assembler is
discussed later in this chapter and in MACRO-8 Assembler, Order No.
DEC-08-CMAA-D.

8K SABR Symbolic Assembler

SABR is an advanced one-pass assembler for use with 8K to 32K
words of core. The SABR language is similar to the assemblers above
with many additional features, and differs from themin its operating
procedures, pseudo-ops, assembled output (relocatable binary code),
and execution of assembled programs. SABR is also used with 8K
FORTRAN. For a complete description, refer to 8K SABR Assembler,
Order No. DEC-08-ARXA-D.
FORTRAN Compilers and Operating Systems

FORTRAN (FORmula TRANGslation) is a problem-oriented lan-
- guage written mostly in mathematical terms and some English words, It

6-2

is especially suited for solving equations and making other mathematical
calculations, For those who elect to write their programs in FORTRAN,
DEC has 4K FORTRAN and 8K FORTRAN, Each is briefly ex-
plained below.

-

4K FORTRAN

4K FORTRAN consists of a compiler, debuggmg aid, and oper-
ating system, The one-pass compiler translates FORTRAN symbolic-
language statements into binary code and produces a binary tape. The
debugging aid (Symbol Print) lists the variables used and their locations
in core and indicates the section of core used by the compiled program.
The operating system loads and executes the compiled program. In ad-
dition, the operating system contains an extensive library of arithmetic
function subprograms and I/O routines. Useful error messages are
printed on the teleprinter when any error is detected by the compiler or
operating system. For additional information, refer to 4K FORTRAN,
Order No. DEC-08-AFCO0-D.

8K FORTRAN

8K FORTRAN consists of a one-pass compiler, the one-pass 8K
SABR assembler, a linking loader, and an operating system, as well as
a comprehensive library of subprograms. During compilation, the sym-
bolic program is compiled into nonexecutable binary code. During
assembly, a relocatable binary program tape is produced. The linking
loader is used to convert the relocatable binary code into absolute
binary code for execution under control of the operating system.
"Meaningful error messages are typed on the teleprinter as they are
detected. For additional information, refer to 8K FORTRAN, Order
No. DEC-08-KFXB-D.

ALGOL-8

ALGOL (for ALGOrithmic Language) is one of the most widely
used international programming languages. The language emphasizes
formal, well-defined procedures for solving problems with computers
and is the standard language of the scholarly Association for Computing
Machinery (ACM).

The ALGOL-8 compiler conforms to SUBSET ALGOL 60 as
approved by the International Federation of Information Processing
Societies (IFIPS) with additional restrictions. Further information is
provided in ALGOL-8 Programmer’s Reference Manual, Order No,
DEC-08-KAYA-D.

6-3

FOCAL

FOCAL (for FOrmula CALculator) is an online, conversational in-
terpreter designed to be used as a tool by students, engineers, and scien-
tists in solving a wide variety of their problems. The language consists
of short imperative English statements and mathematical expressions in
standard notation. FOCAL puts the full calculating power and speed of
the computer at the user’s fingertips without the user having to master
the intricacies of machine-language programming; in fact, the user need
know nothing at all about computers,.

Using FOCAL, a FORTRAN-like program can be entered from the
keyboard and immediately executed, with the interpretive features
taking care of editing, compiling, and executing the stored program,

Procedures for loading and getting “online” with FOCAL are de-
scribed later in this chapter, and a thorough description of the FOCAL
language is given in Chapter 9. (FOCAL is also described in a separate
manual, Order No. DEC-08-AJAD-D.)

BASIC-8 ,

BASIC-8 is a modified version of the very popular algebraic language
developed at Dartmouth College. The BASIC-8 language is composed
of easy-to-learn English statements and mathematical expressions. It is
ideally suited for the classroom as well as the office or laboratory.
(BASIC-8 operates with TSS/8, described in Chapter 8.)

Disk Monitor System

The Disk Monitor System is a keyboard-oriented system con-
taining a monitor and a comprehensive software package. The pack-
age includes a FORTRAN Compiler, Program Assembly Language
(PAL-D), Editor program (Editor), Peripheral Interchange Program
(PIP), and Dynamic Debugging Technique (DDT-D) program. These
system programs simplify the user’s task of editing, assembling, com-
piling, debugging, loading, saving, calling and running his own pro-
grams. The system is modular and open ended, permitting the user to
construct the software required in his particular environment and to
have full access to his disk for storage and retrieval of his programs.

Chapter 7 is devoted to the Disk Monitor System, and it is further
described in Disk Monitor System, Order No. DEC-D8-SDAB-D.

TSS/8
TSS/8 (Time-Sharing System for the PDP-8/I and PDP-8 com-
puters) is a general-purpose, stand-alone, time-sharing system. TSS/8

6-4

offers each of up to 16 users a comprehensive library of programs which
provide facilities for compiling, assembling, editing, loading, saving,
calling, debugging, and running user programs online. Any of-these
library programs can be called into use by typing, in response to Moni-
tor’s invitation (the dot), the command R and the assigned name of the
program. For example, «R FOCAL brings the FOCAL program into
core from the disk and automatically executes FOCAL so that it begins
“typing out its initial dialogue (see Chapters 8 and 9).

The heart of this time-sharing system is a complex of programs
called Monitor. Monitor coordinates the operations of the various units,
allocates the time and services of the computer to users, and controls
their access to the System, By segregating the central processing opera-
tions from the time-consuming interactions with the human users, the
computer can in effect work on a number of programs simultaneously.
The executions of various programs are interspersed without interfering
with one another and without detectable delays in the responses to the
individual users. See Chapter 8 or Time-Sharing System—TSS/8 Moni-
tor, Order No. DEC-T8-MRFB-D,

Loaders

A loader is a short program or routine which, when in core, enables
the computer to accept and store in core other programs. DEC offers
the programmer the following assortment of loaders to use, depending
on his preference and system configuration.

Read-In Mode (RIM) Loader—used to load into core programs
punched on paper tape in RIM format, primarily the Binary
Loader, RIM consist of 17 instructions which are toggled into core
using the console switches.

Binary (BIN) Loader—used to load into core programs punched
on paper tape in binary format, which includes the programmer’s
binary tapes and most of DEC’s system software. BIN is on
punched paper tape in RIM format.

HELP Loader—aused to load into core the RIM and BIN Loaders.
HELP is in two parts: the first part consists of 11 instructions
which are toggled into core using the console switches; the second
part is the HELP Bootstrap Loader punched on paper tape (con-
taining the RIM and BIN Loaders), which is loaded into core
using the low-speed paper tape reader.

TCO01 Bootstrap Loader—used to load into core the DECtape
Library System programs. The loader is a 20-instruction program
which can be toggled into core using the console switches or it may

6-5

be on paper tape in RIM format and therefore read into core using
the RIM Loader.

The four loaders above are covered in greater detail in the System
User’'s Guide, Order No. DEC-08-NGCB-D, RIM and BIN are also de-
scribed under “Operating Procedures” in this chapter.

Disk System Binary Loader—is a keyboard-oriented loader used
to input assembled binary programs into core. This loader is ex-
plained in Chapter 7 and in Disk Monitor System, Order No.
DEC-D8-SDAB-D.

Dynamic Debugging Programs »

Dynamic debugging programs are service programs that allow the
programmer to run his binary program on the computer. From the
Teletype keyboard, the programmer can control program execution,
examine registers and change their contents, make alterations to the pro-
gram, and much more, DDT-8 and ODT-8 are the two dynamic debug-
ging programs included in the system software package.

DDT-8 (Dynamic Debugging Technique)—allows the programmer
to do all the things mentioned in the preceding paragraph by com-
municating with his object program using either the mnemonic
coding of the symbolic program or the octal coding of the binary
program, DDT-8 is described in more detail later in this chapter
and in DDT-8, Order No. DEC-08-CDDA-D.

ODT-8 (Octal Debugging Technique)—allows the programmer to
do all the things mentioned above by communicating with his
object program using the octal representation of his binary pro-
gram. ODT-8 occupies less core storage than DDT-§ and can be
loaded in upper memory or lower memory, depending on where
the binary program resides. If the programmer’s program uses
floating-point numbers, the low version of ODT-8 rust be used
when debugging his program (DDT-8 does not interpret floating-
point numbers). ODT-8 is described in more detail later in this
chapter and in ODT-8 Order No. DEC-08-COCO-D.

Library of Utility Subroutines

Utility subroutines are short routines for performing such tasks as
printout or punchout of core memory content in octal, decimal, or
binary form, as specified by the programmer. Other tasks include octal
or decimal data transfers and binary-to-decimal, decimal-to-binary, and
paper tape conversions. These subroutines can be incorporated in the
user’s program or run independently.

6-6

A complete set of standard diagnostic programs is provided to sim-
plify and expedite system maintenance; these are called MAINDEC
programs or routines. MAINDECs permit the programmer to effec-
tively test the operation of the computer for proper core memory func-
tioning and proper execution of instructions, They also enable perform-
ance checking of standard and optional peripheral devices. A list of
software documentation may be obtained from the DEC Program

" Library.

Library of Mathematical Subroutines

The system software package also includes a set of mathematical
function routines to perform the following operations in both single and
double precision: addition, subtraction, multiplication, division, square
root, sine, cosine, arctangent, natural logarithm, and exponentiation.
These routines are incorporated in the programmer’s symbolic program
as needed and are executed in response to an indirect JMS instruction
to the desired routine. (See Program Library Math Routines, Order No.
DEC-08-FFAC-D.) ' '

Also included in the software package is a floating-point system to
enable the programmer to concentrate on the logic of his computation
rather than on decimal points. The system maintains a constant number
of significant digits throughout the computation, thereby enhancing the
accuracy of the result,

Floating-point notation is parucularly useful for computations in-
volving numerous multiplications and divisions where magnitudes are
‘likely to vary widely and where only crude predictions can be made as
to the amount of variation involved. The floating-point system allows
storage of very large or very small numbers by storing only the signifi-
cant digits together with the exponent for that number. The system is
constructed as a self-contained package which includes its own input,
arithmetic, and output routines. It allows the programmer to use
floating-point arithmetic without having to construct his own arithmetic
subroutines.

When loaded in core, the starting address of the floating-point system
is stored in absolute location 0007 and is activated in response to a
JMS 1 7 instruction. Then, the appropriate floating-point subroutines
are called by the subsequent instructions in the program as shown in
the following example,

IJMSI17 /indirect jump to floating-point system,
FGET A : / gets the floating-point number A
FADD B /and adds it to floating-point number B

6-7

FPUT C /and puts the result in floating-point
FEXT /location C, and then exits the floating-
/point system, returning to the main
/program
For more detail, see Floating-Point System, Order No. Digital 8-5-S.
Availability of Software
System program tapes and manuals are available from DEC Sales
Offices and the central Program Library. In addition, a large variety of

programs written by users of PDP-8 family computers are available
through DECUS (see Chapter 11).

OPERATING PROCEDURES
Initializing the System _

Before using the computer system, it is good practice to initialize all
units, To initialize the system, ensure that all switches and controls are
as specified below.

Main power cord is properly plugged in. -
Teletype is turned OFF,

Low-speed punch is OFF.

Low-speed reader is set to FREE:
Computer POWER key is ON.

PANEL LOCK is unlocked.

Console switches are set to
DF=000 IF=000 SR=0000

SING STEP and SING INST are not set.
8. High-speed punch is OFF.
9. DECtape REMOTE lamps OFF.,

N AL e

The system is now initialized and ready for your use.

Loaders
READ-IN MODE (RIM) LOADER

When a computer in the PDP-8 family is first received, it is nothing
more than a piece of hardware; its core memory is completely demag-
netized. The computer “knows” absolutely nothing, not even how to

6-8

receive input, However, the programmer knows from Chapter 4 that he
can manually load data directly into core using the console switches.

The RIM Loader is the very first program loaded into the computer,
and it is loaded by the programmer using the console switches, The RIM
Loader instructs the computer to receive and store, in core, data
punched on paper tape in RIM coded format (see Chapter 4). (RIM
Loader is used to load the BIN Loader described below.)

There are two RIM loader programs: one is used when the input is
to be from the low-speed paper tape reader, and the other is used when
input is to be from the high-speed paper tape reader. The locations and
corresponding instructions for both loaders are listed in Table 6-1.

The procedure for loading (toggling) the RIM Loader into core is
illustrated in Figure 6-1,

Table 6-1. RIM Loader Programs

Instruction
Location Low-Speed Reader High-Speed Reader
7756 , 6032 ' 6014
7757 6031 6011
7760 . 5357 5357
7761 , 6036 6016
7762 7106 7106
7763 7006 7006
7764 7510 7510
7765 ' 5357 5374
7766 7006 7006
7767 6031 6011
7770 5367 5367
7771 6034 6016
7772 7420 - 7420
7773 _ 3776 3776
7774 . ’ 3376 3376
7775 5356 5357
7776 0000 ' 0000

7
After RIM has been loaded, it is good programming practice to
verify that all instructions were stored properly. This can be done by
performing the steps illustrated in Figure 6-2, which also shows how to
correct an incorrectly stored instruction, * '
When loaded, the RIM Loader occupies absolute locations 7756
through 7776.

6-9

Using
Extended
Mer?’ory

Set *
DF =Desired Fietd
IF=Desired Field

Set SR=7756]4-—______._

/

Depress
LOAD ADD

* DECtape users should
load RIM into field O.

No

Yes

Set SR=First
Instruction

l Depress DEP

et

Set SR=Next
Instruction

l Depress DEP l

Figure 6-1. Loading the RIM Loader

- 6-10

[Depress LOAD ADD —I

A

Set SR=Correct
Instruction

I Depress DEP

l._—~_

Using

Extended

Memory
7

Set
OF = Correct Field
1F =Correct Field

r Set SR = 7756 J<~——~—

[Depress LOAD ADD I

I.‘;

I Depress EXAM I

MB =
Instruction
?

All
Instructions
Checked

. .RIM Is Looded

Figure 6-2. Checking the RIM Loader
BINARY (BIN) LOADER

The BIN Loader is a short utility program Wthh when in core, in-
structs the computer to read binary-coded data punched on paper tape
and store it in core memory. BIN is used primarily to load the programs
furnished in the software package (excluding the loaders and certain

subroutines) and the programmer’s binary tapes.

BIN is furnished to the programmer on punched paper tape in RIM-
coded format. Therefore, RIM must be in core before BIN can be
loaded. Figure 6-3 illustrates the steps necessary to properly load BIN.
And when loading, the input device (low- or high-speed reader) must

be that which was selected when loading RIM.

6-11

——————] See Figures 5-1,6-2

Load RIM

Using

Extended

Memary
?

Set *
DF = Correct Field
IF = Correct Field

{ Set SR=7756 l‘—

l Depress LOAD ADD l

High~Speed Reader Low~Speed Reader

Put BIN Tape L Turn TTY To LINE]
In HSR

4
[Put LSR To FREE]

I Depress START]

Put BIN Tape
In LSR

Tope .
Reads In
?

[Put LSR To START I

HSR Stops At
End Of Tape l

Depress START l

Tape
Reads In
?

LSR Stops At
l ¢ End Of Ta
—-——'——’l Depress STOP o d

* Same field settings
4 as RIM.

Remove Tape
From Reader

(BIN Is Loaded)

Figure 6-3. Loading the BIN Loader

6-12

When stored in core, BIN resides on the last page of core, occupying
absolute locations 7625 through 7752 and 7777.

BIN was purposely placed on the last page of core so that it would
always be available for use—the programs in DEC’s software package
do not use the last page of core (excluding the Disk Monitor, dis-
cussed in Chapter 7). The programmer must be aware that if he writes
a program which uses the last page of core, BIN will be wiped out
when that program runs on the computer. When this happens, the pro-
grammer must load RIM and then BIN before he can load another
binary tape.

Figure 6-4 illustrates the procedure for loading binary tapes into core.

6-13

o toad BN @ | - ———— ‘-‘l See Figure 6-3

Using

Extended

Memary
?

Yes Set
DF = Dasired Field
IF =Fisid Of BIN

Deprass LOAD ADD

No

High-Speed Recder Which Low-Speed Reader
Reader
?

Set SR=3777 Tura TTY To LINE
I Put Tape In HSR Put Tape InLSR
Set LSR To START

— Depress START

No Taj
o Reads In
?

pe
Yes

Tope Stops
At Beginning Of
Trailer Tape
?

() s
Depress CONT
NO |
Yes
End No
Of Tape
?
Yes

Object Tape
1s Looded

Figure 6-4. Loading A Binary Tape Using BIN

6-14

Symbolic Editor

The Symbolic Editor is a service program which allows the pro-
grammer to write and prepare symbolic programs and to generate a
symbolic program tape of his programs. Editor is very flexible in that
the programmer can type his symbolic program online from the Tele-
type keyboard, thus storing it directly into core memory. Then, using
certain Editor commands, the programmer can have his program listed
(printed) on the teleprinter for visual inspection.

Editor also allows the programmer to add, correct, and delete any

portion of his symbolic program. When the programmer is satisfied that
his program is correct and ready to be assembled or compiled, Editor
can be commanded to generate a symbolic program tape of the stored
program.
- The Symbolic Editor program is usually issued on punched paper
tape in binary-coded format, Therefore, it is loaded into core memory
using the BIN Loader. When in core, Editor is activated for use by set-
ting the switch register (SR) to 0200 (the starting address) and de-
pressing the LOAD ADD (load address) and then START switches.
Editor responds with a carriage return/line feed sequence on the
Teletype.

Initially, Editor is in command mode, that is, it is ready to accept
commands from the programmer; anything typed by the programmer is
interpreted as a command to Editor. Editor accepts only legal com-
mands, and if the programmer types something else Editor ignores the
command and types a question mark (?).

When not in command mode, Editor is in text mode, that is, all
characters typed from the keyboard or tapes read in on the tape reader
are interpreted as text to be put into the text buffer in the manner spe-
cified by a preceding Editor command. Figure 6-5 illustrates how the
programmer can transfer Editor from one mode to the other.

Type o command,
then depress
RETURN Key

Commond Mode Text Mode

Type desired
input, then
CTRL/FORM Keys

Figure 6-5. Transition Between Editor Modes

6-15

Seven of Editor’s basic commands are briefly described below.

Command Meaning
A Append incoming text from the keyboard into the text

buffer immediately following the text currently stored
in the buffer.

R Read incoming text from the tape reader and append
it to the text currently stored in the buffer.

L List entire text buffer; the programmer can specify one
line or a group of lines.

C Change a line; the programmer precedes the command

with the decimal line number or line numbers of the ~
lines to be changed.

I Insert into text buffer; the programmer specifies the
decimal line number in his program where the in-
serted text is to begin.

D Delete from text buffer; the programmer specifies the
line or group of lines to be deleted. .
P Punch text buffer; the programmer can specify one -

line, a group of lines, or the entire text buffer.

All commands are executed when the RETURN key is depressed ex-
cept the P command. To execute the P command, press the RETURN
key on the Teletype, turn on the punch, and press the CONT (continue)
switch on the computer console.

The above commands are only the seven basic commands. A sum-
mary of all commands is provided in Table 6-4 at the end of this section.

WRITING A PROGRAM

Now that you have some idea of what you can do with Editor and
what Editor can do for you, we will write and edit a short program, ex-
plaining each step in the comments to the right of the printout.

The example program finds the larger of two numbers and halts with
the number displayed in the accumulator (AC). The program is written
in PAL III, to be assembled using the PAL III Assembler described
later in this chapter.

The programmer loads Editor using the BIN loader (see Figure 6-4).
Editor is then activated by loading the starting address (02005) and
depressing the LOAD ADD and START switches. After Editor re-
sponds with a carriage return/line feed, the programmer types A and
RETURN key. Editor is now in text mode, that is, subsequent charac-
ters typed are appended to the text buffer. The programmer now types
the symbolic program. (Block indenting is facilitated usmg the CTRL/
TAB key, which Editor has programmed to indent in ten-character

increments.)

6-16

*200

CLA /CLEAR AC
TAD NUMB /GETB
CMA
CMA /1’s COMP B
IAC /—B
TAD NUMA /ADD —B + A
SMA. /IF —B LARGER '
IMP +4 /JUMP 4 LOCATIONS
CLA /CLEAR AC
TAD NUMB /GET B
HLT /BISLARGER
CLA /CLEAR AC
TAD NUMA /GET A
‘ HLT /A IS LARGER
NUMB, 0000
NUMA, 0000
$

Visual inspection reveals that we have errors in lines 4, 16, and 17.

(Editor maintains a line number count in decimal, with the first line
typed being 1 and our last line being 18.) Line 4 can be removed using
the D (Delete) command, and lines 16 and 17 can be corrected using
the C (Change) command. However, Editor is presently in text mode,
and in order to issue another command Editor must be transferred to
command mode, This is done when the programmer types CTRL/ .
FORM (depress and hold down the CTRL key while typing the FORM
key). ' { :

CTRL/FORM (nonprinting) The programmer types CTRL/FORM;
Editor responds with CR/LF and
rings thé teleprinter bell, indicating

» that it is in command mode.
4D The programmer types 4D and the RE-

TURN key; Editor responds with a
CR/LF and the line is deleted.

The programmer types 15, 16C and the
.RETURN key, informing Editor
that lines 15 and 16 (formerly 16
and 17) are to be changed.

Editor responds with a CR/LF, trans-
fers to text mode, and waits for the
programmer to change the lines.

The programmer types NUMA, 1111
and NUMB, 0011,

15, 16C

NUMA, 1111
NUMB, 0011

6-17

The symbolic program should now be correct. However, it is good
programming practice to check the program after editing; this can be
done using the L (List) command, but since only original lines 4, 16,
and 17 were changed it is not necessary to have the whole program
listed. The programmer can command Editor to list lines 4 through 17.

CTRL/FORM (nonprinting)

4, 17L

NUMA,
NUMB,

CMA
1AC

TAD NUMA
SMA

IMP .+4
CLA

TAD NUMB
HLT

CLA

TAD NUMA
HLT

1111

0011

$

The programmer types CTRL/FORM
to return Editor to command mode;
Editor responds with CR/LF and
rings the bell, and waits for the next
command.

The programmer types 4, 17L and the
RETURN key; Editor types lines 4
through 17.

/1’'s COMP B
/—B

/ADD —B + A
/IF —B LARGER
/JUMP 4 LOCATIONS
/CLEAR AC
/GET B

/B IS LARGER
/CLEAR AC
/GET A

/A IS LARGER

The changes were accepted properly. The symbolic program is correct
and ready to be punched on paper tape.

GENERATING A PROGRAM TAPE
Before issuing the P (Punch) command, Editor must be in command
mode. Figure 6-6 illustrates the procedures required to generate a sym-

bolic program tape using Editor.
CTRL/FORM (nonprinting)
?

The programmer types CTRL/ FORM;
Editor responds with a question
mark, indicating that Editor was in
command mode,

The programmer commands Editor to
punch the entire text buffer by typ-
ing P and the RETURN key.

6-18

See Table 6-2 }— -

Select Switch
Register Option

High-Speed Punch

Editor Is In
Command Mods

And
Completed Symbcik
Program s In
Text Buffer

Low-Speed Punch

Setect Switch
Register Option

Depress HSP ON
Type T And
RETURN Kays.

Type Commond
P nP Or m,nP}
And RETURN Key

Depress CONT

Mo
T ¥ And
RETURN Keys

Type T And
RETURN Keye And
Deprass LSP ON

Atter Tralter
Depress LSP OFF

Type T And
RETURN Keys And
Depress LSP ON

After Leader Tape
Depress LSP OFF

Type Command
(P nP Or mnP}
And RETURN Key

And Typed

Type F And
RETURN Keys And
Depress LSP ON

Depress LSP OFF

ol R

Figure 6-6. Generating a Symbolic Tape Using Editor

When Editor recognizes a P command it waits for the programmer to
specify the low- or high-speed punch. If the programmer wants the
program punched and typed, he sets SR bit 10 to O and the program
will be punched on the low-speed punch and simultaneously typed on
the teleprinter. If the programmer wants only a program tape and if he

6-19

has a high-speed punch available, he sets SR bit 10 to 1 and the pro-
gram will be punched on the high-speed punch. For the purposes of this
discussion, a printed program listing is desired, so the low-speed punch
is specified. The programmer turns on the low-speed punch and de-
presses the CONT switch on the computer console, and Editor begins
punching and typing the contents of the entire text buffer.

An image of the stored symbolic program has been punched and
typed by Editor.

If the programmer stops the computer, e.g., purposely or accidentally
turning the computer off, he may restart Editor at location 0200 or
0177 without disturbing the text in the buffer. Editor can also be re-
started at location 0176; however, all text currently in the buffer is
wiped out. Therefore, the programmer can restart at location 0176 to
re-initialize for a new program.

SEARCH FEATURE

A very convenient feature available with Editor is the search feature,
which aliows the programmer to search a line of text for a specified
character. When the programmer types a line number followed by S,
Editor waits for the user to type in the character for which it is to
search. The search character is not echoed (printed on the teleprinter).
When Editor locates and types the search character typing stops, and
Editor waits for the programmer to either type new text and terminate
the line with a RETURN key or to use one of the following special
keys. .

1. e to delete the entire line to the left,

2. RETURN to delete the entire line to the right,

3. RUBOUT to delete from right to left one character for each
RUBQUT typed (a \ is echoed for each RUB-
OUT typed),

4. LINE FEED to insert a carriage return/line feed (CR/LF)
thus dividing the line into two,

5. CTRL/FORM to search for the next occurrence of the search
character, and/or

6. CTRL/BELL to change the search character to the next char-
acter typed by the programmer.

INPUT/OUTPUT CONTROL '

Switch register options are used with input and output commands to
control the reading and punching of paper tape. The options available
to the programmer are shown in Table 6-2. These options are used in
conjunction with the “Select Switch Register Option” operation in
Figure 6-6.

6-20

Table 6-2. Input/Output Control

SR Bit Position Function
0 0 Input text as is
1 Convert all occurrences of 2 or more

spaces to a tab

1 0 Qutput-each tab as 8 spaces
1 Tab is punched as tab/rubout
2 0 Output as specified
1 Suppress output* ’
10 0 Low-speed punch and Teleprinter
1 High-speed punch .
11 0 Low-speed reader
1 High-speed reader

*Bit 2 allows the user to interrupt any output command and return imme-
diately to command mode; when desired, merely set bit 2 to 1.

ERROR DETECTION
Editor checks all commands for nonexistent information and incor-
rect formatting. When an error is detected, Editor types a question
~mark (?), and ignores the command. However, if an argument is pro-
vided for a command that doesn’t require one, the argument is ignored
and the command is executed properly.
Editor does not recognize extraneous and illegal control characters;
therefore, a tape containing these characters can be cleaned up or cor-
rected by merely reading the tape into Editor and punching out a new

tape.

SUMMARY OF SPECIAL KEYS AND COMMANDS

Using special keyboard keys and commands, the programmer con-
trols Editor’s operation. Certain keys have special meaning to Editor, of
which some can be used in either command or text mode. The mode
of operation determines the function of each key. The special keys and
their function are shown in Table 6-3.

6-21

Table 6-3. Special Keys

Key

Command Mode

Text Mode

RETURN

RUBOUT

CTRL/FORM

» (period)

LINE FEED

ALTMODE

AV

CTRL/TAB

Execute preceding com-
mand

Cancel preceding com-
mand (Editor responds
with a ? followed by a
carriage return and line
feed)

same as -

Respond with question
mark and remain in
command mode

Value equal to decimal
value of current line
(used alone or with +

or — and a number, e.g.

+8)

Value equal to number of
last line in buffer; used
as an argument

List next line

List next line
List next line
List previous line

Used with . or / to ob-
tain their value
Same as = (gives value

of legitimate argument)

Enter line in text buffer

Cancel line to the left mar-
gin

Delete to the left one char-
acter for each depres-
sion; a \ (backslash) is
echoed (not used im
Read (R) command)

Return to command mode
and ring teleprinter bell

Legal text character

Legél text character

Used in Search (S8) com-
mand to insert CR/LF
into line

Produces a tab which on
output. is interpreted as
10 spaces or a tab/rub-
out, depending on SR

option

Editor commands are given when in command mode. There are three
basic types of commands: Input, Editing, and Output. Table 6-4 con-
tains a summary of Editor commands and their function.

6-22

Table 6-4, Summary of Commands

T Type Command Function
Input A Append incoming text from keyboard into text
buffer .
R Append incoming text from tape reader into text
buffer :
Editing | L List entire text buffer
nL List line n
m,nL List lines m through n inclusively
nC Change line n .
m,nC Change lines m through n inclusively
I , Insert before first line-
nl Insert before line n
K Delete entire text buffer
nD Delete line n
m,nD Delete lines m through n inclusively
m,n$kM | Move lines m through n to before line k
G Print next tagged line (if none, Editor types ?7)
nG Print next tagged line after line n (if none, ?)
S Search buffer for character specified .after RE-
TURN key and allow modification (search char-
acter is not echoed on printer)
nS Search line n, as above
m,nS Search lines m through n inclusively, as above
Output | P Punch entire text buffer
nP Punch line n
m,nP Punch lines m through n inclusively
T Punch about 6 inches of leader/ trailer tape
F Punch a FORM FEED onto tape
N Do P, F, K, and R commands

m and n are decimal numbers, and m is smaller than n; K is a decimal number.

The P and N commands halt the Editor to allow the programmer to select
I/ O control; press CONT to execute these commands,

Commands are executed when the RETURN key is depressed, excluding the
P and N commands. '

Symbolic Assemblers .

A symbolic assembler is a service program that translates symbolic
programs into binary-coded programs which can be loaded and run
on the computer. In other words, the programmer writes the symbolic
program using symbols which are meaningful to him, and then an as-
sembler is used to translate the symbols into binary code, which is
meaningful to the computer. The computer knows only yes or no, plus

6-23

or minus, voltage or no voltage, magnetized or demagnetized, i.¢., one
of two conditions (states) which we simplify as 1 or 0. Therefore, the
assembler translates the programmer’s symbols into 1’s and 0’s which
are meaningful to the computer.

Because assemblers are vital to the efficient operation of computers
in the PDP-8 family, DEC presently offers four (PAL III, MACRO-8,
PAL-D, and 8K SABR), and this list is destined to grow with time as
other versions are needed to assemble other programming languages.
This section includes general descriptions of PAL III and MACRO-8.
PAL-D incorporates most of the features of both PAL III and
MACRO-8 and is used only in the Disk Monitor System. So, if you
learn PAL IIT and MACRO-8, you have only to learn the few excep-
tions of PAL-D and then you know all three,

First PAL III is discussed and then MACRO-8. MACRO-8 is com-
patible with PAL III except for some additional features, therefore, in
the section on MACRQ-8 emphasis is on the additional features and
exceptions, -

PAL I SYMBOLIC ASSEMBLER

The PAL III Symbolic Assembler (PAL stands for Program Assembly
Language) is an indispensable service program used to translate symbolic
programs, which are written in the PAL HI language, into binary-coded
programs (binary programs). Having progressed to this section of the
Handbook, you are by now familiar with the PAL III programming
language; because the symbolic language used in the preceding chapters
is PAL 1. In this section, the PAL III Assembler is used to assemble
the example program written using Editor (see “Writing a Program,”
above).

PAL III is a two-pass assembler with an optional third pass, i.e., the
symbolic program tape must be passed through the assembler two times
to produce the binary-coded tape (binary tape), and the optional third
pass produces a complete octal/symbeolic program listing which can be
typed and/or punched if desired. A brief explanation of the three passes
is given below.

Pass 1. The assembler reads the symbolic program tape and defines all
symbols used and places these user symbols in a symbol table for use
during Pass 2. The assembler checks for undefined symbols and certain
other errors and types an error message on the teleprinter when an error
is detected.

Pass 2, The assembler rereads the symbolic program tape and gener-
ates the binary tape using the symbols defined during Pass 1. When the
low-speed punch is used, meaningless characters will be typed on the

6-24

-teleprinter, and these should be ignored by the programmer. The assem-
bler checks illegal referencing during this pass and types an error mes-
sage on the teleprinter when any is detected.

Pass 3. The assembler reads the symbolic program tape and types
and/or punches the octal/symbolic program assembly listing. This list-
ing thoroughly documents the assembled program and is useful when
debugging and modifying the program.

' The meaningless characters, error messages, and octal/symbolic pro-
gram listing will be shown later in this section.

PAL III accepts symbolic program tapes from either the low-speed
or high-speed reader and produces the binary tapes on either the low-
speed or high-speed punch, ‘

During assembly, the programmer communicates with PAL IIT via
the switches on the computer console. Switch options are used to specify
which pass the assembler is to perform and which reader and punch the
assembler should accept input from and punch out on.

ASSEMBLING A SYMBOLIC PROGRAM. Earlier in this chapter,
the programmer wrote a PAL III symbolic program and generated the

. symbolic program tape using Editor. That symbolic program can now
be assembled to produce a binary program using PAL III. A listing of
the symbolic program follows.

*200

CLA | . /CLEAR AC
TAD NUMB /GETB

CMA /1’'S COMP B
IAC /—B

TAD NUMA /ADD —B + A
SMA /IF —B LARGER
JMP .+4 /JUMP 4 LOCATIONS
CLA /CLEAR AC
TAD NUMB /GET B

HLT /B IS LARGER
CLA /CLEAR AC
TAD NUMA /GET A

HLT /A IS LARGER

NUMA, 1111
NUMB, 0011
$

First, PAL IIT must be loaded into core memory, and since PAL III
is on punched paper tape in binary-coded format, it is loaded into core
memory using the BIN Loader (see Figure 6-4 for loading procedures).

6-25

With PAL 1II in core, we are ready to assemble the symbolic pro-
gram. Figures 6-7 and 6-8 illustrate the procedures for assembling with
PAL III using the low-speed reader/punch and high-speed reader/
punch, respectively. In these flowcharts, the switch register options are
set for the appropriate reader/punch.

The low-speed reader and punch (LSR and LSP) are used in the
following assembly (see Figure 6-7).

Initializing and Starting ’Lovad PAL III into core memory using
BIN,
Set SR=0200 and depress LOAD ADD.
Turn TTY to LINE and put symbolic
program tape in LSR.

Entering Pass'1 Set SR=2200 and set LSR to START.
) Depress LSP to ON and depress
START.
NUMA 0215 Error messages would be typed now.
NUMB 0216 Symbol table concludes Pass 1.
Entering Pass 2 Put symbolic program tape in LSR.
BB: Set SR=24200 and set LSR to START.
8§ 8 Depress LSP to ON and depress CONT.
=* Disregard meaningless characters while
<z) object tape is being punched.
<) Error messages would be typed now.
Entering Pass 3 Put symbolic program tape in LSR.

Set SR=6200 and set LSR to START.

Depress LSP to ON and depress CONT.

The octal/symbolic program listing is
being typed and punched.

*200
0200 7200 CLA /CLEAR AC
0201 1216 TADNUMB /GETB
0202 7040 CMA /1’S COMP B
0203 7001 IAC /—B
0204 1215 TAD NUMA /ADD-B + A
0205 7560 SMA /1IF —B LARGER
0206 5212 JMP .+4 /JUMP 4 LOCATIONS
0207 7200 CLA /CLEAR AC
0210 1216 TADNUMB /GETB
0211 7402 HLT /B IS LARGER
0212 7200 CLA /CLEAR AC
0213 1215 TAD NUMA /GETA
0214 7402 HLT /A 1S LARGER
0215 1111 NUMA, 1111
0216 0011 NUMB, 0011
NUMA 0215
NUMB 0216

6-26

Depress STOP <

Lood PAL TH

using
Extended
Memory
?

Set
OF = Dasired Field
1F = Fisld Of PAL TN

Sst SR = 0200

Dapress LOAD ADD

Turn TTY To LINE

Put Symbolic
Tage In LOR

Poss 3

Set SR =2200

Sef LSR To START

Punch Yos
Symbot Tahis
?

Deprass LSP ON
Oepress START

-{ See Figurs 6-4

Set LSR To START

- Depress LSP ON

Depreas CONT -~

Wait For End
Of Binary Tope

Tope
. Reads In

1
Yo

Woit For
Symbot Toble
I Any

Set LSP OFF

Firishad

-

Set SRYE200 l

Punch
Listing Table
?

Dapress CONT
Woit F‘Zj
End Of Listing
Remove Listing l
Finished ’

Figure 6-7. Assembling with PAL III Using Low-Speed Reader/Punch

6-27

—————— —{ See Figure 6-4

Set
DF = Desired Field
IF = Field Qf PAL IIT

Using

Extended

Memory
?

Put Symbolic
Tape In HSR

Poss 1 Pgss 3

A

Set SR=6201

Set SR=420%

Punch
Symbot Table
k4

Depress HSP N
Yes POWER To ON Print

1 And FEED

Depress HSP
Depress CONT

Punch Or Print
Progrom Listing
?

Ser SR:=6200
POWER To ON

And FEED

Depress HSP
POWER To ON -
And FEED

Wait For End
Of Binary Tape

Depress CONT

Wait For
End Of Listing

Wait For
Bymbol Table
On TTY

Finished

Figure 6-8. Assembling with PAL III Using High-Speed Reader/Punch

6-28

The tape produced during Pass 2 is the binary tape, which is loaded
into core memory using the BIN Loader. The symbol table tape pro-
duced during Pass 1, the binary tape produced during Pass 2, and the
octal/symbolic program listing produced during Pass 3 are used when
debugging the program,)

PSEUDO-OPERATORS. When writing a PAL III symbolic pro-
gram, the programmer can use pseudo-operators (pseudo-ops) to direct
the assembler to perform certain task or to interpret subsequent coding
in a certain manner. Some pseudo-ops generate storage words in the
binary program, others direct the assembler on how to proceed with the
assembly. Pseudo-ops are maintained in the assembler’s permanent
table,* which can be altered using certain psuedo-ops.

When using more than one memory bank, the pseud(’)—opk FIELD in-
structs the assembler to output a field setting:

FIELD n where n is an integer, a previously defined symbol, or a
symbolic expression within the range O through 7,
inclusive.

Integers used in a symbolic program are usually taken as octal num-
bers, However, if the programmer wishes to have certain numbers
treated as decimal, he may use the pseudo-op DECIMAL, and then re-
turn to the original radix with the pseudo-op OCTAL.

DECIMAL all integers in subsequent coding are taken as decimal
until the occurrence of the pseudo-op OCTAL,
OCTAL which resets the radix to its original base.

In an indirect address instruction, the special symbol “I” between the
operation code and the operand, or address field, is another pseudo-op.
(Indirect addressing was covered in Chapter 2.) '

When a symbolic program is very long, it is often desirable to punch
the symbelic program on two or more physical lengths of tape. The last
instruction of each section must be the pseudo-op PAUSE, and the
last instruction of the program must be a dollar sign ($).

PAUSE stops the assembler, but the current pass is not ter-
minated. When the programmer is ready to assemble
the next section, he has only to depress CONT on the
computer console, (PAUSE is normally used only at-
the physical end of tape.)

?’I‘he permanent symbol table contains operation codes (MRUI's, I0T’s, micro-
instructions, and pseudo-ops) and their octal equivalents; it is a permanent
part of the assembler. An external symbol table contains user-assigned sym-
bols and their corresponding absolute addresses; it is created during assembly
and punched on the binary tape during Pass 2.

- 6-29

The last three pseudo-ops are used to alter the permanent symbol
table. They are:

EXPUNGE erases the entire permanent symbol table excluding the
pseudo-ops.

FIXMRI meaning FIX Memory Reference Instructions. The
pseudo-op FIXMRI must be followed by one space,
the symbol for the MRI to be defined, an equal sign,
and the octal value of the symbol to the.immediate
left of the equal sign.

FIXTAB meaning FIX the current permanent symbol TABle. All
symbols that have been defined before the occurrence
of this pseudo-op are made part of the permanent
symbol table.

Therefore, with these three pseudo-ops the programmer can alter the

permanent symbol table to contain only those symbols he needs to

assemble his symbolic program, which in turn provides more core for

the external symbol table,

OUTPUT CONTROL. Output is controlled by the setting of switch

register bit 11. When the assembler first enters a pass, it “looks” at the
state of SR bit 11 and outputs as specified. The SR bit 11 options are:

Bit 11=0 Output on teleprinter and low-speed punch.
Bit 11=1 Output on high-speed punch.

ERROR MESSAGES. The assembler is constantly checking for assem-
bly errors, and when any is detected, an error message is printed on the
teleprinter. Error messages are printed in the following format. ’

XX yyyyyy AT nonn

where xx is the error message (see below), yyyyyy is the symbol or
octal value of the symbol of the error occurring AT location nnnn.

Assembly errors are checked for during Pass 1 and Pass 2 only The
error codes are listed below.

Pass 1: IC Illegal Character
RD Redefinition
DT Duplicate Tag
ST Symbol Table Full
UA Undefined Address

Pass 2: IR Illegal Reference

For a thorough description of PAL 111, see PAL III Symbolic As-
sembler, Order No. DEC-08-ASAC-D

6-30

MACRO-8 SYMBOLIC ASSEMBLER

The MACRO-8 Symbolic Assembler is a service program used to
translate symbolic programs that are written in the MACRO-8 symbolic
language into binary programs. The MACRO-8 language can be gen-
erally considered as PAL III with the following additional features:

1. User-Defined Macros—Groups of .computer instructions re-
quired for the solution of a specific problem can be defined by
the user as a macro instruction (explained later).

2. Double Precision Integers—Positive or negative double preci-
sion integers are allotted two consecutive core locations.

3. Floating-Pdint Constants—The format and rules for defining
these constants are compatible with the format used by the
Floating-Point System.

4. Operators—Symbols and integers may be combined with a
number of operators.

5. Literals—Symbolic or integer literals (constants) gre auto-
matically assigned. ‘

6. Text Facility—There are text facilities for single characters and
blocks of text.

7. Link Generation—ULinks are automatically generated for off-
page references.

With these additional features, it is clear that the MACRO-8 Assem-
bler requires more core memory than the PAL III Assembler. There-
fore, programs originally coded to be assembled by PAL I1I might have
too many user symbols to be assembled by MACRO-8 (it was necessary
to decrease the size of the ‘user’s symbol table to incorporate the addi-
tional features). However, the programmer can, using the appropriate
pseudo-op, increase or decrease the size of the permanent symbol table
if desired.

MACRO-8 is a two-pass assembler with an optional third pass which
produces a octal/symbolic program assembly listing. There are two
versions of MACRO-8.

The Low Version uses the low-speed reader for all input and the
teleprinter and low-speed punch for all output.

The High Version uses the high-speed reader for all input, the high-
speed punch for binary output (and, if desired, the program listing
tape), and the teleprinter and low-speed punch for output of error
diagnostics, symbol table, and the third pass program listing.

6-31

The three passes of MACRO-8 are identical to those of PAL 11, in

fact, the example program assembled by PAL III in the preceding sec-
tion could be assembled by MACRO-8, and the printed output would
be the same for both assemblers.
MACROS. When writing a program, it often happens that certain
coding sequences are used several times with just the arguments
changed. If so, it is convenient if the entire sequence can be generated
by a single statement, To do this, the coding sequence is defined by
dummy arguments as a macro. A single statement referring to the macro
by name, along with a list of real arguments, will generate the correct
sequence in line with the rest of the coding.

The macro name must be defined before it is used. The macro is de-
fined by means of the pseudo-operator DEFINE followed by the
macro’s name and a list of dummy arguments. For example,

DEFINE MOVE DUMMY1 DUMMY?2
< CLA

TAD DUMMY1

DCA DUMMY2

TAD DUMMY2>>

-

The actual choice of symbols used as dummy arguments is arbitrary;
however, they may not be defined or referenced prior to the macro
definition. The actual definition of the macro must be enclosed in angle
brackets (< >).

The above definition of the macro MOVE could have been.coded as
follows:

DEFINE MOVE ARG1 ARG2 ,
<CLA; TAD ARG1; DCA ARG2; TAD ARG2>

When a macro name is processed by the assembler, the real argu-
ments will replace the dummy arguments. For example, assuming that
the macro MOVE has been defined as above,

*400
A0 0400 0000
B, —6. 0401 7772
MOVE A, B _ 0402 . 7200
$ ' 0403 , 1200
0404 3201
0405 1201

6-32

A macro need not have any arguments. A sequence of coding to
rotate the contents of the accumulator and link six places to the left
might be stated as follows, :

DEFINE ROTL6
<RTL; RTL; RTL>

A macro is referenced by giving the macro name, a space, and then
the list of real arguments, separated by commas, There must be at least
as many arguments in the macro reference as in the corresponding
macro definition. For a detailed list of other macro restrictions, see
MACRO-8 Assembler, Order No. DEC-08-CMAA-D.,

LITERALS. Since the symbolic expressions which appear in the ad-
dress part of an instruction usually refer to the address of locations con-
taining the quantities being operated upon, the programmer must ex-
plicitly reserve the locations holding his constants. The MACRO-8 pro-
gramming language provides a means for using a constant directly. Sup-
pose, for example, that the programmer has an index which is incre-
mented by two. One way of coding this operation would be as follows.

CLA

TAD INDEX
TAD C2
DCA INDEX

C2, 2
Using a literal, this would become

CLA

TAD INDEX
TAD (2)
DCA INDEX

The left parenthesis is a signal to the assembler that the expression fol-
lowing is to be evaluated and assigned a location in the constants table
of the current page. This is the same table in which the indirect address
linkages are stored. In the above example, the quantity 2 is stored in a
location in a list beginning at the top of the memory page (page address
177), and the instruction in which it appears is encoded with an ad-.
dress referring to that location. A literal is assigned to storage the first
time it is encountered, and subsequent references will be to the same
location. '

6-33

If the programmer wishes to assign literals to page O rather than the
current page, he may use square brackets, [and], in place of the paren-
theses. However, in both cases, the right or closing member may be
omitted, as in the example below.

Literals may be nested. For example:

*200

TAD (TAD (30
will generate

0200 1376

0376 1377

0377 0030

This type of nesting may be carried to as many levels as desired.

PSEUDO-OPS. MACRO-8 has available a number of useful pseudo-
ops, which are listed and briefly explained below.

PAGE

DECIMAL

OCTAL
PAUSE
EXPUNGE

FIXTAB

DEFINE

When used without an argument, the current location
counter is reset to the first location on the next succeed-
ing page. With an argument (PAGE n), the current
location counter is reset to the first location on the spec-
ified page, page n.

When this pseudo-op occurs, all integers encountered in
subsequent coding will be taken as decimal until the
occurrence of OCTAL,

which will reset the radix to its original base.

When several tapes are to be assembled together, each
except the last (which ends with $) should have as its
last symbol the pseudo-op PAUSE. This causes the
assembler to stop processing and halt the computer.
After placing a new tape in the tape reader, assembly
can be continued by depressing CONT on the computer
console. '

When used, the entire permanent symbol table (exclud-
ing pseudo-ops) is erased. This pseudo-op is used when -
the programmer wishes to provide more core for the
user program symbols. Then, with FIXTAB,

the programmer can build a customized permanent sym-
bol table, containing only those permanent symbols re-
quired for his user program,

Used to define macros, This pseudo-op was covered un-
der “Macros,” above,

The preceding pseudo-ops and a few others are described in detail in
the MACRQO<:8 Assembler manual.

6-34

OFF-PAGE REFERENCING. During assembly, the page bits of the
address field are compared with the page bits of the current location
counter (sec “Page Addressing” in Chapter 2). If the page bits of the
address field are nonzero and do not equal the page bits of the current
location counter, an off-page reference is being attempted (see “Indirect
Addressing” in Chapter 2). If the reference is to an address not on the
page where the instruction will be located, the assembler will set the
indirect bit (bit 3) and an indirect address linkage will be automatically
generated on the current memory page..

Although the assembler will recognize and automatlcally generate an
indirect address linkage when necessary, the programmer may still indi-
cate an explicit indirect address using the special symbol “I” between
the operation code and the address field.

As can be seen by comparing Figures 6-9 and 6-10 to Flgures 6-7

and 6-8, the assembly procedures for MACRO-8 and PAL III are
similar but certainly not identical.
SWITCH REGISTER OPTIONS. As the assembler begins to enter
each pass, it “reads” or “looks at” or “senses” (take your choice) cer-
tain bits of the switch register which tell it how to proceed. The optional
settings of the switch register are shown in the table below.

Fable 6-5. Switch Register Options

SR Bit | Position | Meaning

0-11 0 Enter next pass. ' _

0 1 '| Erase symbol table, excluding permanent symbol, and
enter Pass 1 (the programmer then depresses STOP
and CONT),

1 1 Enter Pass 2 to generate another binary tape.

o2 1 Enter Pass 1 without erasing defined symbols,

3. 1 Enter Pass 3.

10 1 Delete double precision integer and double precision
floating-point processors “(this increases the symbol
table size by 100, symbols).

11 1 Delete macro and number processors (this increases

' the symbol table size by 175, symbols).

Switch register bits 10 and 11 are sensed by MACRO-8 when it enters
Pass 1, and remembers these settings throughout the assembly. If these
bits are set to 1, MACRO-8 would have to be reloaded to handle sub-
sequent programs that use macros, dcuble precision integers, or float-
ing-point numbers.

6-35

Lood MACRO-8

- -{ Ses Figure 6-4

Set
DF = Desired Field
IF « Figtd Of MACRO-8|

Set SR+ 4200 Set SR=0600

SetsRe2z00 |

v | '
(Put Tm; In Lsﬂj v r Pur Tope In LSR I

l Put Tape In LSR] !
[Pwisrrostany | v | Puiserostanr |
Put LSR To START

Punch
Program Listing
?

Put Tope In LSR

Correct Error
Using Editor

Figure 69, Assembling a MACRO-8 Symbolic Program
Using the Low-Speed Reader/Punch

6-36

1 Lood MACRO-8

Using
Extended
Memary

?
No

2 Set SR=0200
Depress LOAD ADD

Turn TTY Yo LINE

Pass | Which

Pass 2

Set SR=2200

Set SR=4200

Put Taps In HSR

Yes

Set

DF =Desired Fisld
MACRO- 8]

IF = Fisid Of

Pass 3

Put Tape In HSR

Set Locotion

Tape
Reads In
?

Depress CONT
Yes

- No

Put Tope In HSR Tape Stops

Depress STOP

Error

Diagnastic
?

Reset Location
0004=2600
It Chonged During Pass

¢
No

Depress-STOP

Yos Mare Tape
For Some Fass
Yas

3

Depress HSP
POWER To ON 0004 0600
Depress HSP FEED
;

Set SR*0600

Put Tape In HSR

Punch Program
Listing
?

Print
" Dapress HSP
POWER To OFF
Depress LSP ON

Yos Correct Error
Using Editor

m, — =

Figure 6-10. Assembling a MACRO-8 Symbolic Program
Using the High-Speed Reader/Punch

6-37

When assembling using the high-speed reader, the Pass 3 program
listing is normally output on the teleprinter and low-speed punch. How-
ever, when assembling a long program, the programmer may wish to
have the third pass listing output on the high-speed punch. This can be
done by changing the contents of location 0004 from 2600 to 0600
(see Figure 6-10). It is advised that this change not be made until Pass
3, so that Pass 1 and 2 diagnostics will be printed.

ERROR MESSAGES. The assembler is constantly checking for as-
sembly errors, and when one is detected, an error message is printed on
the teleprinter. Error messages are printed in the following format.

XX YYYYYY

where xx is a two-letter code which specifies one of the types of errors
listed below, and yyyyyy is either the absolute octal address where the
error occurred or the address of the error relative to the last symbolic
tag (if there was one) on the current page.

Following is a descriptive list of the error messages, some are prmted
out during Pass 1, others during Pass 2, and some of which are printed
out during both passes.

Error Code Meaning
BE MACRO-8 internal tables have overlapped
c Illegal character
ID Illegal redefinition of a symbol
IE lllegal equal sign
I ~ Hlegal indirect address
M Illegal format in a macro definition
LG . Link generated to off-page address*
MP Missing parameter in macro call
PE Current, nonzero page c¢xceeded
SE Symbol table exceeded
USs Undefined symbol
ZE Page zero exceeded

*This is to inform the user of off-page references which may not be an error.
This diagnostic can be suppressed to speed up Pass 2 assembly by seiting
location 1234 to 7200 prior to entering Pass 1.

For a thorough description of MACRO-8, see MACRO-8 Assembler,

Order No. DEC-08-CMAA-D

6-38

CONCLUSION ‘ ,

The programmer decides which assembler is needed to translate his
symbolic program into a binary program. The decision depends on such
things as the amount of core memory available, the size of the symbolic
program and the number of user symbols it contains, and whether the
symbolic program contains macros, literals, etc.

Dynamic Debugging Programs ,

Included in the System Software package are two dynamic debugging
programs: DDT-8 (Dynamic Debugging Technique) and ODT-8 (Oc-
tal Debugging Technique). Dynamic debugging programs are service
programs which allow the programmer to run his binary program on
the computer and use the Teletype keyboard to control program execu-
tion, examine registers, change their contents, make alterations to the
program, and much much more.

A symbolic program can be assembled correctly and still contain
logical errors, ie., errors which cause the program to do something
other than what is intended. The assembler checks for certain syntax
errors, not logical errors. Syntax errors include undefined tags, mis-
-spelled tags and operation codes, and incorrect format (e.g., omission
of a required operand). Logical errors are detected only when the pro-
gram is running on the computer.

DEBUGGING WITHOUT DDT-8 OR ODT-8

If the programmer feels sure that his program is correct and ready
for use, he can simply load the program and let it run until it stops (if it
stops). And if the program doesn’t produce the correct results, the pro-
grammer without a DDT program can use the console switches to
examine specific locations one-by-one to try to find the error(s) by
interpreting the console lights. There are two hazards to this approach.
First, by the time the program stops the error may have caused all
pertinent information, including itself, to be altered or eliminated.
Second, the program may not stop at all, it might continue to run in
an infinite loop; such loops are not always easy to detect.

Added to these problems are the difficulties of interpreting binary
console displays and translating them into symbolic expressions related
to the user’s program listing. Further, adding corrections to a program
in the form of patches (altered and added instructions or routines) re-
quires seemingly endless manipulation of the console switches. In all
this, the chance of programmer error at the console is large and is likely
to obscure any real gain made from debugging.

6-39

The programmer can, of course, while sitting at his desk using the
program assembly listing, mentally execute his program. This method
is frequently used with very short programs, very short only—human
memory can not retain every step and instruction in even a fairly short
program; it can not match computer memory.

What is needed to conveniently and accurately debug a user program
is a service program which will assume the tasks the programmer would
have to perform if he used the console switches. DDT-8 and ODT-8
are such debugging programs. ‘ :

DEBUGGING WITH DDT-8
Using DDT-8, the programmer can run his program on the computer,
control its execution, and make corrections to the program by typing
commands to DDT-8 and altering his program from the Teletype key-
~ board, Tracking down a subtle error in a complex section of coding is
a laborious and frustrating job if done by hand, but with the breakpoint
facility (explained later) of DDT-8, the user can interrupt the operation
of his program at any point and examine the state of the program and
computer. In this way, sources of trouble can be isolated and quickly
corrected. _ '
- By the time the programmer is ready to start debugging a new pro-
gram at the computer, he should have at the console:

1. The binary tape of the new program.

2. The symbol definition tape which was part of the assembly
output from Pass 1.

3. A list of the symbols and their definitions.
A complete octal/symbolic program listing. -

5. A binary tape of the DDT-8 program, which is loaded into
core memory using BIN (see Figure 6-4).

P

To begin the debugging run, first ascertain that BIN is in memory,
then load the programmer’s binary program and the binary DDT-8 pro-
gram tape (see Figure 6-4 for loading procedures). Figure 6-11 illus-
trates the procedures for loading and executing DDT-8.

Core memory now contains the DDT-8 program, the user’s program,
and a table of permanent symbol definitions, This table includes the
definitions for all of the memory reference instructions, microinstruc-
tions, the ten basic IOT instructions, and the combined operations CIA
and LAS.

6-40

Loaod - —
Object Program J~ — — 7 7 T 7 -'l See Figure 6-4 i

Lood DDT-8 | = = — = — - {see Figue 6.2

{See Figure 6-12)

[S‘et SR=5400]

l Depress LOAD ADD l

[Depress START J)

Debug Object Program
DOT-8IsIn
Command Mode

- See Figure 6-12

Figure 6-11, Loading and Executing DDT-8

The programmer may communicate with his program using either
the mnemonic coding of the symbolic program or the octal coding of
the binary program. Therefore, since DDT-8 is to perform all transla-
tion between binary and symbolic representation, it must have access
in memory to the user’s symbol definitions, The external symbol table
tape (containing the user’s symbol definitions) produced during as-
sembly at the end of Pass 1 is now loaded into memory by DDT-8.
Figure 6-12 illustrates the steps required in loading the Pass 1 symbol
table tape.

The external symbols of the user’s program are stored in memory im-
mediately below DDT-8s permanent symbol table (mentioned in the
paragraph below Figure 6-11). These symbols, and any others which
may be entered from the console constitute the external symbol table.
Additional symbols may be appended to the external symbol table by
performing the steps illustrated in Figure 6-13.

A new external symbol tape can be generated off-line using the Tele-
type keyboard and low-speed punch merely as a tape preparation fa-
cility. The symbol tape can then be loaded into memory using DDT-8
as shown in Figure 6-12.

6-41

—— = -* See Figure 6-14

Turn TTY To LINE

Put Symbol Table
Tape In LSR

Set LSR To START

No Tape

Reads In
?

Set LSR To FREE

Octal Address Typed
Is Lower Limit Of
External Symbot Table

Externat Symbol
Tobie Is Looded

Figure 6-12. Loading the External Symbol Table Tape Using DDT-8

After loading the external symbol table tape, the address typed out
will be the lowest memory location which is occupied by a symbol
definition. The Programmer is now ready to begin debugging using

The example program to be checked out is a subroutine which ac-
cumulates the sum of the first n integers, The program is shown below.

6-42

With DDT-8
In Command Mode

Load External
Symbo! Table

l Set SR=1400 J

I Type R . l

—P[Type CR/LF J

| Typg New Symboi l

l Type 1 Or More Spoces]

‘) Type Octal Volue
Of Definition Of
New Symbol

Yes More

Symbols
v

] Type CR/LF And EOT]

l Depress CONT J

Address Typed
Is Lower Limit Of
External Symbol Tabi

Figure 6-13. Appending New Symbols to External Symbol Table

6-43

/INTEGER SUMMATION SUBROUTINE

INTSUM, 0
CLA
TAD I INTSUM /GET COUNTER
DCAN /SAVEIT
DCA PSUM /CLEAR PSUM
LOOP, TAD PSUM /GET SUM
TAD INT /ADD INTEGER
DCA PSUM /SAVE NEW SUM
ISZN ‘ /DECREMENT COUNTER, N=0?
IMP LOOP /NO, NOT FINISHED
TAD PSUM /YES, FINISHED. AC=SUM

ISZ INTSUM /GET OVER ARG.
IEXIT, IMPTINTSUM /RETURN

N, 0
PSUM, 0
*300
ITEST, CLA /INTSUM TEST PROGRAM
JMS INTSUM ’
INT, 0 /PUT INTEGER HERE
RTN, HLT
$

For testing purposes, a short calling sequence has been included
which provides the integer limit of the sum as an item of data. The first
task is to place an integer in the core location that holds this datum,
namely, the location labeled INT in the calling program. By typing the
address of the core location (which in this case can be done by typing
the address tag), followed by a slash, the programmer indicates to
DDT-8 that he wishes to examine the contents of that location. Thus,

he types
INT/

and DDT-8 responds to the slash by typing an expression which has
the value of the contents of the specified location. In this case, the con-
tents of INT = 0, and the line now appears as follows,

INT/AND 0000

NOTE: In the examples, information typed by DDT-8 is underlined to in-
dicate a distinction from information typed by the programmer. In
actual operation no underlining is present.

After typing the contents of the specified core location, DDT-8 types
five spaces and waits. The location is now open, which means that its
contents are available for modification, The programmer decides that
the first test integer is 10. This must be an octal integer since DDT-8

6-44

performs no decimal arithmetic, With the location open, the program-
mer types the number 10, Then, to close the location, he types a car-
riage return (RETURN key) immediately after the number.

INT/AND 0000 10 (RETURN key was typed after 10)

Further access to this location is now denied until the programmer
opens it again.

Having provided his data, the programmer is ready to start the pro-
gram. If it works, it should stop almost immediately with the sum of
the first 10 integers, which is 100,, displayed in the accumulator (AC)
lights. To start the program, the programmer types the following com-
mand,

ITEST[G

The left bracket ([) is printed when the ALT MODE key is typed; its
function here is to identify the succeeding character as a DDT-8 com-
mand. The letter G specifies the action to be performed, which in this
case causes DDT-8 to transfer control to the test program at location
ITEST.

The programmer has typed the G command; his program starts
executing. Immediately he observes that something is wrong-—the pro-
gram did not stop almost instantaneously, but ran for a very short, but
observable, time. The contents of the AC lights are definitely not equal
to 100;. A

The programmer restarts DDT-8 after each - program execution, that
is, he sets the SR to 5400 and then presses LOAD ADD and START
switches. He must also open the PSUM and N Locations to restore
them to zero before continuing debugging.

- At this point, the programmer knows something is wrong, but he is
not sure where the error lies. If he could interrupt the program during
its operation, he might get a better idea of the nature of the problem.
For instance, if he could verify that the data was transferred to the
subroutine correctly, he could eliminate the calling sequence as a source
of error.

The DDT-8 facility which allows the programmer to. interropt the
operation of the program at any time is called the breakpoint. As its
name implies, it allows him to break into the program sequence at some
point and return control to DDT-8, He can specify a breakpoint by
‘typing the address of the instruction where he wants to interrupt the
sequence, and after this -address he types the breakpoint command
(IB). If he requests a breakpoint at location

6-45

INTSUM+3

the program will be interrupted when the datum is in the AC, but be-
fore it is deposited in thé working location n, The breakpoint command
would follow and the statement would appear as follows,

INTSUM-+3[B

When this command is given, the information is retained by DDT-8
until the programmer executes the program. At that time, the sequence
of operations performed my DDT-8 is:

1.- The contents of location INTSUM--3 are saved in a special
location within DDT-8.

2. In place of the instruction in location INTSUM-+-3, DDT-8
substitutes the instruction JMP I 4, Location 4 contains the
address of a special breakpoint handling subroutine within
DDT-8.

3. After the breakpoint has been set up, DDT-8 passes control
to the programmer’s program.

To ascertain thét the error did not destroy the item of data in the
calling program, check it by opening the location.

'INT/AND 0010

The programmer then opens the PSUM and N Locations and restores
them to zero.
Having ascertained that the datum is correct, start the program again.

ITEST[G

Almost immediately, the breakpoint is encountered and control re-
turns to DDT-8, When the breakpoint occurs, DDT-8 saves the con-
tents of the AC. It then types the address of the breakpoint, a right
parenthesis, and the contents of the AC which have been saved.

INTSUM+-0003)0010

The programmer sees that the transfer is correct. Therefore he restarts
DDT-8 to continue debugging.

In similar fashion, the programmer moves the breakpoint to the end
of the subroutine at location IEXIT. He discovers that at this point
the error has manifested itself. He knows now that the trouble is in the
initialization of the main loop. The breakpoint is set at LOOP to dis-
cover that the datum is placed in location n as desired. Now the break-
point is moved to the end of the loop.

6-46

LOOP+3[B
ITEST[G
LOOP-+0003)0010

At the end of the first pass through the loop, the contents of the AC
are equal to the starting value of n. At this point, however, the contents
of n itself have just been changed. If the subroutine is working properly,
the contents of n should now be equal to 7770. The programmer in-
vestigates: '

N/AND 0010

The programmer now realizes what he did wrong. In his attempt to
save space by using the datum as a counting index, he forgot that the
ISZ instruction increments the contents of negative value. Therefore,
he must negate the counter by inserting the CIA instruction as shown
below.

INTSUM, 0

CLA

TAD I INTSUM /GET COUNTER

CIA /NEGATE COUNTER
DCAN /SAVEIT

and the program will run properly. Realizing this, the programmer con-
cludes the debugging session by typing

B
to remove the breakpoint. When the breakpoint is removed, the original
contents of the break locaticn is restored,

The example debugging session above was_simple; the error was
obvious, This is seldom the case, and with long or complex programs
several debugging runs may be required. Being able to debug a program
using symbolic expressions shortens the time required to arrive at a
- correct, workable program.,

DEBUGGING NOTES. For DDT-8 to be useful, the programmer
should be aware of and consider certain factors. Namely, the following:

6-47 /

Do not open any symbol table location.

2. The symbol table tape is loaded using the low-speed reader
only.

3. Each user symbol occupies four locations in the symbol table
storage area.

4. Input is interrupted when the symbol table storage area is full.

5. To enter a combined operate class IOT instruction into an open
location, the combination must contain no more than two
mnemonics, the second of which must be CLA. Any other
combination is illegal and therefore ignored.

6. DDT-8 is restarted at its starting address, 5400, unless the
programmer wishes to restart before he has punched a com-
plete tape with checksum. In which case, he must restart at
location 5401, and the checksum is preserved.

DDT-8 offers a very convenient feature, the word search feature,
which allows the programmer to look at the contents of one, a group,
or all locations in his program. A word search is indicated to DDT-8
when the programmer types the upper and lower limits of the search
using the [L and [U commands and then the word search command,
nnnn[W (nnnn is the word being searched). Address and location con-
tents are printed as symbolic expressions or octal integers, according
to the mode (symbolic or octal) specified by the programmer using
the [S or [O command. The search never alters the contents of any
location examined. The word search feature is detailed in DDT-8,
Order No. DEC-08-CDDA-D.

ERROR DETECTION. DDT-8 is constantly watching for certain
errors, those listed below.

1. Undefined symbol or illegal symbol
2. lllegal character

3. Undefined control command

4. Off-page addressing

When an error is detected, DDT-8 types a question mark (?) on the
teleprinter and ignores all the information typed between the point of
the error and the previous tab or carriage return.

SUMMARY OF SPECIAL KEYS AND COMMANDS. The program-
mer controls DDT-8 from the keyboard using special keys and com-
mands. Certain keys have special meaning to DDT-8, and they must

6-48

be typed in certain formats in order to be acceptable to DDT-8. Tables
6-6 and 6-7 summarize the special keys and commands.

Table 6-6. DDT-8 Special Keys

Key Meaning
(space) Separation character

+ (plus) Specifies address arguments relative to symbols

— (minus) Same as +

. (period) Current location; used in address arguments

= (equal) Type last quantity as an octal integer
RETURN Make modifications, if any, and close location
LINE FEED Make modifications, if any, close location and open

next sequential location
/ (slash) Location examination character; when following the

1 ' (up-arrow)

address location, the locatlon is opened and its con-
tents printed

When following a location printout, the location
addressed therein is opened

« (back-arrow)

Delete the line currently being typed

Table 6-7. DDT-8 Commands

T (SHIFT/1)

Command Meaning
Mode Control
[O Set DDT-8 to type out in octal
[S Set DDT-8 to type out in symbolic
~ Input
[R Read symbol tape into external table from LSR, or
define new symibol from keyboard
Program Examination and Modification .
nnnn/ Open location nnnn (nnnn may be octal or sym-
bolic)
RETURN Close location currently open; enter modification,
if any .
LINE FEED Close location currently open and open next se-

quential location; enter modification, if any

Close location currently open and open location
_address therein; enter modification, if any

6-49

Table 6-7, DDT-8 Commands (Cont.)

Command Meaning

Breakpoint Insertion and Control

[B Remove current breakpoint

nnnn[B Insert a breakpoint -at location nnnn

nnnn[G Go to location nnnn and start program execution
n[C Continue from breakpoint, execute breakpoint n

times and return control to programmer. If n is
absent, it is assumed to be 1.

Word Search
nonn[W Begin word search for all occurrences of expres-
sion nnnn masked by the contents of M between
the limits imposed by L and U.-M, L, and U are
locations within DDT-8 which may be opened,
modified and closed exactly as any general loca-
tion in the user’s program.
Output
[T Punch leader/ trailer tape

mmmm;nonn[P | Punch binary tape from memory bounded by ad-
dresses mmmm and nnnn

[E Punch end-of-tape (i.e., checksum and trailer)
Address Tags
[A Accumulator storage (at breakpoint)
[L Lower limit of search
[U Upper limit of search
[M Mask; used in search
[y Link storage (at breakpoint)
NOTE: The (;:haracter [is generated by depressing ALT MODE on the key-
board.

0

For a thorough description of DDT—S, see DDT-8, Order No. DEC-
08-CDDA-D.

DEBUGGING WITH ODT-8

Using ODT-8, the programmer can run his binary program on the
computer, control its execution, and make alterations to his program
by typing on the Teletype keyboard. ODT-8 has the same capabilities
as DDT-8 except that the programmer must reference his program
using its octal representation instead of mnemonic symbols, and ODT-8
commands are formulated differently.

ODT-8 occupies less core memory than DDT-8, and can be loaded
into either lower (SA = 1000) or upper (SA = 7000) core memory,

6-50

depending on where the user’s program resides. That is, if the user pro-
gram resides in the first few pages of memory, then ODT-8 should be
loaded in the upper pages of memory, and vice versa. As with DDT-8,
the user program can not occupy (overlay) any location used by
ODT-8, including the breakpoint location which is location 0004 on
page zero. '

When the programmer is ready to start debugging a new program at
the computer, he should have at the console:

1. The binary tape of the new program.
2. A complete octal/symbolic program listing.

3. A binary tape of the ODT-8 program (either high or low
version).

To begin the debugging run, first ascertain that BIN is in core mem-
ory, then load the programmer’s binary tape followed by the binary
ODT-8 tape (see Figure 6-4 for loading procedures). Figure 6-10
illustrates the procedures for loading and executing CDT-8.

(Lood Object Progrom)-' - = = - See Figure 6-4

Load ODT-8 F — — — — — — ~{ See Figure 6-4

'

Set
SR = 1000 (low)
SR=7000 (hi}

'

Depress LOAD ADD

'

Depress START

ebug Object Program,
ODT-81s In -
Command Mode

" Figure 6-14. Loading and Executing ODT-8

6-51

The example program debugged earlier in this chapter under “De-
bugging with DDT-8” could be debugged here. However, since the only
difference would be the appearance of the debugging commands, we
need only show the command formats and give a brief explanation of
each, which can be found in Table 6-8.

Table 6-8. ODT-8 Commands

Command Meaning
/ Reopen last named location; modify if desired
nnnn/ Open location nnnn; modify if desired
RETURN Close currently opened location (typing another com-
: mand also closes the currently opened location)
LINE FEED Close currently opened location and open next se-

1 (SHIFT/N)

«— (SHIFT/O)

quential location

Close currently opened location, take contents as MRI
and open and type contents of referenced location

Close currently opened location and open indirectly,
i.e., the content of the opened location is interpreted
as the address of the location whose content is to be
typed and available for modification.

nnnnG Go to location nnnn and transfer control to pro-
grammer for modification if desired.

B Remove previously established breakpoint and re-
store breakpoint to original status.

nnnnB Establish a breakpoint at location nnnn.

A Open location containing the contents of the accumu-
lator (AC).

LINE FEED Open location containing the contents of the link.

C Continue (proceed) from a breakpoint, i.e., execution
begins with the breakpoint instruction.

nnnC Continue (proceed) from a breakpoint and iterate
non (octal) times through breakpoint.

M Open search mask, i.e., open for modification the
location containing the current value of the search
mask (mask is initially set to 7777).

LINE FEED Open lower search limit (initially set to 0001; change
by typing new lower limit after ODT-8 has typed
0001).

LINE FEED Open upper search limit (initially set to SA of
ODT-8, 1000 or 7000; change by typing new upper
limit after ODT-8 has typed initial limit).

nnnnW Word search, i.e., using the mask and lower and

upper limits, ODT-8 searches for instruction nnnn.

6-52

Table 6-8. ODT-8 Commands (Cont.)

Command Meaning

T Punch leader/trailer tape, i.e., type T and then turn
punch ON; turn punch OFF when sufficient tape has
been punched, then depress STOP on the console. Re-
start ODT-8 at appropriate SA.
mmmm;nnnnP Punch binary core image of locations mmmm through
nnnn. After executing this command by typing the
RETURN key, the computer halts for the program-
mer to turn the punch ON and to depress CONT on
the console. When specified image is punched, turn
punch OFF. ‘
E Punch checksum and trailer tape. After executing this
: command by typing the RETURN key, the computer
halts for the programmer to turn-the punch ON and
to depress CONT on the console. When sufficient
trailer tape has been punched, depress STOP on the
console and restart ODT-8 at appropriate SA.

The address of the current or last location opened is remembered by
ODT-8 even after the commands G, C, B, T, E, and P, and may be
reopened merely by typing / (the slash command).

After debugging his program, the programmer can command ODT-8
to produce a binary tape of the debugged program, which can be loaded
by the BIN Loader and run on the computer. The P-or punch command
is used with the low-speed punch only. Figure 6-15 illustrates the pro-
cedure for generating the binary coded object tape using the high-speed
punch.

Typing the G command alone is an error, it must be preceded by an
octal address to which control will be transferred. If not preceded by
‘an address, a question mark will not be typed but it will cause control
to be transferred to absolute location 0.

Typing any pgnch command with the punch ON is an error and
will cause ASCII characters to be punched on the binary tape, which
means the tape cannot be loaded and run properly. '
DEBUGGING NOTES. Only one breakpoint may be in effect at one
time, therefore, requesting a new breakpoint removes the previously
existing breakpoint, A breakpoint must not be set to any location in
the program which is altered during execution; if so set, the alteration
will destroy the breakpoint.

6-53

With Q0T-8
In Contral

Type Command
mmmm;nnnn P

Ser
SR=1231 liow)
SR=27231{h}

Depress LOAD ADD

Sey SR=6026

Depress DEP
Set SR=602!

DEP

Depress

Set
SR = 1225 (law)
SR= 7225(hi}

Depress LOAD ADD

Depress HSP ON
Depress START

Leader Tape
Is Punched

Depress STOP

Set
SR = 1203 (low)
SR = 7203(hi)

5

Figure 6-15.

Depress LOAD ADD

Core Image Of
mmmm;nann
Is Punched

Punch
More Care
?

Set
SR = 1222 {low)
SR = 72221hi}

Depress LOAD 40D

Depress START

Accumulated
Checksum @ Trailer
Tape Is Punched

Depress STOP

Depress HSP OFF

Remove Tape

Set
SR = 1231 (lowl
SR = 7231 (i)

5

6-54

Depress START .

Oepress LOAD ADD

Set SR=6046

Depress DEP

5R=6041

Set

Depress DEP

Se
SR= 1000 flow)
$R=7000 {hi)

Depress LOAD 4DD
Depress START

00T-8 Is Reody
For Next Command

Generating Binary Tape Using High-Speed Punch

An open location can be modified by typing the desired octal instruc-

tion and closing the location. Any octal number from 1 to 4 digits in
length is a legal input, but typing a fifth digit is an error and will cause
the entire modification to be ignored and a question mark to be typed
by ODT-8. ‘
ERROR DETECTION, The only legal inputs to ODT-8 are control
commands and octal digits. Any other characters will cause the charac-
ter or line to be ignored and a question mark (?) to be typed out by
ODT-8.

For a more detailed discussion, see ODT-8, Order No. DEC-08-
COCO-D. ‘

FOCAL '

FOCAL (Formula CALculator) is an online, conversational inter-
preter designed to help scientists, engineers, and students solve com-
plex numerical problems. The language consists of short easy to learn
imperative English statements. Mathematical expressions are typed in
standard notation.

With FOCAL, the programmer has the full calculating power and
speed of the computer at his fingertips. It is used for simulating mathe-
matical models, for curve plotting, for handling sets of simultaneous
equations in n-dimensional arrays, and many other kinds of problems.

The procedure for loading the binary-coded FOCAL tape is illus-
trated in Figure 6-16, When FOCAL is properly loaded in core, the
programmer sets the switch register to 0200 (the starting address of
FOCAL), depresses the LOAD ADDress switch and then the START
switch, and FOCAL will respond with its initial dialogue (see Chapter
9). The initial dialogue is a question and answer sequence, with
FOCAL asking questions and the user providing the answers.

After the programmer has answered the initial dialogue questions,
FOCAL will type an asterisk, indicating that it is ready to accept com-
mands from the programmer.

The FOCAL language and its numerous features are explained in
Chapter 9. '

6-55

W_ -{ See Figurs 6-3

Put FOCAL Tape
In Reader

Set SReT777
And Press LOAD ADD

Turn TTY
To LINE

High - Speed Which Low- Speed

Reoder
: Set SR=3777 Set LSR 1o START

Press START

| “

Tape

0
Reads In o

Yos

4

Tape Stops

Press CONT

I

’-o
4
3

AC« 0000

Yes

No End
Of Tope

Yes
Set SR=Q200 | Starting Address
And Press LOAD ADD] Of FOCAL

Press START

Respond To
Initial Diclogue

FOCAL

o -
Types = o

?

r4

Yes

FOCAL Is Reody
For User Input

Figure 6-16. Loading and Executing FOCAL

6-56

Chapter 7

Disk
Monitor System

The PDP-8 Disk Monitor System is designed for any computer in
the PDP-8 family having at least one DECdisk. This system consists
of a keyboard-oriented Monitor, which enables the user to efficiently
control the flow of programs through his PDP-8, and a comprehensive
software package, which includes a FORTRAN Compiler, Program
Assembly Language (PAL-D), Edit program (Editor), Peripheral
Interchange Program (PIP), and Dynamic Debugging Technique
(DDT-D) program. Also provided is a program (Builder) for generat-
ing a customized monitor according to the user’s particular machine
configuration (amount of core, number of disks or DECtapes, etc.).

The system is modular and open ended, permitting the user to con-
struct the software required in his environment, and allows the user full
access to his disk (or DECtape)-—referred to as the system device—
for storage and retrieval of his programs. By typing appropriate com-
mands to the Monitor, the user can load a program (construct it from
one or more units of binary coding previously punched out on paper
tape or written on the disk by the Assembler, and assign it core),
save it (write it out, with an assigned starting address, on the system
device), and later call it (read it back into core from the system de-
vice) for execution,

7-1

GENERAL DESCRIPTION

The PDP-8 Disk Monitor System permits the user to control the flow
of programs through his computer and takes full advantage of the
extended memory capabilities of disk or DECtape. In addition to
the Monitor, the system also contains a library of system programs.
Together, they provide the user with the capabilities of compiling,
assembling, editing, loading, saving, calling, and debugging his own
programs.

Monitor Residence

Monitor, as well as system and user programs, is stored on and re-
trieved from the user’s system device. To obtain a working Monitor,
the user must first build his own customized version, via the easy-to-
use dialogue technique of the System Builder program and store this
- version on his system device. Following this, the user then creates his
System Program Library on the system device. Both of these procedures
are described in Appendix A of the Disk Monitor manual (DEC-D8-
SDAB-D).

In core, the resident part of Monitor (called head of monitor)
resides in the top page (locations 7600 through 7777) of field 0. The
starting address of Monitor is 7600; 7642 is the entry address to the sys-
tem 1/0O routine, which performs all reading and writing on the system
device, Nonresident portions of Monitor, such as those routines which
perform SAVEs and CALLs, -are automatically called in as needed,
and in core they share the area from location 7000 through 7577.
(These portions disappear after use, leaving this area for the user.)

System Modes

At any point in time, the system is running in onc of two modes:
Monitor mode or user mode. Monitor mode is entered (1) whenever
the Monitor is started (see “Initializing the Monitor”) or (2) when
CTRL/C (1+ C) is typed while running any system program. Monitor
mode is signalled by the Monitor typeout of a dot (+). At both Monitor
and system program time, Monitor is able to sense a 1 C typein,
causing the system to enter Monitor mode, return to Monitor at loca-
tion 7600, and respond with a dot (s) typeout. At this point, the user
can issue any Monitor command via the Teletype keyboard.

User mode is present whenever the system is executing a system or
user program. System programs signal user mode by responding with
an asterisk (*) typeout.

7-2

SYSTEM PROGRAM LIBRARY

The Monitor System’s library of programs presently consists of the
Peripheral Interchange Program (PIP), Disk System Editor (Editor),
PAL-D Disk Assembler (PAL-D), 4K Disk FORTRAN (FORTRAN
D), and Dynamic Debugging Technique for Disk (DDT-D), and this
list is destined to lengthen with time.

To load a program using the Monitor System, the Loader makes
certain queries to which the user must type a reply. The queries are
the same for all programs. The user’s replies will vary, however, de-
pending on the particulars of the program being loaded.

When loading a program into core, the user should first check to see
whether Monitor is in core. This is done by typing 1+ C (CTRL key
and then the C key). The 1 C will not echo (not print on the tele-
printer). If Monitor is in core, it will respond by typing a period {»)
at the left margin of the teleprinter paper. If a period is not typed in
response to T C, Monitor is not in core.

The library system includes the Disk System Binary Loader
(LOAD) which is automatically saved on the disk at Build time.
Disk System Binary Loader is descnbed in “Loading Programs—Disk
System Binary Loader.”
 The user may save any program on the disk by responding to the
last period typed by Monitor with the word SAVE, .a 1-to-4-character
name of the program, the type of program (user or system), whether
it’s a one or more page save, and the location of its starting address,
as is thoroughly described in “Saving Programs (SAVE Command).”

After each program is saved on the system device, it may be called
(i.e., transferred from the disk into core) merely by responding to
Monitor (to a period) with the four characters designated as the name
of that program, as explained in “Callmg a Program (CALL Com-
mand).”

The programs in the System Library are described below. Further
information concerning these programs may be found in the Disk
Monitor manual or in the other manuals referred to.

Peripheral Interchange Program

The Peripheral Interchange Program (PIP) performs general utility
operations, such as listing the contents of specified directories, deleting
unwanted files from the system device, and transferring files between
devices, and copying specified files. PIP enables the user to do any of
the above operations merely by typing commands from the teleprinter
keyboard.

7-3

A summary of PIP options follows.

List entire system directory

B Copy a binary file

D Delete a file to be specified

F Copy a FORTRAN binary file
M Move directory to safe disk
P
R
S
U

-

Protect disk 1 (blocks 0-176)
Restore directory from safe disk
Copy a system file!
Copy a user filet

RETURN or A Copy a ASCII file

Disk System Editor

The Disk System Editor enables the user to generate and edit
symbolic programs online from the teleprinter keyboard. The sym-
bolic program may be either printed on the teleprinter, punched
on paper tape using the high- or low-speed punch, or stored on the
system device as a user program.

Editor operates either in command or text mode. In command
mode, all typed input is interpreted as a command instructing Editor
to perform a certain operation or to allow the user to perform an
operation on the text stored in the buffer. In text mode, all typed
input is interpreted as text to replace, tp be inserted into, or to be
appended to the contents of the text buffer.

The command language of the Disk System Editor is identical to
that described in the PDP-8 Symbolic Editor manual (DEC-08-
ESAB-D) with a few exceptions.

A summary of Editor commands follows. Each command is termi-
nated by pressing the RETURN key, which initiates execution of
the command.

Function | Command Meaning
Read R }Read incoming text and append to buffer until a
form feed is encountered
Append A | Append incoming text to any already in the buffer
until a form feed is encountered.
List L |List the entire -buffer.
nL |List the line n.
m,nL |List lines m through n.

1User system files may not be copied onto papei tape.

7-4

Function |Command Meaning
Proceed P |Proceed and output the entire contents of the
buffer and return to command mode.
nP |Output line n, followed by a form feed.
m,nP |Output lines m through n, followed by a form feed.

Trailer T |Punch four inches of trailer.

Next N JPunch the entire buffer and a form feed: kill the
buffer and read next page.

nN |Repeat the above sequence n times.
Kill K |Kill the buffer.
Delete nD |Delete line n.
m,nD |Delete lines m through n,

Insert I |Insert before line 1 all text until a form feed is

encountered. L7 :
nl |Insert before line n until a form feed is encount-
ered.

Change nC |Delete line n and replace it with any number of
lines from the keyboard until a form feed is en-
countered,

m,nC |Delete lines m through n, replace from keyboard
as above until form feed is encountered.

Move |[m,n$kM |Move and insert lines m through n before line k.

Get G |Get and list the next line beginning with a tag.

nG }Get and list the next line after line n which begins
with a tag.

Search S |Search the entire buffer for the character specified
(but not echoed) after the carriage return;
allow modification when found.

nS |Search line n, as above, allow modification.
m,nS |Search lines m through, n, allow modification.

End file E |Process the entire file (perform enough NEXT

commands to pass the remaining input to the
output file) and create an end-of-file indication;
legal only for output to the system device. If
the low-speed paper tape reader is used for
input while performing an E command, the
paper tape reader will eventually run out of
tape, and at this point typing a form feed will
allow the command to be completed.

7-5

PAL-D Disk Assembler '

PAL-D, the acronym for Program Assembly Language for the
Disk system, is the symbolic assembly program designed primarily
for the 4K PDP-8 family of computers with disk or DECtape.

The PAL-D Assembler performs many useful functions, making
machine language programming easier, faster, and more efficient.
Basically, the Assembler processes the user’s source program state-
ments by translating mnemonic operation codes into the binary codes
needed in machine instructions, relating symbols to numeric values,
assigning absolute core addresses for program instructions and data,
and preparing an output listing of the program which includes
notification of any errors detected during the assembly process.

The Assembler is thoroughly documented in the PAL-D Disk
Assembler Programming Manual (Doc. No. DEC-D8-ASAA-D).

FORTRAN-D for the Disk System

FORTRAN-D (FORmula TRANslation for the Disk System),
is an expanded version of standard PDP-8 FORTRAN designed
for PDP-8 family computers with disk or DECtape units. FOR-
TRAN-D is described in detail in the 4K FORTRAN Programming
Manual (DEC-08-AFAC-D).

FORTRAN-D contains a compiler, an operating system, and two
programs to aid debugging. The FORTRAN compiler is used to
convert a source program into an object program. The FORTRAN
operating system is used to execute the object program.

This version of FORTRAN is designed to facilitate user/system
communication by allowing the user to type appropriate commands
from the teleprinter keyboard, eliminating the need to toggle input
using the switch registers.

FORTRAN statements specify the computations required to carry
out the processes of the FORTRAN program. There are four types
of statements provided for by the FORTRAN language:

a. Arithmetic statements define a numerical calculation.

b. Control statements determine the sequence of operation in
the program.

c. Specification statements define the properties of variables,
functions, and arrays appearing in the source program. They
also enable the user to control storage allocation.

d. Input/output statements are used to transmit information be-
tween the computer and related input/output devices.

The compiler consists of a loader (FORT) and the main portion of
the compiler (.FT.). This version of the compiler differs from the

7-6

standard PDP-8 4K FORTRAN compiler in the following ways.

a. It uses the disk or DECtape unit (whichever is the system
device) during its operation,

b. It will compile programs which have been stored on the sys-

 tem device or programs which have been prepared on punched
paper tape. »

¢. It will generate a FORTRAN binary output file cither on the
system device or on punched paper tape.

d. Significant improvements have been employed with the READ
and WRITE statements.

e. Input and output devices are determined using the Command
Decoder.

f. It is possible to terminate compllatlon at any time by typmg

. 1 C, thus returning control to Monitor.

g. Within certain restrictions, a program compiled with output to
the system device may be executed immediately when the user
types 1 P after compilation of the program.

h. Statement numbers need not be delimited by a semicolon, un-

 less the user wishes them to be employed for appearance.

i. Statements without preceding numbers must be preceded by a
space, a tab, or a semicolon.

Debugging Aid (Symbolprint). Symbolprint (STBL) is a program
which may be used with the FORTRAN compiler. Its purpose is to
help the user create and debug his FORTRAN programs by providing
certain information about the compiler-generated interpretive code.
Symbolprint may be used only immediately after a program has been
compiled using the Disk FORTRAN compiler.
‘Symbolprint provides the following information:
a. The core limits of the interpretive code.
b. A list of variable names and their corresponding locations
(the symbol table).
c. A list of statement numbers and their corresponding locations
(the statement number table).

Operating System. The FORTRAN operating system consists. of a
loader (FOSL) and the interpreter and arithmetic subroutine package
(.08.). This version of FOSL differs from the paper tape FORTRAN
operating system in the following ways.
a, It will load and execute programs which have been compiled
and saved on the system device or programs which have been
compiled on paper tape.

7-7

b. FOSL may be called directly by the compiler when a program
has been compiled and saved on the system device. This is
referred to as compile-and-go mode.

c. FOSL is able to recognize READ and WRITE statements

~ which may read and write data in ASCII format on either
the low-speed paper tape reader/punch, the high-speed paper
tape reader/punch, or the system device.

d. The execution of a FORTRAN program may be interrupted
by the user at any time by typing 1 C; control will be returned
to Monitor.

Debugging Aid (Diagnose). Diagnose (DIAG) is a basic system pro-
gram which helps the user debug his FORTRAN program. It is in-
tended to be used in conjunction with the PDP-8 4K FORTRAN
Operating System and revised FORTRAN Symbolprint. Diagnose pro-
vides the following information.

a. If stack overflow or underflow has occurred, it will type a
message indicating which of the five run-time stacks caused
the error.

b. It will type a message indicating the contents of the current
location counter (CLC).

¢. If tile counter stack is nonempty, it will type the contents of
that stack.

d. If location zero is nonzero, it will type the contents of that
location (minus one), indicating the point at which some
FORTRAN systems error occurred.

Dynamic Debugging Technique for the Disk System

The Dynamic Debugging Technique for the Disk System (DDT-D)
is used for online checking, testing, and altering object programs by
typing from the teleprinter keyboard. When debugging online, the user
checks his program at the computer, controlling its execution, and
making corrections or changes to his program while it is running on
the computer.

When using DDT-D, the user should have a listing of his program
and its symbols so that he can update the program listing as correc-
tions and changes are made to his program. The user may refer to.
variables and tags by their symbolic names or by their octal values.

DDT-D operates as described in DDT Programming Manual (Doc.
No. DEC-08-CDDA-D), except where that manual differs from this
one, in which case this manual has precedence.

7-8

DDT-D can be considered as being in three sections.

a. DDT Proper (.DDT) A slightly modified version of
' DDT-8 (low); occupies core loca-
tions 200 through 4577 and the

three breakpoint locations.

b. Driver (DDT) Resident in core with its origin set
above DDT proper (above 4577);
it is a 2-page program plus a 1-
page once-only program, and it
contains breakpoint insertion and
removal logic, overlay routines,
continuation -iteration count and
control, and breakpoint list.

c. User Core Image File Occupies same storage area as
(SYM) A DDT proper and is used for swap-
ping DDT proper and the user
program to and from the system
device.
DDT-D is an expanded version of DDT-8 with the following excep-
tions.
Three breakpoints (as opposed to only one in DDT-8)
No punching (program may be output on the system device)
No switch options (user direction is via keyboard)
No halts (continues when user types 1 P) '

aR o

EQUIPMENT REQUIREMENTS
The minimum equipment requirements of the PDP-8 Disk Monitor

System are as follows.

A basic PDP-8 family computer with 4K of core

Teletype r :

3-Cycle Data Break (Option required with PDP-8/S)

At least one DF32 Random Access DECdisk File or a TCO1

DECtape Control with a TUSS DECtape transport. The DEC-

tape must have timing and mark tracks written on it prior to use.

NOTE .)
The system will recognize up to 32K of core, up to four disks (1 Type DF32
and 3 Type DS32’%s), up to eight DECtape transports. (TC01 Control only) and
a high-speed paper-tape reader/ punch.

7-9

INITIALIZING THE MONITOR
The following discussion assumes that the user has built a customized
Monitor via the System Builder and has stored it on his system device;
it further assumes that the user has bootstrapped this customized Moni-
tor into core and that the Monitor is currently intact. If this is not the
case, such a Monitor must be built and bootstrapped into core bv the
steps outlined in the Disk Monitor System manual (DEC-D8-SDAB-
D).
~ Monitor start is at location 7600. A jump to this location can be
made by either (1) stopping the machine, setting the switches to 7600,
and pressing LOAD ADD (load address) and START, or (2) typing
t C when in Monitor mode or when a system program (or any user
program which includes coding to sense a 1 C typein) is running.*
Monitor start performs the following actions.
a. Saves the coding from location 7200 through 7577 in the first
two scratch blocks on the system device.
b. Reads blocks 1 and 2 (containing the rest of Monitor) from
the system device into these locations.
¢. Transfers control to Monitor, which responds with a carriage
return, line feed, and a dot.
A Monitor restart can be performed by typing RUBOUT to Monitor.
A Monitor restart performs the same actions as described above except
for Subparagraph a. A common use for RUBOUT is to terminate a
command string when the operator has discovered that he has made a
mistake. The command string is ignored, and Monitor responds as
described in Subparagraph c. The user core image on the system de-
vice is not changed by RUBOUT (it is changed, however, by 1 C).

COMMAND STRINGS

The user types commands in the form of command strings to direct
Monitor, or a system program, to perform some action. Command
strings are simple in format and afford the user an easy means of com-
municating with the system.

Monitor indicates its readiness to accept a command string by typing
a dot, and at this point, the user can type some Monitor command,
such as CALL or SAVE.

Unless otherwise indicated, all command strings are terminated by
the RETURN key, which echoes as a carriage return, line feed.

1A start instruction (§T=7600) is issued when running Loader causes a jump to
7600 after loading has been performed. Certain errors also cause a jump to this
location.

7-10

~ System programs indicate their readiness to receive information by
typing either an asterisk or a query. The most common queries are as
follows.
*QUT- Requests that the user specify one output device name. In
the case of disk-or DECtape the filename to be assigned to
the output data must also be specified (see “Filenames”).

*IN- Requests that the user specify one or more. (up to five)
input device names, For disk and DECtape, filenames of
. input files must also be ‘speciﬁed (see Filenames).

*QPT- Requests that the user specify one option or switch, entered
as a single alphanumeric character; see the appropriate
reference for options available in each system program.

This communication between the system and the user is handled by
a portion of Monitor known as the Command Decoder.' Command
Decoder is called into core by the system when needed and occupies
any four contiguous pages of core.
Command String Format

Command strings are composed of a few basic elements and follow
certain rules of punctuation. Their basic elements are as follows.

a. Device names

b. Filenames

¢. Punctuation

d. Spec1a1 characters

Each of these elements is described in the followmg paragraphs.

Device Names. Device names permitted in command strings are as
follows.
Dn: DECtape unit, if both disk and DECtape are present in the sys-
tem (n=unit number, ¢ through 7)
S: System device (disk or DECtape unit 0)
R: High-speed paper tape equipment (reader or punch)
T: Low-speed paper tape equipment on the Teletype (reader or
punch)

Filenames. Filenames are limited to four characters in length and can
be composed of any combination of alphanumeric characters or special
characters? with the following exceptions,

a. Imbedded spaces cannot appear in a filename (they are

ignored) .’ However, trailing spaces are permitted.

1Command Decoder is a system program (.CD.) which is saved on the system
device at Build time.
2Although both printing and nonprinting keyboard characters are allowable,
printing characters are recommended.
3Note that Monitor is given the filename EX C; one reason for this unconven-
tional use of an imbedded blank is to protect Momtor from accidental destruction
by the user (e.g., deletxon via PIP).

7-11

b. A filename cannot be one of the following words or symbols.

CALL SAVE !)

Extensions to the filenames specified by the user are automa‘ucally

- appended by the system. They are used internally by the system and
cannot be referred to or modified by the user.

SYS (n) Saved system program file in core bank n.
USER (n) Saved user program file in core bank n.

ASCII Source language program file (i input to PAL-D Assembler
or FORTRAN Compiler).

BINARY Binary program file (output from PAL-D Assembler).

FTC BIN Interpretive binary file (output from FORTRAN Com-
piler).

Filenames (and extensions) are meaningful only for file-structured
devices (disk and DECtape). If they are specified for other devices,
they are ignored. Both the filename and extension name appear on
directory listings produced by the list feature in PIP.?

Example: NAME TYPE BLK

8D ’
PIP .SYS (0) 0015
SRC1 . ASCIT 0007

BIN -.BINARY 0001
SRC1 . USER (0) 0001

Punctuation, Punctuation within command strings is as follows.

, Used to separate device names, when more than one is given in a
command string. The comma is also used to separate core references
in a SAVE command string, when more than one contiguous area
of core is specified.

; Precedes the entry specification in a SAVE command.

: Terminates each device name. The colon is also used following the
filename in a SAVE command to indicate that the file is to be saved
as a user program.

- Separates the beginning and ending addresses of a contiguous core
area specification in a SAVE command.

! Follows the filename in a SAVE command when a ﬁle is to be saved
as a system program.

1“8D” in example means VERSION 8, change D.

7-12

Special Characters. Special characters are used as described below.

+1C

TP

RETURN

RUBOUT

If given while the system is in Monitor mode or a system
program is running, control is returned to Monitor start
(location 7600). Monitor responds with a dot. ¢ C is typed
by holding down the CTRL key and striking 1 C. 1 C does
not echo (does not print).

Typed in response to a 4 typeout. Instructs the system to
proceed with the next operation.! t P is typed by holding
down the CTRL key and striking P. 1 P does not echo
(does not print).

Carriage return terminates current command string input.
When typed alone, in response to a system query, it indi-
cates that the user does not desire to specify the item (e.g.,
device name) requested. Echoes as carriage return, line
feed. . :

Causes the current command string to be ignored, and the
system returns to the beginning of the command string and
is ready to receive a new command. RUBOUT does not
echo.

Examples of Command Strings
These examples illustrate the elements and rules explained above.
- Samples of both Monitor commands and system program commands

are given.”

Monitor Commands ,
_._CALL PRG1 Call the user program file, PRG1,

from the system device into core for
execution,

. SAVE PALD! 0-7577; 6200 Save a program, previously loaded by

Loader into locations 0 through 7577
or core, on the system device as a
system program (!). Assign a starting
address of 6200 and a filename,

PALD.
SYSTEM PROGRAM
COMMANDS e
*IN-S:PRO2 Use the file PRO2 on the system de-

vice as the input file.

*IN-S:TST1,R: Use the file TST1 on the system de-

vise and one file from the high-speed
paper tape reader as the input files.

*QUT-D5:SPEC Write the output file on DECtape

unit No. 5 and assign it the filename
SPEC.

11 P can also be used to prematurely terminate certain operations while#n pro-
gress (e.g., the typing out of a file directory by the list option in PIP).
“In all examples, system response {typeout) is underlined for clarity.

7-13

LOADING PROGRAMS—DISK SYSTEM BINARY LOADER!

The Disk System Binary Loader takes as input the binary coding
produced by the PAL-D Assembler and loads it into core in executable
form. When loading is completed, Loader “disappears” after first en-
tering the loaded program at the starting address typed by the user
just prior to loading (see “Loader Operating Procedures” below).
Loader accepts input from the system device or paper tape.

Loader requires one pass for any program which does.not load above
location 6777 (field 0). Loader uses core from location 167 through
177 and 6000 through 7577, and the resident portion of Monitor occu-
pies the remainder of field 0. One-pass loading reads input files only
once.

Two passes are required for all other programs (i.e., programs load-
ing above 6777). In two-pass loading, programs can be loaded in all
of field 0, except locations 7600 through 7777.2 Two-pass loading re-
quires that input paper tapes be read through the reader twice,

Loader Operating Procedures

. LOAD Direct Monitor to bring Loader from

= the system device into core for exe-
cution. i

*IN- Loader requests source of input(s).

Type one or more device names,
separated by commas. If an input
device is a file-structured device (S:,
Dn:) include filename(s).

Up to five files can be specified.

Examples

*IN-R:,R:,R: Input three tapes from the paper
tape reader.

*IN-S:INPT Input the file INPT from the system
device.

*IN-S:BIN2,R: Input the file BIN2 from the system

device and one tape from the paper
tape reader.

*IN-S:BIN1,S:BIN2 Input the files BIN1 and BIN2 from
the system device.

1The Disk System Binary Loader is a system program saved on the disk at Build
time. It is called by the user in the same manner as any system program. It
occupies locations 7000-7577 and has a starting address of 7000.

2In 8K and larger systems, Loader sets up locations 7574 through 7577 to per-
form a start in fields other than 0. It is the user’s responsibility to_protect these
focations if he wants to start in other than field 0.

7-14

v

If device(s) are valid and filenames
(if any) are actually found on the
system device, Loader responds with
ong asterisk for each correct input.

*OPT- Loader requests mode desired (one-
pass or two-pass).
Examples) R
*OPT-1 One-pass loading desired; no pro-
grams are loaded above location
\ 6777.
*OPT-2 Two-pass loading desired; programs

(or anything else)

#*ST = Loader requests the starting address
to which control is to be transferred
when loading is completed. The ad-
dress is typed in the form

fannn
where
f = field number! (omitted if
field 0).
and
nnnn = location within field

Examples

*ST-F Load into field 0.

*ST = 7600 Return to Monitor after loading.

*ST =0

*ST = 30225 Load into field 3.

Jump to location 255, field 3, after
loading.

*ST = 10000 Load into field 1.

Return to Monitor after loading
into field I.

Loader néw types a series of up-
arrows, onc at a time, as explained
below. . . .
Following each up-arrow typeout,
the user is required to perform
one or more actions.

mn First up-arrow: Loader is ready to

can be loaded above location 6777.

load. If paper tape input, put the
tape in the reader. Type 1t P.2

1The f-digit forces Loader to start loading into the specified field until a “field
setting” is found in the input file or tape.

2If Teletype paper tape equipment is used, type 1 P before turning on the
reader.

7-15

Second up-arrow: End of pass 1. If
operating in one-pass mode, type
t P to jump to previously specified
starting address.

If operating in two-pass mode.
typet P.

The next two up-arrows appear only

if operating in two-pass mode.

Third up-arrow: Reload paper tape
input for pass 2. Type 1P.

Fourth up-arrow: End of pass 2.
Type tP to jump to previously
specified starting address.

Multiple Input Files

An up-arrow is typed out as the

processing of each input file is com-

pleted. If paper tape input, insert the
next file in the reader and type 1P.

Repeat the above step until all files

given in response to the *IN-request

have been processed.

If in two-pass mode, each tape must

be entered twice, in the order

T, T2, T3,....T1, T2, T3,

After all files have been entered the

required number of times, type ¢ P

to jump -to the previously specified

starting address.
NOTE .
After each input paper tape is read, the high-speed paper tape version of
Loader loops until the user types.4 P to continue. However, the low-speed paper

tape version hairs. Thus, when using the Teletype paper tape equipment for
input, the user need not type 1 P but press CONT on the console and start the

paper tape reader.

At this point, Loader disappears and control is transferred to the

previously specified starting address.
The loading parameters for system programs are given in Table 7-1.

Loader Error Messages

An illegal checksum error condition causes Loader to type
?

and return to Monitor after the user types 1P or 1C. Error messages
for illegal filenames or devices are as specified in “System Error
Messages.”

7-16

SAVING PROGRAMS (SAVE COMMAND)

The SAVE command enables the user to write core images of sys-
tem or user programs from core onto his system device for subsequent
call-in (CALL) and execution, For example, a program which has
been loaded by Disk System Binary Loader can be stored on the sys-
tem device by the SAVE command. Or, a previously saved program
which has been called in and modified by DDT can be stored
in its updated version on the system device, overlaying the old version
if desired.

Core images can be saved in units of one or more pages, each page
occupying one block on the system device. If a core specification (see
below) addresses only a portion of a page, the entire page is written
out. For example, the core specification 45-150 is treated as though it
were 0-177. Core areas to be saved may be contiguous or noncon-
tiguous as desired by the user. Up to 32,, core specifications. in any
combination of monotonically increasing single-page or multiple-page
requests, can be entered in a single SAVE command.

SAVE Command Format

! o
. SAVE filename { j core-specifications, ., . .; entry-point

SAVE X Directs Monitor to call in the nonresment SAVE
: ' routine.
filename The filename (program name) to be assigned to

the file on the systems device. This name will be
used to call the file later when the user wants to
read in and execute the program. Restrictions on
the formation of filenames can be found in
“Command Strings” under “Filenames.”” Any pre-
viously saved program with the same “filename”
and having the same extensnon will be automatic-
ally overwritten.

lor: ! is typed immediately after the filename of a file
if the user desires to save it as a syszem program
(e.g., PIP). A program saved in this manner can
be called in by simply typing its name to Monitor
(the word CALL is not required)

_filename

An extension name of .SYS is automatically ap-
pended to the filename.

7-17

core-specifications

: is typed immediately after the filename of a file
if the user desires to save it as a user program. A
program saved in this manner can be called in
and executed later via the CALL command

.CALL filename

An extension name of .USER is automatically
appended to the filename.

Up to 32 specifications can be entered in a single
SAVE command. Each core specification is sep-
arated from the following one by a comma. The
last core specification in the series is followed by a
semicolon. Addresses are expressed in octal.

Single-page core specification
fonnn
where
f=field number (can be omitted if field
0).
nnnn=any location within the page which
the user desires to save.
Multiple-page core specification
When a user wishes to save a core area of several
contiguous pages, he can type a multiple-page core
specification in the format.
fnnnn,-nnnn,
where :
f=field number (can be omitted if field
0).
nnnn,= any location within the first page of

the series of contiguous pages to be
saved,
nnnn,=any location within the last page of
the series of contiguous pages to be
saved.
The following rules apply.

a. The beginning address of a multiple-page re-
quest must be smaller than the ending address
(nnnn, must be smaller than nnnn,).

b. Both addresses must be in the same field.

¢. The field number (f) must be within the
range of your system; however, no check for the
validity of this number is performed at SAVE
time.

7-18

entry-point The entry point of the saved program, in the for-
. mat
fnnnn (see explanations above)

An entry point of O causes a return to Monitor at
+ CALL time, regardless of the field into which the
program was saved.

NOTE

The last nonzero field number encountered in a SAVE command string ‘is re-
membered and prefixed to all other addresses in the command string. (Remem-
ber: only one field can be referred to in each command string.)

Example: The following entries are identical in meaning.

SAVE PRGA: 10000-10777, 11400, 1600-17777; 10200

SAVE PRGA: 30000-777, 51400, 26000-7777; 10200

SAVE PRGA: 10000-777,1400, 6000-7777; 200

SAVE PRGA: 0-777, 1400, 6000-7777; 10200

In each of these examples, all addresses are treated as beipg field 1, because the
last five-digit entry seen contained a.most significant digit 1.

SAVE command strings for system programs are given in Table 7-2.

SAVE Command Processing

© A list of the required pages is constructed from the information
typed by the user and a block requirement count is kept. When the
user types the terminating carriage return (RETURN), allowing the
SAVE process to begin, a directory name search on the system device
is initiated. If a file having the same name as the filename in the SAVE
command is found, it is replaced by the file now being saved. If no such
file is found, a new file is created. Next, a storage availability search
finds a sufficient number of available blocks on the system device to
satisfy the block requirement count. (See above.) These block numbers
are stored in a corresponding block list; the blocks are then filled with
the contents of the pages to be saved. When the SAVE process is com-
pleted, control returns to Monitor (7600).

CALLING A PROGRAM (CALL COMMAND)

Once a file has been loaded and saved, it can be called into core as
desired. There are two types of CALL command strings: one for system
programs and the other for user programs,

The CALL command string format for system programs (programs
saved by a SAVE command string in which the filename was followed.
byal)is

filename
where filename is the same as the one used in the SAVE command
string which saved it. ‘

7-19

The CALL command string format for user programs (programs
saved by a SAVE command string in which the filename was followed

bya:)is

-CALL filename

When a program is called, a directory name search is performed on
the system device. Associated with the directory entry is the entry point
of the program and information concerning file protection and memory
extension. If the appropriate directory name entry is found and the
file has the proper extension (.SYS or .USER), calling proceeds. If
not, the calling process is terminated, ? is typed, and control is returned

to Monitor.

Table 7-1. Loading Parameters for System Programs

Name Core Limits Entry Point Pass
PIP 0-5177 1000 1
EDIT 0-3177 2600 1
PALD 0-3377, 3600-4377, 6200 2
4600, 5200,
6200-6577, 7000-7577
FORT 0-1777 200 1
FT. 200-7377 - 2
STBL 600-777 600 1
FOSL 0-1577 200 1
.0S. 0-5177 - 1
DIAG 200-1177 200 1
DDT 200-4577 - l
SYM 200-4577 - -
DDT 7200-7577 7200 2
Table 7-2. SAVE Commands for System Programs

Name SAVE Command String

PIP SAVE PIP!0-5177;1000

EDIT SAVE EDIT!0-3177;2600

PALD SAVE PALD!0-7577;6200

FORT SAVE FORT!0-1777;200

FT. SAVE .FT.!1200-7377;0

STBL SAVE STBL!600;600
! FOSL . SAVE FOSL!0-1577;200

.0S. SAVE .08.10-5177:0

DIAG SAVE DIAG!200-1177;200

.DDT SAVE .DDT!200-4577;0

SYM SAVE .SYM!1200-4577;0

DDT SAVE DDT!7200-7577,0

(User may assemble anywhere above location 4577)

7-20

SYSTEM ERROR MESSAGES

" As an input command string is being typed, Monitor recognizes any
incorrect syntax and remembers it. When the user types a carriage re-
turn, Monitor responds with a ? to indicate invalid input.

Error messages output by Command Decoder are given in Table 7-3.

Table 7-3. System Error Messages

Message Meaning

? Illegal syntax or miscellaneous error condition
D Directory on the systems device is full

E Too many inputs or outputs were entered

I No such inputs

S . System 1/0 failure

Monitor-time read or write errors cause a halt to occur. Persistence
of this condition indicates a hardware failure, as the system /O rou-
tine attempts to read or write three times before halting.

1/0 PROGRAMMING
The modular concept of input/output (I/O) handling of the disk
system provides for easy maintenance and programming. The system

device I/0 is found in the following places (all I/O routines must be
in field 0).

a. Top page of field 0 (location 7642) which is the 1/0 routine
used by all system programs for normal 1/0. A copy of this
page is on block O of the system device. Block 0 of each DEC-
tape is the DECtape 1/0 routine.

b. Interrupt versions of disk and DECtape routines are found in
PIP.

¢. Paper tape 1/0 is handled by individual programs.

The basic 1/0 routine (see “Normal,” below) is called as shown in
Table 7-4. 1t is called in two ways, as determined by bit 2 of the func-
tion word.

Normal. The 1/0 routine returns to JMS 6 (normal) or JMS 5
(error). For example, the following routine would read consccutive
blocks from a file on the system device. The routine is initialized by
putting the first block number of the desired file into location LINK,

7-21

If an attempt is made to read past the last block of the file, an exit
will be made to a routine called ENDFIL.

GETBLK,

BLOK,

LINK,

0

TAD LINK
SNA

JMP ENDFIL
DCA BLOK
JMS 7642

3

0

BUFFAD

0

JMP ERROR
JMP I GETBLK

/GET LINK FROM LAST READ
/IS THIS END OF FILE
/YES

/CALL DISK I/O ROUTINE
/FUNCTION=READ

/BUFFER ADDRESS

/ERROR RETURN

Indirect. The I/0 routine returns to the 12-bit address in the error re-
turn word (normal or the 12-bit address in ERROR).

Table 7-4 Calling Sequence for Disk System I/0 Routine

Calling Sequence

Explanation

JMS 1 SYSIO

“FUNCT
BLOCK
CORE
LINK
ERROR

Location SYSIO points to I/0
Function word!

Block to be accessed

Low-order core address

Filled by READ, used by WRITE
Error return here

Normal return here

1Function word:

Bits 0-1 unused

Bit 2 =0,
=1,

normal return -
indirect return at end of read/ write to
address +1 in error return

Bits 3-5 unit no. if DECtape
Bits 6-8 memory field
Bits 9-11 function: READ = 3; WRITE =15

7-22

Chapter 8

Time-Sharing.
System

INTRODUCTION

The Time-Sharing System for the PDP-8/I and PDP-8 computers
(TSS/8) is a general purpose stand-alone time-sharing system offering
each TSS/8 user a comprehensive library of system, service, and utility
programs. These programs provide facilities for compiling, assembling,
editing, loading, saving, calling, and debugging user programs online.
Also included are two conversational language programs, FOCAL—
and BASIC-8.1

By segregating the central processing operations from the time-con-
suming interactions with the human users, the computer can in effect
work on a number of programs simultaneously, Giving only a fraction
of a second at a time to each program or task, the computer can deal
with many users seemingly at once, as if each user has the computer to
himself, The executions of various programs are interspersed without
interfering with one another and without detectable delays in the re-
sponses to the individual users.

Core and Disk Allocation

TSS/8 requires a minimum of 12K words (three fields) of core mem-
ory. The first 8K (Fields O and 1) are shared by the various Monitor
subprograms. The other 4K (Field 2) and any additional core memory
are shared by the users of the system.

1 BASIC-8 is a modified version of the algebraic language orlgmally developed
at Dartmouth College,

8-1

The disk area is divided as follows.

Monitor Area The first 16K of the disk is occupied by the
Monitor subprograms. These subprograms
are swapped into core memory as needed.

‘User Swapping Area This area consists of a 4K track for each
user in the system. When a user is tempo-
rarily swapped out of core memory to allow
other users to have their turn, his program
is stored on his 4K track.

File Storage Area The remaining disk area is used for storing
system and user program files.

Monitor Functions

The heart of this time-sharing system is a complex of subprograms
called Monitor. Monitor coordinates the operations of the various
programs and Teletype consoles, allocates the time and services of the
computer to users, and controls their access to the system. The sched-
uling function includes scheduling the user’s requests, transferring con-
trol of the central processor from one user to another, moving (swap-
ping) programs between core memory and disk, and managing the
user’s private files.

TSS/8 User and Console

A TSS/8 user is any person running a computer program within
TSS/8. He has an account number and password assigned to him which
identifies him to TSS/8. This account number and password are assigned
to the user by the person responsible for the system, and it identifies
his files on a permanent basis. When the user is using the system, this
number also identifies his console, his individual disk swapping track
(a contiguous 4K section of disk in the User Swapping Area) for tem-
porary storage of active programs by the Monitor, and whatever other
facilities he may be using at any given time.

While the user is logged into the system, he owns at least one Tele-
type console (see Ghapter 4) and one 4K disk track. The console con-
sists of a keyboard, which allows the user to type information to his
user programs and to Monitor, a paper tape reader and punch for
paper tape input to and output from core, and a teleprinter, which fur-
nishes typed copy of user input and program and Monitor output,

8-2

S

System Program Library
A comprehensive library of programs is available to all TSS/8 users
and is located in the File Storage Area of the disk. The library can

" consist of any or all of the system software which operates in 4K of core

memory. Any program in the library can be called into core from the

. disk and started merely by typing, in response to the dot typed by

Monitor, the command R and the aSSIgned name of the program. For -
example,

R FOCAL
brings FOCAL into core from the disk and automatically executes it so
that it begins typing out its initial dialogue.

User Programs

When a user program is being run by TSS/8 it is swapped into core
memory from the user’s disk track. Several programs may be run at
virtually the same time by employing the technique of bringing a pro-
gram into- core from the disk, allowing it to execute for a short time,
marking the state in which its execution is stopped, returning it to the
disk, and picking up the next user program.

User programs are serviced regularly on a round-robin basis. After
a user program has been executed, it is placed last in the queue of user
programs waiting to run. Each program is allowed to run a fixed inter-
val of time and then it is exchanged for the next user program. If only
one program is in a condition to run, it is allowed to run without inter-
ruption. :

User Files

User files are stored in the File Storage Area of the disk. Using the
appropriate Monitor commands, the user can create new files and ex-
tend, contract, and delete old files. Files may contain textual informa-
tion, binary core images, or data in any standard format.

Each user can have access to up to four active files at any time. An
internal file number (0 through 3) is associated with each of the user’s
active files, and commands then operate in terms of the internal file
numbers. With this feature, a user may attach one of his files to an
internal file number and then load service and utility programs that
operate on his file without having to exp11c1t1y call the file for each
service or utility program used.

The user can protect his files against unauthorized access. He can
also specify the extent of access certain other users may have to his
files. For example, a user’s associates may be permitted to look at the
data of certain files but not permitted to alter that data.

8-3

System Configaration

Depending on the hardware configuration of a particular TSS/8,
there can be from 1 to 16 users working with the system simultane-
ously. Each user has the following resources: at least 4K words of core
memory for execution of programs and a corresponding 4K disk track
for temporary storage of his core image when swapped out by Monitor.

The minimum equipment requirements of the system are listed below
(see Figure 8-1).

PDP-8/1 or PDP-8 with KT08/1 Time-Sharing Modifications
MC8/I-A Memory Extension Control and 4096 words

MMB8/IA 4096 word memory

RF08 Disk Control

RS08 Disk B

PT 08 Asynchronous Line Interfaces, Dual (4), Real-Time Clock
PT8/I High-Speed Paper Tape Reader

KE8/I Automatic Multiply-Divider B

H961A Option Cabinet

CONSOLES
{170 16)

Ct-_-)I I I (TELETYPE MODEL. 33 or 35)

CONSOLE CONTROL
pcos

or -
PTO8's

PDP-8/1 {modified)

cPU

RFO8
DISK

Figure 8-1. System Configuration

4K CORE 4K CORE 1, MAXIMUM
i

ORE STORAGE
= 32K)
1 _WORDS) _

XOOoro

e = = - -]
e - - -]

8-4

The system can have a maximum of 32K of core memory. As addi-
- tional fields of core memory are added, they permit overlapping the
" running time of one user program with the swapping time of another,
expanding the resident Monitor to buffer a larger number of consoles
and reducing the amount of Monitor overlay required, thus increasing
operating speed.

With a minimum of 12K of core memory, the following options are
available.

1.

—
<

IR - NV R N

Up to three DECdisks can be added to increase the number of
active users and their file storage.
Up to eight DECtapes drives can be added for individual users.

Memory Parity

. Extended Arithmetic Element (PDP-8/1 only)

Power Failure Protection

. One High-Speed Paper Tape Punch

. One DA-10 Interface (PDP-10)

. One Bit Synchromous Communication Unit (Type 637)

. One Line Frequency Clock (required with PT08’s)

. Maximum total of 16 active Teletype consoles with appropri-

ate Teletype Controls (PT08’s or DC08)

The Data Communication System, Type DCO8, is used in full duplex
mode. It consists of a Data Line Interface Unit (DL8/I), a Serial Line
Multiplexer Unit (685), and other devices connected to form a data
link and message switching system between the user consoles and the
central processor.

THE TSS/8 MONITOR

The TSS/8 Monitor is composed of the following routines.

Scheduler 4 Error Message Handler
System Interpreter Buffer Handler
IOT Trap Handler DCO08 Service

Storage Allocator Disk Service

Overlay Control Optional Device Service

File Control

8-5

With the above routines, Monitor provides services which can be di-
vided into three broad categories: device service, scheduling and run-
ning, and communication,

On an interrupt basis (program interrupt-—see Chapter 5) the device
service routines receive information from all input devices, distribute
that information out to the appropriate buffers, and inform the activa-
tion routine when a user program must be activated to receive its in-
formation. The device service routines also accept output from user
programs, buffer it, and send it to output devices whenever the devices
are able to receive it. -

Scheduling is handled by a round-robin scheduling algorithm with
the exception that programs with disk requests pending are run out of
turn to optimize disk usage. The scheduling routine decides whether to
remove the current program from core, and if so, which program is to
be run next. '

A user program is, at any point in time, in one of the following
states.

Running. The user program is in execution. It continues execution
until its quantum has expired or until it issues an I/O request that
cannot be satisfied immediately.
Active. The user program is ready to run and will be swapped into
core when its turn comes. A program can become active when

a. An output buffer is almost empty, thus assuring- continuous

" output of information,

b. An input buffer is almost full,

c¢. Input requested by a user has arrived,

d. A user determiged activation condition has been satisfied, or

¢. The user commands the system to begin execution.
Waiting. 1In this state the program would be active except that it is
waiting for the completton of some I/0 request or special condition.
Dormant. The program is not being entered into the round-robin.
The user may be communicating with Monitor or the program may be
dismissed for a variety of Monitor-determined-reasons (e.g., illegal op
code).

A program may be swapped out of core memory for any of the fol-
lowing reasons.

1. The quantum of time has expired. The program moves from
the running state to the active state,

8-6

2. The program has requested that the quantum of time be ter-
minated. The program moves from the running state to the
active state.

3. The program has filled an output buffer, or has requested in-.
put, but the input buffer is empty, or has requested a special
dismissal condition. The program moves from the running to
the waiting state.

4. The program has tried to execute an illegal instruction. The
program moves from the running state to the dormant state.

System Interpreter
Monitor checks all incoming characters for the call (CTRL/B) char-
acter. When the call character is encountered, Monitor routes all sub-
sequent characters up to and including the first carriage return (RE-
TURN key) to its System Interpreter’s input buffer. Monitor’s System
Interpreter performs the following services.
1. Verifies the user’s account number and password When he logs
in, and provides him with a disk track to store user programs.
It releases facilities owned by the user when he logs out.
2. Parcels out extra consoles and input/output devices,

3. Provides commands for creating, opening, and maintaining the
user’s files,

4. Allows the user to save all or part of his binary user program
for future use and reference, and restores it with its state un-
changed.

5. Provides accounting of console time and user program run
time.

6. Provides the user with information about the state of his pro-
gram while it is running, as well as information about the state
of the character control tables.

7. Provides commands for calling the various utility programs.

Communications to the System Interpreter are automatically du-
plexed. That is, all characters from a console keyboard to the System
Interpreter appear on that console’s printer, regardless of the sctting of
the character control tables (explained later).

The System Interpreter is kept quite busy receiving messages from
many keyboards and user programs, therefore, it must be run often.
Consequently, it occupies a priority position in the round-robin, being
scheduled whenever there are characters in its input buffer.

8-7

Phantom Routines

Monitor has two phantom routines: error and file control. They are
not phantoms as defined by Webster but they appear to act as though
they were. These routines reside on the disk, “jump” into core when
needed, perform their assigned tasks, and “fade” back onto the disk.

Phantoms are privileged routines which run in place of a regular
user program in the round-robin. The time the phantom takes to per-
form its service is charged to that user program upon which it is serv-
icing. For example, the error phantom prints all error messages for
running user programs, and printing a lengthy error message may re-
quire several intervals of time to which the program in error will be
charged. The error phantom routine replaces the offending program in
the round-robin and prints an error message, thus punishing the user
responsible for the error and no one else. (

The file control phantom routine handles all modifications to the
user’s files, such as creating, lengthening, renaming, and destroying
files. This phantom routine is brought into operation when a user pro-
gram executes certain input/output transfer (IOT) instructions or when
Monitor is acting for the user program.

Character and Data Flow

When a user logs into the system his account number and password
are associated with a job number, and that job number is then associ-
ated with a disk swapping track and the console(s) he owns. The ac-
count number establishes ownership of the input buffer attached to the
user program and the output buffer(s) attached to the printer(s) of
his console(s).

Monitor provides for communication among the users, user pro-
grams, and Monitor. Data flow is illustrated in Figure 8-2. Communi-
cation is provided through the IOT instructions. When a program exe-
cutes JOT instructions, Monitor picks up locations in the user program
as parameters to service routines. These routines may simulate I/0
to or from the online device, control or release ownership of devices,
handle character transmission, or return information to the user pro-
gram by filling core locations within the program. Through IOT in-
structions the user program can make its wants known and Monitor
can inform the user program of any unusual conditions in the system.

Characters are gencrated by users typing at keyboards or by user
programs typing out. Characters go into input buffers to be read by
user programs or to output buffers to be printed on console printers.
The character control tables (Figure 8-2) set up useful character trans-
mission paths, whereby any character source (keyboard and program)

§-8

DISK

TRACKS
R SWAPPING
CHARACTER . REQUEST
FOR SPECIAL
CONTROL SERVICE OR 1/0 USER
TABLES PROGRAM
CONSOLE 4K CORE
— SWITCHBOARD
KEYBOARD }—# INPUT —_——— B'l:‘.:_F!JETR —_—— ol
ROUTINE ele |
0 g5 o2 &
CONTROL E2igh %
) GENERAL 27188 8
- OUTPUT, z |3
PRINTER 15 N S INPUT J— — — —
BUFFER v RaNRUT
PERMISSION
commanD
LANGUAGE
TR REQUEST AND
FOR SPECIAL] SERVICE
SERVICE
0R 170 PHANTOM
SERVICES
DISK
FILES

'Figure 8-2. Character and Data Flow

may, with permission, send to any character buffer. To insure that
unwanted counections are not made, using the appropriate command
to Monitor the user owning any character buffer may grant or deny
permission for connection into that buffer.

The character control tables are a permission table and a switch-
board table. The permission table allows a user to control which char-
acter sources may place characters in which of his buffers, and the
switchboard table dontrols the actual routing of these characters. Char-
acters originating from any keyboard or from any user program typing
out can, with permission, be placed in any or all of the keyboard in-
put buffers or any or all of the printer output buffers. The user, using
appropriate Monitor commands, establishes the actual routing of char-
acters to and from his associated buffers.

The character control feature finds applications in:

1. Duplexing—Characters typed at a keyboard can be printed
on other consoles without user program intervention.

2. Interprogram Communication—User programs can communi-
cate with each other and with Monitor. Thus, several user
programs may run as one system coordinating their separate
tasks through character communication.

8-9

3. Interconsole Communication--—-Users at consoles can set up
general links for conferences, teaching, monitoring, or for any
number of reasons.

4. Multiple Consoles—User programs may receive characters
from and send characters to more than one console. This al-
lows a user program to act as a time-sharing subsystem within
TSS/8, controlling its own set of consoles, e.g., as in teaching
machine monitors.

MONITOR COMMANDS

A Monitor command is a string of characters terminated by a semi-
colon (;) or a carriage return (RETURN key). Commands to Monitor
are typed on the console keyboard by the user or output by the user
program, with each command beginning with a command name. In
some cases, the command name is the entire command, in which
case it is followed directly by a terminator. In other cases, the com-
mand name is followed by a space, one or more parameters, and then
a terminator (see example below).

.TIME (Requests the time of day. This command was termi-
nated by the RETURN Kkey)
.TIME ¢, (Requests the processing time used by job c,. Termi-

nated by the RETURN Kkey)

Only enough characters need be typed in the command name to
uniquely identify the command name as shown in the following ex-
ample.

LOGI for LOGIN
LOGO for LOGOUT .

More than one command may be typed on a line, with all but the
last command being terminated by a semicolon; the last command is
terminated by the RETURN key (see example below). Commands
are executed only when the RETURN key is typed, which explains why
the last command on a line must be terminated by the RETURN key.

OPEN ¢; 5, ¢c,;; LOAD ¢, 5,; START ¢,

As shown in the above examples, each command or a line of com-
mands is typed after the dot typed by Monitor. The dot is typed by
Monitor when it is ready and available to accept commands from the
user.

8-10

Parameters may be typed as octal numbers, decimal numbers, char-
acter strings, or single letters. In the following descriptions of Monitor
commands the parameters are coded as follows.

Gy, €. .. represent octal numbers
d;, d,, . . . represent decimal numbers
i, Sz, . . . Tepresent character strings

I, L, . .. represent single letters

Logging In and Out

Logging in and out of TSS/8 is a function performed by Monitor’s
System Interpreter routine. When a console is in the free state, a pro-
spective user may attempt to log into the system.

LOGIN c: s:;

This is a request by a user to enter into the system. If the console
from which the command is typed is free, there is an available disk
track, and the two parameters following the command LOGIN form
a legitimate account number and password, ‘then the user will be
logged into the system.

c; is the user’s account number,

s, is the user’s password.
At the time of login, the switchboard table is initialized to the nor-
mal operation setting. However, Monitor diverts all characters typed
to the System Interpreter until the user gives a command that indi-
cates otherwise.

LOGOUT;

This is a request by a user to leave the system. It disconnects all con-

. soles and temporary- disk track that he owns, places his programs
in the free state, and resets the switchboard table. It also writes an
account - record on the disk showing how much computing time
(processing time) and console time was used by the user’s pro-
gram(s). ‘

HME Ci;
This is a request for Monitor to type out the computing (processing)
time used since login. If job c. is not specified, the job owning the
console is assumed. If requested before login and if no job is spe-
cified, the time-of-day is typed. If, at any time, job O is specified
the time-of-day is typed.

8-11

Console Manipulation

ASSIGN K ¢
This is a request for console number ¢, to be added to those consoles
already owned by the requesting user.

K denotes console
¢, is the console number

If the console is free, it will be given to the user and the user’s
switchboard table settings will be augmented by those additional
entries which put the new console in the normal state with respect
to its own printer and the program on the user’s disk track. Cross
settings for interconsole connections are left to the user’s discretion.
SLAVE c;
This command causes console number ¢, to be slaved. This means
that console number ¢, will be unable to communicate with Monitor,
that the system will ignore the call (CTRL/B) character from that
console. However, the console may serve as an input/output device
for the user’s program. Monitor checks to make sure that the re-
questing user owns the console he wishes to slave. It is illegal to
slave every console that a user owns.
UNSLAVE ¢;
This command restores a slaved console to normal status. After this
- command, console number ¢, will be able to communicate with
Monitor. The user must own the console to unslave it.
RELEASE K ¢; ;
This command releases (deassigns) console number ¢, and puts it
in the free state. Monitor checks to make sure that the requesting
user owns the console he wishes to release. When the console is
released, the switchboard table is reset and the input and output
buffers are cleared. ’

Device Allocation

ASSIGN 1;
This is a request for access to the device specified by 1.
L=R for high - speed paper tape reader
P for high - speed paper tape punch
C for card reader
L for line printer
I for incremental plotter
If device 1, is not busy, it will be allocated to the user program issu-
ing the command. If device L is busy, the job number of the user
having possession is returned. A RELEASE 1;; or LOGOUT; will re-

lease the device.

8-12

ASSIGN D ¢y
This command is the same as ASSIGN 1;
D denotes DECtape unit
¢, is the unit number of the DECtape unit

RELEASE 1;;
RELEASE K c¢;;

RELEASE D ¢,;
Each of these commands will annul the current as51gnment of the
specified device.

File Control

OPEN ¢ s Czy
This command establishes association between an internal file num-
ber and a file. After this command is given, the file of account c.
with the name s, is associated with internal file number c.. The in-
ternal file number specified must be between zero and three inclusive,
If c. is not specified, the account number of the current user is as-
sumed.

CLOSEc.c....;
‘Fhis command closes the files specified by ¢. c. . . .
€ €. ..Is a list of internal-file numbers separated by spaces
After thlS command is given, no writing can be done on the files

specified, and the associations between the internal file numbers and
the files are broken.

CREATE 51 ~ .
This command causes Monitor to create a new file which is to have
the name s,, if there is available space in the File Storage Area of
disk. At the time of creation, Monitor will enter the name of the
new file and the date of creation into the owner’s file directory.
Example:

CREATE NEWF; Asks Monitor to create a new file named
NEWF. If there is no more space in File Stor-
age, Monitor will so inform the user.

RENAME c s,;
This command renames a file. The file to be renamed must be al-
ready open and associated with internal file number c.. Its new name
will become s,. Example: '
RENAME 1 MSTR; Assume that file NEWF has been opened to
internal file ‘number 1; this command will

change the name of that file from NEWF to
MSTR.

8-13

REDUCE ¢ d;;
This command reduces the length of a file. The file which is to be
shortened must be open and associated with internal file number c..

d, is the number of segments to be removed from the end of the file

If d. is greater than or equal to the number of segments in the file,

the file is deleted from the directory. Example:
REDUCE 2 2; Assume file TT13 is opened to internal file
number 2; this command then removes 2 seg-

ments from its end and returns those segments
to free storage.

EXTEND c, d;;
This command extends the length of a file. The file which is to be
lengthened must be open and associatéd with internal file number c..

d, is the number of segments to be added to the end of the file

If there is free storage space available, Monitor will lengthen the file
as requested.

PROTECT ¢ c¢.; ;
This command changes the file protection mask of a file. The file
to be protected must be open and associated with internal file num-
ber c.

1

c. is the new file protection mask

For file protection, the 12-bit account number is partitioned into a
project number (high order 7 bits) and a programmer number (low
order 5 bits).

File protection masks (c,) are assigned as follows:

c.=1 read protect against users whose project number differs from
owner’s.

c. =2 write protect against users whose project numbed differs from
owner’s.

c: =4 read protect against users whose project number is same as
owner’s,

¢, = 10 write protect against users whose project number is same as
owner’s.

¢, = 20 write protect against owner.

c. can be the sum of any of the above values.
The protect command is illegal for all users except the owner.
Example:

PROTECT 1 3; Read and write protect internal file 1 against

access by any user whose project number dif-
fers from the owner’s.

8-14

Fc
This command causes Momtor to print out the current state of the
association of the user’s internal file. number ¢, with the file. The
response formatis ¢ s ¢ d,
where

¢. is the owner’s account number.
s, is the filename.

¢, is the protection mask.

d, is the number of segments.

Control of User Programs

START ci;
This command begins execution of a user program at location c.. In
addition, the command resets the switchboard table so that all
characters typed from either a keyboard or program directed into
the user program’s input buffer are no longer intercepted by the
System Interpreter.

START;
This command restarts a user program. If Monitor has been called
during the execution of the user program, the complete state of the
program is saved including the location of the next instruction to be
executed. When the START command is given, the program’s state
is restored and the program centinues execution where it left off. As
in the START c¢:; command, characters intended for the user pro-
gram’s input buffer are no longer intercepted by the System Inter-

preter.
DEPOSIT c. ¢:. .. Cy; »
This command stores ¢, in location ¢;; ¢, in locatlon Ci —{—1 iCn

in location ¢; -+n —1.
n is equal to or less than 10 (decimal).

- A user can load a binary user program using the DEPOSIT com-
- mand, although it is.much easier using DDT-8. This command is
useful when making small patches to stored programs. The address
¢. must be an absolute address within the user’s 4K core area.
EXAMINE c. d;;
This command causes Monitor to type the contents of the d. loca-
tions starting at location c.

d, is equal to or less than 10 (decimal).

If d. is not specified, the contents of location ¢, is typed. The address
¢, must be an absolute address within the user’s 4K core area,

8-15.

Saving and Restoring Binary User Programs. The SAVE, LOAD, R,

and RUN commands leave file s; open and assign it internal file num-

ber 3, and turn the user’s interrupt system off, '

SAVE ¢, s3;

SAVE ¢, s ¢}

SAVE ¢; s, €. €55

SAVE ¢, s, ¢ G €y
These commands write portions of the user’s core image onto a file
whose owner’s account number is ¢, filename is s, (s, must have
been previously CREATEd), and

c, 1is the file address of the first word to be written; if not specified,
the entire 4K is written on the first 4096 words of the file.
¢; is the core address of the first word to be written; if not specified,
all 4096 words are written.
¢, is the core address of the last word to be written; if not specified,
7777 is assumed.
If ¢ is not specified, the account number of the current user is
assumed.

Example:
SAVE NEWF; Writes core words 0 through 7777 or words 0
LOAD ¢, s through 7777 of file NEWF.

LOAD ¢ s ¢

LOAD ¢ s €. Cs;

LOADc s c:cic
These commands read certain portions of the file whose owner’s
account number is ¢ and whose filename is s, into core. ¢ may be
omitted if it is the same as the account number under which the
user is logged in.

c. is the file address of the first word to be read; if not specified,
words 0 through 7777 are read into words O through 7777.

¢, is the core address of the first word to be loaded; if not specified,
all words O through 7777 are loaded.

¢, is the core address of the last word to be loaded; if not specified,
7777 is assumed. :
Example:

LOAD NEWF 5 10 17; Loads words 5 through 14 into words 10

through 17 respectively.
R s

This command is equivalent to

OPEN 3 s, 2; LOAD 2 s; START O
which loads program s, from the system library (account 2) and
starts the program runming.

8-16

RUN s

This command is equivalent to
OPEN 3 s,;; LOAD s,; START 0

RUN c. sy

This command is equivalent to
OPEN 3 s, ¢;; LOAD ¢, s,;; START 0

S;
This command stops the execution of the user program, saves its
complete state, and sets the switchboard table so that all characters
directed to the program’s 1nput buffer will be 1ntercepted by System
Interpreter.

WHERE;
This command causes Monitor to type out the current state of a
user program’s accumulator, link, program counter, and switch
register, multiplier quotient, and step counter.

USER;
This command causes Monitor to type out the number of the job
and devices owned by the user.

USER ¢
This command . causes Monitor to type out the numbers of the de-
vices owned by user c,. If job 0 is specified, the numbers of unas-
signed devices are typed.

SWITCH c.;
This command sets the user’s switch register to c.

BREAK Ci,
This command sets the user’s keyboard delimiter mask to the value
Ci.

Permission and Switchboard Tables
Using Monitor commands the user may set, reset, and read any
given bit in either the permission table or the switchboard table.
SETLLclc
This command sets a bit in either the permission or switchboard
table to a 1.

L= P denotes permission table
S denotes switchboard table
L= K denotes keyboard

P denotes user program
¢, is the octal number of the keyboard or program
= I denotes inpui buffer
O denotes output buffer
¢; is the octal number of the buffer which is to receive the charac-
ters from the character source

8-17

Monitor checks for appropriate ownership to decide whether it will
allow the connection to be made. The ownership of the character
source is used to determine legality in setting the switchboard table
while the ownership of the character sink is used in setting the per-
mission table. Examples:

SET P X 13 O 12; Requests that keyboard number 13 be given
permission to write on the printer (output buf-
fer) of console 12. .

SETSP 4116 Informs Mnoitor that job number 4 would
like to type characters into the input buffer of
user program 16. This request will be granted
only if user 16 has previously given permission
by SET P P 4 I 16; or by the equivalent 10T
instruction (SSP).

RESETLLc L Cz;
This command is identical in all respects to the SET command above
except that the bit indicated by the parameters will be cleared to
Zero.

READLLc Lc;
This command uses the same parameters to specify a bit in either
the permission or switchboard table as in the SET and RESET
commands above. Monitor will type out the value of the bit.

DUPLEX; .
This command is a shorthand command to set the switchboard table
so that characters typed on the keyboard from which this command
is issued will appear on the printer of that console.

Example:
DUPLEX; If the keyboard issuing this command is num-
ber 16, the command is equivalent to RESET
SK 16 O 16;
UNDUPLEX; ’

This command is a shorthand command to undo the effects of the

DUPLEX command. :
ALLOW c¢;; :

This command is shorthand to indicate that a user is giving permis-

sion for keyboard number c. to place characters in the output buffer

of his console.

Example: .
ALLOW 4; Assume that this command was issued from
keyboard number 7, then it is equivalent to
SETPK407;
LINK Ci, ’

This command is given by a user who wishes to communicate with
a console other than the one at which he is sitting. This command

8-18

is'legal only if the owner of that console has set the permission table
so that he will accept characters from the requesting console into
his printer’s output buffer. The command is shorthand for the com-
mand ALLOW c,; followed by the co.nmand to set the switchboard
table so that characters from the requesting console will be placed
in output buffer number c.. Example: :

LINK 16; Assume that the console which issued this com-
mand was number 7, then this command would
be legal only if the owner of console number
16 had previously set the permission table to
allow keyboard 7 access to that output buffer.
He could have done this with ALLOW 7; or
by SET P K O 16; or by an equivalent IOT
instruction executed by his program. If that
permission has been granted, the LINK com-
mand is equivalent to the following two switch-
board commands: SET P K 16 O 7; (AL~
LOW 16) and SETSK 7 O 16;

Inter-System Communication

In those TSS/8 systems having a local connection to a PDP-10
Time-Sharing System or a Synchronous Data €ommunication System
(Type 637), the input to the user’s input buffer and program output is
scanned for the character sequences CTRL/B CTRL/X and CTRL/B
CTRL/Y, respectively. All characters up to the next CTRL/B are
diverted to the PDP-10 or 637 System, whichever the case may be.
Characters from the PDP-10 and 637 System are directed into the
user’s input buffer.

INPUT/OUTPUT TRANSFER INSTRUCTIONS

Whenever a user program executes an input/output transfer (I0T)
instruction (an instruction of the form 6XXX) the system traps the
instruction and transfers control to a system service or simulation rou-
tine, These routines accomplish special tasks, set up parameters for
the system, and perform input/output for the user program.

IOT instructions may be separated by function into three types:

1. Input/output instructions available on the standard PDP-8/1

 without a Time-Sharing Monitor—When a user program exe-
cutes one of these IOTs, TSS/8 simulates an input/output
function similar to the function of the IOT instruction on the
standard PDP-8/1, Some standard PDP-8/1 IOT instructions
are illegal in TSS/8 (see Appendix C of Time-Sharing System
—T8S/8 Monitor, Order No. DEC-T8-MREB-D).

8-19.

2. IOT instructions to request input/output service from TSS/8
unavailable on the standard PDP-8/I-—These include requests
for DECdisk, DECtape, high-spced paper tape reader and
punch, card reader, and console character handling.

3. IOT instructions which call subroutines to set user param-
eters or to alter the time-sharing environment for a particular
user program—An alteration may, for example, include re-
quests to add or release facilities or to change mode of
character handling,

An IOT instruction usually acts as a subroutine call. Therefore, de-
pending on the specific IOT instruction, parameters may be loaded
into the accumulator (AC) before execution of the IOT. In some cases,
the parameter in the AC acts as a pointer to a parameter block in the
user’s program. If the system has to return information to the user’s
program, it returns that information in the AC or in a block of loca-
tions in the user’s program (the beginning address of this block is in
the AC). -

In general, nearly all TSS/8 console commands have corresponding
IOTs which allow the user the same features under program control
which he has with the console commands.

ERROR MESSAGES
User Program
Error messages are typed on the user’s printer by the error phantom

routine when error conditions occur in a running user program. If the
user program is not enabled for system error interrupts, the error mes-
sages are typed in the following format.

s, FOR USER c¢,.

AC=¢, L=¢, PC=c

INSTR =¢;
s is a string describing the nature of the illegal instruction c; that user
program ¢, has executed at location c.. At the time the illegal instruc-
tion was executed the value of the accumulator was c¢. and the value
of the link was ¢.. For example, an error message might appear as fol-
lows:

8-20

ILLEGAL IOT FOR USER 2 The user program has executed an
AC=1520, L=1, PC=13552 IOT which the system regards as

INSTR = 6025

System Interpreter

illegal. The illegality may be for

one of two reasons:

1. The 10T itself may be illegal.

2, The parameters of a legal 10T
may invalidate it.

The following error messages result from illegal requests to the Sys-
tem Interpreter. They are printed by the error phantom on the console.

s ?

ILLEGAL REQUEST

SWITCHBOARD ERROR

CONSOLE IN USE

LOGOUT TO RELEASE
. LOGIN PLEASE

UNAUTHORIZED
ACCOUNT

FULL

¢ HAS IT

FAILED BY d,

The System Interpreter does not under-
stand the command.

s, = command
The user has requested an illegal service.
This error usually results when some pa-
rameter has been given an incorrect value
or the request refers to a facility not
owned by the user.
The user has attempted to set a bit in the
permission table not owned by him; or
the user has attempted to make a connec-
tion in the switchboard table for which
permission has not been granted.

The wvser has tried to log in on a console
which is already in use; or he has at-
tempted to add a console to those he
already owns.,

The user has attempted to usé¢ a console
which is not logged in.

The user has attempted to log into the
system with an invalid account nuranber
or name.

This message may appear on an attempt
to log into TSS/8 from a console. It
means that all disk swapping tracks are
in use.

Job number c; has the request device; the
request for its acquisition cannot be
granted.

The user has attempted to extend a file
beyond the available disk storage. d, seg-
ments of the user’s request could not be
added.

8-21

FILE NOT OPEN

DIRECTORY FULL

PROTECTION
VIOLATION

FILE NOT FOUND

DISK FULL

CONCLUSION

The user has attempted to manipulate a
file which is not associated with an in-
ternal file number.

The user’s file directory has no room for
new file names.

The user has attempted to use a file in a
manner contrary to the file protection
code specified for that file.

The system could not find the desired file
in the specified directory.

The user had attempted to create a new
file when there is no room on the disk
for it. ’

The above is merely an overview of TSS/8. There are many other
aspects not mentioned here. For a thorough coverage, see Time-Shar-
ing System—TSS/8 Monitor, Order No. DEC-T8-MRFB-D.

8-22

Chapter 9

FOCAL
Programming

FOCAL (FOrmula CALculator) is an online, conversational, inter-
pretive language for the PDP-8 family of computers, It is designed to
help students, engineers, and scientists solve numerical problems. The
language consists of short, easy-to-learn, imperative English statements.
Mathematical expressions are typed in standard notation. The best way
to learn the FOCAL language is to sit at the Teletype console and try
. the commands, starting with the examples given in this chapter.

FOCAL puts the full calculating power and speed of the computer
at your fingertips. FOCAL is an easy way of simulating mathematical
models, plotting curves, handling sets of simultaneous equations in
n-dimensional arrays, and much more. A few of the many kinds of
problems that have been solved by FOCAL are described under “Ex-
amples of FOCAL Programs.” The user can become acquainted with
many applications of FOCAL by duplicating the example programs
using different variables.

This chapter describes the features of FOCAL, 8/68, which is issued
on tape DEC-08-AJAC-PB.

EQUIPMENT REQUIREMENTS
FOCAL operates on a 4K PDP-8 family computer with an ASR 33
- Teletype, and with or without a high-speed reader/punch, analog-to-
digital converter (189), oscilloscope display (34D), or ahy other DEC
peripherals with the appropriate program overlays available from DEC,

GETTING ONLINE WITH FOCAL

The FOCAL program is furnished to the user on punched paper
- tape in binary-coded format. Therefore, it is loaded into core using the
Binary Loader program, as described in Chapter 6. ‘

9-1

The Initial Dialogue

After FOCAL has been loaded and started, it begins typing out its
initial dialogue, giving the user the options of retaining certain groups
of mathematical functions. If these functions are not needed, the user
answers FOCAL’s questions by typing NO and the RETURN key, and
FOCAL erases those functions from core, thus the user gains additional
core storage for use by his programs.

Samples of the initial dialogue are shown below.

CONGRATULATIONS!
YOU HAVE SUCCESSFULLY LOADED ‘FOCAL’ ON A PDP-8/1 COMPUTER.

SHALL I RETAIN.LOG, EXP, ATN 7:YES
PROCEED.

*

With the above response, all mathematical functions are retained,
and the user has about 720 locations available for his programs. .
CONGRATULATIONS!!

YOU HAVE SUCCESSFULLY LOADED ‘FOCAL’ ON A PDP-8/1 COMPUTER.

SHALL I RETAIN LOG, EXP, ATN 2:NO
SHALL I RETAIN SINE, COSINE ? :YES

PROCEED.

When the user answers NO to the first question FOCAL asks a
second question, The above response leaves about 975 locations avail-
able for the user’s programs.

CONGRATULATIONS!
YOU HAVE SUCCESSFULLY LOADED ‘FOCAL’ ON A PDP-8/1 COMPUTER.

SHALL 1 RETAIN LOG, EXP, ATN 2:NO
SHALL I RETAIN SINE, COSINE 7 :NO
PROCEED.

*

The above response erases all mathematical functions from core,
giving the user about 1105 locations for use by his programs.

A simple FOCAL program which determines the number of core
locations available for the user’s programs and a formula for calculating
the length of a user program are given under “Estimating the Length
of a User’s Program.”

In the second line of the initial dialogue, FOCAL identifies the type
of computer being used—PDP-8/1, PDP-8/L, PDP-8, etc. FOCAL
concludes the initial dialogue by telling the user to PROCEED, fol-
lowed by an *, and waits for user input.

9-2

THE FOCAL LANGUAGE
When the initial dialogue is concluded, FOCAL types
*

indicating that the program is ready to accept commands from the user,
Each time the user completes typing a Teletype line and terminates it by
depressing the RETURN key or after FOCAL has performed a com-
mand, an asterisk is typed to tell the user that FOCAL is ready for
another command. '

Simple Commands ‘
One of the most useful commands in the FOCAL language is TYPE.

To FOCAL this means “type out the result of the following expres-

sion.” When you type (following the asterisk which FOCAL typed),

*TYPE 6.4318+4-8.1346
and then press the RETURN key, FOCAL types
= 14.5664* ' f
Another useful command is SET, which tells FOCAL “store this

symbol and its numerical value. When I use this symbol in an expres-
sion, insert the numerical value.” Thus, the user may type,

*SET A=3.14159; SET B=428.77; SET C=2.71828
. ‘
The user may now use these symbols to idéntify the values defined in .
the SET command. Symbols may consist of one or two alphanumeric
characters. The first character must be a letter, but must not be the
Ietter F. '

*TYPE A+B4-C
= 434.6300% ,
Both the TYPE and SET commands will be explained more fully in
their respective sections of this chapter.
FOCAL is always checking user input for invalid commands, illegal
formats, and many other kinds of errors, and types an error message
indicating the type of error detected. In the example,

*HELP
203.31

*TYPE 2++4 .
207.<0

*

HELP is not a valid command and two plus signs (double operators)

9-3

are illegal. The complete list of error messages and their meanings is
given under “Error Diagnostics.”

Output Format

FOCAL is originally set to produce results showing up to eight digits,
four to the left of the decimal point (the integer part) and four to the
right of the decimal point (the fractional part). Leading zeros are sup-
pressed, and spaces are shown instead, Trailing zeros are included in
the output, as shown in the examples below.

*SET A=77.77; SET B=1111.1111; SET C=39
*TYPE A,B,C .
= 77.7700= 1111.1100= 39.0000*
The results are calculated to six significant digits. Even though a re-

sult may show more than six digits, only six are significant, as shown
above in SET B = 1111.1111, which FOCAL typed as = 1111.1100,
The output format may be changed if the user types

TYPE %x.yz,

where x is the total number of digits to be output and yz (always two
digits, i.e., 01, 08, 12, etc.) is the number of digits to the right of the
decimal point. x and yz are positive integers, and the value of x cannot
exceed 19, When first loaded, FOCAL is set to produce output having
eight digits, with four of these to the right of the decimal point
(% 8.04). For example, if the desired output format is mm.nn, the
user may type

*TYPE %4.02,12,2242.37
and FOCAL will type
= 14.59*

Notice that the format operator (%=x.yz,) must be followed by a
comma.

In the following examples, the number 67823 is typed out in several
different formats.

*SET A=67823
*TYPE %6.01, A
= 67823.0*
*TYPE %5, A

= 67823*
*TYPE %8.03, A
= 67823.000*

If the specified output format is too small to contain the number,
FOCAL automatically prints the number in floating-point format, as
explained below. If the specified format is larger than the number,
FOCAL inserts leading spaces:

*TYPE %7, 67823
= 67823*

Leading blanks and zeros in integers are always ignored by FOCAL.

*TYPE %8.04, 0016, 0.016, ., 007
= 16.0000= 0.0160= 0.0000= 7.0000*

Floating-Point Format

To handle much larger and much smaller numbers the user may re-
quest output in exponential form, which is called floating-point or E
format. This notation is frequently used in scientific computations, and
is the format in which FOCAL performs its internal computations. The
user requests floating-point format by including a % followed by a
comma, in a TYPE command. From that point on, until the user again
changes the output format, results will be typed out in floating-point
format.

*TYPE %, 11
= 0.110000E+02*

This is interpreted as .11 times 102% or simply 11. Exponents can be
used to +616. The largest number that FOCAL can handle is
-+0.999999 times 10918, and the smallest is —0.999999 times 10-616,

To demonstrate FOCAL’s power to compute large numbers, you can
find the value of 300 factorial by typing the following commands. (The
FOR statement, which will be explained later, is used to set I equal
to each integer from 1 to 300.)

*SET A=1

FOR 1=1,300; SET A=A]

*TYPE %, A v (wait for FOCAL to

= 0.306051E+615* . - calculate the value)
Arithmetic Operations

FOCAL performs the usual arithmetic operations of addition, sub-
traction, multiplication, division, and exponentiation. These are written
by using the following symbols:

9-5

Symbol Math Notation FOCAL

1Exponentiation 38 313 (Power must be a
positive integer)

*Multiplication 3-3 3*3
/Division 33 3/3
+Addition 343 343
—Subtraction 3-3 - 3=3

These operations may be combined into expressions. When FOCAL
evaluates an expression, which may include several arithmetic opera-
tions, the order of precedence is the same as that in the list above. That
is, exponentiation is done first, followed by multiplication, division,
addition and subtraction. Addition and subtraction have equal priority.
Expressions with the same precedence are evaluated from the left to

right.

A+B*C+D is A+(B*C)-+D not (A+B) *(C+D) nor (A+B)*C+D
A*B+C*Dis (A*B)4-(C*D) not A*(B+C)*D nor (A*B+C)*D

X/2*Y is i
2Y
21213 is 43 not 28

Expressions are combinations of arithmetic operations or functions
which may be reduced by FOCAL to a single number. Expressions
may be enclosed in properly paired parentheses, square brackets, and
angle brackets (use the enclosures of your choice for clarity; FOCAL
is impartial and treats them all in the same way).

For example,

SET Al=(A+4B)<C4+D>*[E+G]

.
The { and] enclosures are typed using SHIFT/K and SHIFT/M, re-
spectively.

Expressions may be nested. FOCAL computes the value of nested
expressions by doing the innermost first and then working outward.

*TYPE %, [24 (3—<1*1>+45)+2]
= (.110000E+4-02*
Note that the result is typed in floating-point format.

More About Symbols
The value of a symbolic name or identifier is not changed until the
expression to the right of the equal sign is evaluated by FOCAL. There-

9-6

fore, the value of a symbolic name or identifier can be changed by re-
defining it in terms of itself (i.e., in terms of its current value).

*SET Al1=312

*SET Al=Al+1

*TYPE %2, Al

= 10*

NOTE

Symbolic names or identifiers must not begin with the letter F.

The user may request FOCAL to type out the values of all of the
user-defined identifiers, in the order of definition, by typing a dollar
sign ($).

*TYPE %6.05, $
The user’s symbol table is typed out like this

" A@(00)= 0.306051E+615
B@(00)= 1111.11
C@(00)= 39.0000
I@(00)= 301.000
A1(00)= 10.0000
D@(00)= 0.00000 -
E@(00)= 0.00000
G@(00)= 0.00000

*

If an identifier consists of only one letter, an @ is inserted as a second
character in the symbol table printout, as shown in the example above.
An identifier may be longer than two characters, but only the first two
will be recognized by FOCAL and thus stored in the symbol table.

Subscripted Variables

FOCAL always allows identifiers, or variable symbols to be further
identified by subscripts (range =+2047) which are enclosed in paren-
theses immediately following the identifier. A subscript may also be an
expression: ’

*SET A1(1+3*1)=2.71; SET X1(54+3*1)=2.79

The ability of FOCAL to compute subscripts is especially useful in

generating arrays for complex programming problems. A convenient

way to generate linear subscripts is shown under “Simultaneous Equa-
tions and Matrices.”

The ERASE Command
It is useful at times to delete all of the symbolic names which you
have defined in the symbol table. This is done by typing a single com-

9-7

mand: ERASE. Since FOCAL does not clear the user’s symbol table
-area in core memory when it is first loaded, it is good programming
practice to type an ERASE command before defining any symbols.

Handling Text Output

Text strings are enclosed in quotation marks (. . .”) and may in-
clude most Teletype printing characters and spaces. The carriage return,
line feed, and leader-trailer characters are not allowed in text strings.
In order to have FOCAL type an automatic carriage return/line feed at
the end of a text string, the user inserts an exclamation mark(!).

*TYPE “ALPHA”!“BETA”“DELTA"!
ALPHA

BETA

DELTA

*

To get a carriage return without a line feed at the end of a text type-

out, the user inserts a number sign (#) as shown below.
4 SPACES

1 SPACE
3 SPACES
[- 5 SPACES
I l 2 SPACES

I-—BSPACES
TYPE I XY VA N /7!
X+Y ¥ Z ’

*

The number sign operator is useful in formatting output and in plotting
another variable along the same coordinate (an example is given under -
“Intercept and Plot of Two Functions™).

Indirect Commands
Up to this point we have discussed commands which are executed

immediately by FOCAL. Next we shall see how indirect commands are
written.

If a Teletype line is prefixed by a line number, that line is not exe-
cuted immediately, instead, it is stored by FOCAL for later execution,
usually as part of a sequence of commands. Line numbers must be in
the range 1.01 to 15.99, The numbers 1.00, 2.00 etc., are illegal line
numbers; they are used to indicate an entire group of lines. The number
to the left of the point is called the group number; the number to the
right is called the step number. For example,

9-8

*ERASE
v*1.1 SET A=1
*1.3 SET B=2
*1.5 TYPE %1, A+B
*
Indirect commands are executed by typing the GOTO or DO com-
mands,
The GOTO command causes FOCAL to start the program by exe-~
cuting the command at a specified line number, If the user types

*GOTO 1.3

=2
FOCAL started executing the program at the second command in the
example above, so that the variable “A” was not previously defined and
therefore has a value of zero.

The GO command causes FOCAL to go to the lowest numbered
line to begin the program. If the user types a direct GO command after
the indirect commands above, FOCAL will start executing at line 1.1.

*GO
- 3%

The DO command is used to transfer control to a specified step, or
group of steps, and then return automatically to the command immedi-
ately following the DO command. :

*ERASE ALL

*1.1 SET A=1; SET B=2

*1.2 TYPE “ STARTING ”

*1.3 DO 3.2

*2.1 TYPE “ FINISHE

*3.1 SET A=3; SET B==4

*3.2 TYPE %1, A+B

*GO

STARTING = 3 FINISHED 7*

When the DO command at line 1.3 was reached, the command TYPE
%1, A-+-B was performed and then the program returned to line 2.1.

The DO command can also cause FOCAL to jump to a group of
commands and then return automatlcally to the normal sequence, as
shown in the example below.

*ERASE ALL

*1.1 TYPE*A 7
*1.2 TYPE“B ~
*1.3 TYPE“C ”»

*1.4 DO 5.0
1.5 TYPE END”; GOTO 6.1

*5.1 TYPE“D »

*5.2 TYPE“E »

*5.3 TYPE“F »

6.1 TYPE“. »

*GO

ABCDEF END. *
When the DO command at line 1.4 was reached, FOCAL executed
lines 5.1, 5.2, and 5.3 and then returned to line 1.5.

An indirect command can be inserted in a program by using the

proper sequential line number. For example, :

*ERASE ALL

*4.8 SET A=1; SET B=2

*6.3 TYPE % 5.4, B/C+A

4.9 SET C=1.31.29

*GO

= 6.2645*
where line 4.9 will be executed before line 6.3 and after line 4.8.
FOCAL arranges and executes indirect commands in numerical se-
quence by line number, starting with the smallest line number and going
to the largest.

Error Detection

During execution, FOCAL checks for a variety of errors. When
an error is detected FOCAL stops execution, types a ? followed by an
error message, types an *, and waits for more user input. When the
error occurs in a direct statement, FOCAL types the error message
immediately after the user terminates that line (direct statements are
executed immediately after the line terminator). For example,

*SET A=2; PET B=4; TYPEA + B
203.31
*

PET is not a FOCAL command. Therefore, FOCAL issued the error
code 703.31 which means that an illegal command was used. (See
“Error Diagnostics” for a list of all error messages and their meanings.)
When an error occurs in an indirect statement the error message is
typed when FOCAL encounters that statement during execution. And
in addition to the error code FOCAL types the line number of the line
containing the error. For example, .

*1.10 SET A=2; TYPE “A”, A, !
*1.20 SET B=4; TYPE “B", B, !
*1.30 GO TO 1.10

*1.40 TYPE “A+B”, A+B

*GO

9-10

A= 2.0000

B= 4.0000

701.89 @ 01.30

*
FOCAL executed lines 1.10 and 1.20 and then recognized that GO

"TO is a 1-word command and should have been written GOTO. There-

fore, it issued the error message, meaning GOTO was not used as one
word at line number 1.30.

Corrections ;)

If the user types the wrong character, or several wrong characters,
“he can use the RUBOUT key, which echoes a backslash (~) for each
RUBOUT typed, to erase one character to the left each time the RUB-
OUT key is depressed. For example,

*ERASE ALL

*1.1 P\TYPE X-Y

*1.2 SET $=13\ \ \ \X=13

*WRITE =~

C—FOCAL.,, 1968

01.10 TYPEX-Y

01.20 SET X=13

* .

The left arrow(«) erases everything which appears to its left on

the same line, except when being used to correct a value typed after a
colon (:) in response to an ASK command (see “ASK”).

*1.3TYPEA,B,C«

*WRITE

C—FOCAL., 1968

01.10 TYPE X-Y

01.20 SET X=13

*

A line can be overwritten by repeating the same line number and

typing the new command.

*14.99 SET C9(N+4-3)=15

*
is replaced by typing

*14.99 TYPE C9/Z5-2
*WRITE 14.99
14.99 TYPE C9/Z5-2

»

A line or group of lines may be deleted by using the ERASE com-
mand with an argument. For example, to delete line 2,21, the user

types.

*ERASE 2.21
*

To delete all of the lines in group 2, the user types
*ERASE 2.0
*

The user’s entire symbol table is erased from memory whenever a
line number is retyped or the ERASE command is given. Since
FOCAL does not zero memory when loaded, it is good practice to
ERASE before defining symbols. The command ERASE ALL erases -
all user input, i.e., program text and variables. Therefore, the ERASE
ALL command should be given before writing a new program.

The MODIFY command is another valuable feature, especially in
editing. It may be used to change any number of characters in a par-
ticular line, as explained under “MODIFY.”

Alphanumeric Nwmbers (Using Letters as Numbers)

Numbers must start with a numeral but may contain letters. FOCAL
interprets as a number any character string beginning with a numeral,
0 through 9. An alphanumeric number is a string of alphanumeric char-
acters (excluding symbols) which starts with a number. For cxample,

OABC 23CAT IXYZ

Each letter in an alphanumeric number is taken as a number, with each
letter A through Z having the value of 1 through 26 respectively, except
for E which has special meaning and is explained below.

A=1 J =10 S =18
B =2 K = 11 T = 20
C=3 L =12 U = 21
D=4 M= 13 V = 22
E = (exponentiation) N = 14 W = 23
F=6 O =15 X =24
G=17 P = 16 Y =25
H=28 Q = 17 Z = 26
1 =9 R = 18

An easy way to give FOCAL numerical valued letters is to start
with the number 0, as in the following example.

*TYPE %2, 0AB
= 12*

9-12

Since after 0, A=1 and B=2, therefore, AB=12, Also,

*TYPE OAB+O
=15*

Since after O, A=1, B=2, and C=3, then 12-}-3 = 15. Therefore,

*TYPE 0XYZ+1
= 2677*

because

X =24

Y 25

Z 26

+1 4+ 1
2677

The above example can be solved using the following algorithm.
(X times 102) 4 (Y times 10!) 4 (Z times 10°) -+ 1 = 2677
or ' _
(24 X 100) + (25 X 10) + (26 X 1)+ 1 = 2677

Taken as a numeral, the letter E has special meaning. It denotes
exponentiation, where the subsequent alphanumerics are taken as the
exponent of the preceding alphanumerics,

*TYPE %8, OAEC

= 1000* (A110:=1110%)
*TYPE OAEG

= 10000000* (At10°=1 X 107)

Only one E is allowed in any one alphanumeric number.
Alphabetic characters may be used when assigning numerical values
to identifiers or variables in response to an ASK statement. An example
.of this use can be found in lines 3.20 and 3.30 of “Intercept and Plot
of Two Functions.”

FOCAL COMMANDS'
TYPE :
The TYPE command is used to request that FOCAL compute and
type out a text string, the result of an expression, or the value of an
identifier. For example

4.14 TYPE 8.14+3.2 - (29.3*5)/2.57

4.15 TYPE (2.2+3.5)*(7.2/3)/59.113

*

i

9-13

Several expressions may be computed in a single TYPE command,
with commas separating each expression.

*ERASE

*9.19 TYPE %4.01, A1*2, E4215, 2.51*81.1
*DO0 9.19

= 0.0= 32.0= 204*

The output format may be included in the TYPE statement as shown
in the example above and as explained under “Handling Text Output.”

The user may request a typeout of all identifiers which he has de-
fined by typing TYPE $ and a carriage return. This causes FOCAL
to type out the identifiers with their values, in the order in which they
were defined. The $ may follow other statements in a TYPE command,
but must be the last operation on the line.

*ERASE .
SET L=33; SET B=87; SET Y=55; SET C9=91
*TYPE §$

L@(00)= 33.0

B@(00)= 87.0

Y@(00)= 55.0

C 9 (00)= 91.0

%

Any text string enclosed in quotation marks may be included in a
TYPE command. A carriage return may replace the terminating quo-
tation mark, as shown below:

*1.2 TYPE “X SQUARED =

*

A text string or any FOCAL command or group of commands may
not exceed the capacity of a Teletype line, which is 72 characters on
the ASR33 Teletype. A line may not be continued on the following
line. To print out a longer text, each line must start with a TYPE

command.

NOTE: For extremely large numbers, there may be some mput/output con-
version error, For example,

*TYPE 101616
= 0.999959E+616*

Exponent overflow is not detected:

*TYPE 101617
= 0.957418E—616

9-14

Several operations are useful in formulating output.

1. FOCAL does not automatically perform a carriage return after
executing a TYPE command. The user may insert a carriage
return/line feed, by typing an exclamation mark (!).

2. To insert a carriage return without a line feed, the user types a
number sign (#).

3. Spaces may be inserted by enclosing them in quotation marks.

4. An expression may be enclosed in question marks to avoid re-
peating it in quotes (see “Using the Trace Feature”).

ASK

The ASK command is normally used in indirect commands to allow
the user to input data at specific points during the execution of his
program, The ASK command is written in the form,

*11.99 ASK X, Y, Z,

s

When step 11.99 is encountered by FOCAL, it types a colon (:). The
user then types a value in any format for the identifier, followed by a
terminator, which may be space, comma, carriage return, or ALT
MODE. FOCAL then types another colon and the user types a value
for the next identifier. This continues until all the identifiers or vari-
ables in the ASK statement have been given values,

*11.99 ASK X, Y, Z

*DO 11.99

:5, :4, :3,*
where the user typed 5, 4, and 3 as the values, respectively, for X,
Y, and Z,

The ALT MODE, when used as a terminator, is nonspacing and
leaves the previously defined variable unchanged, as shown below.

*SET A=5
*ASK A
1123* (user depressed the ALT MODE Key after typing 123)
*TYPE A ,
= 5%
ALT MODE is frequently used when the user does not wish to change
the value of one or more identifiers in an ASK command.

9-15

*1199 ASK X, Y, Z

*DO 11.99

:5, :4, :3,*

*DO 11.99 (User did not wish to enter new value for Y, so he typed
:8, ::10,* ALT MODE in response to second colon.)
*TYPEX,Y,Z :

= 8= 4= 10*

FOCAL recognizes the value when its terminator is typed. There-
fore, a value can be changed but only before typing its terminator.
This is done by typing a left arrow («) immediately after the value,
and then typing the correct value followed by its terminator. This is
the exception to the use of the left arrow, as explained under “Cor-
rections,” ' ')

Text strings and format control characters may be included in an
ASK statement by enclosing the string in quotation marks.

*1.10 ASK “HOW MANY APPLES DO YOU HAVE?” APPLES
*DO 1.10
HOW MANY APPLES DO YOU HAVE? :25

*

The identifier AP (FOCAL recognizes the first two characters only)
now has the value 25.

Alphabetic Responses
Alphabetic characters may be used to assign numerical values to
identifiers or variables:

*1.1 ASK A; TYPE %4, A

*DO 1.1

:ABCD = 1234*
Where the user typed ABCD and FOCAL typed the numerical value
of ABCD, as was explained under “Alphanumeric Numbers,”

WRITE

A WRITE command without an argument (or with the argument
ALL) causes FOCAL to type out all indirect statements which the
user has typed. Indirect statements are those preceded by a line number.

9-16

When the user types

*WRITE
*WRITE ALL

or simply

*W
and the RETURN key, FOCAL types out a copy of all previously
typed indirect statements.

A specific line or group of lines may be typed out with the WRIT E
. -command using arguments:

*WRITE 2.1 (FOCAL types line 2.1)_
*WRITE 2.0 (FOCAL types all group 2 lines)

SET

The SET command is used to define identifiers, When FOCAL.
executes a SET command, the identifier and its value is stored in the
user’s symbol table, and that value will be substituted for the identifier
when the identifier is encountered in the program.

*ERASE ALL

*3.4 SET A=2.55; SET B=38.05
*3.5TYPE %, A+B

*GO

= 0.106000E+-02*

An identifier may be set equal to previously defined identifiers, which
appear in arithmetic expressions.
*3.7 SET G=(A+B)*2.215

*

ERASE ,

An ERASE command without an argument is used to delete all
identifiers, with their values, from the symbol table.

If the ERASE command is followed by a group number or a specific
line number, a group of lines or a specific lme is-deleted from the pro-
gram.

*ERASE 2 (deletes all group 2 lines)
*ERASE 7.11 (deletes line 7.11)

*

The ERASE ALL command erases all of the user’s input (i.e.,
symbol table entries and commands).

9-17

In the following example, an ERASE command is used.to delete
line 1.50.

*ERASE ALL

*1.20 SET B=2

*1.30 SET C=4 "
*1.40 TYPE B+C)
*1.50 TYPEB—C
*ERASE 1.50
*WRITE ALL
C-FOCAL, 8/68
01.20 SET B=2

01.30 SET C=4

01.40 TYPEB+C

*
- GO

The GO command requests that FOCAL execute the program, start-
ing with the lowest numbered line. The remainder of the program
will be executed in line number sequence. Line numbers must be in
the range 1.01 to 15.99. The GO command cannot be given indirectly.

GOTO

The GOTO command causes FOCAL to transfer control to a specific
line in the indirect program. It must be followed by a specific line
number. After executing the command at the specified line, FOCAL
continues to the next larger line number, executing the program se-
quentially. GOTO is a single word.

ERASE ALL
*1.1 TYPE “A”
*1.2 TYPE “B”
*1.3 TYPE “C”
*1.4 TYPE “D”
*GOTO 1.2
BCD*

DO

The DO command transfers control momentarily to a single line, a
group of lines, or the entire indirect program. If transfer is made to a
single line, the statements on that line are executed, and control is
transferred back to the statement following the DO command. Thus,

9-18

the DO command makes a subroutine of the commands transferred to,
as shown in this example,

*ERASE ALL

*1.1 TYPE “X”

*1.2 DO 2.3; TYPE “Y”
*1.3TYPE “Z”

*2.3 TYPE “A”

*GO

XAYZA*

If a DO command transfers control to a group of lines, FOCAL
executes the group sequentially and returns control to the statement
following the DO-command.

If DO is written without an argument or the user writes DO ALL,
FOCAL executes the entire indirect program.

Wwith arguments, DO commands cause specified portions of the
indirect program to be executed as closed subroutines. These sub-
routines may also be terminated by a RETURN command.

If a GOTO or an IF command is executed within.a DO subroutine,
two actions are possible:

1. If a GOTO or IF command transfers to a line inside the DO
group, the remaining commands in that group will be executed
as in any subroutine before returning to the command following
the DO. |

2. 1If transfer is to a line outside the DO group, that line is executed
and control is returned to the command following the DO; unless
that line contains another GOTO or IF.

*ERASE ALL

*1.1 TYPE “A”; SET X=—1; DO 3.1; TYPE “D"; DO 2
*1.2 DO 2.2

*

*2.1 TYPE “G”

*2.2TF (X)2.5,2.6,2.7

*2.5 TYPE “H”

*2.6 TYPE “I”

*2.7 TYPE “J”

*28 TYPE “K”

*2.9 TYPE %2.01, X; TYPE “ ”; SET X=X+1

*

*3.1 TYPE “B”; GOTO 5.1; TYPE “F”

*

9-19

*5.1 TYPE “C”

*5.2 TYPE “E”
*5.3 TYPE “L”
*GO
(FOCAL types the answer)
ABCDGHIIK=—1.0 IGIIK=0.0 BCEL*

A

IF

In order to transfer control after a comparison, FOCAL contains a
conditional IF statement. The normal form of the IF statement consists
of the word IF, a space, a parenthesized expression or variable, and
three line numbers in order, separated by commas. The expression is
evaluated, and the program transfers control to the first line number if
the expression is less than zero, to the second line number if the expres-
sion has a value of zero, or to the third line number if the value of the
expression is greater than zero.

The program below transfers control to line number 2.10, 2.30, or
2.50, according to the value of the expression in the IF statement.

*2.1 TYPE “LESS THAN ZERO”; QUIT
*2.3 TYPE “EQUAL TO ZERO”; QUIT

*2.5 TYPE “GREATER THAN ZERO”; QUIT
*IF (25—25)2.1,2.3,2.5

EQUAL TO ZERO*

The IF statement may be shortened by terminating it with a semi-
colon or carriage return after the first or second line number. If a semi-
colon follows the first line number, the expression is tested and control
is transferred to that line if the expression is less than zero, If the
expression is not less than zero, the program continues with the next
statement,

*2.20IF (X)1.8; TYPE “Q}”

*

In the above example, when line 2.20 is executed, if X is less than
zero, control is transferred to line 1.8. If not, Q is typed out.

*3.191F (B)1.8,1.9
*3.20TYPEB .

*

In this example, if B is less than zero, control goes to line 1.8; if B
is equal to zero, control goes to line 1.9; if B is greater than zero,

9-20

control goes to the next statement, which in this case is line 3.20, and
the value of B is typed. The expression must be enclosed in paren-
theses, but other enclosures may be used within the expression.

RETURN :

The RETURN command is used to exit from a DO subroutine.
When a RETURN command is encountered during execution of a DO
subroutine, the program exits from its subroutine status and returns to
the command following the DO command that initiated the subroutine
status. '

QuIT v

A QUIT command causes the program to halt and return control
to the user. FOCAL types an asterisk and the user may type another
command. This command is suggested as the formal end of any pro-
gram. '

Comment : :

Beginning a command string with the letter C will cause the re-
mainder of that line to be ignored so that comments may be inserted
into the program. Such lines will be skipped over when the program is
executed, but will be typed out by a WRITE command. A program
that is well documented with comments is much more meaningful and
easier to understand than one without comments.

FOR
This command is used in setting up program loops and iterations.
The general format is

FOR A=B, C, D; (command)

The identifier A is initialized to the value B, then the command follow-
ing the semicolon is executed, at least once. After the command has
been executed, the value of A is incremented by C and compared to
the value of D. If A is less than or equal to D, the command after the
semicolon is executed again. This process is repeated until A is greater
than D, and FOCAL goes to the next sequential line.

The identifier A must be a single variable. B, C, and D may be
either expressions, variables, or numbers, If comma and the value C
are omitted, it is assumed that the increment is 1. If C,D is omitted, it
is handled like a SET statement and no iteration is performed.

The computations involved in the FOR statement are done in float-
ing-point arithmetic, and it may be necessary; in some circumstances,
to account for this type of arithmetic computation.

9-21

Example 1 below is a simple example of how FOCAL executes a
FOR command. Example 2 shows the FOR command combined with
a DO command.

Example 1:

*ERASE ALL

*1.1 SET A=100

*1.2 FOR B==1,1.5; TYPE %5.02, “BIS " B-+A.!
*GO

IS = 101.00

IS = 102.00

IS = 103.00

IS = 104.00

IS 105.00

il

*» W wwEmw

Example 2:

*1.1 FOR X=1,1,5; DO 2.0
*1.2 GOTO 3.1

*

*21TYPE ¢ ? %3, “X "X

*2.2 SET A=X+100.000
*2.3 TYPE ” %5.02, “A A

*3.1 QUIT
*GO

1
101.00
2
102.00
3
103.00
4
104.00
5
105.00%*

PR e e

IR T T T

MODIFY

Frequently, only a few characters in a particular line require changes.
To facilitate this job, and to eliminate the need to replace the entire
line, the FOCAL programmer may use the MODIFY command. Thus,
in order to modify the characters in line 5.41, the user types MODIFY
5.41. This command is terminated by a carriage return whereupon the
program waits for the user to type that character in the position in
which he wishes to make changes or additions. This character is not

9-22

printed. After he has typed the search character, the program types out
the contents of that line until the search character is typed.

At this point, the user has seven options:

1. Type in new characters in addition to the ones that have already
been typed out.

2. Type a form-feed (CTRL/L); this will cause the search to pro-
ceed to the next occurrence, if any, of the search character,

3. Type a CTRL/BELL,; this allows the user to change the search
character just as he did when first beginning to use the MODIFY
command.

4. Use the RUBOUT key to delete one character to the left each
time RUBOUT is depressed.

5. Type a left arrow (<) to delete the line over to the left margin.

6. Type a carriage return to terminate the line at that point, re-
moving the text to the right.

7. Type a LINE FEED to save the remainder of the line.

The ERASE ALL and MODIFY commands are generally used only
in immediate mode since they return to command mode upon com-
pletion. (The reason for this is that internal pointers may be changed
by these commands.)

During command input, the left arrow will delete the line numbers
as well as the text if the left arrow is the right most character on the
line. During MODIFY the line numbers cannot be changed.

Notice the errors in line 7.01 below.

*7.01 JACK AND BILL W$NT UP THE HALL
*MODIFY 7.01

JACK AND B\JILL W$\ENT UP THE HA\ILL
*WRITE 7.01 , ,

07.01 JACK AND JILL WENT UP THE HILL

%

To modify line 7.01, a B was typed by the user to indicate the char-
acter to be changed. FOCAL stopped typing when it encountered the
search character, B. The user typed the RUBOUT key to delete the B,
and then typed the correct letter J. He then typed the CTRL/BELL
keys followed by the $, the next character to be changed. The RUB-
OUT deleted the $ character, and the user typed an E. Again a search
was made for an A character. This was changed to 1. A LINE FEED
was typed to-save the remainder of the line.

9-23

NOTE

When the MODIFY command is used the values in the user’s symbol
table are reset to zero. Therefore, if the user defines his symbols in direct
statements and then uses a MODIFY command, the values of his symbols
are erased and must be redefined.

However, if the user defines his symbols by means of indirect statements
prior to using a MODIFY command, the values will not be erased because
these symbols are not entered in the symbol table until the statements de-
fining them are executed.

Using the Trace Feature

The trace feature is useful in checking an operating program. Those
parts of the program which the user has enclosed in question marks
will be printed out as they are executed by FOCAL.

In the following example, parts of three lines will be printed.

*ERASE ALL

*1.1 SET A==1

*1.2 SET B=5

*1.3 SET C=3

*1.4 TYPE %2, 7A4+B—C?,!
*1.5 TYPE ?B+A/C?,!

*1.6 TYPE ?B—C/A?

*GO

A+B—C= 3
B+A/C= 5
B—C/A= 2%

When only one ? is inserted the trace feature becomes operative
.when FOCAL encounters the ? during execution, and the program is
printed out from that point until another ? is encountered (the pro-
gram may loop through the same ?), until an error is encountered
(execution stops and an error message is typed), or until program
completion.
*ERASE ALL
*1.1 7SET A=0B; TYPE %3, A!
*1.2 FOR B=1,1,4; TYPE B+ A!
*GO
SET A=0B; TYPE %3, A!
= 0 FORB=1,1,4; TYPE B4A!
= 1 TYPE B+A!
= 2 TYPE B+A!
3 TYPE B+-A!
4%

i

9-24

In this example, FOCAL encountered the ? as it entered line 1.1
and traced the entire program. In the following example an error has
been inserted in the FOR statement———FOCAL will detect it.

*ERASE ALL

*1.1 SET A=0B; TYPE %3, Al

*1.2 FOR B=1,1:4; TYPE B+A!

*GO?

C—FOCAL SET A=0B; TYPE %3, A!

= 0O FOR B==1,1:707.14 @ 01.20

*
GO? traced the entire program under the same conditions as explained
above when only one 7 is inserted.
Mathematical Functions

Functions are provided to give extended arithmetic capabilities and
to give the potential for expansion to additional input/output devices.
A standard function call consists of four letters beginning with the letter
F and followed by a parenthetical expression.

FSGN(A—-B*2)

There are three basic types of functions, two of which are included
in the basic FOCAL program. ‘

The first type contains integer part, sign part, and absolute value
functions.

The second type, the extended arithmetic functlons are loaded at
the option of the user. They will consume approximately 800 locations
of the users program storage area. These arithmetic functions are
adapted from the extended arithmetic functions of the PDP-8 three-
word floating-point package and are fully described in the Floating
Point System manual, Order No. Digital-8-5-S.

The third type are the input/output functions: These include a non-
statistical random number generator (FRAN). This function uses the
FOCAL program itself as a table of random numbers. An expanded
version could incorporate the random number generator from the
DECUS library. Following are examples of the functions now available.

1. The square root function (FSQT) computes the square root of

the expression within parentheses.
*TYPE %2, FSQT(4)
- 2%
- *TYPE FSQT(9)
= 3%
*TYPE FSQT(144)
= 12%*

9-25

2. The absolute value function (FABS) outputs the absolute or
positive value of the number in parentheses.

*TYPE FABS(—66)
= 66*
*TYPE FABS(—23)
*TYPE FABS(— 99)
= 99*
3. The sign part function (FSGN) outputs the sign part (<4 or —)
of a number and the integer part becomes a 1.

*TYPE FSGN(4—6)
=R
*TYPE FSGN(4—4)
= 1*

TYPE FSGN(~7)

— 1%

4. The intéger function (FITR) has the value of the integer part
of any number:

*TYPE FITR(5.2)

= 5%
It may be used for truncating;

*TYPE FITR(55.66+.5)

= 56*

*TYPE FITR(77.4344-.5)

= 77*
For negative numbers, FITR gives the next smaller mteger

*TYPE FITR(—4.1)

= g%

5. The random number generator function (FRAN) computes a

nonstatistical pseudo—random number between 1.

*TYPE %, FRAN(.)
=—0.250000E+-00*
*TYPE FRAN()
=—0.623535E4-00*

9-26

6. The exponential function (FEXP) computes e to the power
within parentheses. (e=2.718281)

*TYPE FEXP(6.66953E-1)
= 0.194829E+4-01*

*TYPE FEXP(.666953)

= 0.194829E4-01*

*TYPE FEXP(1.23456)

= 0.343687E+01*

*TYPE FEXP(—1.)

= 0.367879E4-00*

7. The sine function (FSIN) calculates the sine of an angle in
radians.

*TYPE %, FSIN(3.14159)
= 0.238419E—05*

*TYPE FSIN(1.400)

=0. 985450E+00*

Since FOCAL requires that angles must be expressed in radzans to find
a function of an angle in degrees, the conversion factor, /180, must
be used. To find the sine of 15 degrees,

*SET PI=3.14159; TYPE FSIN(15*P1/180) .
== 0.258819E4-00*

*TYPE FSIN(45%3.14159/180)

= 0.707106E+400*

8. The cosine function (FCOS) calculates the cosine of an angle
in radians. A

*TYPE FCOS(2*3.141592)
= 0.100000E-+01*

" *TYPE FCOS(.50000)
= 0.877582E+00*
*TYPE FCOS(45*3.141592/180)
= 0.707107B+00*

9-27 .

9. The arc tangent function (FATN) calculates the angle in radians
whose tangent is the argument within parentheses. ~

*TYPE FATN(1.)

= 0.785398E4-00*
*TYPE FATN(.31305)

= 0.303386E+-00*
*TYPE FATN(3.141592)
= 0.126263E4-01*

10. The logarithm function (FLOG) computes the natural loga-
rithm (log,) of the number within parentheses.

*TYPE FLOG(1.00000) ‘
= 0.000000E+4-00*
*TYPE FLOG(1.98765)
= 0.686953E+00*
*TYPE % 5.03, FLOG(2.065)
= 0.725*
Reading From the High-Speed Reader

Up to this point we have considered only one source of input to
FOCAL programs—the Teletype keyboard. We learned that when
FOCAL types an *, it is ready to accept user commands.

The uvser can switch the input device to the high-speed paper tape
reader by typing an asterisk in the first position, or immediately follow-
ing the line number in a statemént. The following statements cause
FOCAL to read a tape from the high-speed reader. -

G The first asterisk is that typed out by FOCAL, inform-
ing the user that a command may be input from

the keyboard. The second asterisk typed by the
user, switches input to the high-speed reader.

1.21 The user types * after the line number.

To switch back to the keyboard, the user types another *. If there
is no tape in the high-speed reader, or when an “end of tape” condition
is reached, FOCAL automatically switches back to keyboard input.

9-28

This feature is useful for loading FOCAL programs and for inputting
large amounts of data during execution of a FOCAL program.

When the following statement is executed FOCAL accepts four
pieces of data from the high-speed reader.

1.10, FOR I=1,4; ASK HR(I)
1.11
*DO 1.10
L *
The user typed an asterisk- after line 1.11 to return control to the key-

board. If the tape contains fewer than four pieces of data the remain-
ing pieces will be taken from the keyboard.

- Generating Program Tapes
- To generate a program tape of the user’'s FOCAL program on the
. low-speed paper tape punch, the user should

1. Respond to * by typing WRITE ALL (do not depress the RE-
TURN key).

2. Depress low-speed punch to ON.

3. Generate leader tape (depress the SHIFT, REPT, and P keys
" in that order; release in reverse order).

4. Depress RETURN key.

When the user’s FOCAL program has been typed and punched, the
user should

5. Generate trailer tape (depress the SHIFT, REPT, and P keys
in that order; release in reverse order). :

6. Depress low-speed punch to OFF.

7. Remove and label the punéhed paper tape.

- The user’s FOCAL program is still m the computer. FOCAL is
waiting for user input.

'9-29

EXAMPLES OF FOCAL PROGRAMS

The following programs reveal some of FOCAL’s features in various
applications. The examples show that FOCAL finds practical applica-
tion in any situation:

FORTRAN-type problems are handled easily with little programming
time.

FOCAL’s easy-to-learn language allows the user to concentrate more
on his problem than on programming.

FOCAL as a tool is easier to learn and use than a slide rule or any
other desk calculator, and it offers vastly more than any combination
of previous problem solving tools.

FOCAL can calculate complex problems and print and/or display
the results in “one fell swoop.”

The example programs included in this section are maintained on
punched paper tape. Each program was loaded into core using
FOCAL’s high-speed paper tape reader input feature. The WRITE
command was then used to get the program printout for inclusion here.
Then the GO command was issued to execute each program.

When using the WRITE command, FOCAL immediately identifies
the version of the FOCAL tape being used—in this case, C-FOCAL,
8/68. The C preceding FOCAL , 8/68 is the comment line indicator.

Table Generation Using Functions

The ability to evaluate simple arithmetic expressions and to generate
values with the aid of library functions is one of the first benefits to be
obtained from learmng the FOCAL language. ‘In this example, a table
of the sine, cosine, natural logarithm, and exponential values is gen-
erated for a series of arguments. As one becomes familiar with these
and other library functions, it becomes easy to combine them with the
standard arithmetic operations of addition, subtraction, multiplication,
division, and exponentiation, The user is then able to evaluate any given
formula for a single value or for a range of values as in this example.

Although FOCAL allows the typing of more than one command per
line, each command in this example has been typed on a separate line
to maintain clarity and because of the length of several of the com-
mands, In this example, line 01.05 outputs the desired column head-
ings. Line 01.10 is the loop to generate values for I, beginning with the
value 1.00000 and continuing in increments of .00001 up through the
value 1.00010; the DO 2.05 command at the end of this second line
causes line 02.05 to be executed for each value of 1. Line 02.05 is the
command to evaluate the various library functions for the I arguments;
the % 7.06 specifies that all output results up to the next % symbol

9-30

i

are to, appear in fixéd-point format with one digit position to the left of
the decimal and six digit positions to the right: the second % symbol
reverts the output mode back to floating point for the remaining values
— FLOG(1). and FEXP(I). Line 01.20 (optional) returns control
to the user. v

Several techniques can be noted in line 02.05 of this example.

1. FOCAL commands can be abbreviated to the first letter of the
command followed by a space, as shown by the use of T instead
of TYPE. This technique can be used to shorten command
strings.

2. Arguments can be enclosed in various ways: (), < >,[]
This ability is useful in matching correctly when a number of
such enclosures appear in a command,

3. Spaces can be inserted in an output format by enclosing the ap-
propriate number of spaces within quotation marks, Such use of
spacing is recommended to improve the readability of the output
results. ‘

4. FOCAL presently allows accuracy of six significant digits, which
makes possible the use of very small loop increments (in this
example, .00001); this should eliminate the need to interpolate

_ between table values of trigonometry functions in most cases.
C-FOCAL > 8768

01.65 T " 1 SINE COSINE LOG E™Y
@118 FOR [=1,.00001,1.00013 DO 2.05

01.20 QUIT

D205 T Z27-0621a" "HFSINCI)»'"™ ",FCOS<I>," "y%sFLOGLI)»" “LFEXF(E),!

*

*GO .

I SINE COSINE LOG E

= 1.0000088 = Q.84147% = 0+540303 = Q+Q00000E+88 = 0.271B2BE+21

= 1000818 = 0841476 = 0.540295 = Q.277507TE~25 = Q.271831E+@1

= 1.000020 = D«B41481 = B+540286 = @«195501E-04 = Q.271834E+01

= 10000830 = 0841487 = B+540278 = Q«293249E-04 = @.271836E+21

= 1.000040 = @.841492 = Q.540270 = Q.290997E-04 = 0.271839E+01

= 1000050 = B«841497 = B.540262 = 0.488744E-04 = @«271842E+081

= 14000068 = D«841503 ‘2 B«540254 = DSB6490E-04 = 0.271B44E+01

= 1000070 = B«841508 = Q.540245 = @Q«€B4235E~B4 = @.27T1B4TE+01

= 1.000088 = 0841513 = P.540237 = @+781980E~04 = @.271849E+01

= 1+000090 = @.841519 = 0.540229 = (.879723E-24 = Q.271852E+81

= 1.000100 = B.841524 = 0.540221 = @.977465E-B4 = (.271855E+01

- .

Addition Exerciser Using Functions

FOCAL randomly selects pairs of 1- or 2-digit positive integers and
sets them up in an addition problem. The user types the answer to the
addition problem. FOCAL then checks the user’s answer against its
own and tells the user whether he was right or wrong. If the user’s
answer is correct, FOCAL types another addition problem. If the user’s

9-31°

answer is wrong, FOCAL gives him two more tries at the problem. If
after three tries the user still has not typed the correct answer, FOCAL
suggests that the user consult his teacher, gives the correct answer to
the problem, and gocs on to another problem.)

This program can be used as a drill for the young student of addition,
and with a few modifications it can be extended to give only subtraction
problems or randomly vary between addition and subtraction,

The program uses three functions in line 01.10.

C-FOCAL », 8/68

@1.05 TYPE "HELLO» PLEASE ADD THE FOLLOWING SETS OF NUMBERS."!
B1+1@8 SET A=FABS(FITR<1@@*FRAN{I»)>3 SET B= FABS(FITR<99*FRAN[]’)
P12 TYPE %7s AsIBs!"=cmmcnw=="]

@1.30 ASK REPLY,!

01+42 IF (REPLY-A~B) 241,515,231

B1.58 SET WR=8JTYPE "THAT IS5 CORRECT.'!

@160 GOTO 1.1

82,18 SET WR=WR+13 IF (WR=2) 2.2,2+2,3¢1.
02.28 T "SORRY. TRY AGAIN,"13 GOTO 1.2 -

23.18 T "IF YOU ARE HAVING TROUBLE, ASK YOUR TEACHER FOR HELP.'!
@3.28 TYPE “THE CORRECT ANSWER IS "A+B,!

B3+38 GOTO 11

*

*G0

HELLO, PLEASE ADD THE FOLLOWING SETS OF NUMBERS.
= "] :

= 2]

=]

= 4]

1]

THAT IS CORRECT.
= 32

= 2

32

THAT 15 CORRECT.
= 28

= 5

133 -

THAT 15 CORRECT.

9-32

= 8
= 4

-

184
SORRY, TRY AGAIN,
8 .

= 2
10

SORRY, TRY AGAIN. '

= 8 .

= 4

148 .

IF YOU ARE HAVING TROUBLE, ASK YOUR TEACHER FOR HELP.
THE CORRECT ANSWER IS = 12

= 7

= @

110

IF YOU ARE HAVING TROUBLE»,» ASK YOUR TEACHER FOR HELP.
THE CORRECT ANSWER IS = 7 ~

= .6 :

= 81

187

THAT IS CORRECT.

= 4 .

= g

312

THAT IS CORRECT.

= 9

= 7

SORRY, TRY AGAIN,
= 9
= 7

-

THAT IS CORRECT.

'9-33

Finding Roots of a Quadratic Equation
This program uses the square root function to ana]yze a quadratic
equation of the form:

= AX24+BX+C

The analysis is followed by output of the roots and/or a comment
concerning the nature of the roots. After the output the program re-
starts and accepts new values for A, B, and C. Some interesting fea-
tures are:

1. Itis not phased by a negative discriminant,

2. Input 1s set up so that if the space bar is used as a terminator,
A, B, and C will be printed in a row format which is suggestive
of their format in the equation.

3. If A is equal to zero, FOCAL types an error message. There-
fore, division by zero is not possible.

C-FOCAL » 8/68

@1.18 ASK ! 7A B C?3 SET ROOT=Bt2-4*%A%C

0120 IF C(AY 145135104

@130 TYPE ! "THIS IS A FIRST DEGREE EQUATION" 13 GOTO 1+1@

31.48 TYPE %6.83, ! ' THE ROQTS ARE'™3; IF (ROOT) 1.751.6

8158 TYPE 1,(=B+FSQT<R0O0T>)/2%A;!,(~B~FSQT<RO0T>)/2%A3 GOTO 1.1
P1.66 TYPE § =B/2*%A,13 GOTQ 1.10

B1.78 TYPE ' IMAGINARY"!, =-B/2#%A," + (",FSQT(~ROOT)/2*%A,")" "xI"
81.88 TYPE !,-B/2%A," -~ (",FSQTL-ROOTI/2*%A,")*["s13 GOTO 1.18

*

*GO

A t4 B :2 C:8

THE ROOTS ARE IMAGINARY

== B.250 + (= 14392)%]
=w @258 - (= 14392) %1

A 10 B 12 C:4
THIS 15 A FIRST DEGREE EQUATION

A 11 B :t4 Ct4
THE ROOTS ARE
== 2.000

A 1 B t-2 C:4
THE ROOTS ARE IMAGINARY

= 1.000 + (= 1.7323%1
= 1.006 =~ (= 17322 %1
A 14 B 16 C:B

THE ROOTS ARE IMAGINARY

== @.758 + (= 11992 *]
== @B.7580 - (= 14199)%]1

A 11 B 16 C:8
THE ROOTS ARE

== 2.000
== 4.000

9-34

Square Completer Using the FOR Command
The program directs the FOCAL user to specify the values for A,
B, and C for the parabolic function of the form:

F(X)=AX2+BX+C

The program quickly manipulates these values and prints an expression
of the same function in the form:

F(X) = A(X—K)? 4 C—K?

where in line number 01.20, below, K is SET equal to —B/2A, the
value of the parabola’s axis of symmetry.

It is brought out in many high school algebra classes that this is a
handy way to visualize a parabolic function since it expresses, in easily
readable forms, various characteristics of the graph of the function.
The program is designed to do the complicated arithmetic involved in
completing the square of a parabolic function.

C-FOCAL , B/68B

21.09 TYPE !,"INPUT A,B,C SUCH THAT F(X)=2Xt2+BX+(C"»1

P1.10 ASK 7A B C?3 IF (AY 125143

21.20 SET K=-Bs/2%A3 SET C=C/A-Kt2

01.38 TYPE R4.02, 15" FCXIVA,"#(X-",K,">12",(, 03 GOTO 1.09
@1.48 TYPE 1, "THAT IS NO QUADRATIC!',!!3 GOTO 1.R9

*

*GO

- INPUT A,B,C SUCH THAT F(X)=2Xt2+BX+C
A1l B 11 Cil _
FeX>= 1. GE*(X--- 8.50)12= B.75

INPUT A»BsC SUCH THAT F(X)= 2X 124BX+C
A 13 B 16 Ct3)
TFCX)= 3.00%(X-=- 1.008)12= 0.00

INPUT A»B,C SUCH THAT F(X)=2X12+BX+C
A 13 B 118 C324 i
FOX)= 3.00%(X=== 3.00)12==1.00

INPUT AsB»C SUCH THAT F(X)=2Xt2+BX+C
A 11 B 21 Cs12
FOX)= 1 BO*%(X~-=- @.52)12= 11.75

INPUT AsBsC SUCH THAT F(X)=2X12+BX+C
A $AB B :CD C:FG
F(X)= 12.00%(X~==~ 1.42) 122 3.58

INPUT A,B,C SUCH THAT F(X)=2Xt2+BX+(C
A :@ B 1 C:B
THAT IS NO QUADRATIC!

INPUT A,B,C SUCH THAT F(X)=2X12+BX+(C
A 32 B 14 C:é
F(X)= 2.80%(X-=- 1.00)12= 2.00

9-35

Interest Payment Program
This is an example of a business-oriented FOCAL program. It is
designed to give a complete picture of the payments which will be made -
on a loan, with interest, on an installment plan basis.
Under program control, the computer requests as input the amount
of a loan, the percentage of interest on that loan, and the length of
time over which the loan is to be paid. The computer then calculates
and types the amount of monthly payments to be paid, the total amount
of interest which will be paid, and a table showing interest paid, amount

applied to principle, and balance due after each payment.

C-FOC

21.19
2114
@l1.16
Q120
Bl24
21.30
B1.34
21 .40
a1 .42
31.48

22.085
P2.10
B2.12
B2.16
92.18
D2.20
02.24
B2.30
*

*GO

AL » 8/68

ASK 11%7.082,

SET J=J/100

ASK "ENTER AMOUNT OF LOAN ™ A,!

ASK "NUMBER OF YEARS ™ N»!
ASK "NUMBER OF PAYMENTS PER YEAR " M,!1!

SET N=Nx%M3
SET B=1+1

SET I=J/M

SET R=A*1/(1-1/BtN)
TYPE *"MONTHLY PAYMENT ** R»!

TYPE "TOTAL INTEREST

SET B=A

TYPE " INTEREST

SET L=Bx*13
SET B=B-P
TYPE L. ™

SET P=R-L

“p e

IF (B=R) 2.24+2.24,2.12
“R-BxI,! "LAST PAYMENT!™ B*I+B,!

TYPE B*1."
QUIT

ENTER INTEREST IN PERCENT :S
ENTER AMOUNT OF LOAN 32345.88

NUNMBE

R OF YEARS

14

NUMBER OF PAYMENTS PER YEAR :3

MONTH
TOTAL

INTE

3 o LA I TN T O O I O B 1

LY PAYMENT
INTEREST

REST
39.08
36«12
33.102
30 .83
26491
23.74
2351
17.23
13.90
1351
T.06
356

AST PAYMENT!=

217.23
26175

i

X
b

TO PRIN
178.15
18112
184413
187.20
198.32
193.50
196.72
290 .00
203433
286.72
218.17
21367
217.21

[T T TS VO (O (T I (I (O -3

9-36

" R#N-As11?

APP TO PRIN

"B, !

"ENTER INTEREST IN PERCENT * J,!

BALANCE

216685
1985+74
1801.61
1614.40
1424.08
1230.58
18033.86
833.87
63053
42381
213465

BALANCE"» 1

Temperature Conversion Using the FOR Command

The ability for loop parameters to be negative, zero, fractional, or ex-
‘pressions, provides power beyond many other similar languages in
simplifying the routine’s structure, It also reemphasizes the flexibility
and control over FOCAL programs at the time they are run.

Measurement system conversions are time copsuming in many lines

of work. A short FOCAL program, such as the one illustrated in the
following example, eliminates hours of repeated calculations. In this
" particular example, the problem is to convert temperatures from de-
grees Fahrenheit to degrees Centigrade, using the formula:

T°C=5/9(T°F~32)

This routine is quite similar in structure to the “Table Generation”
example. The one basic difference is that here the user can input the
loop parameters which govern the generation of the output. Thus, pro-
vision has been made for output- of properly labeled requests for start-
ing, ending, and incrementing values and their input for use by the
program, :

C~FOCAL » 8/68‘

#2410 ASK 1,"FROM ",START,*" TO ",END," DEGREES FAHRENHEIT",!

0220 ASK ™ IN INCREMENTS OF "sINCR," DEGREES",!!

92+30 TYPE “THE APPROXIMATE FAHRENHEIT TO CENTIGRADE CONVERSIONS ARE:"
@2.49 FOR T=START,INCR.END3 TYPE 13 DO 2+50

P2+4S QUIT

#2456 TYPE * *,T,' FAHRENHEIT DEG. ",(T=-32)%5/9,'" CENTIGRADE DEG."

*
*GO

FROM t-48 TO 180 DEGREES FAHRENHEIT
IN INCREMENTS OF :28 DEGREES

THE APPROXIMATE FAHRENHEIT TO CENTIGRADE CONVERSIONS ARE:
40«33 FAHRENHEIT DEGe =- 40«38 CENTIGRADE DEG.

- 20 .03 FAHRENHELIT DEGe == 26.89 CENTIGRADE DEG.
?.09 FAHRENHEIT DEGs =~ 17.78 CENTIGRADE DEG-.
20 .00 FAHRENHEIT DEGe == 6+67 CENTIGRADE DEG.
40«00 FAHRENHEIT DEGs = 4.45 CENTIGRADE DEG.

60 .00 FAHRENHEIT DEG. = 1556 CENTIGRADE DEG.
80.00 FAHRENHEIT DEG. = 26467 CENTIGRADE DEG.*

#toHHHuH I!

9-37

One-Line Function Plotting

This example demonstrates the use of FOCAL to present, in, graphic
form, some given function over a range of values. In this example, the
function used is)

y = 30 + 15(SIN(x))e-1x

with x ranging from O to 15 in increments of .5. This damped sine
wave has many physical applications, especially in electronics and
mechanics (for example, in designing the shock absorbers of a car).

In the actual coding of the example, the variables I and J were used
in place of x and y, respectively; any two variables could have been
used. The single line 08.01 contains a set of nested loops for I and J.
The J loop types spaces horizontally for the y coordinate of the func-
tion; the I loop prints the * symbol and the carriage return and line
feeds for the x coordinate. The function itself is used as the upper limit
of the J loop, again showing the power of FOCAL commands.

The technique illustrated by this example can be used to plot any
desired function. Although the * symbol was used here, any legal
FOCAL character is acceptable.

C~FOCAL , B/68

08+01 F 1=0s.55155 T "%",13 F J=0,30+15%FSINCI)*FEXP[-+1%133 T " »
*

*D0 B.01
*

Intercept and Plot of Two Functions

Values are first computed and printed for two monotonic functions.
Then these curves are plotted within specified limits, Nonmonotonic
functions must be plotted using the method of residuals.

C-FOCAL » 8/68

@1.02 ASK "LOWER LIMIT"sLL,!"UPPER LIMIT",UL,!"1NCREMENT"s [Ny !
@1-18 SET Y1=05 SET Y2=0;

#1.20 FOR X=LL,IN,UL; SET Y1=-X-3; SET Y2=3+4xX=X123 DO 2.0
@210 IF (Y2-Y1) 2.4,2.2,2.4

@2.28 TYPE !'! “THE POINT OF INTERSECTION IS ",!3 GOTO 2.3
@230 TYPE "X1'sXs™ ", "Y1%, Y1, 15X0", X, . ","Y2",Y2,113 RETURN
B2.4B TYPE “X1T,Xs" ",0Y 17, Y1, 1,7X2",X," ","y2v,y2,11
@3.18 TYPE “DO YOU WANT A PLOT?"

#3208 ASK "(TYPE Y FOR YES. TYPE N FOR NO) ",AN,!!

§3.38 IF CAN-25) 9.1, 4.1 .
@4.18 FOR X=LL,IN,ULS DO 5.0

05401 IF (X} S5¢155.02551

#5.02 TYPE * ¥eeoseoaannanensesantosnssassvasnosncenesYhsd
@5.10 FOR Y=3,303 TYPE » " ‘

B5.20 TYPE "', 4 o

2530 FOR Y=0,30+(-X=3>3 TYPE * *. o

B5.48 TYPE "%, 4

@5.58 FOR Y=0,30+(3+4%X-X12)3 TYPE "

8568 TYPE '4",!

#5.79 RETURN

29.10 QUIT

*

#GO v

LOWER LIMIT:-10

UPPER LIMIT:1@

INCREMENT : 1 v

Xl== 18.00 -Yi= 7.00

X2=- 1380 Y2=- 137.08

Xi=- 9.00. Yi= 6-00

X2=- 9.00 Y2=- 114.00

Xi== B.00 Y1= 5.8

x2=~ 8.08 Y2=- 93.00

X1=- 7.08 Yi= 4.00

Xe=- 7.88 Y2=- 74.00

X1== 608 Yi1= 3.00

x2=- 6-08 Y22~ 57.00

Xi=- 5.0 Yi= 2.00

X2= - 5.8 Y2=- 42.00

X1=- 4.0 Y1= 1.00

X2=- 4.8 Y2=- - 29.08

X1== 3.0 Y1 2.00

Xa=- 3.08 Y2= 18.00

Xi== 2.00 Yi=- 1-00

X2=- 2.08 Y2=- 9.00

9-39

THE POINT. OF INTERSECTION IS

X1=- 1.00 Yli== 2.00
X2== 1.00 Ya=- 2.009
Xi= 200 Y=~ 3.00
X2= .00 Ye= 3.00
Xi= 1.00 Yi=- 4480
X2= 100 Y2= 6.00
Xi= 2.00 Yi=- 5.00
X2= 2002 ye= 700
X1= 3.00 Yl=- 6.00
X2= 3.00 Yes= 600
Xi= 4400 Yi=- . 7.00
X2= 4.00 Y2= 3.08
Xi= 5.00 Yi=~ 8.00
X2= 5.00 YZ=- 2.0

THE POINT OF INTERSECTION IS

Xi= 6+08 Yi=- 9.00
X2= 6.8 Y2=- 9.00
Xi= T 7.08 Yi=- 18.00
X2= 7.08 Y2=- 18.00
X1= 8.60 Yi=- 11.08
X2= B.00 YZ=- 29.00
X1= 9.89 Yi=~ 12.00
Xo= 9.68 YZ2=- 42.00
X1= 1068 Yi=- 13.08
x2= 180.800 Y2=- 57.08
X1= 11.00 Yi=- 13.90
x2= 11.80 Y2=- 57.00

DO YOU WANT A PLOT?(TYPE Y FOR YES. TYPE N FOR NO) :Y

* . *
* . *
* . *
* « *
* . ok
* .k
* ok
* *
* * .
* .
Yesoaonosovsesveshunsasbosanensnonanrasany
* . *
* . *
* . *
* "
* * .
* .
* * .
* * .
* * N
* * .
* * .

9-40

Plotting on the Oscilloscope

This is an example of 'using the FDXS and FDIS functions for plot-
. ting on the oscilloscope. The functions are used in the SET command
of statement number 01.40 as shown below, which is equivalent to

SET H=FDXS(X)—FDIS(Y)

where X and Y are the x and y coordmates of the pomt to be plotted
on the scope.

The program will plot a sine wave with a user-determined number
of complete cycles (Q).

C-FOCAL , B/68

31.10 ASK "NUMBER OF CYCLES" @

A1«20 F 120.,503 S X(I)=20%I3 S Y(I)=(FSIN[3.14159%1/<25/0>1+1)%500
@1.30¢ TYPE ! “READY TO PLOT" ,!

@1.40 FOR I=0.+5503 SET H=FDXS(X[IIy-FDIS(Y<I>>

#1.50 GOTO t.4

*

*GO

NUMBER OF CYCLES:2

READY TO PLOT

Formula Evaluation for Circles and Spheres
In this example, FOCAL is used to calculate, label, and output the
following values for an indefinite number of radii typed in by the user.

Given: radius(R)

Program calculates: circle diameter 2R
circle area wR2
circle circumference 2#R
sphere volume 4/3»R3
sphere surface area 4wR?2

Although the American system of inches is used in this example,
conversions to other systems (metric, for example) could be very easily
incorporated into the program, thus eliminating any need for hand-
calculated conversions.

The program is very straightforward. ASK is used to allow the user
to type in the radius value to be used in the calculations. SET is used
to supply the value of = (PI). TYPE is used for all calculations and
output. Note that if a value (such as PI in this example) is to be
entered once and then used in repeated calculations, it should be
entered by a SET-command which is outside the calculation loop,
otherwise, the variable would be sét at the beginning of each pass
through the loop. However, if the value of the variable changes during
each iteration, then it must be calculated either by a SET or TYPE
command within the loop.

9-41

The use of the GOTO command (line 01.60) results in an infinite
loop of lines 01.10 through 01.60. This technique is used when the
number of desired repetitions is not known. The looping process can
be terminated at any time by typing CTRL/C. If, however, the num-
ber of desired repetitions is known (e.g., 10), the following method
can be used. ’

*SET PI=3.14159
*1.1 ASK ...

.

*1.6 TYPE 11111 (Eliminate GOTO 1.1)

*

*FOR I=1,10; DO 1

ecuted 10 times)

(Direct command; causes all
steps in group 1 to be ex-

The ability to choose between these methods provides great flexibility
in actually running FOCAL programs.

C-FocaL »

a1 .2
31.10
21.20
31.21
21.30
@135
@148
21.49
21.50
B1.60
*

T o*G0

SET
ASK

TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE

Bs/68

PI=3.141592

"A RADIUS OQOF*, Rs ' INCHES"
%X8+84, 1, ' GENERATES A CIRCLE OF:™, !
" DIAMETER", Z2#%R, " INCHES", !
" AREA™s PI#Rt2, ' SGQUARE INCHE

S, 1

" CIRCUMFERENCE", 2#PI%R, * INCHES", !

Y5 ™ AND A SPHERE QF:", 1

" VOLUME™, (4/3)>*PI*Rt3, ' CUBI
" ‘ AND SURFACE AREA', 4#PI%*Rt2,
t113 GOTO @1.1@

A RADIUS OF:1.414 INCHES
GENERATES A CIRCLE OF:

DIAMETER= 2+.8280 INCHES
AREA= 6-2813 SQUARE INCHES
CIRCUMFERENCE= §.8844 INCHES

AND A SPHERE OF:

VOLUME= 11.8423 CUBIC INCHES
AND SURFACE AREA= 25.1252 SGUARE INCHES

A RADIUS OF: ...

9-42

C INCHES", !
' SQUARE INCHES™

Simultaneous Equations and Matrices
Many disciplines use subscripted variables for vectors in one, two,
or more dimensions to store and manipulate data. A common use is
the 2-dimensional array or matrix for handling sets of simultaneous
equations. For example,
Given: 1X, + 2X, + 3X, = 4
4X, 43X, +2X, =1
1X, + 4X, + 3X, = 2

Find: the values of X,, X,, and X, to satisfy all three equations simul-
taneously. , .

The solution can be reduced to simple mathematics between the
various elements of the rows and columns until correct values of X are
found, as shown in Example 3 below.

Since FOCAL uses only a single subscript, the handling of two or
more dimensions requires the generation of a linear subscript which
represents the correct position if it were stored in normal order; i.e.,
leftmost subscript moving fastest,

IN ONE DIMENSION
ARRAY()

Element D could be represented as
ARRAY(3); any element in this array
can be represented by a subscript in the
range 0 through 4. The first element in
an array always has a subscript of 0.

mig|o]w{>
PN~ O

IN TWO DIMENSIONS
ARRAY (row, column) or A(LT)

This must be reduced to the form A(G), where G is a function of I
and J; that is, A(LJ) = A(G). Consider th¢ diagram

I=

o 1 2

I=0 0|5 10
1 [T 6 |11

2 [2 [7 [12

3 [3 [8 | 13

4 [4 [9 |14

‘The numbers along the outside edges of the box above are the 2-dimen-
sional subscripts; the numbers inside the box are the linear subscripts.

! ' 9-43

Thus each combination of I and J can be given a unique value, e.g., for
I=2 and J=1 the element is 7.

Notice that for a constant I, increasing the value of J by one in-
creases the value of the linear subscript by five. Similarly, for a constant
J, increasing the value of I by one increases the linear subscript by
three.

The array, above, has five rows and three columns, so two values

can be defined: ‘
IMAX = 5 and JMAX = 3

The total number of clements is IMAX * JMAX = 15. To generate
the number G in any box, using the corresponding values of I and J, the
formula is

G =I + IMAX *J or A(G)

“which is equivalent to A(I4HIMAX*J). The example of solving simul-
taneous equations, above, uses this algorithm for subscripts merely by
replacing I, IMAX, and J with J, L, and K, respectively, so as to form
the equation 4

A(J+L*K)
Each element in a 2-dimensional array repreéents an area.
IN THREE DIMENSIONS

ARRAY (row, column, plane) = A(LLK) = A(G)

In a 3-dimensional array, each array represents a volume, Three
dimensions can be illustrated as a cube.

9-44

o cl

$\ {

0 \ 6 / /
2 \ 11 11 /

DO

2 - 43 74

4 [N 8 \/ 28 |~ 59 .~

\

4=0 {\/
1 }V

This cube has dimensions of five rows, three columns, and five planes;
thus, IMAX = 5, JIMAX = 3, and KMAX = 5. Each plane is num-
bered exactly as in the 2-dimensional example, except with the addition
of 15 times K (with K = the number of planes back from the first) to
each subscript in the first plane.

For example,

Upper lefthand square, back one plane from the first=15
I=0, J= 0, K=1; I+ (IMAX*]) + (IMAX*IMAX*K)=15=G
: or
A(0,0,1)=A(15)

IN FOUR DIMENSIONS
ARRAY (row, column, plane, cube) =A(LJ,K,L) =A(G)

Assign the values for IMAX, JMAX, KMAX; a method similar to the
one used above yields

G=I+(IMAX*D) 4+ (IMAX*IMAX*K) + (IMAX*JMAX*KMAX*L)
This process can be extended indefinitely to n-dimensions!

9-45

Example 1:

*FOR J=0,43 TYPE %2,13 FOR I=0,2: TYPE J+S#I1

= @= 5= 1@

= 1= 6= 11

= 2= 7= 12

= 3= 8= 13

= 4= 9= 1 4%
Example 2:

¢-FOCAL » 8/68

21.85 TYPE "ENTER 3 ROWS AND 4 COLUMNS OF NUMBERS.'"!
@1.18 FOR J=@,235 TYPE !3 FOR K=0,33 ASK NOCJ+3*K)
@1.15 SET MAX=NO(®)

@120 FOR J=0.235 FOR K=8.3; DO @2.080

@1.25 TYPE ', "LARGEST NUMBER IS ", MAX3 QUIT

B2+«35 IF (MAX~NOCJ+3*K)) 2.103 RETURN
22.12 SET MAX=NO(J+3%K): RETURN

*

*GO

ENTER 3 ROWS AND 4 COLUMNS OF NUMBERS.
1@ 315 :8 :9

11 12 3 14

39 8 7 16

‘LARGEST NUMBER IS = 9.00083%

*

*GO
ENTER 3 ROWS AND 4 COLUMNS OF NUMBERS.

tA B :C :D
tA B :C D
A 2B :C D

LARGEST NUMBER IS = 4.00000%

. g

*GO .

ENTER 3 ROWS AND 4 COLUMNS OF NUMBERS.
1A 1B :C 3D

4 13 :2 31

1A 14 1 :

LARGEST NUMBER IS = 4.00008+

*

9-46

Example 3:

C~-FocaAalL »

B1.02
D104
3105
Bt.10
Plell
g1.12
B1.14
Di.16
B117
?1.18
71.20
91.22
P1.23
3126
21.28
01.29

A4.05
B4.10

B4.20
B4.22

B4.30

05.10
B5.29
D530

@S540

8710
B7.20
*

*GO

8768 .

TYPE I"ROUTINE TO SOLVE MATRIX EQ. AX=B FOR X"!

ASK

TYPE

ASK
FOR
FOR
SET
FOR
SET
FOR
FOR
SET

"ENTER

DIMENSION OF A, THEN

I"ENTER COEFF'S A(JsK)«««ACJ>N) AND BC(JI'!
Ls13 SET N=L-13 SET I=-1

K=0,N3
J=0sN3
M=1E-6
J=@sN3
R(P)=0@
K=@,L3;
J=@,N;
I=I+1

SET R(K)=K+1
TYPE !5 FOR K=@,L3 ASK AC(J+L*K)

FOR K=0sN3 DO 4.0

SET A(P+L*K)=A(P+L*K)/M
DO 5.0)

IF (I-N> 1
FOR J=0,N3
FOR K=0,N3

«14512651+14
FOR K=0sN3 DO 7.0
TYPE !7Z2,"X("K»'")

TYPE

1y QUIT

"5 %8B35, X(K)

IF (RLJ1) B,4435441
IF (FABS<ALJ+L*K15-FABSIM1) 4.33
SET M=ACJ+L*K)

SET

P=Js

RETURN

SET Q=K

IF (J-P) 5.255.455.2

SET D=ACJ+L*Q)

FOR K=0,L3 SET ACJ+L*K)=ACJ+L*K) =A(P+L*K)*D
RETURN

IF (1E-6-FABS[A<J+L#*K>1) 7.23 RETURN
SET X(K)=A(J+L*L)

ROUTINE TQ SOLVE MATRIX EQ. AX=B FOR X

ENTER DIMENSION OF A

THEN

ENTER COEFF'S ACJsKY e «ACJISN) AND BCD)

.
H

NWN

. e e

B¢ B K v se se

* .

[RVEN]

Holl 4l es se o0

4
1
2
?.00000 ‘ -
- 1.00000 :
2.00000

9-47

Demonstration Dice Game

Sooner or later, people who have access to a computer will try to
“match brains” with it or use it for their own enjoyment. Such pastimes
are usually keyboard oriented and FOCAL lends itself nicely to these
ends. The following example uses the random number generator,
FRAN(), to produce dice combinations, plus IF logic to check bets
and winning combinations.

Lines beginning with a C indicate that the line is to be treated as a
comment and is not to be interpreted or executed. If a comment state-
ment is preceded by a statement number, the line is stored as part of
the program but does not affect the program logic. '

The random number generator must be modified for use with statis-
tical or simulation programs to achieve true randomness. However, it
is sufficiently random in its present form for most applications.

NOTE
We naturally cannot assume any responsibility for the use of this or any
similar routines,

C-FOCAL » B<68

#1418 SET B=@3TYPE !1"DICE GAME"!,"HOUSE LIMIT OF $1000
@1.13 TYPE . MINIMUM BET 5 $1”11

?1.28 ASK “YOUR BET IS"AJIF (1088-A) 3.1

01+22 IF CA~1)34451+2621+26

B1+26 IF (A~FITR(AIY3+5,1+3,3.5

@1+3¢ ASK M3iDO 23SET D=CsDO 23TYPE ™ "3SET D=D+C
B1+32 IF (D~731442+342,1442

P1+40 IF (D~251553+35145

B1+42 IF (D~11)1¢423:25144

BleSO IF (D~3) 1¢643+32146

B1+60 ASK M3DO 23SET E=CIDO 25 TYPE * "3ISET E=E+C
B1+72 IF CE~7) 14745332174 '

@174 IF (E~DJ)146,32,146

82+1@ SET CxFITRCIG¥FABS(FRAN()IIIIIF (C-622.2,2+2,201
82.28 IF (C~1)2.13TYPE %1, “CHRETURN

33.12 TYPE "HOUSE LIMITS ARE $1000*!1s GOTO 1.2

93.20 S B=B+A3T 27,1"YOU WIN. YOUR WINNINGS ARE "“B,111GOTO 1.2
$3.3¢ S B=B~A3T T7,1"SORRY, YOU LOSE. YOUR WINNINGS ARE “B,!13GOTO 1.2
#3.40 TYPE “MINIMUN BET IS $1"115GOTO 1.2

‘@350 TYPE “NO PENNIESs PLEASE"U!13GOTO 1.2

*

#C ONCE YOU PLACE A BET, FOLLOW THE OTHER COLONS WITH A

*C CARRIAGE RETURN TO INDICATE THE COMMAND *“ROLL THE DICE".

-

9-48

*GO

DICE GAME
HOUSE LIMIT OF $t10@@. MINIMUM BET IS 8t

YOUR BET IS:.50 MINIMUN BET IS $1

YOUR BET IS:15 :
= 3 :
4 3
5 ' _
IN. YOUR WINNINGS ARE . i5

6
1
= 4
YOU W
YOUR BET IS:5 :
=2 =23
= 6 = 1 .
SORRY» YOU LOSE. YOUR WINNINGS ARE = 10
YOUR BET IS:3 :
= 6 =5 '
YOU WINe YOUR WINNINGS ARE = 13

YOUR BET IS: I°'LL QUIT WHILE I'M AHEAD. THANKS!

- 9-49

Schroedinger Equation Solver
The program is designed to -aid the user in searching for possible
energy-states of an electron in a potential well. This is one of the most
. complex equations yet written in FOCAL, It calculates and plots the
energy levels of an electron within specified boundary conditions.

C-FOCAL » 8768

@181 T !, SCHROEDINGER EQUATION SOLVER =",!
B1.82 T " *DELSQUARED PSI + AX * PSI = E % PSI",!!
B1.83 A "TILTED SQUARE WELL PROBLEM WITH WIDTH",X@,!
0188 A "WELL TILT SLOPE A",Al.!,"TRIAL ENERGY E",B1,!
D1.09 A "NUMBER OF STEPS",NT,!

B1«i1 S VF=03 5 SL=1

@170 S P(2)=01 S DX=X@/NT3 S P(1)=SL*DX3 S R@=0
d175 5§ VF=4

B1.80 S PO=0

31498 F N=@,1.NT=23 D 6

@193 T !,"PSI ZEROS5"%2.0. PO

@195 GOTO 7.2

D518 T 15%3Bs PXs" PSI",Z:P(PX3,""

85.20 5 PZ=FITR(PM*SC)3 S PE=FITR<(PILPXI+PM)*5C>
@530 F X=1,1,P23 T ™ =

BS540 T "W #3 F X=1,1,PE+243 T "™ "

@530 T %3 R

06410 S PIN+2)=<(=BI+A1*¥DX*IN+11)%DX12+2>%P (N+13=P(N)
@628 I (NT-N-2) 129056495643

B6+30 S RB=P(N+2)*¥P(N+1)3 1 (RB) 6456445649
Bé6«4 S PA=PO+13 R

B6+98 CONTINUE

@7+02 S CF=(P<NT>/P<1>)t2; T * CONV IND"%, CF
B7.05 A " NEW E?”NY

B7@7 I (NY=9) 74927885749

BT+88 I (VFY T+09:7+8,7.89

0709 1 (CF=100) T+15T7e1574+8

@710 S RE=P(NTI®*VF3 1 (R2) 7.73,7«80,7+85

@773 S DB=~-«5%DBs GOTO 7.85

D788 S DB=0@ 1

P7.85 S B1=Bt*(1+DBY3 T Bl3 5 VF(NT)3 G 1.8@
ﬁ?-?@ DO 143 GOTO 12.81

12.01 T !,1,"EIGEN E"B13 S HP=B1/(A1*X0)

12.28 T ©* EN/MAX POT"HP.,!

12.90 QUIT

14410 S PM=@3 S PP=03 F PX=1,1,NTs D 15

1420 S PS=PM+PP3 S SC=45/PS

144230 T 1113 F PX=151,703 T "."

14440 F PX=@,1,NT3 D S

1458 T 13F PX=141,T03 T "

14460 T 113 R

15418 I (PIPX)) 1522515+9515,5
1520 I (PM+P<PX>} 15+3+s15+45154
1530 S PM=FABS(PLPXD

15+40 RETURN

1558 1 (P<PX>~PP) 159,159,156
1568 5 PP=P(PX)

15«98 RETURN

*

9-50

*GO
SCHRUEDINGER EQUATION SOLVER -

~DELSQUARED PSI + AX ¥ PSI = E % PSI
TILTED SQUARE WELL PRUBLEM WITH WIDTH:1
WELL TILT SLOPE A:S@
TRIAL ENERGY E:5@

NUMBER OF STEPS:24
PSI ZEROS= 1| CONV IND= 0.329B30E+@2 NEW E?3Y

et eeesercnsecetasctascsentstesasetnansenctaaraonntn
@ PSI= 0.000000E+00
1 PSI= @«416667E-@1.
2 PSI= B+7986TIE-B1.
3 PSI= @+111713E+00 .«
4 PSI= ©.4135073E+20.
5 PSI= @.148662E+030 .
‘6 PSI= 0.152835E+60.
7 PS1= @+145510E+00 .«
8 PSI= 0.130037E+@0«
9 PSI= @.10704DE+3Q .
18 PSI= B+782351E~01.
11 PSI= @.454687E-81.
12 PSI= 0.105644E-01 .

13 PS1=~B.247985E-01. *
14 PS1==0+591747E-01. *

15 PS1=-0-914187E~01. *

16 PSI=-B+120671E+Q0« *

17 PS1==2+146440E+00 . *

18 PSI=~0.168501E+00 . * .
19 PSI=~0+186905E+00» *

20 PS1=-0+.201929E+00 . *

21 PS1=-0+214032E+00. *
22 PS1=~0.223812E+00. *
23 PSI=-0+231973E+08 « %
24 PS]=-08+239295E+08 %

D O N O N NS

[20 T T T N DN I (U (OO S N N S O LV (VI

EIGEN E= @.508000E+32 EN/MAX POT= 6.100@0@E+01
* «

9-51

*ssssssssesrsnnsses

*
*

.
*
-
.
.
.
.
.
.
»
.
. *
.
-
.
.
.
.
-
.
»
.
.
.
.

ssrses e sEsET I NS

SUMMARY OF COMMANDS, OPERATIONS, AND FUNCTIONS

G d Abb E ie of Form EXPLANATION

ASK A ASK X\Y.Z FOCAL types a colon for each variable;
the user types a value to define each vari-
able.

COMMENT (o} COMMENT If a line begins with the letter C, the re-
mainder of the line will be ignored.

CONTINUE C C Dummy line:

DO D DO 4.1 Execute line 4.1; return to command. fol-
lowing DO command,

DO 4g Exeéute all group 4 lines; return to com-
mand following DO command, or when a
RETURN is encountered.

ERASE E ERASE Erases the symbol table.

ERASE 2.0 Erases all group 2 lines.

ERASE 2.1 Deletes ling 2.1,

ERASE ALL Deletes all user input.

FOR F FOR i=x,y,z;{commands) Where the d following is d

N at each new value.

FOR i=x.z;{commands) x=initial value of i
y=value added to i until i is greater than
z

GO G GO Starts indirect ﬁrogram at lowest num-
bered line number,

GO? G? GO? Starts at lowest numbered line number
and traces entire indirect program until
another 7 js encountered, until an error
is d, or until completion of

) program.
GOTO G GOTO 34 Starts indirect program (transfers control
. to line 3.4). Must have argument.

IF H IF (X)Ln,Ln, Ln Where X is a defined identifier, a value,

IF (X)Ln, Ln; (commands) " or an expression, followed by three line
numbers.

IF (X)Ln; (commands) If X is less than zero, control is trans-
ferred to the first line number.

K X is equal to zero, control is to the
second line number.

If X is greater than zero, control is to the
third line number.

MODIFY M MODIFY 1.15 Enables editing of any character on line
1.15 (see below).

QUIT Q QUIT Returns control to the user,

RETURN R RETURN Terminates DO subroutines, returning to
the original sequence.

SET s SET A=5/B*C; Defines identifiers in the symbol table.

TYPE T TYPE A+B-C; Evaluates expression and types out = and
result in current output format.

TYPE A-B, C/E; Computes and types each expression sep-
arated by commas.

TYPE “TEXT STRING” Types text. May be followed by ! to gen-
erate carriage return-line feed, or # to
generate carriage return.

WRITE w WRITE FOCAL types out the.entire indirect pro-

WRITE ALL gram. .

WRITE 1.0 FOCAL types out all group ! lines.
FOCAL types out line 1.1.

WRITE 1.1

9-52

FOCAL Operations

To set output TYPE %x.y where x is the total number
format, of digits, and y is the num-

ber of digits to the right of
the decimal point.

TYPE %6.3, 123.456 FOCAL types: = 123.456

TYPE % Resets output format to float-
' ing point. ,
To type sym- TYPE § Other statements may not fol-
bol table, v low on this line

To input from high-speed paper tape reader,

»* The second * was typed by the user. Input is from
the high-speed reader until occurrence of next *.
FOCAL types * for each line number read in from
the reader.
1.10%; User typed 1.10;. Input is taken from the high-
speed reader until occurrence of next *.
Modify Operations

After a MODIFY command, the user types a search character, and
FOCAL types out the contents of that line until the search character is
typed. The user may then perform any of the following optional
operations,

1.

2.

Type in new characters. FOCAL will add these to the line at
point of insertion. ’

Type a CTRL/L. FOCAL will proceed to the next occurrence
of the search character.

Type a CTRL/BELL. After this, the user mdy change the
search character.

Type RUBOUT. This deletes characters to the left, one char-
acter for each time the ‘user strikes the RUBOUT key.

Type « . Deletes the line over to the left margin, but not the
line number.

. Type RETURN. Terminates the line, deleting- characters over

to the right margin.

Type LINE FEED. Saves the remainder of the line from the
point at which LINE FEED is typed over to the right margin.

9-53

The Trace Feature
Special Example.

Character of Form Explanation
? ?...7 Those parts of the program enclosed in question
or marks will be printed out as they are executed.
7. If only one ? is inserted, the trace feature becomes

operative, and the program is printed out from that
point until another ? is encountered, until an error
is encountered, or until program completion.

Summary of Functions

Square Root FSQT(x) where X is a positive number or ex-
pression greater than zero.

Absolute Value FABS(x) FOCAL ignores the sign of x.

Sign Part FSGN(x) FOCAL evaluates the sign part only,
with 1.0000 as’ integer, .
Integer Part FITR(x)h FOCAL operates on the integer part

of x, ignoring any fractional part.

Random Number FRAN() FOCAL generates a random number.
Generator

Exponential FEXP(x) FOCAL generates e to the power x.

Function (e*) (2.71828%)

Sine - FSIN(x) FOCAL generates the sine of X in

. radians.

Cosine FCOS(x) FOCAL generates the cosine of x in
radians.

Arc Tangent FATN(x) FOCAL generates the arc tangent of
X in radians.

Logarithm FLOG(x) FOCAL generates log, (x).

Analog-to-Digital FADC(n) FOCAL reads from an analog-to-
digital channel, the value of the
function is that integer reading.

9-54

Scope Functions

FDIS(y) Displays y coordinate on scope and
intensifies x-y point.

FDXS(x) Displays x coordinate on scope.

Other functions are available from DEC for use with such periph-
erals as incremental plotter, card reader, etc.

Special Characters

1. Mathematical operators:

1 Exponentiation
o Multiplication

/ Division
+ Addition
- Subtraction

2. Control characters:
% Output format delimiter
! Carriage return and line feed
Carriage return
$ Type symbol table contents
() Parentheses
[1 Square brackets (mathematics)
< Angle brackets
“ o Quotation marks (text string)
?? Question marks (trace feature)
* Asterisk(s) (high-speed reader input)

3. Terminators:

SPACE key (names)

RETURN key (lines) (nonprinting)
ALTMODE key (with ASK statement)

Comma (expressions)

Semicolon (commands and statements)

-

9-55

Error Diagnostics
Error messages are typed in the following format:

9nn.nn @ nn.nn (error code @ line number)

Error Code : Meaning
200.00 Manual start from console
701.00 Interrupt from keyboard via CTRL/C
701.35 Group zero is an illegal line number
701.43 1llegal step or line number
701.89 GOTO not used as one word or bad argument in IF
201.;2 . Line number too large
201.;3 Double périods in line number
202.48 Nonexistent line referenced by DO
702.63 Nonexistent group referenced by DO
202.81 Storage filled by push-down list
203.09 Nonexistent line used or a tight loop
703.31 Illegal command used .
704.07 No space after IF or illegal format
204.35 Left of = in error for FOR or SET
704.48 Excess right parenthesis
?04.56 Illegal terminator in FOR
705.63 Bad argument to MODIFY
706.13 Illegal use of function or number
206.64 Storage filled by variables
707.14 Operator missing or double E
707.34 No operator before parenthesis
707.<0 Double operators
207.;1 No argument given after function call
207.:8 Illegal function name
208.50 Parentheses do not match
709.16 Bad argument in ERASE
209.50 Maximum group number exceeded
11.20 Input buffer has overflowed
712.83 Storage filled by text
720.41 Logarithm of zero requested
723.35 Literal number is too large
226.91 Negative exponent used
726.96 Exponent is too large
728.58 Division by zero requested
730.48 Imaginary square roots required
231.<7 lliegal character or unavailable command or

unavailable function used

NOTE:
The above diagnostics apply only to the version of FOCAL, 8/68, issued on

tape DEC-08-AJAC-PB.
9-56

ESTIMATING THE LENGTH OF USER’S PROGRAM

FOCAL requires five words for each identifier stored in the symbol
table, and one word for each two characters of stored program. This
may be calculated by

Ss +'22' . 1.01 = lengfh of user’s program

where s = Number of identifiers defined
¢ = Number of characters in indirect program

 If the total program area or symbol table area becomes too large,
FOCAL types an error message. -
FOCAL occupies core locations 1-3200; and 4600,-7576s. This
- leaves approximately 700, locations for the user’s program (indirect
program, identifiers, and push-down list). The extended functions
occupy locations 4600-5377. If the user decides not to retain the ex-
tended functions at load-time, there will be space left for approximately -
1100;, characters for the user’s program.
The following routine allows the user to find out how many core
locations are left for his use.
*FOR 1=1,300; SET A(I)=I
206.64 ' ‘ (disregard error code)

*TYPE %4, I*5, “ LOCATIONS LEFT ”
= 720 LOCATIONS LEFT *

9-57

CALCULATING TRIGONOMETRIC FUNCTIONS iNFocAL

Argument Function
Function FOCAL Representation Range Range
Sine FSIN(A) O<IAI<10M4 O<[F|<t
Cosine FCOS(A) 0<{A|<10t4 0<|Fl<1
Tangent FSIN(A)/FCOS(A) 0<|A[<1014 0<|F|<1016
{Al=(2N+1)r/2
Secant 1/FCOS(A) O<iAj<1014 1<|F|<10t6
TAl=(2N+1)w/2
Cosecant 1/FSIN(A) 0<[A[<10t4 1<|F|<10t6
]_A|=2N-
Cotangent FCOS(A}/FSIN(A). O<|A|<IOM 0<|F|<101440
|A{=2Nx
Are sine FATN(A/FSQT(1—A12) o<lAl<t 0<|Fl<n/2
Arc cosine FA'I”N(FSQ.T(I—MZ)/A) o<lAl<I O<|F|<n/2 ’
Arc tangent FATN(A) O<ALIONG O<F<»/2
Arc secant FATN(FSQT(A12--1)) 1<A<10t6 " 0<F<r/2
Arc c(‘xsecanl FATN(1/FSQT(A12~1}) 1< A< 101300 O<F<n/2
Arc cotangent FATN(1/A) O<ALIONIS O<F<*/2
Hyperbolic sine (FEXP(A)—FEXP(~A))/ 2 0<|A|<T00 0<|F|<5*101300
Hyperbolic cosine {FEXP(A)+FEXP(—A))/ 2 0<|A|<T00 1<F<5%101300
Hyperbolic tangent {FEXP(A)—~FEXP(~A))/ 0<|Aj<700 0<|F|<1
{FEXP(A)+FEXP({-A})
Hyp;rbolic secant 27{FEXP(A)+FEXP(~A)) 0<JAj<700 0<F<1
Hyperbolic cosecant 2/(FEXP(A)—FEXP(—A)} O<|A|<T00 O<[F|<1017
Hyperbolic cotangent (FEXP(A)+FEXP(—A)}/ 0<|A]<T00 1<|R|<1017
(FEXP{A)—FEXP(—A))
Arc hyperbolic sine FLOG(A+FSQT(A12+1)) — 105 <A< 101600 —12<F<1300
Arc hyperbaolic cosine FLOG(A+FSQT(At2—1})) 1<A101300 O<F<T00
Arc hyperbolic tangent (FLOG(1+A)~FLOG(1~A})/2 o<jAl<t 0<|F|<8,31777
Arc hyperbolic secant FLOG({1/AY+FSQT((1/A12)-1)) o<[A|<t O<F<T00
Arc hyperbolic cosecant FLOG((1/A)+FSQT((1/A12)+1)) 0<|A|<101300 0<[F| <1400
Arc hyperbolic cotangent - (FLOG(X-+1)—FLOG(X—1)}}/2 1<ALION16 O<F<8

9-58

Chapter 10

LY

PDP-8 Computers
inthe Sciences

As a leader in the field of small, general purpose computers, Digital
is well aware of the significant impact of small computers on the sci-
ences, particularly in the way scientists work in their laboratories and
in the way engineers design and build instruments, machines, and con-
trol systems. Scientists use PDP-8 family computers as personal, pow-
erful tools; engineers build them in as components. More computers in
the PDP-8 family have been sold for these applications than any other
computer in the world. Designed particularly for online applications;
PDP-8 computers embody design features that make them simple and
straightforward to interface and program for any application.

OFFLINE AND ONLINE USES ,

Before we discuss in detail the scientific applications of computers in
the PDP-8 family, let us define two basic concepts in this regard, off-
line and online.

A computer used to analyze data that has previously been recorded
is said to be used offline. In contrast, a computer used by a scientist to
directly collect, sample, and analyze data while an experiment is in
process is said to be an online computer. ,

There are two types of online usage. In the first type, the computer—
usually a small model—is physically located in the laboratory. In the
second type, where the amount of data to be processed is too large for
a small computer to handle, the scientist connects his experiment to a
larger, remotely located computer; this larger computer is usually
capable of handling several users simultaneously, i.e., on a time-shared
basis. A variation of this second type of online usage is to connect a

10-1

small computer situated in the laboratory to a larger, time-shared com-
puter at a remote location,

Offline use of a computer reduces computation time as compared to
manual calculations, but offers few other advantages. On the other
hand, an online computer permits the scientist to participate to a
greater degree in his experiment. The results which he constantly re-
ceives during the course of his experiment allow him to make certain
choices on the spot. He may call for a more intensive investigation of
interesting results, extend the scope of his experiment on the basis
of developing information, or even instruct the computer to look for
and investigate interesting phenomena automatically during the experi-
ment.

DATA COLLECTION

Frequently, an experiment involves the measuring of a “signal” that
is continuous, although it may vary in amplitude, frequency, or both.
This signal must be converted into an electronic signal before it can be
processed by any type of computer, whether analog or digital; this con-
version is usually performed by a transducer or a potentiometer, and,
if necessary, the signal is then amplified by a high-gain amplifier. In
the case of digital computers, the analog signal thus produced must be
further converted by connecting it to the input channel of an analog-
to-digital (A/D) converter to digitize the signal. The A/D converter
changes a signal varying continuously with time to a series of discrete
numeric values. This conversion, known as “sampling a signal,” can be
performed at many points in time during the experiment.

In addition to converted analog inputs as described above, a digital
computer can accept digital or contact-closure jnformation. Process-
related on/off signals such as alarms, limit indications, and selector
switch settings can then be correlated with the analog data. Direct
digital transducers (e.g., digital shaft position encoders) can interface
to digital input channels without the intermediate A/D conversion.

Once the inputs are brought into the computer, the data can be veri-
fied, manipulated, formatted, and displayed in a variety of ways. The
arbitrary voltage or frequency readings from the A/D converter can be
compared against limits and converted to meaningful units (e.g., 3.26
millivolts from one sensor may correspond to +132°F; the same volt-
age from another sensor might represent 84 gallons per minute).
Through programming, input data can be compared, sorted, arranged
in labeled columns along with the time of reading, and displayed on a

10-2

Teletype printer or cathode ray tube. Data can be accumulated and
then written out on some peripheral medium for later analysis offline.
Communications linkages allow data to be sent to remote processors
as it is collected. '

DATA ANALYSIS

The computer can be used to analyze collected data to obtain arith-
metic means, medians, variances, deviations, correlations, regressions,
factors, etc., between one group of responses and another. Large sta-
tistical evaluations can be made either online or offline, depending
upon their complexity. A set of data can be compared with a pre-
viously collected data set, a user determined standard, or a component
within the sample itself. The user can specify the number of places of
accuracy he requires and have all calculations performed to this limut.

DATA DISPLAY

Using an online computer, the experimenter can display his data
while the experiment is running. Data can be displayed in a meaningful
format such as columnar listings on the line printer or as graphs on
an incremental plotter or cathode ray tube oscilloscope.

COMPUTER INSTRUMENTATION CONTROL

To illastrate the automation of instruments in the lab by a computer,
the following elemental example of data collection, analysis, and in-
strument control is- given. The application consists of controlling the
pressure of a liquid within a pipeline, as shown in Figure 10-1. There
are four valves available for controlling the flow. A pressure gauge
transmits the current pressure. Assuming that the pressure is to be
always kept below 20 Ib/sq.in., the flow chart in Figure 10-1 shows
the processing involved.

LABORATORY AUTOMATION

In laboratory work, the computer offers many advantages besides
just those of faster numeric computation. It can be programmed to
make judgments based on data as it is received, For example, it can
skim areas of little interest and concentrate on more promising areas.
The results of a general scan can be viewed by the experimenter while
a more detailed scan of some particular area is being performed. Also,
procedures can be modified or even terminated prematurely as the
progress of the experiment dictates.

10-3

T0
COMPUTER PRESSURE
A/D CONVERTER GAUGE
\{! Ve V3 Va

[)

4

NO
OVR20,

Figure 10-1.

INITIAL
OPENING VALUES

READ IN
CURRENT
PRESSURE

PRESSURE YES

$ 20 PSI
?

STEP TO NEXT
DESIGNATED VALVE
IN SEQUENCE
(£61,2,3,4,1,2)

INCREASE
OPENING VALUE

BY SET
AMOUNT

OPEN DESIGNATED
VALVE TO
OPENING VALUE

PIPELINE SCHEMATIC

RETAIN

VALUES START)

RING ALARM

PRESSURE CONTROL
FLOW CHART

Example of Computer Instrumentation Control

10-4

Such flexibility is not possible with fixed-program devices; these -
devices cannot vary their operations even though meamngful data is
not being collected. An instrument under the control of a computer, on
the other hand, can be made to find the proper areas of study. In addi-
tion, a readout device may be used to inform the experimenter of what
is happening and signal him immediately of any unusual results,

Computerizing instrumentation is a major step forward in laboratory
automation, but the loop between input and results can be closed even
further. For example, in the clinical laboratory, personnel shortages
and increasing hospital populations have placed an unprecedented
burden on the pathologist. This burden has been relieved by a clinical
computer, which can receive testing instructions, start and stop instru-
mentation, analyze the data, log the data in a precise format, correlate
the data with other physiological information, send the correct informa-
tion to a ward, coordinate with other departments, and keep accurate
and complete records.

The PDP-8 family of computers has become increasingly important
in this field of analytical instrumentation in the laboratory. Currently,
PDP-8 computers are being used in a variety of applications because
of their ability to process large numbers of chemical analyses repeti-
tively on samples with a standard matrix and a relatively narrow varia-
tion between samples, A sampling of these applications is given below,

Gas-Liquid Chromatography

The GLC-8 computer-based system can simultaneously handle 20
laboratory gas or liquid chromatographs. The system automatically
detects peaks and shoulders, calculates peak areas and peak retention
times, allocates peak overlap areas, corrects for baseline shift and
applies response factors. Using stored analysis tables as internal
standards, peaks can be identified and the percentage of each com-
ponent -determined. GLC-8 prints out a complete analysis report,
including retention time, peak area, component percentage and toler-
ance. Analysis time is saved, human errors reduced, and efficiency of
instrument use greatly increased. Types and sampling rates of chromato-
graphs can be mixed, analysis tables can be calibrated and updated
automatically, and instantaneous analysis reports to remote locations
can be provided. GLC-8 is designed primarily for use with gas or
liquid chromatographs, but may be used with other analytical instru-
ments, such as amino-acid analyzers, that use the same method of
analysis.

10-5

Pulse Height Analysis :)
PHA-8 is a complete computer system for single- or multi-parameter
-analysis. It can gather, store, display, and analyze energy or time-of-

PP
- |compuTER
PAPER PAPER
TAPE TAPE
PUNCH PUNCH
KSR-33 CAT
NEvoonRD DISPLAY
TC02 NUCLEAR
DISPLAY INTERFACE
Tues SR 3536 {_oerecror]
DECTAPE CHANNEL
NUCLEAR ADC DETECTOR
TUsS
DECTAPE

1/0 BUS .
Figure 10-2. Computer-Based Pulse Height Analysis System

flight spectra and record the results on a variety of output devices.
Using analog-to-digital converters, PHA-8 can be configured with
4,096 to 32,768 channels for spectra storage. With optional mass
storage devices, systems can be set up to run multiple experiments auto-
matically, store results from each experiment, and retrieve them upon
command. Background counts can be subtracted, spectra compared,
one spectrum subtracted from another, and energy calculations per-
formed. Oscilloscope subsystems may be used to generate contours,
isometrics, and area-of-interest displays. The computer can also be
used to rotate axes, integrate areas between markers and under peaks,
calibrate energy versus channel number, and fit curves.

10-6

Mass Spectroscopy

The extremely high data rates required in high resolution mass
spectroscopy are easily handled by PDP-8 systems. With sampling
rates above 20KHz, the computer can scan 500 or more peaks with
from 20 to 50 points per peak. The computer can also be used to con-
trol the sweep of the magnet, providing lower data rates and increased
accuracy when desired. Centroid calculations, to determine peak posi-
tions accurately, may be performed while the scan is taking place.

In low and medium resolution mass spectroscopy, where the analyst
has much slower data rates, the computer can generate a mass map to
determine integer mass units. The computer can be connected to mag-
netic deflection, time-of-flight’' (TOF), or quadropole mass spectrom-
eters to observe ion current versus voltage potential.

BULK
[::mxss l I l
SPECTROSCOPE. STORAGE
l——{ MULTIPLEXER l—]

COMPUTER TELETYPE
A7D
ONVERIER
CLOCK

Figure 10-3. Computer-Based System for Mass Spectroscopy

Nuclear Magnetic Resonance (NMR) Spectroscopy

Adding a PDP-8 computer-based system to an NMR spectrometer
significantly benefits the analyst in the collection, analysis, and presen-
tation of the data. In the data collection phase, the computer system
provides for more capability than a hard-wired signal averager, allow-
ing online selection and examination of key areas of interest and:
improved sensitivity. In the analysis phase, corrections may be applied,
and Fourier-analyses performed directly without prior storage or read-
out of the data. The computer can also be used to reduce the spectra
to compact form so that they may be stored, retrieved, and compared

with other data. Spin simulation may be calculated on relatively
complex spectra.

10-7

Absorption. Spectroscopy

PDP-8 computer-based systems decrease noise by mathematical
smoothing, locate the position of maximum absorption, and auto-
matically record the absorption value. With the computer, the analyst
can easily apply background and frequency corrections: 100% and
zero line, wave number, ordinate (percentage transmittance), slit
function, and tracking error. The computer permits the analyst to
"determine integrated band densities, resolve poorly separated bands,:
and synthesize hypothetical spectra—all while the sample is being
run. The computer also performs difference analyses (subtracting one
spectrum from another), automatically replots spectra, tabulates peak
data, and identifies peaks by searching a spectrum library in the
computer’s memory.

o
l con'lmon_ l

PANEL

|

Y

CLURRENT
l STABILIZATION

I

———.I PRINT CONTROL I-——-—- —_——

DIGITAL PUNCHED
PRINTOUT PAPER
TAPE TAPE .

Figure 10-4. Computer-Based X-Ray Diffraction System

X-Ray Diffraction

A PDP-8 computer-based system enables the analyst to obtain more -
reliable data by allowing him to correct errors caused by accidental
changes 1n experimental setups; it aiso corrects for occasional slippage
of the sample as it is held in the path of the X-ray. To do this, the -
computer is directed to analyze the data as it is received and to com- -

10-8

pare it with previously established standards stored in memory. New
measurements that deviate from the stored information generate new
input control signals used in positioning the crystal.

Tlme-of-thht Analysns

PDP-8 systems are available for performmg time-distribution studies
for three types of experimentation: velocity measurements to determine
energies, life-time measurements to determine identities of unstable
particles, and time-coincidence measurements to seek correlations be-
tween events occurring near each other in time. All systems provide
scalars that allow them to collect data at high neutron counting rates,
to process scveral events during each cycle of the accelerator, and to
eliminate cumbersome deadtime corrections. Time-measuring sections
are available for low-energy particle experiments with channel widths
down to 0.1 microsecond. For high-energy applications, there are total
systems that include commercially available time-measuring sections.

’

OTHER APPLICATIONS

The efficiency, accuracy and speed of any instrumental analysis can
be significantly increased by including a PDP-8 computer in the
experimental system to control the sequence of events and record and
analyze the accumulated data. A PDP-8 computer can be easily inter-
faced to a wide range of analytical instruments, including tensile testers,
electron microprobes, ultracentrifuges, microdensitometers, liquid scin-
tillation counters, and emission spectrographs. Extensive uses in the
physical, life, and natural sciences have included the following applica-
tions.

Field Typical Applications

PHYSICS High- and low-energy studies. Coupled to
flying spot scanners, nuclear detectors and
counters, mass Spectrometers, bubble
chambers, X-ray dlffractometers and ac-

celerators.
NUCLEAR Used at a radiation lab online for readout,
REACTIONS : display, and graph plotting. Can monitor

a dual system at a nuclear reactor site.

10-9

Field
GAMMA-RAY
SPECTROSCOPY

ELECTROCHEMISTRY

CRYSTALLOGRAPHY

NEUROLOGY

CARDIOLOGY

CLINICAL
MEDICINE

Typical Applications
Used at a testing station in conjunction
with an oscilloscope and light pen, receiv-
ing gamma-ray spectra from high resolu-
tion detectors and A/D converters. *
Used to investigate electrochemical phe-
nomena at the electrode-electrolyte inter-
face and to determine the chemical com-
position of steel samples.
Sets individual crystal angles of diffracto-
meter, records X-ray reflection data, and
plots crystal structore on CRT.
Used to study and determine power spec-
tra of finger and hand tremors, inter-
actions of communities of neurons, time-
interval histograms from discharges in
cerebellar units, and the effect of electrical
stimulation upon activity in the human
ulnar nerve.
In brain mapping, single cell activity with-
in the brain of a monkey is recorded
and impedance measurement data from
the brain is digitized to map brain struc-
tures on a scope.
Used to average and store changes in
transmembrane voltage of cardiac muscle
cells after external electrical stimulation,
to study the hydrodynamics and trans-
mission characteristics of the mammalian
arterial system, to evaluate by Fourier
analysis complex pressure pulses in the
aorta of mammals, to measure micro-
circulation, to evaluate velocity profiles
and viscuous losses in blood vessel walls
during pulsatile flow, and to evaluate
pressure flow relations and propagation
of pressure pulses in arterial trees of a live
subject.

Used to perform routine data processing,
record handling, and statistical research,
to analyze ECG’s to aid the brain surgeon

10-10

Field

IMAGE
PROCESSING

. BEHAVORIAL
-SCIENCES

EARTH
SCIENCES

OCEANOGRAPHY

ATMOSPHERIC
SCIENCES '

Typical Applications
in the operating room in locating the
cerebral area in which to work, to study
Parkinson’s disease, and to aid in endo-
crine’ analysis.
Used to analyze photos of cells and chro-
mosomes, to estimate karyotypes, to per-
form density measurements on autoradio-
graphs, to correlate photos of vocal cord
action with the sounds made, and to per-
form photogrammetric analyses.
Used to study interresponse times and the
social behavior of primates, to study the
operant conditioning of pigeons, to con-
trol and monitor schedules of reinforce-
ment, to determine auditory, tactile, and,
visual responses in the human, and to
perform online psychological and se-
quence pattern tests. ’
Used in seismology and paleontology to
identify small teleseismic disturbances, to
correlate multiband images from airborne
or spaceborne cameras, to combine mul-
tiple polarization radar images, to group
and separate fossils, to aid in undersea
drilling by scanning and analyzing elec-
trical signals from sensors located on the
rig floor, and to compare and correlate
oil-field brines by means of pattern anal-
ysis.
Used to process data on sea conditions,
to assist in navigation and ship control,

~ to perform oceanographic surveys, to de-

termine the biomass in the oceans, to
measure and correlate simultaneously the
total magnetic intensity of the earth’s field,
the gravity, and the sea surface tempera-
ture at a specific location while making a
profile of the subbottom structure.

Used to analyze air polution, to aid in

micrometeorological studies, and to an-
alyze fluid mechanic interactions.

10-11

Field Typical Applications
GEOPHYSICS Used to investigate the ionosphere, to
process telemetry data from scientific in-
strumentation in sounding rockets and
balloons, and to aid in research of solar

phenomena. _
SPACE Used to check out guidance and control
SCIENCES equipment for the United States’ largest

rockets, to perform online testing of space
satellite hardware, to decode data from
orbiting satellites, to check out scientific
payloads, to develop a solar wind spec-
trometer, to process photographic and
other signals from lunar and planetary
space probes, to handle radio telescope
control systems and collect and reduce
radio astronomy data, and to automate
optical telescope operations.

AN EXAMPLE

To illustrate the adaptation of a PDP-8 computer to a scientific ap-
plication, we have selected as an example the collecting and preproc-
essing of physiological signals by a computer for subsequent analysis
by another computer.?

A PDP-8 program was written to receive and preprocess as many
as eight physiological signals simultaneously from a monitored patient
(or individual signals from up to eight patients). Inputs are analog
signals, which are sampled 500 times/sec. and digitized. The program
performs a code recognition of each signal and temporarily stores this
and subsequent data on a drum until the number points required for
the analysis have been accumulated. Concurrently with other instruc-
tions, the data break facility allows short blocks of data to be written
on the drum or long blocks read back ifito core. The long-block data
{referred to as a “lead”), needed to perform the analysis, is relayed via

1 The information in this section was extracted from a paper in “DECUS Pro-
ceedings, Fall, 1967 submitted by Miss Maxine L. Paulsen of the Medical
Systems Development Laboratory, Washington, D.C.

10-12

an interface to the other computer, which transfers the data to magnetic
tape. The tape is then used as input to a third computer, which con-
solidates, analyzes, and interprets the signals for each patient. The
operations- of all three computers are carried on simultaneously once
the first input tape is written. ‘

The Preprocessing Hardware
The equipment used in this application is a DIGITAL Preprocessing
System F, which includes the following components.
) A 12K PDP-8 Processor
One Type DMO01 Data Channel Multiplexer
One Type RMOSE Serial Magnetic Drum
One Type 139E General Purpose Multiplexer Control
One Type 138E General Purpose A/D Converter
One Programmable Real Time Clock
One Signal Input-Routing Network Package (includes 24 Type
A103 Multiplexer Switches and 64 Amplifier Mounting Boards)
One High-Speed 2-Way Interface to the other computer
One Interrupt and Skip Logic feature with 8 Program Flags
Also included in the system, but not used in this particular application,
, were one Type TCO1 DECtape Control Unit, two Type TU55 DEC-
tape Transports, and one PCO1 High-Speed Paper Tape Reader and
Punch.

. Input/ Qutput Specifications for the PDP-8 Program
The input to this program is any physiological signal that is pre-
ceded by 3 or 13 BCD digits represented by square waves. Data can
be received on up to eight channels simultancously. The data are digi-
tized to a precision of 10 bits while being sampled at the rate of 500
times/sec. The output from this program is the “long block™ transferred
to the other computer via the high-speed interface. The other computer
inputs the “long block” data, writes it on magnetic tape, and then sig-
nals the PDP-8 that it is ready for another block, This long block has
two words for channel identification, 13 words for the recognized BCD
digits, and 2,032 data points from the signal. These data points are
used in the analysis of the signal by the other computer.

Timing and Storage Considerations

An input block size of 128 words was chosen; eight blocks this size
(allowing one for each channel) can be transferred from the core to
the drum faster than the next eight blocks can be brought in from
the A/D converter (it takes the same amount of time to transfer one
or eight blocks into core, because of the sampling rate). Two blocks,

10-13

128 words each, are reserved in core for each channel and are utilized
in a double-buffered manner so that data is being written out of one
block onto the drum while at the same time data is being read into the
other block from the A/)D coanverter. The block size was chosen from
the timing table given in Table 10-1.

Associated with these blocks is a “Block Ready Table,” which keeps
a record of all blocks to be written on the drum; because of the al-
ternating use of the blocks as described above, only one block for each
channel should appear in: this table at any one point in time. The en-
tries recorded in the table are in the form xx0c, where xx00 is the
starting address in core of the block to be written, and c is the asso-
ciated channel and is used indirectly to determine the starting location
on the drum where the block is to be written. Once the block is writ-
ten, the entry in the tabl: is replaced by zeros. Two pointers are asso-
ciated with this table to ensure that the first block read into core is
the first block written out on the drum. Pointer 2 gives the location in
the table where the next block ready is to be recorded; pointer 3 gives
the location in the table which contains the location in core of the next
block to be written on the drum. The pointers travel through the table,
with pointer 3 following pointer 2, until the end of the table is reached;
then the pointers circle back to the beginning of the table again (see
Figure 10-5).

For each channel, sixtzen 128-word blocks are accumulated on the
drum in consecutive locations to make up a “lead” to be read back
into core, and then transferred to the other computer. As in the pre-
ceding discussion, there is an associated table, called a “Lead Ready
Table,” used to keep a record of all “leads” ready to be transferred.
This table has 64 entries. (the number of leads that can be stored on
the drum—a maximum of eight leads per channel). The entries in
this table are of the form yyfO, where yy00 is the starting location on
the drum of the lead, and f is the field (f is set-to 4 for field O to avoid
having an entry of 0000 when the lead starts at location 0000, field 0).
When a lead has been read into PDP-8 core from the drum and trans-
ferred to the other computer, that entry in the table is set to 0000,
As with the other table, two pointers are also associated with this table.
Pointer 0 points to the location in the table where the next lead to be
completed is to be recorded; pointer 1 points to the location in the
table which contains the location on the drum of the next lead to be
read and transferred. This arrangement ensures that the leads are
transferred in the same order they are completed (see Figure 10-5).

10-14

Program Initialization

The program begins by clearing all peripheral equipment flags.
Next, the usual initialization, such as clearing tables, setting counters
and initial exits, etc., is done. Then, the drum flag is set by writing a
sector on the drum. The clock is set to interrupt 500 times/sec. The
program halts and, when everything is ready, the CONT (continue)
switch is pressed. The clock is started, the interrupt turned on, and the
program is sent to the write routine, where the first interrupt will occur
(see Figure 10-6).

Program Interrupt Service Routines

The interrupt is off during interrupt servicing.
Answer Interrupt Routine. The clock interrupt flag is cleared, the
contents of the accumulator are saved, and the return from interrupt
is set up (see Figure 10-7).

A/D Service Routines (one for each channel). A value from the signal
is digitized (O through 10 bits) and stored, right adjusted. When all
channels have been serviced, the program goes on to test the eight
words just read in (see Figure 10-7).

Test Routines or Path Selector (one for each channel).

EXIT1 - “No data” path. Originally set to come to this exit. As soon
as a nonzero value is received on this channel, EXIT?2 is set
(see Figure 10-8).

EXIT2 - “Code recognition” path. While set to this path, the data
values are examined point by point, and the BCD digits rep-
resented by the square waves are recognized. After the re-
quired number of digits have been found and stored in the
first block for a “lead,” EXIT3 is set (see Figure 10-8).

EXIT3 - “Data store” path. The first block of data has two words
for channel identification; the next 13 words are for the
BCD digits just recognized; the remaining 113 words are
filled with data points from the signal. When these 16 blocks
(2 “lead”) have been input, EXIT2 is set to wait for the
next BCD code. As edach block is filled, it is recorded in
the “Block Ready Table,” pointer:2 is incremented, and the
functions of Block 1 and Block 2 are switched (see Figure
10-8).

Exit from Interrupt Service. When each of the eight words is processed,
the interrupt is turned on, and the program returns to where it was
previously interrupted (see Figure 10-8).

10-15 .

Program I/O Routines

Drum Write. By using pointer 3, the program checks the “Block Ready
Table” to see if there are any blocks to write. If not, the program
goes to the Drum Read routine. If there are, the block is written from
the starting core location xx00 given in the table to a location on the
drum found inditectly by using the channel number ¢, which is also
found in the table entry. After writing, the entry in the table is set to
0000 and pointer 3 is incremented. The drum location for this channel
is appropriately advanced. When 16 blocks have been written, a “lead”
has been stored on the drum. It is recorded in the “Lead Ready Table”
in the location indicated by pointer 0; then pointer 0 is incremented.
The program then goes back to the beginning of this routine to see if
there are any more blacks to write. See Figure 10-9,

Drum Read. By using pointer 1, the program checks the “Lead Ready
Table” to see if there are any leads to read and transfer. If not, the
program goes to the Drur1 Write routine. If a “lead” is ready, and the
last transfer is completed, the “lead” is read in from location and
field yyfO of the drum into the space reserved for a “lead” :in core.
Then, this entry in the “Lead Ready Table” is set to 0000, and pointer
1 is incremented. See Figure 10-9.

Transfer to Other Computer. The program sets up and initiates the
transfer of the “lead” from the PDP-8 core to the core of the other
computer, then goes to the Drum Write routine, See Figure 10-9.

Table (0-1. Example Timing Table

Block Size Drum Transfer Time Data Input Time

(# words) Core Drum A/D Core
(max. access time = 17.3 ms)

1 Channel 8 Channels| 1-8 Channels
16 17.3 + 0.25 =17.55 ms 140.4 ms 32 ms
64 173+ 1.00=183 ms 146.4 ms 128 ms
1281 173+ 2.00=193 ms 154.4 ms 256 ms
256 173+ 4.00=21.3 ms 170.4 ms 512 ms
512 | 17.3+ 8.00=253 ms| 2024 ms 1024 ms
1024 173 416.00=333 ms| 266.4 ms 2048 ms

1The input size used in this application, because 8 blocks in the least
number of blocks that carn be written on the drum in less time (154.4 ms)

than it takes to read them into core (256 ms).

10-16

Example of block

Example of lead
ready table ready table
LOC CONTENTS LOC CONTENTS
0042 0165 (Pointer 2—where to 0040 3006 (Pointer O—where to
record next block record next “lead”
ready) : ready)
0043 0161 (Pointer 3—the next bl : . ’
to be written on the 0041 3002 (Pointer 1-—the “lead”
drum) - to be read and
———————— xx0c transferred next)
r xx00 =
; starting loc. [——————— yyfO
=N in core of ! - yy00 =
I»()160‘0000 \ block [>30000000 © V) starting loc
i ; ¢ = channel -) on drum of
! 0161 4201 number (0-7) : 3001 0000 “lead” (2048
0162 4402 1 3002 0040 words
| BLOCK . f = drum field
! 0163 5406 \ READY } 3003 0010 0(=4)or 1
TABLE '
; 04 22 :
10164 5607 | 30 2 10 LEAD
[0165 0000 | 3005 4040 READY
! 0166 0000 i 3006 0000 -) TABLES
L0167 00 .
®J) |
o ' .
I,
l,
| 3075 0000
} 3076 0000
L3077 0000 _J

Figure 10-5. Examples of “Block Ready” and “Lead Ready” Tables

IOF INITIALIZE
T (AsY)

SET DRUM FLAG

SET CLOCK TO

INTERRUPT 500
TIMES/SEC.

SET CLOCK
10N

Figure 10-6. Example of Initialization

10-17

A/D SERVICE(Q-T)

CLEFR CLOCK CONVERT AND '
(INTERRUPT FLAG STORE EIGHT
SAVE (ACI - WORDS
{10-BIT PRECISION)

SET RETURN
C=0

Figure 10-7. Example of Interrupt Answering and A/D Service Routines

RESTORE (AC)
10N
C=0,1,00e7 A=t,2,3
SET A=2 TEST
C+1

ANY
DATA YET
?

NO -

STORE THE .
FINISHED™_YES | 5~ 21T, CODE -
WITH CODE > TEST
RECOGNITION INPUT BLOCK FOR TES
YET THIS "LEAD"
SET A3
)
CONTINUE TO
————-1 RECOGNIZE CODE
{3 OR 13 DIGITS)

READY xx0¢_IN
"BLOCK READY
TABLE"ADVANCE
POINTER 2
SWITCH BLOCKS

BiL.OCK DONE
(128 WORDS),
?

Figure 10-8. Interrupt Service

10-18

WRITE BLOCK ON
ORUM IN PROPER
LOCATION

ADVANCE DRUM
LOCATIONS

RECORD yy10 IN

“LEAD READY

TABLE" ADVANCE
POINTER 0

SET ENTRY= O
N "BLOCK READY ___[orwr
TABLE" ADVANCE ’ £

POINTER 3

READ IN "LEAD"
TRASSF;%E;-TO vgs | (2048 WORDS)
SET ENTRY=O
IN "LEAD READY
TABLE" ADVANCE
POINTER 4

SET UP FOR
TRANSFER AND
INTERRUPT OTHER

COMPUTER

Figure 10-9. 1/0 Routines (Interrupt is on)

10-19

bt s oo s oot

10-20

Chapter i

Digital EQuipment
Computer Users
Society

OBJECTIVES

Digital Equipment Computer Users Society (DECUS) was estab-
lished to advance the effective use of Digital Equipment Corporation’s
computers and peripheral equipment. It is a voluntary, non-profit users
group supported by DEC, whose objectives are to:

advance the art of computation through mutual education and
interchange of ideas and information,

establish standards and provide channels to facilitate the free ex-
change of computer programs among members, and

provide feedback to the manufacturer on equipment and program-
ming needs.

The Society publishes a newsletter, DECUSCOPE, every two
months, sponsors technical symposia twice a year (Spring and Fall),
maintains a program library, and publishes proceedings of its symposia.

DECUS PROGRAM LIBRARY

The DECUS Program Library is one of the major functlons of the
users group. It is maintained and operated separately from the DEC
library and contains programs contributed by users. Programs are avail-
~ able for the PDP-8/1,-8/L,-8/S, and -8. (Programs are also available
- for the PDP-1, PDP-4/7/9, PDP-6/10, PDP-5, LINC, and LINC-8.)
The library contains many types of programs, such as executive
routines, editors, debuggers, special functions, games, maintenance, and
various other classes of programs. »

11-1

Programs for the PDP-8 family and the PDP-5 are listed later in
this chapter together with abstracts of a few programs that are fre-
quently requested by users.

Another feature of the program library is ‘“Programs Available from
Authors.” This was initiated in order to allow users access to pro-
grams which are not fully documented or fully debugged but which
are working to a certain extent. These programs are announced period-
-ically in DECUSCOPE with information as to where they may be ob-
tained. The Program Library Catalog also contains a section describing
these programs.

Forms and informaticn for submitting programs to the library may
be obtained from the Executive Secretary. Any user may submit a pro-
gram which he feels will be of use to others. Specifications for pro-
grams to be submitted are fairly simple. It is required, however, that
documentation and operating instructions be clear. An object and
symbolic tape of each program submitted is desirable.

Programs are available to all members on a request basis. Requests
for programs should be made on DECUS Library request forms and
directed to the DECUS Program Library.

Programs submitted to the library are reviewed by the Programming
Committee before being placed in the library. A review checklist is
sent out with each program for evaluation by the user. Noteworthy
comments and suggestions on DECUS programs are published in the
newsletter. Certification of programs is under the jurisdiction of the
Programming Committee.

The library presently contains 351 programs. In 1967, 8815 pro-
grams were issued to recuestors, and 127 programs were submitted to
the library.

DECUSCOPE

DECUSCOPE is the Society’s technical newsletter, published since
April, 1962. The aim of this informal news “scope” is to facilitate the
interchange of information. The majority of articles are contributed
by the users who are invited to submit ideas, programming notes,
letters, and application rotes for publication. DECUSCOPE is mailed
every two months to members and others interested in DEC’s compu-
ters and DECUS. Circulation reached 3,200 copies per issue in April,
1968.

Forms for submitting material to DECUS (newsletter or library) are
available from the Executive Secretary.

11-2

ACTIVITIES

Two nation-wide symposia are held each year——one in the SPRING
and the other in the FALL. Regional seminars and workshops are also
held periodically. The proceedings and papers presented at the sym-
posia and seminars are published shortly after each meeting and are
sent automatically to meeting attendees and upon request to others.

DECUS sponsored the first workshop meeting of the Joint Users
Group of the Association for Computing Machinery in April, 1966,
and has actively participated in workshops held each year since. The
purpose of the Joint Users Group meetings is to establish means for
intercommunication among user groups.

DECUS is also a member of the Joint User Group Library Catalog
Project sponsored by JUG. This catalog contains lists of programs
available from several major user groups. Members of the participating
user groups will be eligible to request program documentation from
other groups through their Program Interchange Chairman, i.e., for
DECUS members, the DECUS Executive Secretary. Specific details
on this interchange program are available from the DECUS office.

DECUS encourages subgrouping of users with common interests.
Special interest groups, such as the following, have been formed.

European Users have formed a group electing a committee to for-
mally organize meetings annually in Europe. They have held three
meetings to date with proceedings being published for each meeting.

The Education Sub-Group, organized in the early months of 1968,
held their first technical session and sub-group workshop at the DECUS
Spring 1968 Symposium in Philadelphia. Enthusiasm ran high, and
- chairwoman Mrs. Judith Edwards of Computer Instruction NET-
WORK is highly confident that they will be an extremely active and
productive group.

Users in the Biomedical field have expressed the desire to hold meet-
ings specific to their field. Sessions:with papers presented in this area
“were held at two DECUS meetings, and a separate Biomedical Seminar
was held in New York City in 1967. A formal sub-group with a chair-
man has not been formed at this time, but it is hoped that such a group
will be organized in the near future.

Information on how to join or formally organize a sub-group may
be obtained by contacting the DECUS Executive Secretary.

113

MEMBERSHIP

Membership in DECUS is voluntary and does not require the pay-
ment of dues. Members are invited to take an active interest in the
- Society by contributing to the program library, to DECUSCOPE, and
.-by participating in its meetings and symposia. There are two types of
membership in DECUS Installation Membership and Individual Mem-
bership. ' '
Imtallatlon Membership

- An organization which has purchased or has on order a computer
manufactured by Digital Equipment Corporation is automatically eligi-
ble for installation membership in' DECUS. Membership status is ac-
quired by submitting a written application to the Executive Secretary
. for approval by the DECUS Board,
" An organization may appoint one delegate for each DEC computer
owned. The delegate should be one who is immediately concerned with
the operation of the computer he represents and who is willing to take
an active part in DECUS activities. He is entitled to vote on all DECUS
policies and during the -election of officers. The delegate receives
DECUS literature automatically and library programs upon request.

A three-ring binder containing information and forms pertinent to
the users group is sent to each delegate upon acceptance into the So-
ciety, The binder provides a convenient means for maintaining and
updating DECUS literature. It contains such material as bylaws, news-
letters, library catalog, forms for submitting and requesting material,
indexes of newsletters and proceedings, etc.
Individual Membership

There are two classes for individual membership:

1. Individuals desiring membership in DECUS who are employed
at an installation but are not appointed delegates.

2. Individuals who have a direct interest in DECUS or DEC
computers but are not employees of a DECUS installation
member.

An individual member is not entitled to vote on DECUS policies or
during elections. They receive on an automatic basis only the news-
letter and Program Library Catalog. They can, however, receive other
DECUS material on a request basis.

Written application iadicating desire to join must be submitted to
the Executive Secretary for approval by the DECUS Board. There is
no limit to the number of individual members that may join from either
an installation or a non-installation.

114

MEMBERSHIP — APRIL 1968
Installation Delegates — 1136 - Individual Members — 1238

EXECUTIVE BOARD, POLICIES AND ADMINISTRATION

The Society’s policies -are formulated by an Executive Board elected
by vote of Installation Member delegates.

The board consists of a President, Executive Secretary, Recording
Secretary, and Standing Committee Chairmen. In addition, a non-vot-
ing representative of Digital Equipment Corporation is a member of
the board. The DECUS president for the preceding year is aiso in-
cluded as a non-voting member of the Executive Board. ‘

The Administrative office is located at Digital Equipment Corpora—
tion, Maynard, Massachusetts 01754, and all correspondence ‘should
be directed to the attention of the DECUS Executive Secretary.

DECUS PROGRAM LIBRARY CATALOG

The DECUS Program Library Catalog contains lists and abstracts of

all programs available from the DECUS Library. Programs for all
DECs computers are included. The catalog is divided into three sec-
tions: category index, abstracts and numerical index, and “Programs
Available from Authors.” The category index for PDP-5/8 users pro-
grams and selected program abstracts are included below. Each mem-
ber of DECUS receives a catalog automatically. Additional copies may
be requested. The catalog is updated periodically and new additions
to the library are published in DECUSCOPE,

PDP-5, PDP-8, -8/S, -8/1, -8/L Category Index

Category DECUS No. Title
Executive Routines, 5-13 PDP-5 Assembler (for use on IBM 7044/7094)
Assemblers and 5/8-18A,B,C, Binary Tape Disassembly Programs
Compilers 5/8-20 Remote Operator FORTRAN System
5/8-28a* PAL III Modifications - Phoenix Assembler
5/8-45* PDP-5/8 Remote and Time-Shared System
5/8-46a Utility Programs for the PDP-5 and PDP-8
8-59 PALDT-—PAL Modified for DECtape (552 Control)
5/8-64 DECtape Programming System
8-67 PAL Modified for DECtape Input
8/88-77 PDP-8 Dual Process System
8.82 Library System for 580 Magnetic Tape (Preliminary Version)
8-84 One-Pass PAL 111
8.91 MICRO-8: An Qu-Line Assembler
8-102 A LISP Interpreter for the PDP-8
8-110 Directory Print (DIREC)
8-115 Double Precision Integer Interpretive Package
8-116 PDP-8/ Automatic Tape Control (Type 57A) Library System
8-122 - SNAP (Simplified Numerical Analysis Program)
8-123 UNIDEC Assembler :
8-124* PDP-8 Assembler for IBM 360/67
8-125 PDP-8 Relocatable Assembler for IBM 360/67
6/8-12 . PDP-8 Assembler for PDP-6

11-5

PDP-5, PDP-8, -8/, -8/1, -8/L Category Index (cont.)

- Category DECUS No. Title
Editors 5-24 Vector Input/Edit
8-52 Tiny Tape Editor
8-66 Editor Modified for DECtape
8-97 GOOF
8-10t Symbolic Editor With View
Debuggers 5/8-11 BPAK—A Binary Input/Qutput Package
5-2.1 OPAK~-An On-Line Debugging Program
5-11 PDP-5 Debug System
8-19a DDT-UP-—Octal-Symbolic Debugging Program
5/8-33 Tape to Memory Comparator
5-36 Octal Memory Dump Revised
5.41 Breakpoint
5/8-55 PALEX~—An On-Line Debugging Program for the PDP-5/8
5-63 SBUG - 4
8.56 Fixed Point Trace No. 1
8-57 Fixed Point Trace No. 2
8.78 Diagnose: A Versatile Trace Routine for the PDP-8
Computer with EAE
8/8S-83A&B - Octal Debugging Package (With and Without Floating Point)
8-89 XOD—Extended Octal Debugging Program
8-95 TRACE for EAE
8-105 D-BUG
8-111 DISKLOOK
Punch and Loaders 5-3 A Binary Relocatable Loader with Transfer Vector Options
5-12 for the PDP-§ >
Pack-Punch Processor and Reader for the PDP-5
8-26A Compressed Binary Loader (CBL)
8-26R CBC (BIN to CBL) and CONV (CBL to BIN)
8-26C XCBL—Extended Memory CBL Loader
8.26D XCBL Punch Program
5/8-27&27a Bootstrap Loader and Absolute Memory Clear
8-47 ALBIN-—A PDP-8 Loader for Relocatable Binary Programs
5/8-41 Modified Binary Loader MKIV
8-106 Readable Punch
8-120 Disk/DECtape FAILSAFE
Duplicators and Verifiers 5-16 Tape Duplicator for the PDP-§
5-22 DECtape Duplicate
5/8-3% Tape to Memory Comparator
5/8.55 COPCAT (DECtape Copy 552)
8-113 Conversion of Friden (EIA) to ASCII
Arithmetic Routines 54 Octal Typeout of Memory Area with Format Option
Elementary Functions, 5-6 BCD to Binary Conversion of 3-Digit Numbers
Numerical Input/Cutput 5/8-7 Decimal to Binary Conversion by Radix Deflation on PDP-8
5-8 PDP-5 Floating Point Routines
5/8-21 Triple Precision Arithmetic Package
5/8-2% BCD to Binary Conversion Subroutine (73.6 usec)
5/8-3% Binary Coded Decimal to Binary Conversion Subroutine and
Binary to Binary Coded Decimal Subroutine (Double
Precision)
5/8-3¢ FTYPE—Fractional Signed Decimal Type-In
5/8-3% DSDPRINT, DDTYPE—Double-Precision Signed Decimal
Input-Output Package
5.42 Alphanumeric Input
5/8-4: Unsigned Octal-Decimal Fraction Conversion
8-44 Modification to the Fixed Point Output in the PDP-8 Floating
Point Package
8-60 Square Root Function by Subtraction Reduction
8-61 Improvement to Digital 8-9-F Square Root
5/8-6% LESQ29 and LESQ11
8-72% Matrix Inversion—Real Numbers
8-73 Matrix Inversion-——Complex Numbers
8-74 Solution of System of Linear Equations: AX = B, By Matrix
Inversion and Vector Multiplication
8-75 Matrix Multiplication——Including Conforming Rectangular

Matrices

11-6

PDP-5, PDP-8, -8/8, -8/1, -8/L Category Index (cont.)

Category DECUS No, Title
8-80 Determination of Real Eigenvalues of a Real Matrix
8-93 CHEW-—Convert Any BCD to Binary-Double Precision
8-96 J Bessel Function (FORTRAN)

8-100 Double Precision Binary Coded Decimal Arithmetic Package
8-103 A* Four Word Floating Point Function Package
8-103 B Four Word Floating Point Rudimentary Calculator
¢ 8-103 C Four Word Floating Point Output Controller with Rounding
8-103 D Additional Instructions for Use with Four Word Floating
Point Package
8-114 Rounded Decimal Output Modification for PDP-8 FORTRAN
8-115* Double Precision Integer Interpretive Package
. 8-118 General Linear Regression
Special Functions 8/88-76 PDP NAVIG 2/2
Displays 5/8-23A PDP-5/8 Oscilloscope Symbol Generator (4 X 6 Matrix)
5/8-23B PDP-5/8 Oscilloscope Symbol Generator (5 X 7 Matrix)
8-99A Kaleidoscope
8-99B Kaleidoscope - 338
8-107 CHESSBOARD for the PDP-8/338
8-108 Increment Mode Compiler—INCMOD (338)
8-109 SEETXT Subroutine (338)
Text Manipulation 8-121 DECtape Handler (552 DECtape)
Probability and Statistics 5/8-9* Analysis of Variance PDP-5/8
5-25 A Pseudo Random Number Generator
Scientific and Engineering 8-49 Relativistic Dynamics -
Applications 8-65 A Programmed Associative Multichannel Analyser
5/8-69 LESQ29 and LESQ11
5/8-90 Histogram on Teletype
8.92 Analysis of Pulse-Height Analyser Test Data With a Smalf
Computer
8-117 A'PDP-8 Interface for a Charged-Particle Nuclear Physics
Experiment
8-118 General Linear Regression
Hardware Control 5/8-17 Drum Transfer Routine for Use on the PDP-5/8
5-30 GENPLOT - General Plotting Subroutines
5-31 FORPLOT - FORTRAN Plotting Program for PDP-5
5-37 Transfer 1
5.40 ICS DECtape Routines (One-Page)
8-58 One-Page DECtape Routines (552 Control)
8-70 EAE Routines for FORTRAN Operating System
8-82 Library System for 580 Magnetic Tape (Preliminary Version)
8-104 Card Reader Subroutine for the PDP-8 FORTRAN Compiler
8-120 DISK/DECtape FAILSAFE
8-121 DECtape Handler (552 DECtape)
Games and Demonstrators 5/8-14 Dice Game for the PDP-5 or PDP-8
5/8-15 ATEPO (Auto Test in Elementary Programming and
Operation of a PDP-5/8 Computer)
5/8-54 Tic-Tac-Toe Learning Program
8-71 Perpetual Calendar
8-79 TIC-TAC-TOE (Trinity College Version)
8-94A & B BLACKIJACK
8-98 3D DRAW for 338
8-99A Kaleidoscope
8-99B Kaleidoscope - 338
8-107 CHESSBOARD for the PDP-8/338
8-108 Increment Mode Compiler, INCMOD (338)
8-112 Sentence Generator
8-119 Off-Line TIC-TAC-TOE (PAL)
Desk Calculators 5-5 Expanded Adding Machine
Maintenance 5-10 Paper Tape Reader Test
Miscellaneous 5/8-18A,B,C Binary Tape Disassembly Program
5/8-32a Program to Relocate and Pack Programs in Binary Format
Memory Halt—A PDP-5 Program to Store Halt in Most

5-34

Memory

117

PDP-5, PDP-8, -8/8, -8/1, -8/L Category Index (cont.)

Category DECJUS Mo, Title
5/8-513 Additions to Symbolic Tape Format Generator
5/8-51 Character Packing and Unpacking Routines
8-68a LABEL for PDP-8
8-81 A BIN or RIM Formai Data or Program Tape Generator
5/8-83 Set Memory Equal to Anything
]-87 XMAP
8-88 DECtape Symbolic Format Generator
8-112 Sentence Generator

NOTE: An asterisk beside the DECUS No. indicates that the program
abstract is included on the following pages. -

Abstracts of Frequently Requested Programs

The following progrem' abstracts are representative examples taken
from the DECUS Program Library Catalog. They have been selected
from among the programs most frequently requested by users without
regard for their relative merits.

DECUS No. 5/8-9
Analysis of Variance PDP-5/8

Henry Burkhardt, Dizgital Equipment Corporation, Maynard, Massa-
chusetts

An analysis of variance program for the standard PDP-5/8 con-
figuration. The output consists of:

A. For each sample:

1) sample number

2) sample size

3) sample mean

4) sample variance

5) sample standard deviation

B. The grand mean
C. Analysis of Variance Table:

1) the grand mean

2) the weighted sum of squares of class means about the
grand mean '

3) the degrees of freedom between samples:

4) the variance between samples

5) the pooled sum of squares of individual values about the
means of their respective classes

6) the degrees of freedom within samples

7) the variance within samples

8) the total sum of squares of deviations from the grand
mean

11-8

9) the degrees of freedom

10) the total variance

11) the ratio of the variance between samples to the variance
with samples.

This is the standard analysis of variance table that can be used with

" the F test to determine the significance, if any, of the differences be-

tween sample means. The output is also useful as a first description of
the data. -

All arithmetic calculations are carried out by the Floating Point In-
terpretive Package (Digital-8-5-S).

DECUS No. 5/8-21 -
Triple Precision Arithmetic Package for the PDP-5 and the PDP-8

Joseph A. Rodnite, Information Control Systems, Ann Arbor, Mich-
gan ‘ :

An arithmetic package to operate on 36-bit signed integers, The
operations are add, subtract, multiply, divide, input conversion, and
output conversion. The largest integer which may be represented is
235-1 or 10 decimal digits. The routines simulate a 36-bit (3 word)
accumulator in core locations 40, 41, and 42 and a 36-bit multiplier
- quotient register in core locations 43, 44, and 45. Aside from the few
locations in page O, the routines use less core storage space than the
equivalent double-precision routines.

DECUS No. 5/8-28a
PAL III Modifications—Phoenix Assembler

Terrel L. Miedaner, Space Astronomy Laboratory, Madison, Wis-
consin :

This modification of the PAL IIII Assembler speeds up assembly
on the ASR-33/35 and operates only with this I/O device, Operation
is essentially the same as PAL III, except that an additional pass has
been added, Pass 0. This pass, started in the usual manner, but with
the switches set to zero, reads the symbolic tape into a core buffer area.
Subsequent passes then read the tape image from storage instead of
from the Teletype.

11-9

DECUS No. 5/8-45
PDP-5/8 Remote & Time-Shared System
James Miller, Dow Badische Chemical Company, Freeport, Texas

A time-shared programming system which allows remote stations
immediate access to the computer and a wide selection of programs.

DECUS No. 8-72

Matrix Inversion——Real Numbers

A. E. Sapega, Trinity College, Hartford, Connecticut

The program inverts a matrix, up to size 12 X 12, of real numbers.
The algorithm used is the Gauss-Jordan method. A unit vector of ap-
propriate size is generated internally at each stage. Following the Gauss

sweep-out, the matrix is shifted in storage, another unit vector is gen-
erated, and the calculation proceeds.

Other Programs Needed: FORTRAN Compiler and
FORTRAN Operating System

Storage: This program uses essentially all core not used by the FOR-
TRAN Operating System

Execution Time: Actual computation takes less than 10 seconds. Data
read-in and read-out may take up to five minutes.

DECUS No. 8-103 A
Four Word Floating Point Function Package

D.A. Dalby, Bedford Institute of Oceanography, Dartmouth, Nova
Scotia, Canada

This program package, written for use with Digital’s Four Word
Floating Point Package {DEC-08-FMHA-PB), includes subroutines to
evaluate square, square root, sine, cosine, arctangent, natural logarithm,
and exponential functions,

11-10

DECUS No. 8-115
Double Precision Integer Interpretive Package

Roger E. Anderson, Lawrence Radiation Laboratory, Livermore,
California

This program is a Double Precision Integer Interpretive Package
similar in operation to the Floating Point Package (Digital 8-5-S). It
- consists of addition, subtraction, multiplication, division, load, store,
jump and branch subroutines coupled to an interpreter. It allows direct
and indirect addressing in the normal assembly language manner. The
operation is faster and more compact than the collected individual
double precision subroutines, The program requires fourteen words on
page zero and an additional two pages of memory.

Minimum Hardware: Basic PDP-5, -8, -8/S or -8/1

DECUS No. 8-124
PDP-8 Assembler for IBM 360/50 and up
V. Michael Powers, University of Michigan, Ann Arbor, Michigan

The 360/PDP-8 Assembler is a collection of programs written
mostly in FORTRAN 1V (G) which operate on the IBM 360/67. It
assembles programs for PDP-5 and PDP-8 computers. Once a program
has been assembled, it may be punched on cards, saved in a file, or
transmitted through the Data Concentrator over data lines. It is also
possible to obtain binary paper tapes by use of the Data Concentrator.

The Assembler follows the PAL III operation code and addressing
conventions, The input format and program listing conventions are
slightly different from those of PAL III, because it is organized around
a line format, while PAL 1II is organized around a paper tape format.

NOTE: Source deck and documentation only available.

11-11

11-12

Appendix A
'Answers To Selected Exercises

Chapter 1
Answers to selected exercises on page 1-10 :
a. 2. 10010 12. 10 111 011 110
4. 1100100 14, 111 110 101
6. 1 16, 1 110 001 011
8. 1110101 18. 110 110 000 000
10. 111 111 111 010 20, 11 110 101 111
b.2. 5 “ 10, 3641
4. 94) 12. 4087
6. 31 14. 63
8. 55 16." 4095
Answers to selected exercises on page 1-14
a 2. 6 10. 7777
4. 575 ’ 12. 7664
6. 40 14. 255
8. 30 16. 2372
b, 2. 111 011 110 10. 110 100 ,
4. 1 000 12. 111 111 110 101
6. 101 100 010 100 14. 100 101 011 010
8. 1 001 000 001 16. 1 010 100 011
c. 2. 40 8. 2500
4. 1104 10. 6005
6. 3 12. 7777
d. 2. 31 8. 4095
4, 512 10. 2431
6. 482 12. 174
Answers to selected exercises on page 1-26
a. 2. 110 8. 11 100
4. 10 111 000 10. 10 001 101
6. 1 100 12. 1 010 010 101
b. One’s Complement Two's Complement
2. 101 000 100 000 " 101 000 100 001
4, 111 111 111 111 000 000 000 000
6. 111 011 011 Ot1 111 011 011 100
8. 011 111 111 111 100 000 000 000
10. 011 110 011 001 011 110 011 010
12. 000 000 000 000 000 000 000 001
c. 2. 101 000 101 - 4.. 11 001 110 101

d. 2. 110 110 010 4. 1 010 011

Fo®toe

RN AN AN AN NWR

100

70

110

42

7

667
2767
204
433,254
172,166

Chapter 2

Answers to selected exercises on page 2-28
1. The locations listed in parts b, f, g, h, and i must be addressed in-
directly. All others may be addressed directly.

2.

a. Group 2
b. MRI
c. Group 1
d. Group 1
e. MRI
f. Group 2

111 010 (01

1331
3623
205
1105
25
112

PN 0 0o

(SZL)
(AND)
(CLA CMA)
(NOP)
(IMS)
(SMA CLA)

. Parts a, ¢, and e contain digits which can not be represented with

binary numbers. Part b has too many digits to be represented by
12-bits. Part d is a legal instruction if a leading zero is assumed.

a. AND O

c. ISZY

ee DCAI1Y

g. TAD 30

IJMP Y

-

SZA

@ 0 06w

SPA SNA
. CLA SPA SNA SZL

The logical AND of the AC with the contents of
location O replaces the accumulator.

Increment the contents of location 100 on the
current page and skip the next instruction if the
contents become 0 after the incrementation.

Deposit and clear the accumulator indirectly into
the location whose address is contained in loca-
tion 100. :

Two's complement add the contents of location 30
to the accumulator.

Transfer program control to location 73 on the
current page of memory.

. CLA CMA CML

6.

Program: - After Execution

7200 Location Content (octal)
- 1205 AC 0000
1206 205 1537
3207 206 2241
7402 207 4000
1537
2241
0000
a. 7360
c. 7710
e. illegal One instruction may not be used to rotate once and
: rotate twice at the same time. On the PDP-8 and
PDP-8/S it is also illegal to combine an increment
and a rotate microinstruction, thus part d is legal on the
PDP-8/1 and PDP-8/L but it is illegal on the PDP-8
and PDP-8/8.
g. illegal One-instruction may not include members of both skip
groups.

i. illegal. One instruction may not combine microinstructions from
Group 1 and Group 2.

. SZA

- SKP

10.

SNL
Instruction to be skipped

. Any testing of the accumulator is done before the OSR instruction

is executed. .
a. Location Content . Octal

200 CLA ., 7200
201 TAD 210 1210
202 TAD 211 - 1211
203 DCA 212 3212
204 HLT 7402
210 0002 0002
211 " 0010 0010
212 0000 0000
b. Location Content Octal
400 CLA 7200
401 . TAD 550 1350
402 DCA 552 3352
403 TAD 551 1351
404 DCA 550 3350
405 TAD 552 1352
406 DCA 551 3351
407 "HLT 7402

A-3

Chapter 3

Answers to selected exercises on page 3-34

1. /SUBROUTINE TO SUBTRACT TWO NUMBERS
*200 .
START, CLA CLL

TAD K1200
JMS SUB
1500
HLT
*300
SUB, 0
CIA
TAD I SUB
1SZ SUB
JMP 1 SUB
K1200, 1200
$

2a.

/LOAD ILOCATIONS 2000 TO 2777
*200
START, CLA CLL

TAD K2000

DCA LOCPTR

DCA COUNT

DEPOSIT, TAD COUNT
DCA I LOCPTR
ISZ COUNT
ISZ LOCPTR
TAD LOCPTR
TAD M3000
SZA CLA
JMP DEPOSIT
HLT

COUNT, 0

K2000, 2000

LOCPIR, 0O

M3000, —3000

$

4. /TRIPLE PRECISION ADD

*200

TRIADD, CLA CLL
TAD AL
TAD BL
DCA ANSL
RAL
TAD AM

- TAD BM

DCA ANSM

A-4

RAL

TAD AH
TAD BH
DCA ANSH
HLT

AH, 1211

AM, 0314

AL, 7125

BH, v 0114

BM, 4157

BL, 0176

ANSH, 0

ANSM, 0

ANSL, 0

$)
/DOUBLE PRECISION RESULT
*200 .
START, = CLA CLL
. TAD A
CIA
DCA MINUSA
TAD B .
SZL
ISZ CH
NOP
CLL
ISZ MINUSA
JMP —6
DCA CL
HLT
MINUSA, ©
A, 0011
B, 1234
CL, 0
CH, 0
$.

/DOUBLE PRECISION MULTIPLE OF 2
*200 .
START, CLA CLL
- DCA NH
TAD EXP
CIA
B DCA MINUSE
ROTATE, TAD N
RAL
DCA N
TAD- NH
RAL
DCA NH

A-5

CLL

ISZ MINUSE
JMP ROTATE
HLT

N, 1234

NH, 0

EXP, 3

MINUSE, O

$.

/HOW MANY NEGATIVES?

*200

START, CLA CLL
DCA NEGS
TAD K2777
DCA 10
TAD M1000
DCA COUNT

TEST, TAD I 10
SPA CLA
I5Z NEGS
ISZ COUNT
JMP TEST
TAD NEGS
HLT

NEGS, 0

K2777, 2777

M1000, -1000

COUNT, O

$

/20 SECOND DELAY
*200
START, TAD. CONST

DCA COUNT

TAD CONST1

DCA COUNTI1

ISZ COUNT1

JMP —1

ISZ COUNT

JMP .3

HLT
CONST, 5703 /—1084 DECIMAL
COUNT, ©
CONST1, 44 /36 DECIMAL
COUNTI1, ©

$

9. /20 OR 40 SECOND DELAY

*200
START, CLA CLL !
TAD M2
HLT
OSR
DCA TWICE
- DELAY, TAD CONST
DCA COUNT
TAD CONST1
DCA COUNT1
ISZ COUNT1
JMP —1
ISZ COUNT
JMP -3
ISZ TWICE
JMP DELAY
HLT
CONST, = 5703
COUNT, 0
CONST1, 44
COUNT1, O
M2, -2
TWICE, 0
. §
Chapter 4
Answers to selected exercises on page 4-23
3. /SET LOCATIONS TO SWITCH REGISTER
/VALUE
LOC. CONT. *200
0200 7300 CLA CLL
0201 1214 “TAD K2000
0202 3215 DCA POINT
0203 1213 TAD M10
0204 3216 DCA COUNT
0205 7404 OSR
0206 3615 DCA I POINT
0207 2215 ISZ POINT -
0210 2216 ISZ COUNT
0211 5205 JMP .—4
0212 7402 HLT .
0213 7770 MIO, 7770

0214 2000 K2000, 2000
0215 0000 POINT, 0
0216 0000 COUNT, 0

$

A-7

4, /ADD TWO NUMBERS AND DISPLAY SUM

[IN AC .
LOC. CONT. *200
0200 7300 CLA CLL
0201 7402 HLT
0202 7404 OSR
0203 3211 DCA A
0204 7402 HLT
0205 7404 OSR
0206 1211 TAD A
0207 7402 HLT
0210 5200 JMP .-—-10
0211 0000 A, 0

$
Chapter 5

Answers to selected exercises on page 543
1. /SUBROUTINE ALARM AND CALLING FORIT

*200
START,

ALARM,

TYPE,

MS5,
RINGS,
KBELL,

CLA CLL
TLS

JMS ALARM
HLT

0

TAD M5

DCA RINGS
TAD KBELL
JMS TYPE

ISZ RING5
IMP .—3

JMP 1 ALARM
0

TSF

IMP .—1

TLS

CLA CLL

JMP I TYPE
-5

0 .
207 /ASCII FOR THE BELL

A-8

/TAB SPACE THE TELEPRINTER
*200
START, CLA CLL
TLS ‘
HLT
OSR : /ACCEPT NUMBER OF
JMS TAB /SPACES FROM SR
IMP .—3 /READY TO TAB MORE
TAB, 0 ‘ »
v CIA
DCA NUMTAB
TAD KSPACE
JMS TYPE
ISZ NUMTAB
IMP .—3
JMP I TAB
TYPE, 0
TSF
IMP .—1
TLS
CLA CLL
IMP 1 TYPE
NUMTAB, -
KSPACE, 240
$
/TEST ANSWER SHEET
200
START, CLA CLL
TLS
HEADING, TAD HEADI
DCA POINTR
TAD AMOUNT
DCA COUNT
JMS CRLF
TAD I POINTR
JMS TYPE
ISZ POINTR
ISZ COUNT
JMP .—4
JMS CRLF
NUMBRS, TAD K260
DCA INTS
ISZ INTS
TAD INTS
IMS NUMTYP
TAD INTS
TAD M271
SZA CLA
IMP .—6

<

A-9

TEN, TAD K260

TAC
IMS TYPE
TAD K260
IMS NUMTYP
HLT
HEADI1, HEAD
POINTR, 0
HEAD, 310 /H
311 /1
323 /S
324 /T
317 /0
322 /R
331 /Y
240 /SPACE
324 /T
305 /E
323 /8
324 /T

AMOUNT, -—14 /# OF HEADING CHARACTERS
COUNT, D
K260, 260
INTS, D
M271, —271 /NEGATIVE OF ASCIFOR A9,
K215, 215 /ASCII FOR CR
K212, 212 /ASCII FOR LF
K256, 256 /ASCII FOR PERIOD
TYPE, 0

TSF

JMP —1

TLS

CLA CLL

JIMPITYPE
CRLF, 0

TAD K215

JMS TYPE

TAD K212

IMS TYPE

JMP I CRLF
NUMTYP, O

JMS TYPE

TAD K256

JMS TYPE

JMS CRLF

IMP I NUMTYP

A-10

/TWO DIGIT OCTAL SQUARE CONVERSATIONAL

"/ PROGRAM

*200
START,

MULT,

TYPSQU,

TYPANS,

UNPACK,

TYPOCT,

CLA CLL
TLS

JMS CRLF
JMS LISN.
TAD M260
RAL CLL

RTL

DCA NUMBER
JMS LISN
TAD M260
TAD NUMBER
DCA NUMBER
TAD NUMBER
CIA

DCA TALLY
TAD NUMBER
ISZ TALLY
IMP ~2

DCA NUMSQR
TAD MESAGL1
DCA POINTR
TAD MI0
DCA ENDCHK
JMS MESAGE
TAD M4
DCA DIGCTR
DCA STORE

- TAD NUMSQR

CLL RAL
TAD STORE
RAL

RTL

DCA STORE
TAD STORE
AND K7

TAD K260
JMS TYPE

ISZ DIGCTR
JMP UNPACK
TAD MESAG2
DCA POINTR
TAD M7

DCA ENDCHK
JMS MESAGE
JMS CRLF
JMP START+2

A-11

/GET FIRST DIGIT

/GET SECOND DIGIT

"/NUMBER IS NOW IN AC

TYPE,

CRLF,

LISN,

MESAGE,

NUMBER,
M260,
TALLY,
NUMSQR,
MESAGI,
POINTR,
M10,
ENDCHK,
STORE,
M4,

DIGCTR,

K7,

M7,
K260,
K212,
K215,
MESAG2,
STARTI,

0
‘ISF
IMP .—1

TLS

CLA

IMP 1 TYPE
0

TAD K215
IMS TYPE
TAD K212
IMS TYPE
IMP I CRLF
0

KSF

JMP —1
KRB

TLS

JMP 1 LISN

0

TAD I POINTR
JMS TYPE

ISZ POINTR
ISZ ENDCHK
JMP .—4

IMP I MESAGE
0

—260

0

0
START!
0

—10

0

0

—4

0

7

-7
260
212
215
START2
323 /S
321 /Q
325 /U
301 /A
322 /R
305 /E
304 /D

275 =

A-12

START2,

240
317
303
324
301
314
256

/SPACE
/0

/C

/T

/A

/L
/PERIOD

A-13

A-14

ASCII* Character Set

Appendix B
| Character Codes

8-Bit 6-Bit 1 8-Bit 6-Bit
Character | Octal Octal Character Octal - Octal

A 301 01 ! 241 41
B 302 02 ” 242 42
C 303 03 H# 243 43
D 304 04 $ 244 44
E 305 05 % 245 45
F 306 06 & 246 46
G 307 07 ’ 247 47
H 310 10 (250 50
I 311 11) 251 51
J 312 12 * 252 52
K 313 13 + 253 53
L 314 14 ’ 254 54
M 315 15 - 255 55.
N 316 16 . 256 56
(0] 317 17 / 257 57
P 320 20 : 272 72
Q 321 21 ; 273 73
R 322 22 < 274 74
S 323 23 = 275 75
T 324 24 > 276 76
U 325 25 ? 277 77
A" 326 26 @ 300

W 327 27 [333 33
X 330 30 \ 334 34
Y . 331 31] 335 35
Z 332 32 1 336 36
0 260 60 - - ‘ 337 37
1 261 61 Leader/Trailer 200

2 262 62 LINE FEED 212

3 263 63 Carriage RETURN 215

4 264 64 SPACE 240 40
5 265 65 RUBOUT 377

6 266 66 Blank 000

7 267 67 BELL 207

8 270 70 TAB - 211

9 271 71 ‘N FORM 214

*An abbreviation for USA Standard Code for Information Interchange.

B-1

Card Reader Code

The following table gives the octal representation of the internal
(binary) codes for the listed punch combinations. These internal codes
are generated by the card reader and are transmitted to the PDP-8
upon execution of the appropriate IOT instruction. Any combination
of punches which is not shown in the table is invalid, and the card
reader will not detect invalid combinations.

IBM 26
Keyboard Character

IBM 29
Keyboard Character

Card Coade
Zone Num.

Internal
Code

00 NONE SPACE SPACE

01

02

03

04

05

06

07

- 10

Gop =iy i) —

11

vliwlwloalunlanlw|ow]em

Ao Recl JURE R W QU BN SN RUUE & O3

12

— 8*2

Colon*

None Assigned

13

— 8+3

Number Sign

= Egqual Sign

14

— 84

At Sign

’ Apostrophe

15

— 85

Apostrophe*

None Assigned

16

8+6

|

Equal Sign*

None Assigned

17

8+7

Quotation Mark*

None Assigned

20

L]

21

~

Slash

Slash

22

23

24

25

26

27

30

Clo|cio|olo|olo]o
CWidin|nldlWwWwin]-

31

0 9

Nl-<j>?€<j(:l-]w

NIl gl<[a|]|a|~|e

*Not all available IBM 29 Xeyboard arrangements contain these graphic char-

acters.

B-2

Internal { Card Code IBM 29 IBM 26
Code |Zone Num. [Keyboard Character Keyboard Character
32 |0 82 |None Assigned None Assigned
33 {0 8-3 , Comma , Comma
34 0 8°4 % Percent (Parenthesis
35 0 8+5 — Underscore® None Assigned
36 0 8°6 > Greater Than* None Assigned
37 10 87 ? Question Mark* None Assigned
40 |11 — — Minus or Hyphen{ — Minus or Hyphen
41 |11 1 J ‘ J
42 11 2 K K
43 11 3 L L
44 11 4 M M
45 11 5 N N
46 |11 6 0 0]
47 |11 7 P P
50 |11 8 Q Q
51 11 9 "R R
52 |11 82 ! Exclamation* None ASSigned
53 |11 8+3 $ Dollar Sign $ Dollar Sign
54 |11 8+4 * Asterisk * - Asterisk
55 11 85)} Parenthesis* None Assigned

56 |11 8°+6 ; Semicolon* None Assigned
57 |11 8+7 — Logical NOT* None Assigned
60 (12 — & Ampersand + Plus
61 12 1 A A
62 |12 2 B B
63 12 3 C C
64 12 4 D D
65 12 5 E E
66 |12 6 F F
67 12 7 G G
70 {12 8 H "1 H
71 12 9 I- I
72 |12 82 ¢ Cent Sign* None Assigned

*Not all available IBM 29 keyboard arrangements contamn these graphic char-
acters. .

B-3

Internal] Card Code IBM 29 IBM 26
Code { Zone Num. | Keyboard Character Keyboard Character
73 |12 83 Period Period
74 |12 8+4 ‘< Less than) Parenthesis
75 {12 8-5 (Parenthesis* None Assigned
76 |12 8-+6 + Plus Sign* None Assigned
77 |12. 87 | Vertical Bar* None Assigned

*Not all available IBM 29 keyboard arrangements contain these graphic char-

acters.

B-4

Appendix C
Flowchart Guide

-The following is a partial list of flowchart symbols which can be used
to diagram the logical flow of a program. The symbols may be made
sufficiently large to include the pertment information.

REPRESENTATION

OF FLOW .

LEFT TO RIGHT

OR

RIGHT TO LEFT

]

TOP
BOTTOM

OR

 /

TERMINAL

PROCESSING

BOTTOM
TO

TOP

D

The direction of flow in a program is repre-
sented by lines drawn between symbols. These
lines indicate the order in which the opera-
tions are to be performed. Normal direction
of flow is from left to right and top to bot-
tom. When the flow direction is not from left
to right or top to bottom, arrowheads are
placed on the reverse direction flowlines.
Arrowheads may- also be used on normal flow
lines for increased clarity.

The oval symbol represents a terminal point
in a program. It can be used to indicate a
start, stop, or interrupt of program flow. The
appropriate word is included within the .
symbol.

The rectangular symbol represents a process-
ing function. The process which the symbol
is used to represent could be an instruction or
a group of instructions to carry out a given
task. A brief description of the task to be per-
formed is included within the symbol.

C-1

DECISION

PREDEFINED
PROCESS

CONNECTOR

O

* ANNOTATION [—

INPUT/OUTPUT

MANUAL
INPUT

PUNCHED
TAPE

MAGNETIC
TAPE

O Ul O

A diamond is used to indicate a point in a
program where ‘a choice must be made to de-
termine the flow of the program from that
point. A test condition is included within the
symbol and the possible results of the test are
used to label the respective flows from the
symbol.

This symbol is used to represent an opera-
tion or group of operations not detailed in
the flowchart. It is usually detailed in another
flowchart. A subroutine is often represented
in this manner.

The circular symbol shown below represents
an entry from or an exit to another part of
the program flowchart. A number or a letter
is enclosed to label the corresponding exits
and entries. This symbol does not represent a
program operation.

An addition of descriptive comments or ex-
planatory notes for clarification is included
within this symbol.

This symbol is used in a flowchart to repre-
sent the input or output of information. This
symbol may be used for all input/output
functions, or symbols for specific types of in-
put or output (such as those which follow)
may be used.

This symbol may be used to represent the
manual input of information by means of on-
line keyboards, switch settings, etc.

The input or output of information in which
the medium is punched tape may be repre-
sented by this symbol.

This symbol is used in a flowchart to repre-
sent magnetic tape input or output.

C-2

Appendix D
Tables Of Instructions

The instruction tables of this appendix. apply in general to all PDP-8
family computers, except where differences are noted for specific
" machines.

PDP-8/1 Memory Reference Instructions!

Direct Addr. [indirect Addr.

n’:«o':ﬁ-c Ogtca’:]a- States | EX€CU"| states| Execu-
Symbol Code | En- | fon |Tgn | tion Operation

¢ tered | 1'Me | tered | Time

(usec)| (usec)

AND Y 0 F, E 3.0 F.D,E 4.5 Logical AND. The AND

‘ operation is performed

between the content of

memory location Y and

- ‘the content of the AC.

* The result is left in the

AC, the original content

of the AC is lost, and

the content of Y is re-

stored. Corresponding

bits of the AC and Y

are operated upon inde-
pendently,

TAD Y 1 F.E 3.0 F,D,E 4.5 Two's complement add.
The content of memory
location Y is added to
the content of the AC
in two's complement
arithmetic. The result of
this addition is held in
the AC, the original
content of the AC is
lost, and the content of
Y is restored. If there
is a carry from ACQ, the
link is complemented.

1All MRI's operate on all PDP-8 family computers; execution times, however,
apply to PDP-8/1.
2Y is the address of a memory location.

D-1

PDP-8/1I Memory Reference Instructions (continued)

Mne-
monic
Symbol

Opera-
tion
Code

Direct Addr.’

Indirect Addr.

States
En-
tered

Execu-
tion
Time

(usec)

States
En-
tered

Execu-
tion
Time
(usec)

Operation

182 Y

DCA'Y

IMS Y

JMP Y

2

4

5

F.E

F, E

3.0

F,D,E

3.0 F.D,E

3.0

1.5

F,D,E

F,D

4.5

4.5

4.5

3.0

Increment and skip #
zero. The content of
memory location Y is in-
‘cremented by one. |[f
the resultant content of
Y equals zero, the con-
tent of the PC is incre-
mented and the next
instruction is skipped.
If the resultant content
of Y does not equal
zero, the program
proceeds to the next
instruction. The incre-
mented content of Y is
restored to memory. If

Deposit and clear AC.
The content of the AC
is deposited in . core
memory at address Y
and the AC is cleared.
The previous content of
memory location Y is .
lost.

Jump to subroutine. The
incremented content of
the PC is deposited in
core memory location Y,
and the next instruction
“is taken from core mem-
ory location ¥ 4 1.

Jump to Y. Address Y
is set into the PC so
that the next instruc-
tion is taken from core
memory address Y. The
original content of the

PC is lost.

PDP-8/1 Group 1 Operate Microinstructions!

Mnemonic Octal

Symbol Code- Sequence Operation
NOP 7000 — No operation. Causes a 1.5 usec program de-
‘ lay.

IAC 7001 3 Increment AC. The content of the AC is incre-
mented by one in two's complement arith-
metic.

RAL 7004 4 Rotate AC and L left. The content of the AC
and the L are rotated left one place.

RTL 7006 4 Rotate two places to the left. Equivalent to
two successive RAL operations.

RAR 7010 4 Rotate AC and L right. The content of the AC
and L are rotated right one place.

RTR 7012 4 Rotate. two places to the right. Equivalent to
two successive RAR operations.

CML 7020 2 Complement L.

CMA 7040 2 Complement AC. The content of the AC is set
to the one's complement of its current con-

. tent.

CIA 7041 2,3 Complement and increment accumulator.
Used to form two’s complement.

CLL 7100 - 1 Clear L.

CLL RAL 7104
CLL RTL 7106
CLL RAR 7110
CLL RTR 7112

Shift positive number one left.
Clear link, rotate two left.

Shift positive number one right.
Clear link, rotate two right.

Ht—l:—-‘b—-‘p—-
SRS -

STL 7120 , Set link. The L is set to contain a binary 1.

CLA 7200 1 Clear AC. To be used alone or in OPR 1 com-
binations.

CLA IAC 7201 1,3 Set AC = 1.

GLK 7204 1,4 Get link. Transfer L into AC 11

CLA CLL 7300 1 - Clear AC and L.

STA’ 7240 2 Set AC = —1. Each bit of the AC is set to

containa 1.

1Group 1 operate microinstructions operate on all PDP-§ family computers. (See
Appendix E for the event times of each model).

D-3

PDP-8/1 Group 2 Operate Microinstructions!

M;;r:'g):l'c 8321' - Sequence Operation

HLT 7402 3 Halt. Stops the program after completion of
the cycle in process. If this instruction is
combined with others in the OPR 2 group the
other operations are completed before the
end of the cycie.

OSR 7404 3 OR with switch register. The OR function is
performed between the content of the SR
and the content of the AC, with the result

left in the AC.

SKP 7410 1 Skip, unconditional. The next instruction is
skipped.

SNL 7420 1 Skipif L =+ 0.

SZL 7430 1 Skipif L = 0.

SZA 7440 1 Skip if AC = 0.

SNA 7450 1 Skip if AC = 0.

SZA SNL 7460 1 Skip if AC = 0,0rL = 1, or both.

SNA SZL 7470 1 Skip if AC £ Oand L = Q.

SMA 7500 1 Skip on minus AC. If the content of the AC is
a negative number, the next instruction is
skipped.

SPA 7510 1 Skip on positive AC. If the content of the AC
is a positive number, the next instruction is
skipped.

SMA SNL 7520 1 Skip if AC < 0, or L = 1, or both.

SPA SZL 7530 1. Skip if AC>>0and if L = 0.

SMA SZA 7540 1 Skip if AC < 0.

SPA SNA 7550 1 Skip if AC > 0.

CLA 7600 2 Clear AC. To be used alone or in OPR 2 com-
binations.

LAS 7604 1,3 Load AC with SR.

SZA CLA 7640 1,2 Skip if AC = 0, then clear AC.

SNA CLA 7650 1,2 Skip if AC # 0, then clear AC.

SMA CLA 7700 1,2 Skip if AC < 0, then clear AC.

SPA CLA 7710 1,2 Skip if AC > 0, then clear AC.

1Group 2 microinstructions operate on all PDP-8 family computers.

D4

PDP-8/1 Extended Arithmetic Element! Microinstructions

Mnemon
Symbol

ic Octal
Code

Sequence

Operation

MUY

DVI

NMI

SHL

ASR

7405

7407

7411

7413

7415

3

Multiply. The number held in the MQ is mul-
tiplied by the number held in core memory
location PC + 1 (or the next successive core
memory location after the MUY Command).
At the conclusion of this command the most
significant 12 bits of the product are con-
tained in the AC and the least significant 12
bits of the product are contained in the MQ.

Divide. The 24-bit dividend held in the AC
(most significant 12 bits) and the MQ (least
significant 12 bits) is divided by the number
held in core memory location PC + 1 (or the
next successive core memory location follow-
ing the DVI command). At the conclusion of
this command the quotlent is held in the
MQ, the remainder is in the AC, and the L
contains a 0. if the L contains a 1, divide
overflow occurred so the operation was con-
cluded after the first cycle of the division.

Normalize. This instruction is used as part
of the conversion of a binary number to a
fraction and an exponent for use in floating-
point arithmetic. The combined content of the
AC and the MQ is shifted left by this one
command until the content of ACO is not
equal to the content of AC1, to form the frac-
tion. Zeros are shifted into vacated MQll
positions for each shift. At the conclusion of
this operation, the step counter contains a
number equal to the number of shifts per-
formed. The content of L is lost.

Shift arithmetic left. This instruction shifts
the combined content of the AC and MQ to
the left one position more than the number
of positions. indicated by the content of core
memory at address PC + 1 (or the next suc-
cessive core memory location following the
SHL command). During the shifting, zeros
are shifted into vacated MQ11 positions.

Arithmetic shift right. The combined content
of the AC and the MQ is shifted right one
position more than the number contained in
memory location PC + 1 (or the next suc-
cessive core memory location following the

.ASR command). The sign bit, contained in

ACO, enters vacated positions, the sign bit
is preserved, information shifted out of MQ11
is lost, and the L is undlsturbed during this
operation.

1This option is not available with the PDP-8/L.

D-5

PDP-8/1 Extended Arithmetic Element Microinstructions (continued)

Mnemonic Octal

Symbol

Code

Sequence

Operation

LSR

MQL

SCA

SCL

MQA

CLA

CAM

7417

7421

7441

7403

7501

7601

7621

3

1,2

Logical shift right. The combined content of
the AC and MQ is shifted left one position
more than the number contained in memory
location PC + 1 (or the next successive core
memory location following the LSR command).
This command is similar to the ASR com-
mand except that zeros enter vacated posi-
tions instead of the sign bit entering these
locations. Information shifted out of MQll
is lost and the L is undisturbed during this
operation.

Load multiplier quotient, This command
clears the MQ, loads the content of the AC
into the MQ, then clears the AC.

Step counter load into accumulator. The con-
tent of the step counter is transferred into
the AC. The AC should be cleared prior to
issuing this command or the CLA command
can be combined with the SCA to clear the
AC, then effect the transfer.

Step counter load from memory. Loads com-
plement of bits 7 through 11 of the word in
memory following the instruction into the
step counter.

Multiplier quotient load into accumulator.
The content of the MQ is transferred into the
AC. This command is given to load the 12
least significant bits of the product into the
AC following a multiplication- or to load the
guotient into the AC following a division. The
AC should be cleared prior to issuing this
command or the CLA command can be com-
bined with the MQA to clear the AC then
effect the transfer.

Clear accumulator. The AC is. cleared during
sequence 1, allowing this command to be
combined with the other EAE commands that
load the AC during sequence 2 (such as
SCA and MQA).

Clear accumulator and multiplier quotient.

D-6

Basic IOT Micioinstructions

Mnemonic Octal _ Operation

Program Interrupt
ION 6001 Turn interrupt on and enable the computer to re-
spond to an interrupt request. When this instruction
is.given, the computer executes the next instruction,
then eriables the interrupt. ‘The additional instruc-
_ tion allows exit from the interrupt subroutine before
: allowing another interrupt to occur.
IOF 6002 Turn interrupt off i.e. disable the interrupt.

High Speed Perforated Tape Reader and Control

RSF 6011 Skip if reader flag isa'l1.

RRB 6012 Read the content of the reader buffer and clear the
reader flag. (This instruction does not clear the AC.)

RFC 6014 .Clear reader flag and reader buffer, fetch one char-

acter from tape and load it into the reader buffer,
and set the reader flag when done,

High Speed Perforated Tape Punch and Control

PSF 6021 Skip if punch flag is a 1.
PCF 6022 Clear. punch flag and punch buffer.
PPC 6024 Load the punch buffer from bits 4 through 11 of the

AC and punch the character. (This instruction does
. not clear the punch flag or punch buffer.}
PLS 6026 Clear the punch flag, clear the punch buffer, load
the punch buffer from the content of bits 4 through
11 of the accumulator, punch the character, and set
the punch flag to 1 when done.

Teletype Keyboard/Reader

KSF 6031 Skip if keyboard flag isa 1.

KCC 6032 Clear AC and clear keyboard flag.

KRS 6034 Read keyboard buffer static. (This is a static com-
mand in that neither the AC nor the keyboard flag is
cleared.)

KRB 6036 Clear AC, clear keyboard flag, and %ead the content

of the keyboard buffer into the content of AC 4-11.
Teletype Teleprinter/Punch

TSF 6041 Skip if teleprinter flag is a 1.

TCF 6042 Clear teleprinter flag.

TPC 6044 Load the TTO from the content of AC 4-11 and
print and/or punch the character.)

TLS 6046 Load the TTO from the content of AC 4-11, clear
the teleprinter flag, and prlnt and/or punch the
character.

Oscilloscope Display Type VC8/1 and Precision CRT Display Type 30N
DCX 6051 Clear X coordinate buffer.
DXL 6053 Clear and load X coordinate buffer.

D-7

Basic IOT Microinstructions (continued)

Mnemonic Octal Operation
DiX 6054 Intensify the point defined by the content of the X
and Y coordinate buffers.
DXS 6057 Executes the combined functions of DXL followed
by DIX.
DCY 6061 Clear Y coordinate buffer.
DYL 6063 Clear and load Y coordinate buffer.
DIy 6064 intensify the point defined by the content of the X
and Y coordinate buffers.
DYS 6067 Zxecutes the combined functions of DYL followed
hy DIY.
Oscilloscope Display Type VC8/I
DSB 6075 Set minimum brightness.
DsSB 6076 Set medium brightness.
DSB 6077 Set maximum brightness,
DSB 6074 Lero brightness.
Precision CRY Display Type 30N
DLB 6074 load brightness register (BR) from bits 9 through
11 of the AC.
Light Pen Type 370
DSF 6071 Skip if display flag isa 1.
DCF 6072 Clear the display flag.
Memory Parity Type MP8/1
SMP 6101 Skip if memory parity error flag = 0.
CMP 6104 Clear memory parity error flag.

Automatic Restart Type KP#/1)
SPL 6102 Skip if power is low.

Memory Extension Control Type MC8/I

CDF 62N1 Change to data field N. The data field register is
Iraded with the selected field number (O to 7). All
subseguent memory requests for operands are auto-
rmatically switched to that data field until the data
field number is changed by a new CDF command.

CIF 62N2 Prepare to change to instruction field N, The in-
struction buffer register is loaded with the selected
field number (0 to 7). The next JMP or JMS in-
struction causes the new field to be entered.

RDF 6214 Read data field into AC 6-8. Bits 0-5 and 9-11 of
the AC are not affected.

RIF 6224 Same as RDF except reads the instruction field.

RIB 6234 Read interrupt buffer. The instruction field and data

feld stored during an interrupt are read into AC
€-8 and 9-11 respectively.

RMF 6244 Flestore memory field. Used to exit from a program
interrupt.

D-8

Basic IOT Microinstructions (continued)

Mnemonic

"Octal

Operation

Data Communications Systems Type 680

TTINCR
T

110

TTCL
TTSL

TTRL

TTSKP
TTXON

TTXOF

6401
6402

6404

6411
6412

6414

6421
6424

6422

The content of the line select register is incre-
mented by one.

The line status word is read and sampled. If the
line is active for the fourth time, the line bit is
shifted into the character assembly word. If the line
is active for a number of times less than four, the
count is incremented. If the line is not active, the
active/inactive status of the line is recorded.

The character in the AC is shifted right one posi-
tion, zeros are shifted into vacated positions, and
the original content of ACl1 is transferred out of

~ the computer on the Teletype line.

The line select register is cleared.

The line select register is loaded by an OR transfer
from the content of AC5-11, then the AC is cleared.
The content of the line select reglster is read into
AC5-11 by an. OR transfer.

Skipifclock 1 flagisa 1.

Clock 1 is enabled to request a program interrupt
and clock 1 flag is cleared.

Clock 1 is disabled from causing a program inter-
rupt and clock 1 flag is cleared.

incremental Plotter and Control Type VP8/1

PLSF
PLCF
PLPU
PLPR
PLDU
PLDD
PLPL
PLUD

- PLPD

6501
6502
6504
6511
6512
6514
6521
6522
6524

Skip if plotter flagis a 1.

Clear plotter flag.

Plotter pen up. Raise pen off of paper.

Plotter pen right.

Plotter drum (paper) upward.

Plotter drum (paper) downward.

Plotter pen left.

Plottér drum (paper) upward. (Same as 6512.)
Plotter pen down. | nwer pen on to paper,

Serial Magnetic Drum system Type 251

DRCR

DRCW

DRCF

6603

6605

6611

Load the drum core location counter with the core
memory location - information in the accumulator.
Prepare to read one sector of information from the
drum into the specified core location. Then clear
the AC.

Load the drum core location counter with the core
memory location information in the accumulator.
Prepare to write one sector of information into the
drum from the specified core location. Then clear
the AC,

- Clear comptetion flag and error flag.

D-9

Basic IOT Microinstructions (continued)

Mnemonic Octal Operation

DREF 6612 Clear the AC then load the condition of the parity
error and data timing error flip-flops of the drum
control into accumulator bits O and 1 respectively
to aliow programmed evaluation of an error flag.

DRTS 6615 L.oad the drum address register with the track and
sector address held in the accumulator. Clear the
completion and error flags, and begin a transfer
freading or writing). Then clear the AC.

DRSE 6621 Skip next instruction if the error flag is a2 O (no
error).

DRSC 6622 Skip next instruction if the completion flag is a 1
(sector transfer is complete).

DRCN 6624 Clear error flag and completion flag, then initiate

transfer of next sector.

Serial Magnetic Drum System Type RM08

DRCR

DRCW

DRCF
DRES

ORTS

DRSE
DRSC

DRFS

6603

6605

6611
6612

6615

6621
6622

6624

Load the drum core location counter with the core
memory location information in the accumulator.
P-epare to read one sector of information from the
drum into the specified core location. Then clear
the AC.

Load the drum core location counter with the core
memory location information in the accumulator,
Prepare to write one sector of information into the
drum from the specified core location, Then clear
the AC.

Clear completion flag and error flag.

Clear the AC then load the condition of the parity
error and data timing error flip-flops of the drum
control into accumulator bits 0 and 1 respectively
to allow programmed evaluation of an error flag.
The contents of the drum sector counter are trans- .
farred into bits AC 6-11.

Load the drum address register with the track and
sector address held in the accumulator. Clear the
completion and error flags, and begin a transfer
{reading or writing). Then clear the AC.

Skip next instruction if the error fiag is a O (no
€rror).

Skip next instruction if the completion flag is a 1
{sector transfer is complete).

Loads the drum field register with the contents of
the accumulator bits 10 and 11. Loads the sector
number register with the contents of the accumu-
lator bits 0-5, to specify the number of sectors to
te transferred. Loads the three most significant bits
cf the drum core location register (DCL,-;) with the
contents of the AC bits 6, 7, 8 to specify the core
rmemory block to be used during the drum transfer.

D-10

Basic IOT Microinstructions (continued)

Mnemonic

Octal

Operation

Random Access Disc File (Type DF32)

DCMA

DMAR

DMAW

DCEA
DSAC
DEAL

DEAC

DFSE

DFSC
DMAC

6601

6603

6605

6611
6612
6615

6616

6621

6622
6626

Clears memory address register, parity error and
completion flags. This instruction clears the disc
memory request flag and interrupt flags.

The contents of the AC are loaded into the disc
memory address register and the AC is cleared.
Begin to read information from the disc into the
specified core location. Clears parity error and
completion flags. Clears interrupt flags.

The contents of the AC are loaded into the disc
memory address register and the AC is cleared. Be-
gin to write information into the disc from the
specified core location. Clears parity error and
completion flags.

Clears the disc extended address and memory ad-
dress extension register.

Skips next instruction if address confirmed flag is
a 1. (AC is cleared.)

The disc extended address extension registers are
cleared and loaded with the track data held in the
AC.

Clear the AC then loads the contents of the disc
extended address register into the AC to allow pro-
gram evaluation. Skip next instruction if address
confirmed flag is a 1.

Skips next instruction if parity error, data request
late, or write lock switch flag is a zero. indicates
no errers.

Skip next instruction if the completion flag is a 1.
Indates data transfer is complete.

Clear the AC then loads contents of disc memory
address register into the AC to allow program evalu-
ation.

Automatic Line Printer and Control Type 645

LSE
LCB
LLB

LSD

LCF
LPR

6651
6652
6654

6661

6662
6664

Skip if line printer error flag isa 1.

Clear both sections of the printing buffer.

Load printing buffer from the content of AC 6-11
and clear the AC.

Skip if the printer done flag is a 1.

Clear line printer done ahd error flags.

Clear the format register, load the format register
from the content of AC 9-11, print the line contained
in the section of the printer buffer loaded last, clear
the AC, and advance the paper in accordance with
the selected .channel of the format tape if the con-
tent of AC 8 = 1. If the content of AC 8 = Q, the
line is printed and paper advance is inhibited.

D-11

Basic 10T Microinstructions (continued)

Mnemonic

Qctal

Operation

BECtape Transport Type TUSS and DECtape Control Type TCO1

DTRA

DTCA
DTXA

DTSF
DTRB

DTLB

6761

6762
6764

6771
6772

6774

The content of status register A is read into AC0O-9
by an OR transfer. The bit assignments are:

ACO-2 = Transport unit select number

£C3-4 = Motion

ACS5 = Mode

#£C6-8 = Function

#C9 = Enable/disable DECtape control flag

Clear status register A. All flags undisturbed.

Status register A is loaded by an exclusive OR trans-
fer from the content of the AC, and AC10 and AC11
are sampled. If ACI0 = 0, the error flags are
cleared. If AC11 = 0, the DECtape control flag is
cleared.

Skip if error flag is a 1 or if DECtape control flag
isal.

The content of status register B is read into the AC
by an OR transfer. The bit assignments are:

co = Error flag

Cl = Mark track error
AC2 = End of tape
AC3 = Select error
AC4 = Parity error
AC5 = Timing error
AC6-8 = Memory field
AC9-10 = Unused

ACll = DECtape flag
Tre memory field portion of status register B is
lcaded from the content of AC6-8.

Card Reader and Centrel Type CR3/I

Skip if card reader data ready flag is a 1.

The alphanumeric code for the column is read into
A(6-11, and the data ready flag is cleared.

The binary data in a card column is transferred into
ACO-11, and the data ready flag is cleared.

Skip if card reader card done flagisa 1.

Clear the card done flag, select the card reader and
start card motion towards the read station, and skip
if the reader-not-ready flag isa 1.

Clear card done flag,

Automatic Magnetic Tape Control Type TC58

RCSF 6631
RCRA 6632
RCRB 6634
RCSP 6671
RCSE 6672
RCRD 6674
MTSF 6701
MTCR 6711

Skip on error flag or magnetic tape flag. The status
of the error flag (EF) and the magnetic tape ‘flag
(MTF) are sampled. If either or both are set to 1,
the content of the PC is incremented by one to Sklp
the next sequential instruction,

Skip on tape control ready (TCR). If the tape con-
trol is ready to receive a command, the PC is incre-
mented by one to skip the next sequential instruc-
tion.

D-12

Basic I0T Microinstkucﬁons (continuéd)

Mnemonic . Octal Operation

MTTR 6721 Skip on tape transport ready (TTR). The next se-
quential instruction is skipped if the tape trans-
port is ready.

MTAF 6712 Clear the status and command registers, and the
EF and MTF if tape control ready. If tape control
not ready, clears MTF and EF flags only.

e 6724 Inclusively OR the contents of the command regis-
ter into bits 0-11 of the AC.

MTCM 6714 Inclusively OR the contents of AC bits 0-5, 9-11
into the command register; JAM transfer bits 6, 7,
8 (command- function).

MTLC 6716 Load the contents of AC bits 0-11 into the com-
mand register.

_— 6704 Inclusively OR the contents of the status register
into bits 0-11 of the AC.

MTRS 6706 Read the contents of the status register into bits
0-11 of the AC. :

MTGO 6722 Set “go"” bit to execute command in the command
register if command is legal.

—— 6702

Clear the accumulator.

General Purpose Converter and
Multiplexer Control Type AFO1A

ADSF
ADVC

ADRB

ADCC
ADSC

ADIC

6531
6532

6534

6541
6542

6544

Skip if A/D converter flag is a 1.

Clear A/D converter flag and convert input voitage
to a digital number, flag will set to 1 at end of con-
version. Number of bits in converted number deter-
mined by switch setting, 11 bits maximum.

Read A/D converter buffer into AC, left justified,
and clear flag.

Clear multiplexer channel address register.

Set up muitiplexer channel as per AC 6-11.
Maximum of 64 single ended or 32 differential in-
put channels.

Index multiplexer channel address (present address
-+ 1). Upon reaching address limit, increment will
cause channel 00 to be selected.

Guarded Scanning Digital Voitmeter Type AFO4A

VSEL

VCNV

VINX

6542

6541

6544

The contents of the accumulator are transferred to
the AFO4A control register.

The contents of the accumulator are transferred
to the AFO4A channel address register. Analog sig-
nal on selected channel is automatically digitized.

The last channel address is incremented by one
and the analog signal on the selected channel is
automatically digitized.

D-13

Basic 10T Microinstructions (continued)

Mnemonic Octal Operation
VSDR 6531 Skip if data ready flag isa 1.
VRD 6532 Selected byte of voltmeter is transferred to the
accumulator and the data ready flag is cleared.
VBA 6534 BYTE ADVANCE command requests next twelve
bits, data ready flag is set.
VSCC 6571 SAMPLE CURRENT CHANNEL when required to

digitize analog signal on current channel repeatedly.

D-14

Appendix E
Legal Microinstruction Combinations

The following tables identify the legal operate microinstruction com-
binations for the PDP-8 family computers. It should be noted that each
possible pair of mnemonics within a mictoprogrammed instruction
should be checked for legality.

GROUP 1 MICROINSTRUCTION COMBINATIONS

Logical
Event Times
‘ 8/1,
CLA | CLL|CML|CMA|RAR |RAL|RTR|RTL |IAC) 8/L| 8/9 8
ctall — {Aun| An| an | An | An | An | An | An
1] 1] 1
ciL || An| — | Au| Au { au | An | au | An {An
cML| Al |Aun| — | An | Au | An | Au | Au | Al 2
8 |8 [s8 s T 2 2
CMA| An [Al | an | — |[8/1 {8/1 |81 |8/1 |All
8/L | 8/L F8/L | 8/L
8 | 8/1
RAR All | All | All | 8/1 | — |None{None{None
8/L ‘ 8/L
8 8/1
RAL|| Al [Al | All | 8/1 |None| — [|None[None 85L
8/L ; 3|33
8 8/1
RTR All { All | All' } 8/1 [None|None| — [None
8/L
8/L]
8 8/1
RTL All | All | All | 8/1 |NoneiNone{None| — 8/L
8/L. /
' 81 |81 |81 |81
IAC | Al [Al | AlL| Al | g7 e |sin |5 | — || 4

Logical

GROUP ! MICROINSTRUCTION COMBINATIONS %V:,g;
Pg\P{-lS
SMA|SZA [SNL [SPA ISNA |SZL {SKP |[CLA |OSR |HLTfcomputers)
OR Group I SMA | — | Al {None|NoneiNone [None |None | All | All | All
(Skip if - < §7A | All | — | All [None|None [None [None [All | All | All
)| SNI | All | AT | — [None [None fNone [None | Al | All | All
AND Group J SPA {Nonc|NonefNone] — | All | All [None | All { AH | All 1
(Skip if SNA {Noune[Noae|None} All | — | Al [None | All | Al [Al
ally 1 SLZ None|NoneiNone| Al | All | — [None | All [All [Al
SKP [None [Mone {None [None [None None | — [All {All [Al
CLA | ALl | Al | All | AL} AL JAIL | Al | — ALl |Al 2
OSR | All | Alt | Al | AlL | All Al | Al AN | — [All 3
HLT | All | AlL | Al | AlL | Al JALl | Al Al JAIl | — 4

Appendix F
‘Miscellaneous Tables

Powers of Two

n)

2 n 2

1 o] 1.0
2 1 0.5

4 2 025

8 3 . 0125

16 4 0.062 5

32 5 0.031 25
64 6 0015 625
128 7 0.007 812 5
256 8 0.003 906 25

512 9 0.001 953 125
1024 10 0.000 976 562 5 -
2048 11 0000 488 281 25

4 096 12 0.000 244 140 625
8192 13 0.000 122 070 312 5
16 384 14 0.000 061 035 156 25

32768 15 0.000 030 517 578 125
65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25

262144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5
1 048 576 20 0.000 000 953 674 316 406 25

2 Q97 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125
268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 Q000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625

2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25

8 589-934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 865 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 S51 915 228 366 851 806 640 625

F-1

Octal-Decimal Conversion

The following table gives the multiples of the powers of 8. To con-
vert a number from octal to decimal using the table, add the decimal
number opposite the digit value for each digit position. To convert
40277, to decimal, the following numbers are obtained from the table
and added.

16384
0

128
56

7

16575

Thus, 40277, is converted to 16575,.

To convert a number from decimal to binary, the highest number
which appears in the table is subtracted from the number. The highest
number which can be subtracted from the remainder is subtracted
until the number is reduced to 0. The octal number is obtained by re-
cording the multipliers of the numbers which were subtracted in the
proper digit positions. To convert 23365, to its octal equivalent, the
following procedure is followed.

23365
—20480 = 5x84

2885
—2560 = 583

325 -
—320 = 5% 82

—() = 0x81

-5 = 580
0 J' /

55505
Thus, 23365, is converted to 55505,.

E-2

Octal-Decimal Conversion Table

Position Coefficients
(Mutltipliers)
Octal
Digit
Position/
8n 0 1 2 3 4 5 6 7
1st (89| 0 2 3 4 5 6 7
2nd (81)| 0 8 16 24 32 40 48 56
3rd (82)| 0 64 128 192 256 320 384 448
4th (83)| 0 5121 1,024 1,5367 2,048| 2,560| 3,072] 3,584
5th (84)]| 0| 4,096 8,192(12,288] 16,384 20,480| 24,576| 28,672
6th (85)] 0]32,768165,536{98,304}131,0721163,840196,608 229,376

Octal-Decimal Fraction Conversion Table

l

Octal Decimal Octal Decimal Octal Decimal Octal Decimal
=
.000 . 000006 . 100 , 125000 . 200 . 250000 .300 . 375000
001 001953 101 . 126953 .201 .251933 .301 .376953
.002 .do3006 102 . 123906 202 253906 .302 378004
.003 005859, 102 . 136859 .203 L 255459 .303 . 380859
L004 L 007812 104 132812 . 204 .257812 L3604 382812
. 005 . 009765 . 108 . 134765 .20 . 259765 L3058 384765
. 006 .oniTs .106 L 136718 . 206 261718 .306 386718
007 L 013671 187 . 138671 .207 . 263671 L3071 .388671
.010 015625 .10 . 140625 .210 L 265628 310 .390623
.on L017578 NI L 142578 2t 261578 .an .392578
.012 .019531 .z L 144531 .22 . 269531 312 .394331
.013 021484 113 . 146484 .213 L 211484 .13 . 396484
014 . 023437 L1 . 148437 .24 213437 L4 .398437
018 L 823390 115 . 150390 .21 . 275390 315 . 400390
,016 027343 L1186 . 152343 . 216 211343 316 .402343
.017 . 02929 .7 . 154296 a1 . 219296 L .404296
.020 . 031250 120 . 156250 .220 . 281250 320 . 406250
.0zt .033203 121 . 158203 221 . 283203 .32 . 408203
622 . 035156 122 . 160156 222 . 285156 a2 410156
.023 037109 123 , 162109 .223 . 287109 .23 412109
024 . 039062 124 . 164062 .224 . 289062 324 414062
025 ,041015 L 128 L 166015 225 L 291015 .325 L 415018
.026 .042968 126 . 167968 226 .292968 328 .417968
027 L 044921 127 . 169921 221 .294921 321 . 419921
.03t . 046815 130 L 171875 .230 . 296875 .33 421875
.03t . 048828 L1131 173528 .23t . 298028 . . 123828
1032 .030781 132 L 175781 .232 . 300781 .332 . 426781
.033 L 052734 133 137734 .23 ,302734 333 L4214
.034 . 054687 134 L 119687 234 . 304687 L334 .429687
.035 056640 138 161640 235 . 306640 .335 431640
.036 L 058593 136 . 183593 L2386 . 308593 L3386 , 4338093
.037 L 060546 137 L 185546 .23t . 310546 .331 , 435546
040 . 062500 140 L 187500 240 . 312500 L340 437500
. 041 064453 R 185453 L2481 314453 .341 439453
K11 L0A6406 142 . 191408 242 316406 .342 441408
043 . 063359 L142 193359 .243 .318359 L343 443359
044 .070312 144 193312 .244 .320312 344 L A45312
.045 072265 143 . 197265 243 . 322265 L343 447265
. 046 LoT4z18 .45 . 195218 246 324218 .36 449218
L0417 076171 147 ,201171 L2417 326171 347 450171
L080 078125 L1508 .20312% .250 328125 .350 453128
L0851 . 080078 L1581 . 205078 .281 . 330078 .35 455078
. 052 L 082031 152 .207031 252 332001 .382 , 457031
. 053 L DB3ISH4 153 208984 .253 330984 .353 458984
054 . 085937 L1548 . 210937 .254 . 235937 L35 460937
085 . 057830 L1388 212990 .25% . 337890 . 358 462890
. 036 . 089843 186 . 2148423 256 339843 , 356 464843
L 087 L 091796 L1587 216796 257 341786 .357 468798
L0650 L 093750 . 160 218750 . 260 . 343750 . 380 468750
L 061 . 095703 . 161 220703 261 345703 . 381 . 470703
. 062 . 097656 162 . 272656 . 262 . 347656 .362 472656
L0R3 . 093608 . 163 . 22460 .263 . 349609 .363 L 474809
. 064 . 101562 . 164 . 226562 . 264 L 351862 .384 . 476562
065 L 103515 . 165 228515) L35381% L3658 478818
L 066 . 105468 L1886 . 230463 L2686 . 355468 Jags 480468
. 067 . 107421 167 .z32421 .267 .3smen . 387 402421
070 . 109375 A L 234375 .210 . 359375 .370 484375
071 L 111328 an .236328 .2n 361328 .am . 486328
L0172 L 113281 72 ,238281 .212 363281 372 408201
013 L 115234 an 240234 213 . 365234 313 490224
.01 L117187 AN . 242187 .214 . 367187 K3l L 492197
015 L 119140 178 244140 % 1) 369140 378 494140
. 076 . 121093 L1786 . 246093 218 371093 .376 496093
o1 . 123046 L L248046 .21 373048 i 498048

Scales of Notation

2% in Decimal

x 2 x 2 X 2t
0.001 00069 33874 581 .01 1.00695 55500 56719 0.1 1.07177 34625 3623
0.002 .00138 72857 33% .02 1.01395 54797 90029 g.2 1.14 83549 9703
0.003 00208 16050 79633 .03 1.02101 21257 07193 0.3 1.23 44133 44491
0.004 .00277 64359 01078 .04 1.0§81l 38268 56067 0.4 131 79107 7289
0.005 00347 17485 0. .08 1.03526 49238 4 7 9.5 141 35623 7309
0.006 00416 75432 97, .06 1.04246 57608 4 1 0.6 151 65665 10391
0.007 0048 204 78! .07 1.04971 66836 2. 7 0.7 1.624 47927 1247
0.008 .00556 05803 461 .08 1.05701 80405 £1380 08 1.74 11265 9224
0.609 00625 78234 78 .09 1.06437 01824 5 0 09 1.866 89830 7361
+n =
107" in Octal
100 n 10" 100 n 10
1 000 000 O)3 000 000 00 112 762 000 16 0.000 000 D06 €76 337 66
12 Xil 146 314 1 463 146 31 1 351 864 000 11 0.000 Q00 000 000 537 857 77
.005 075 34 7 270 243 &6 16 432 210 000 12 0.000 000 000 {43 136 32
1 750 .000 406 1 34 570 651 77 221 411 6 520 000 13 0.000 Q00 000 CO3 411 35
23 420 000 032 1 3 530 704 15 2 657 142 440 000 14 0.000 000 000 (OO 264 11
303 240 .000 002 47 32 610 706 64 34 327 724 461 500 G0O. 15 0.000 000 GO0 000 {OQ 022 O}
3 641 100 .000 GOQ 20 57 364 0% 434 187 115 760 200 000 16 ©0.000 000 0CO Q00 C0Q 0Q1 63
46 113 200 .000 000 Ol 27 745 185 § 432 127 413 542 400 000 17 0.000 000 000 000 COQ ODG 14
575 360 400 .000 000 00 57 143 561 06 67 405 553 164 731 000 0G0 1B 0.000 000 000 000 COO 000 O1
7 346 545 000 .000 GO0 04 560 276 4
n log,, 2, n log, 10 in Decimal
n ntogp 2 nlog; 10 n nlogig 2 nlog; 10
1 0.30102 957 3.32192 949 6 1.80617 99740 19.93156 85603
2 0.60205 513 €.64385 61898 7 2.10720 99696 23.25349 66642
3 0.30308 870 9.96578 42847 -8 240823 99653 26.57542 47591
4 1.20411 827 13.28771 7595 9 2.70926 99610 29.89735 28540
5 1.50514 783 16.60964 04744 10 3.01029 59566 33.21928 09489
Addition and Multiplication Tables
Addition R Mutiplication
Binary Scale
040
C+4 1= 10
1
Octal Scale
0 l 01 02 03 04 05 06 O7 1 l 02 03 08 05 08 O7
1102 03 04 05 06 07 10 2]o04 o8 10 12 14 16
2|03 04 05 06 07 10 11 3j06 11 14 17 22 25
3f{o4 05 06 07 10 i1 1312 4110 14 20 24 30 34
4105 06 07 10 i1 12 13 §112 17 24 31 36 43
S{06 07 10 11 12 13 14 6114 22 30 35 44 52
6107 10 11 12 13 14 18 7116 25 34 43 52 el
7110 11 12 13 14 15 16
Mathematical Constants in Octal Scale
7= 3.11037 552421, e = 255760 521305, v = 044742 147707,
m = 0.24276 301556, e-t = 0.27426 530661, Iny = — 0.43127 233602,
V7 = 1.61337 611067, Ve = 151411 230704 logay = — 0.62573 030645,
Inr = 111206 404435, logoe = 0.33626 754251, VZ = 132404 746320,
4 .
log: m = 1.51544 163223, log:e = 1.34252 166245 In2 = 054271 027760,
VIO = 3.12305 407267, log: 10 = 3.24464 741136, In10= 223273 067355,

E-5

Common Abbreviations
The following list of abbreviations includes many abbreviations used
in conjunction with the PDP-8 family of computers.

Abbreviation Meaaning

AC ..o « - - Accumulator

ADDR Address

B.SP. Sreeen- Back Space

BINcivivnnns Binary

CLC ... iiiienans Current Location Counter

CONTiiivninens Continue

CR . tiiinenens Carriage Return

CR/LFc.vv.. Carriage Return-Line Feed

CTRL/L Control/L (represents holding down the CTRL
key while depressing the L key or the key fol-
lowing the slash)

DEC Digital Equipment Corporation

DEP Deposit

DF ...iviiviiviannn Data Field

EAE Extended Arithmetic Element

EXAM Examine

) 1 Instruction Field

INSTcvvinenes Instruction

L e Link

LE . iiiiiiiiinnnn Line Feed

LOAD ADD Lcad Address

LOC eeenaeen Lccation

ISP ... v, Lcw-Speed Punch

LSR ...oiiiiiinsenes Lcw-Speed Reader

HSP ... iiiiieinnns High-Speed Punch

HSRcccueus High-Speed Reader

KBRDciivvnes Keyboard

PC ..ot Program Counter

PROG Program

) U Mezmory Address

MB ... e Me:mory Buffer

MQ ... Multiplier Quotient

REL Release

RIMvninas. Read-In Mode

SA i Starting Address

SHIFT/P Shift/P (similar to CTRL/L)

SING INST. Single Instruction

SING STEP Single Step

SR it Switch Register

SW e Console Switches

TTY iiiieiennnn, Teletype

A

Abbreviations, common, F-6.

Absolute address: A binary number that
is permanently assigned as the ad-
dress of a storage location-.

Accumulator: A 12-bit register mn which
the result of an operation is formed;
Abbreviation: AC; 1-32, 2-6, 4-5

Addition exerciser, FOCAL, 9-32

Addition tables, binary and octal, F-5

Address: A label, name, or number
which designates a location where in-
formation is stored.

Addressing, 2-13; direct, 2-16; indirect,
2-16

Address modification, 3-19

ALGOL-8, 6-3

Algorithm: A prescribed set of well-de-
fined rules or processes for the solu-
tion of a problem in a finite number
or steps.

Alphanumeric: Pertaining to a character
set that contains both letters and
numerals, and usually other charac-
ters.

Alphabetic data, 1-34

Analysis, pulse-height,10-6; scientific
data, 10-3; time-of-flight (TOF),
10-9

Analysis of Variance
PDP-5/8 (DECUS No.5/8-9),11-8

AND group of skip microinstructions,
2-25

AND instruction, 2-9; logical opera-
tion 1-29

Answers to exercises, A-1

Applications, scientific, see PDP-8 fam-
ily computers in the sciences

Arithmetic operations, programming,
3-10

arithmetic overflow, 3-11

double precision arithmetic, 3-14
multiplication and division, 3-13
powers of two, 3-16

subtraction, 3-13

Arithmetic operations with binary and
octal numbers, 1-18

Arithmetic overflow, 3-11

Index/Glossary

Arithmetic unit: The component of a
computer where arithmetic and log-
ical operations are performed, 1-32,

2-5 .

ASCII: An abbreviation for USA Stan-
dard Code for Information Inter-
change.

code, 5-4, B-1

converting to binary, 5-13
converting to 4-digit numbers, 5-16
paper tape format, 4-14

printing characters, 5-8, -11

typing 4-digit numbers, 5-15

Assemble: To translate from a sym-
bolic program to a binary program
by substituting binary operation
codes for symbolic operation codes
and absolute or relocatable addresses
for symbolic addresses.

Assemblers, see symbolic assemblers

PAL-D, 7-6
PAL IIT, 6-27
MACRO-8, 6-36
SABR, 8K, 6-2
Assembling a symbolic program, 6-25

»A'ssembly language programming, see

symbolic language programming
Assembly procedures,
MACRO-8, 6-36, -37
PAL III, 6-27, -28
Autoindex registers, 3-27
Automatic processes, 1-3
Automation, laboratory, 10-4

B
Background program, 5-23
BASIC-8, 6-4
Binary: Pertaining to the number sys-
tem with a radix of two,
Binary coding, 2-2
Binary digit: One of the symbols 1 or
0; called a bit,
Binary (BIN) Loader, 6-11 to -14
core requirements, 6-13
loading, 6-12
loading using BIN, 6-14
paper tape format, 4-15
Binary Loader, Disk System, 7-14

Index—1

Binary number system, 1-6
Binary numbers
addition, 1-18 -
counting, 1-7
division, 1-25
multiplication, 1-23
subtraction, 1-20

Bootstrap: A technique or dzvice de-
signed to bring itself into a desired
state by means of its own action, e.g.,
a routine whose first few instructions
are sufficient to bring the rest of
itself into the computer frcm an in-
put device.

Branch: A point in a routing where one
of two or more choices is made under
control of the routine.

Branching, program, 3-30

Buffer: A storage area.

Byte: A group of binary digits usually
operated upon as a unit.

C

Call: To transfer control to a specified
routine.

CALL command, Disk System, 7-19

Calling sequence: A specified set of in-
structions and data necessary to set
up and call a given routine.

Card reader code, B-2

Careers in programming, 1-2

Carriage return/line feed subroutine,
5-9

Central processing unit: The unit of a
computing system that inciudes the
circuits controlling the interpretation
and execution of instructions—the
computer proper, excluding 1/0 and
other peripheral devices.

Character: A single letter, nuimeral, or
symbol used to represent informa-
tion.

Checking a stored program, 4-8

Checking ready status of device, 5-3

CIA (complement and incremeznt AC),
2-27

Circles and spheres, formula‘evaluation
for, FOCAL, 9-42

CLA (clear the AC), 2-19, -20, -21, -22

Clear: To erase the contents of a stor-
age location by replacing the con-
tents, normally with zeros cr spaces.

CLL (clear the link), 2-19, -20

CMA (complement the AC), 2-19, -20

CML (complement the link), 2-19, -20

Coding: To write instructions for a
computer using symbols meaningful
to the computer, or to an assembler,
compiler, etc.

Coding a program, 3-6

Combined microinstruction mnemonics,
2-27

Combining

microinstructions, 2-23
skip microinstructions, 2-25

Command: A control signal, usually
written as a character or group of
characters, to direct action by a sys-
tem program.

Command strings, Disk System, 7-10

Commands, TSS/8 Monitor, 8-10 to -19

Comments, inserting, 3-22

Compile: To produce a binary-coded
program from a program written in
source (symbolic) language, by se-
lecting appropriate subroutines from
a subroutine library, as directed by
the instructions or other symbols of
the source program. The linkage is
supplied for combining the subrou-
tines into a workable program, and
the subroutines and linkage are trans-
lated into binary code.

Compiler, FORTRAN-D, 7-6

Computer console operation, 4-1

console components, 4-1
console switch positioning, 4-7
initializing the console, 4-7
manual program loading, 4-5

Computer fundamentals, 1-1

Console: Usually the external front side
of a device where controls and indi-
cators are available for manual oper-
ation of the device. See computer
console or Teletype console.

Constants, mathematical, in octal, F-5

Control unit, 1-32, 2-5, 2-6

Conversion, of decimal to binary, 1-9;
of fractions, 1-15, 1-17, F-4; octal-
decimal, 1-12, F-2

Core and disk allocation, TSS/8, 8-1

Core memory, 2-7

Counting, in binary numbers, 1-7

Current location counter, 3-6

Current page or page 0bit: bit 4 of an
MRI, 2-15.

D

»

Data: A general term used to denote
any or all facts, numbers, letters, and

Index—2

symbols, It connotes basic elements
of information which can be pro-
cessed or produced by a computer.

Data break: A facility which permits
I/0 transfers to occur on a cycle-

. stealing basis without disturbing pro-
gram execution.

Data break, 5-41; single cycle, 5-42;
three cycle, 5-42

Data field, 4-4, 4-19

Data flow, TSS/8, 8-8 to -10

Data formats, computer, 1-34

Data, scientific, analysis, 10-3; collec-
tion, 10-2; display, 10-3

DCA (dep051t and clear AC), 2- 10

DDT, Disk System, 7-8

DDT-8, 6-40 to -50
appending to symbol table, 6-43
debugging notes, 6-47, -48
error detection, 6-48 '
example of use, 6-44 to -47
loading and executing, 6-40, -41
loading user symbol table, 6-41,-42
special keys and commands, 6-48 to

starting address, 6-48

Debug: To detect, locate, and correct
mistakes in a program.
Debugging notes,
DDT-8, 6-47, -48
ODT-8, 6-53 to -55
Debugging Programs, ‘6-6, 6- 39 to -55
DDT-8, 6-40 to -50
ODT-8, 6-50 to -55
Debugging without DDT- 8 or ODT-8,
6-39, -40
DECdisk, 4-22
DECIMAL, pseudo-op, 6-29, —34
DECtape, 4-20
DECUS, 11-1, see Digital Equxpment
Computer Users Society
activities, 11-3
administration, 11-5
biomedical seminars and meetmgs,
11-3
Education Sub-Group, 11-3
European Users Subgroup, 11-3
executive board, 11-3
membership, 11-4
newsletter, 11-2, see DECUSCOPE
objectives, 11-2
policies, 11-5

program abstracts, 11-8
Analysis of Variance
PDP-5/8 (DECUS
No. 5/8-9), 11-8
Double Precision
Integer Interpretive
Package (DECUS
No. 8-115), 11-11
Floating Point
Function Package,
Four Word (DECUS
~ No. 8-103A), 11-10
Matrix Inversion—Real Numbers
(DECUS No. 8-72), 11-10
PAL III Modifications—Phoenix
Assembler (DECUS No.5/8-28a),
11-9
PDP-5/8 Remote & Time-Shared Sys-
tem (DECUS No.5/8-45), 11-10
‘PDP-8 Assembler for IBM 360/50
and up (DECUS No. 8-124),
11-11
Triple Precision Arithmetic Package
for the PDP-5 and the PDP-§
(DECUS No. 5.8-21), 11-9
program category index, 11-5
‘ arithmetic routines, 11-6
debuggers, 11-6
desk calculators, 11-7
displays, 11-7
duplicators and verifiers, 11-6
editors, 11-6
engineering applications, 11-7
games and demonstrators, 11-7
hardware control, 11-7
loaders, 11-6
maintenance, 11-7
miscellaneous, 11-7
punch and loaders, 11-6
scientific applications, 11-7
special functions, 11-7
text manipulation, 11-7
Program Library, 11-1
program request forms, 11-2
program submittal, 11-2
Program Library catalog, 11-5
DECUSCOPE, user’s publication, 11-2
Defer state, major state generator, 2-7
DEFINE, pseudo-op, 6-32, -34
Delimiter: A character that separates

Index—3

and organizes elements of a program.

Device flags: 1-bit registers which Te-
cord the current status of a device,
5-3.

Device selection code: A 6-bit number
which is used to specify the device
referred to by an IOT inttruction,
5-3.

Device selector, 5-3

Diagnostic: Pertaining to the detection
and isolation of a malfunction or
mistake,

Dice game, FOCAL program, 9-48

Digital computer: A device that oper-
ates on discrete data, performing
sequences of arithmetic and logical
operations on this data.

Digital Equipment Computer Users
Society (DECUS), 11-1
activities of, 11-3
DECUS Program Library, 11-1
DECUS Program Library catalog,
11-5
DECUSCOPE, 11-2
executive board, policies and adminis-
tration, 11-5
membership, individual, 11-4; instal-
lation, 11-4
program abstracts, 11-8
program category index (PDP-5,
PDP-8, -8/8, -8/1, -8/L), 11-5
Digit: A character used to represent
one of the non-negative integers

smaller than the radix, e.g., .n binary
notation, either 0 or 1.

Digits, significant, 1-8

Direct address: An address that speci-
fies the location of an instruction
operand.

Direct addressing, 2-16

Disk Monitor
CALL command, 7-19
error messages, 7-21
initialization, 7-10
LOAD command, 7-14
residence, 7-2
SAVE command, 7-17
system modes, 7-2

Disk Monitor System, 7-1
binary loader, 7-14
calling a program, 7-19
command strings, 7-10
Dynamic Debugging Technicue

(DDT), 7-8
editor, 7-4
equipment requirements, 7-9
error messages, 7-21
FORTRAN-D compiler, 7-6
general description, 7-2
initializing the moritor, 7-10
1/0 programming, 7-21
loading programs, 7-14
PAL-D assembler, 7-6
Peripheral Interchange Program
(PIP), 7-3
program library, 7-3
saving programs, 7-17
Displays, computer console, 4-5
Division in binary and octal, 1-23
Division, programming, 3-14
Double precision: Pertaining to the use

of two computer words to represent
one number.

Double precision arithmetic, 3-14
Double Precision Integer Interpretative
Package (DECUS No. 8-115), 11-11
Double precision numbers, 1-35
Downtime: The time interval during
which a device is inoperative,

Dump: To copy the contents of all or
patt’ of core memory, usually onto
an external storage medium,

Dynamic Debugging Technique, see
DDT

E

Edit: To arrange information for ma-
chine.input or output.
Editors
Disk System , 7-14
symbolic, 6-24
Effective address: The address actually
used in the execution of a computer
instruction.
Eight’s complement arithmetic, 1-22
Elementary Programming Techniques,
3-1
address modification, 3-19
arithmetic overflow, 3-11
autoindexing, 3-27
coding a program, 3-6
double-precision arithmetic, 3-14
flowcharting, 3-3
inserting comments and headings,
3-22

Index—4

location assignment, 3-6

looping a program, 3-24

multiplication and division, 3-13

powers of two, 3-16

program branching, 3-30

program delays, 3-29

programming arithmetic operations,
3-10 ;

programming phases, 3-2

subtraction, 3-13

subtraction, 3-13

symbolic addresses, 3-7

symbolic programming conventions,
3-8

‘writing subroutines, 3-16

End-around carry: The action of -add-
ing the most significant bit of a
binary number to the least significant

. bit.
Error messages

Disk System, 7-21

FOCAL programs, 9-56

TSS/8, 8-20, -21
Equipment requirements

Disk System, 7-9

FOCAL, 9-1

TSS/8, 8-4
Equivalents, decimal-octal-binary, 1-11
Exclusive OR, 1-30

Execute: To carry out an instruction
or run a program on the computer.

Execute state, major state generator,

2-7

Executive routine: A routine that con-
trols or monitors the execution of
other routines.

Exercises

answers to, A-1

arithmetic operations, 1-26 to -28

elementary programming techniques,
3-34

input/output programming, 5-43

number systems, 1-10, -14

programming fundamentals, 2-28

system operation, 4-23

Exponent, in floating-point numbers,

1-35
EXPUNGE, pseudo-op, 6-29, -34
Extended arithmetic element, 4-22; in-
structions, D-5 '
Extended memory, data field, 4-19; in-
struction field, 4-19

F
Fetch state, major state generator, 2-7
FIELD, pseudo-op, 6-29
Fields, extended memory, 4-19

File: A collection of related records
treated as a unit.

Files, TSS/8 user, 8-3

Fixed point: The position of the radix
point of a number system is constant
according to a predetermined con-
vention.

FIXMRI, pseudo-op, 6-29
FIXTAB, pseudo-op, 6-29, -34
Flags, see device flags

Flip-Flop: A basic computer circuit or
device capable of assuming either
one of two stable states.

Floating point: A number system in
which the position of the radix point
is indicated by one part (the expo-
nent part), and another part repre-
sents the significant digits (the frac-
tional part).

Floating-point numbers, 1-35

Flowchart: A graphical representation
of the sequence of instructions re-
quired to carry out a data processmg
operation.

Flowcharting, C-1, 3-3

FOCAL
alphanumeric numbers, 9-12
arithmetic operations, 9-5
characters, special, 9-55
commands, 9-3, -13 to -30, -52
comments, 9-21
corrections, 9-11
error detection, 9-10
error diagnostics, 9-56
equipment required, 9-1
expressions, 9-6
floating-point, 9-5
getting online, 9-1 :
high-speed reader, reading from, 9-29
indirect commands, 9-8
initial dialogue, 9-2
language, 9-3
letters, used as numbers, 9-12
length of user’s program, estimating,

9.57

loading procedure, 6-55
mathematical functions, 9-26, -54
operating procedures, 6-56
operations, summary, 9-53

Index—35

FOCAL (cont.)
output format, 9-4
program examples, 9-31 to 9-51
program tapes, generating 9-32
scope functions, 9-55
symbols, 9-6
text strings, 9-8
trace, 9-25, -54
trig functions, 9-58.
variables, subscripted, 9-7
Foreground program, 5-23
Format: The arrangement of clata.
Formatting Teletype output, 5-9
FORTRAN (4K), 6-3
FORTRAN (8K), 6-3
FORTRAN-D Compiler, Disk System,
7-6
Fractions
binary and octal, 1-15
converting binary and octal to deci-
mal, 1-17
table of decimal, octal and binary
equivalents, 1-16

G

Group 1 microinstructions, 2-18, D-3
CLA (clear AC), 2-19, -20, -21, -22
CLL (clear L), 2-19, -20
CMA (complement AC), 2-19, -20
CML (complement L}, 2-19, -20
Format, 2-19 '
IAC (increment AC), 2-10
legal combinations, E-1
NOP, (no operation), 2-20
RAL (rotate AC and L left), 2-20
RAR (rotate -AC and L right), 2-19,

-20
RTL (rotate AC and L twice left),
2-20
RTR (rotate AC and L twice right),
2-19, -20

Group 2 (skip) microinstructions, 2-21,
D-4
Format, 2-21
HLT (halt), 2-22
legal combinations, E-2
OSR (inclusive OR of AC with switch
register), 2-22
SKP (unconditional skip), 2-22
SMA (skip on minus AC), 2-21, -22

SNA (skip on nonzero AC), 2-21, -22
SNIL (skip on nonzerc L), 2-22

SPA (skip on plus AC), 2-21, -22
SZA (skip on zero AC), 2-21, -22
SZL. (skip on zero L), 2-22

H

Hardware: Physical equipment, e.g.,
mechanical, electrical, or electronic
devices.

Head: A component that reads, records,
or erases data on a storage device.

Headings, inserting, 3-22

High-speed paper tape unit, 4-17

HLT (halt), 2-22

I

TAC (increment the AC), 2-20

Illegal combinations of microinstruc-
tions, 2-23

Inclusive OR, 1-30

Incrementing a tally (ISZ), 2-11

Indexing, see autoindex

Indirect address: An address in a com-
puter instruction which indicates a
location where the address of the
referenced operand is to be found.

Indirect addressing, 2-15, -16

Initialize: To set counters, switches,
and addresses to zero or other start-
ing values at the beginning of, or
at prescribed points in, a computer
routine,

Input: The transferring of data from
auxiliary or external storage into the
internal storage of the computer.

Input/Output programming
advanced program interrupt use, 5-28

ASCII code, 5-4

‘data break, 5-41

device flags, 5-3

device selection, 5-3

input/output transfer (IOT) instruc-
tions, 5-2, D-7

TIOT instruction format, 5-2

IOT instruction, user, 5-4

keyboard/reader instructions, 5-6

multiple device interrupts, 5-28

printer/punch instructions, 5-7

program/punch instructions, 5-7

program interrupt demonstration pro-
gram, 5-32

Index—6

program interrupt facility, 5-23
programming an interrupt, 5-24
programming the Teletype unit, 5-4
sample program for Teletype unit,
5-17
software priority interrupt system,
5-30
Teletype format routines, 5-9
Teletype input/output
5-4
Teletype numeric translation routines,
5-12
Teletype text rotitines, 5-10
Input/output programming, Disk
Monitor Systein, 7-21
Input/output transfer (I0T)
instructions
general description, 5-2
list of, D-7
Teletype instructions, 5-4
TSS/8 1/0 instyuctions, 8-19
Input and output units, 2-5

Inserting comments and headings, 3-22

Instruction field, 4-4, 4-19

Instruction register (IR), 2-7

Instructions, see group 1 microinstruc-
tions, group 2 microinstructions,
memory reference instructions, in-
put/output transfer instructions.

I/0: Abbreviation for input/output.

IOF (turn interrupt facility off), 5-23

ION (turn interrupt facility ond, 5-23

I0T instructions, see input/output
transfer instructions.

Input unit, general organization of
PDP-8, 1-32, 1-33

Intercept and plot of two functions,
FOCAL program, 9-40

Interesi payments, FOCAL program,
9-37 :

Internal storage: The storage facilities
forming an integral physical part of
the computer and directly controlled
by the computer. Also called main

memory and core memory.
Internal storage, in PDP-8 computer,

1-32 .

Inter-system communication, TSS/8,
8-19

IR (instruction register), 2-7

ISZ (increment and skip if zero), 2-10

instructions, -

J
JMP (jump), 2-10
JMS (jump to subroutine), 2-12
JUG (QJoint User Group), 11-3, see
. DECUS activities.

Jump: A departure from the normal
sequence of executing instructions in
a computer.

K

KCC (clear AC, keyboard buffer regis-
ter, keyboard buffer flag), 5-6

Keyboard/reader instructions,
type, 5-6

KRB (transfer keyboard buffer register
to AC and clear keyboard register
and flag), 5-6

KRS (transfer keyboard buffer register
to AC), 5-6)

KSF (skip if keyboard register loaded
with ASCII symbol; i.e., flag raised),
5-6

Tele-

L
L (link), 2-6, 4-5
Laboratory automation, 10-5

Language: A set of representations,
conventions, and rules used to con-
vey information.

Languages, natural, 1-1

Languages, programming

conversational, interpretive, BASIC,
6-4; FOCAL, 9-1

“scientific, problem oriented, ALGOL,
6-3; FORTRAN, 6-3; FORTRAN-
D, 7-6

machine, symbolic PDP-8, PAL III,
1-1 to 5-43)

LAS (load AC from switch register),
2-27

Leader: The blank section of tape at
the beginning of the tape.

Least significant digit (LSD):
rightmost digit of a number.

Least significant digit of a binary num-

ber, 1-8

LINC-8, computer system, 1-3

LINK (L), 2-6, 4-5

Literals, 6-33, -34

Load: To place data into internal
storage.

The

Index—7

LOAD command, Disk System, 7-14

Loaders, binary (BIN) loader, 6-11 to
-14; Disk System binary loader, 7-14;
list of, 6-3; read-in mcde (RIM)
loader, 6-8 to -11

Loading address of a program, see
origin,

Loading manually, 4-5

Location: A place in storage or mem-
ory where a unit of data or an
instruction may be stored.

Location assignment, 3-6

Location counter, see current location
counter

Logging in & out, TSS/8, 82, -11

Logic operations, primer, 1-29

Loop: A sequence of instructions that
is executed repeatedly until a termi-
nal condition prevails.

Looping a program, 3-24]

Low-speed paper tape reader, 4-11

LSD: least significant digit.

M

MA (memory address register), 2-8

Machine language programming: In
this text, synonymous with assembly
language programming (:he term is
sometimes used to mean the actual
binary machine instructions), 1-1 to
5-44,

Macro instruction: An instruction in a
source language that is equivalent
to a specified sequence of machine
instructions.

MACRO-8 Symbolic Assembler, 6-31

to 6-38
assembly procedures, 6-36, -37
error messages, 6-38
L/0 options, 6-35
literals, 6-33, -34
macros, 6-32, -33
off-page referencing, 6-35
pseudo-ops, 6-35
special features, 6-31
Macros, 6-32, -33
MAINDEC', 6-7
Major state generator, 2-7
Mantissa, in floating-point numbers,
1-35
Manual input: The entry of data by
hand into a device at the time of
processing.

Manual operation: The processing of
data in a system by direct manual
techniques.

Mask, use of AND in masking, 1-29

Mathematical constants, in octal, F-5

Mathematical subroutines, library of,
6-7

Matrix Inversion-Real numbers
(DECUS No. 8-72), 11-10

MB (memory buffer register), 2-7

Memory: (1) The erasable storage in
the computer. (2) Pertaining to a
device in which data can be stored
and from which it can be retrieved.

Memory address, 4-5
Memory address register (MA), 2-8
Memory buffer, 4-5
Memory buffer register (MB), 2-7
Memory pages, 2-13
Memory reference instructions (MRI)
AND (Boolean AND), 2-9
DCA (deposit and clear AC), 2-10
format, 2-14
ISZ (increment and skip if zero), 2-10
list of, D-1
JMP (jump), 2-10
JMS (jump to subroutine), 2-12
TAD (two’s complement add), 2-9
Memory unit, 1-33, 2-5, -7
MEM PROT, 4-4)
Microinstructions (microprogram-
ming), 2-23, see group 1 microin-
structions or group 2 microinstruc-
tions
Mnemonic coding, 2-3
Monitor functions, TSS/8, 8-2; Disk
System, 7-2
Monitor Initialization, Disk System,
7-10
Monitors
Disk Monitor, 7-1
TSS/8 Monitor, 8-5 to -21
commands, console manipulation,
8-12; device allocation, 8-12; file
control, 8-13; format, 8-10; log-
ging in & out, 8-11; permission
and switchboard tables, 8-17, -18;
user program control, 8-15, -16
(saving and restoring, 8-16)
data flow, applications, 8-9, -10; il-
lustration of, 8-9

Index—8

error messagés, system interpreter,
8-21; user program, 8-20, -21

phantom routines, 8-8

round-robin scheduling, 8- 6 to -8

states, user program, 8-6

subprograms, 8-5

system interpreter, 8-7

Most significant digit:
nonzero digit, 1-8.
MRI, see memory reference instruc-

tions
MSD: Most significant digit.
Multiplication in binary and octal, 1-23
Multiplication, programming, 3-13;
tables, binary and octal, F-5

The ' leftmost

N
Negative numbers and subtraction,
1-20
NOP (no operation), 2-20

Numbers, double precision, 1-35; float-

ing point, 1-35; representatxon in
PDP-8, 1-34

Number systems, definitions of basw
concepts, 1-5; primer, 1-5

Numeric input/output routines, 5-12

O

Object program: The binary coded
program which is the output after
translation from the source language.
(The binary program which runs on
the computer.)

Qctal: Pertaining to the number system
~ with a radix of eight.
OCTAL, pseudo-op, 6-29, -34

Octal coding, 2-2

Octal number line, 1-34

Octal number system, 1-11

Octal numbers, addition, 1-19; divi-
sion, 1-26; multiplication, 1-24; mul-
tiplication table, 1-25; subtraction,
1-22

Octal-to-decimal conversion, 1-12

ODT-8, commands, 6-52, -53; debug-
ging notes, 6-53 to -55; error detec-
tion, 6-55; generating binary tape,
6-54; loading & executing, 6-51;
starting address, 6-50

Offline: Pertalmng to equlpment or de-

vices not under direct control of the
computer.

Off-page referencing, 6-35

Online:.. Pertaining to equipment or
devices under direct control of the
computer; also to programs operat-
ing directly and immediately to user
commands, e.g., FOCAL and DDT.

Operand: That which is effected, mani-
pulated, or operated upon.

Operate microinstructions, 2-18
Operating procedures, 6-8 to -56
Assemblers, Symbolic, 6-23 to -39
MACRO-8, 6-31 to -38
assembly procedures (flowcharts),
6-36,-37° '
error messages, 6-38
high and low versions, 6-31; flow-
charts of, 6-36, -37
PAL 111, 6-24 to -30
an assembly, 6-25 to -29
assembly passes, 6-24, -25
assembly procedures (flowcharts),
6-27, -28
error messages, 6-30
Debugging Programs, Dynamic, 6-39
to -55
description of, 6-39
DDT-8 (Dynamic Debugging Tech-
nique), 6-40 to -50
adding new symbols (flowchart),
6-43
debugging notes, 6-47, -48
debugging with DDT-8, 6-44 to -47
error detection, 6-48
loading & "executing (flowchart),
6-41
loading symbol table (flowchart),
6-42 -
software required, 6-40
special keys & commands, 6-48 to
-55
ODT-8 (Octal Debugging Tech-
nique), 6-50 to -55
commands, 6-52, -53
error detection, 6-35
loading & executing (flowchart),
6-51
punching debugged program tape
(flowchart), 6-54
software required, 6- 51

Index—9

Operating procedures (cont.)
Editor, Symbolic, 6-15 to -23
commands, 6-16
error detection, 6-21
1/0 control, 6-21
modes, 6-15
punching program tapes, 6-18, -19;
flowchart of, 6-19
search feature, 6-20
special keys & commands, 6-21 to
-23
writing a program, 6-16 to -18
FOCAL, loading & execut ng
(flowchart), 6-55,- 56
initializing the system, 6-8
loaders, 6-8 to -14
Binary (BIN), 6-11 to -14; loading
BIN (flowchart), 6-12; loading
with BIN (flowchart), 5-14
Read-In Mode (RIM), ¢-8 to -11;
checking RIM (flowchart), 6-11;
instructions, 6-9; loading RIM
(flowchart), 6-10
Operator’s console, see Computer con-
sole
Options, TSS/8 hardware, 8-5
OR group of microinstructions (SMA
OR SZA OR SNL), 2-25
OR, logical operation, 1-30
Order of execution of combined micro-
instructions, 2-26
Origin: The absolute address of the
beginning of a program, 2-6.
OSR (inclusive OR of switch register
and AC), 2-22 N

Output: Information transferred from
the internal storage of a computer
to output devices or external storage.

OQutput unit, in PDP-8 computer, 1-32

Overflow: The generation of a quan-
tity beyond the capacity of the stor-
age facility.

P
Page: In the PDP-8, a unit of 200
(octal) memory locations.
PAGE, pseudo-op, 6-34
PAL-D Assembler, Disk System, 7-6
PAL III Modifications-Phoenix As-
sembler (DECUS No.5/8 28A),11-9
PAL III Symbolic Assembler, 6-24 to
-30

assembly, 6-25 to -30
assembly procedures, 6-27, -28
error messages, 6-30
output control, 6-30
pass 1, 2, and 3, 6-24, -25
pseudo-ops, 6-29, -30
Parch: To modify a routine in a rough
or expedient way.
PAUSE, pseudo-op, 6-29, -34
PC (program counter), 2-6
PDP-5/8 Remote & Time-Shared Sys-
tem (DECUS No.5/8-45), 11-10
PDP-8, see specific item or topic
PDP-8 Assembler for IBM 360/50 and
Up (DECUS No. 8-124), 11-11
PDP-8 family computers in the sciences
applications in behavioral sciences,
10-11; life sciences, 10-10; natural
sciences, 10-11; physical sciences,
10-9
data analysis, 10-3
data collection, 10-2
data display, 10-3
example of scientific
application, 10-12
gamma-ray spectroscopy, 10-10
gas chromatography, 10-6
infrared and ultraviolet
_ spectroscopy, 10-8
instrumentation control, 10-4
laboratory automation, 10-6
mass spectroscopy, 10-7 .
nuclear magnetic resonance (NMR)
spectroscopy, 10-7
offline and online uses, 10-1
pulse-height analysis, 10-6
time-of-flight (TOF) analysis, 10-9
x-ray diffraction, 10-8
PDP-8 organization and structure, 1-31,
2-4, -5
Peripheral Equipment and options,
4-16
DECdisk system, 4-22
DECtape system, 4-20
extended arithmetic element, 4-22
extended memory, 4-18
high speed paper tape unit, 4-17
Peripheral Interchange Program (PIP),
Disk System, 7-3
Permission table, TSS/8, 8-17 to--19

Index—10

Phantom routines, TSS/8, 8-8-

Plotting, one-line functions, FOCAL
program for, 9-39

Plotting on the Oscilloscope, FOCAL
program, 9-42 ’

Pointer address: Address of a core
memory location containing the ac- :

tual (effective) address, 2-15, see
indirect addressing.

Position coefficient, used in number
systems, 1-6

Powers of two, 3-16; table of, F-1

Predefined process: A named process

consisting of one or more operations

or program steps that are specified
elsewhere in a routine,

Procedure: The course of action taken

for the solution of a problem; also
called an algorithm.

Program: The complete sequence of in-

structions and routines necessary to :

solve a problem.
Program counter (PC), 2-6, 4-5
Program interrupt facility, 5-1, -23
advanced use of, 5-28
background program, 5-23
basic programming, 5-24
demonstration program, 5-32
foreground program, 5-23
instructions, 5-23
multiple device interrupts, 5-28
service routines, 5-23
skip chain, 5-29

Program library: A collection of avail- '

able computer programs and routines.
Program Library, Disk System, 7-3
Programming fundamentals, 2-1

accumulator (AC), 2-6

addressing, 2-13

AND group of microinstructions.

(SPA AND SNA AND SZL), 2-25
AND (Boolean AND), 2-9
arithmetic unit, 2-5
binary coding, 2-2
CLA (clear the accumulator), 2-19,

-20, -21, -22
CLL (clear the link), 2-19, -20
CMA (complement AC), 2-19, -20

CML (complement the link), 2-19,

20

Printer/punch instructions, Telétype,

combining microinstructions, 2-23

combining skip microinstructions, 2-25

control unit, 2-5, -6

core memory, 2-5, -7

current page or page 0 bit, 2-15

DCA (deposit and clear AC), 2-10

exercises, 2-28

group 1 microinstructions, 2-18

group 2 microinstructions, 2-21

HLT (halt), 2-22

JAC (increment the AC), 2-20

incrementing a tally (ISZ), 2-11

illegal combinations of
microinstructions, 2-23

indirect addressing, 2-15

input and output units, 2-5

instruction register (IR), 2-7

ISZ (Increment and skip if zero), 2-10

JMP (jump), 2-10

- JMS (jump to subroutine), 2-12

link (L), 2-6

major state generator, 2-7

memory address register (MA), 2-8

memory buffer register (MB), 2-7

memory pages, 2-13

memory reference instructions
(MRI), 2-8, -14

memory -unit, 2-3, -7

microprogramming, 2-23

mnemonic coding, 2-3

NOP (no operation), 2-20

octal coding, 2-2

OR group of microinstructions
(SMA OR SZA OR SNL), 2-25

order of execution of combined
microinstructions, 2-26

OSR (exclusive OR switch register
with AC), 2-22

PDP-8 organization and structure,
2-4,-5

pointer address (indirect addressing),
2-15

program counter (PC), 2-6

RAL (rotate AC and L left), 2-20

RAR (rotate AC and L right), 2-19,
-20

RTL (rotate AC and L twice left),
2-20

RTR (rotate AC and L twice right),
2-19, -20

Index—11

Programming fundamentals (cont.)
Rules' for combining mic-oinstruc-
tions, 2-28
SKP (unconditional skip), 2 -22
SMA (skip on minus AC), 2-21, -22
SNA (skip on nonzero AC), 2-21, -22
SNL (skip on nonzero L), 2-22
SPA (skip on plus AC), 2-21, -22
SZA (skip on zero AC), 2-21, -22
SZL (skip on zero L), 2-22
TAD (two’s complement add). 2-9
Programming, techniques, 3-1; see type
of operation to be prograrimed.
Pseudo-operators, MACRO-3, 6-34;
PAL III, 6-39, -30
Punched paper tape: A paper tape on
which a pattern of holes is used to
represent data.

Quadratic Equations, finding roots with
FOCAL program, 9-35

R

Radix: The quantity of characters for
use in each of the digital positions
of a number system.

RAL (rotate AC and L left), 2-20

RAR, (rotate AC and L right), 2-19,
-20

Read: To transfer informaticn from an
input device to internal storage; also
refers to the internal acquisition of

. data from memory.

Read-In Mode (RIM) Loader, 6-8 to
-11

core requirements, 6-9
instructions, 6-9
loading, 6-10

Referencing, off-page, 6-35

Register: A device capable of storing
a specified amount of data, such as
one word.

Registers, autoindex, 3-27

Round-robin scheduling, TSS/8, 8-6
to -8)

Routine: A set of instructions arranged
in proper sequence to caus: the com-
puter to perform a desirec. task.

RTL (rotate AC and L twice left),
2,20

RTR (rotate AC and L twice right),
2-19, -20

Rules for combining microinstructions,
2-28

Run: A single, continuous execution of
a program.

Running a stored program, 4-8

S

SABR, 8K assembler, 6-2

SAVE command, Disk System, 7-17

Scales of notation, F-5

Schroedinger equation solver, FOCAL
program, 9-50

Scientific applications, see PDP-8 fam-
ily computers in the sciences.

Service routine, program interrupt,
5-23 to -24

Simultaneous equations and matrices,
FOCAL programming, 9-44

Skip chain, 5-29

Skip microinstructions, see group 2
microinstructions

SKP (unconditional skip), 2-22

SMA (skip on minus AC), 2-21, -22

SNA (skip on nonzero AC), 2-21, -22

- SNL (skip on nonzero L), 2-22

Software: The collection of programs
and routines associated with the
computer.

Software, system, 6-1
availability of, 6-8
descriptions of:

ALGOL-8, 6-3

BASIC-8, 6-4

Disk/DECtape Monitor System, 6-4

dynamic debugging programs,
DDT-8, 6-6; ODT-8, 6-6

FOCAL, 6-4

FORTRAN (4K), 6-3

FORTRAN (8K), 6-3

FORTRAN compilers, 6-2 & -3

loaders, binary (BIN),.6-5; Disk
System Binary, 6-6; HELP, 6-5;
Read-In Mode (RIM), 6-5; TCO1
Bootstrap, 6-5

MACRO-8 symbolic assembler, 6-2

MAINDEC programs, 6-7

mathematical subroutines, 6-7

PAL III Symbolic Assembler, 6-2

Symbolic Editor, 6-2

TSS/8 (Time-Sharing System), 6-4

utility subroutines, 6-6

Index—12

Sorting program, 3-31
Source language: A symbolic language
that is an input to a given translation
process.
SPA (skip on plus AC), 2-21, 22
Spectroscopy, PDP-8 applications in
gamma-ray, 10-10
infrared, 10-8
mass, 10-7 .
nuclear magnetic resonance (NMR),
10-7
ultraviolet, 10-8

Square completer, FOCAL program,,

9-36

Starting address, of a program, 3-6

Statement: A meaningful expression or
generalized instruction in a source
language.

Step: One operation in a routine.

STL (set link to 1), 2-27

Store: To enter data into a device,
where it can be held and from which
it can be retrieved.

String: A connected sequence of enti-
ties, such as characters in a com-
mand string.

Subprograms, TSS/8 Monitor, 8-5

Subroutine, closed: A subroutine not
stored in the main part of a pro-
gram. Such a subroutine is entered
by a jump operation and provision
is made to return control to the main
routine at the end of the subroutine.

Subroutine, open: A subroutine that
must be relocated and inserted into
a routine at each place it is used.

Subroutines, writing, 3-16

Subtraction, programming, 3-13

Switch: A device or programming tech-
nique for making selections.

Switchboard table, TSS/8, 8-17 to -19

Switch register, 4-4

Switch register options,
6-35; PAL III, 6-21

Switches, computer console, 4-2

Symbol table, PAL III, 6-29, -30

Symbolic address: A set of characters
used to specify a memory location
within a program, 3-7 .

Symbolic assemblers, 6-23 fo -30

MACRO-8, 6-31 to -38
PAL I, 6-24 to -30

Symbolic coding: Writing instructions

using symbolic notation instead of

MACRO-8,

actual machine (binary) instruction
notation.
Symbolic Editor, 6-2, 6-24 to -30
commands, 6-16
error detection, 6-20, -21
L/0 control, 6-21
loading & starting, 6-16
modes of operation, 6-15
punching a program tape, 6-18 to -20
search feature, 6-20
‘special keys & commands, 6-21 to -23
writing a program, 6-16 to -18
Symbolic language, conventions, 3-8;
special characters, 3-9
Symbolic-language programming: Writ-
ing program instructions in a lan-
guage which facilitates the transla-
tion of programs into binary code by
making use of mnemonic conven-
tions (also called assembly language
programming), see assemblers.

System configuration, TSS/8, illustra-
tion of, 8-4; inter-system communi-
cation, 8-19; options, hardware, 8-3

System description and operation, 4-1

ASCII paper tape format, 4-14

BIN (binary) paper tape format, 4-15

computer console components, 4-1

computer console operation, 4-1

computer console switch positioning,
4-7

data field, 4-19

DECdisk system, 4-22

DECtape system, 4-20

extended arithmetic element, 4-22

extended memory, 4-18

generating a symbolic tape, 4-12

high-speed paper tape unit, 4-17

initializing the computer console, 4-7

instruction field, 4-19

low=speed paper tape punch, 4-12

low-speed paper tape reader, 4-11

manual program loading, 4-5

paper tape formats, 4-13

paper tape loader programs, 4-15

peripheral equipment and options,
4-16

RIM (read-in mode) paper tape for-
mat, 4-14

Teletype control knob, 4-10

Teletype keyboard, 4-10

Index—13_

System description (cont.)
Teletype operation, 4-9
Teletype printer, 4-11
Teletype unit components, 4-9
System initialization, 6-8
System interpreter, TSS/8, 8-7, -21
System software, description, 6-1 to -8;
operating procedures, 6-8 to -56; see
software.
SZA (skip on zero AC), 2-21, -22
SZL (skip on zero L), 2-22

T

Table generation, FOCAL, 9-31
TAD (two’s complement add), 2-9
TCF (clear Teletype printer flag), 5-8
Teletype unit, programming, 5-4
format routines, 5-9
TOT routines, 5-9
keyboard/reader instructions, 5-6
numeric translation routines, 5-12
printer/punch instructions, 5-7
sample program, 5-17
text routines, 5-10
Temperature conversion, FOCAL pro-
gram, 9-38
Terminal: A device in a system through

which data can either enter or leave.

Text input/output routines, 3-9

Three-cycle data break, 5-42

Time sharing: A method of allocating
central processor time and other
computer services to multiple users
so that the computer, in effect, proc-
esses a munber of programs simul-
taneously.

Time-Sharing System, TSS/§, 8-1
Introduction, 8-1
core and disk allocation, -1
monitor functions, 8-2
system configuration, illustration of,
8-4; inter-sys_tcm comraunication,
8-19; options, hardware, 8-5
system programs, 8-3
user & console, TSS/8, 8-2
user files, 8-3
user programs, 8-3
I/0 transfer instructions, 8-19, -20
Monitor, 8-5 to -21
commands, 8-10;console manipulation,

8-12; device allocation, 8-12; file
control, 8-13, format, 8-10; for-
mat, 8-10; logging in & out, 8-11;
permission & switchboard tables,
8-17, -18; user program -control,
8-15, -16 (saving & restoring, 8-16)

data flow, 8-8 to -10; applications,
8-9, -10; illustration of, 8-9 '

error messages, system interpreter,
8-21; user program, 8§-20, -21

phantom routines, 8-8

round-robin scheduling, 8-6 to -8

states, user program, 8-6

subprograms, 8-5

system interpreter, 8-7

TLS ‘(clear printer flag, transfer AC
to print buffer register, select and
print character), 5-8

Toggle: Using switches to enter data
into the computer memory.
TPC (transfer AC to print buffer reg-

ister, select and print character), 5-8

Training by simulation, 1-3

Translate: To convert from one lan-
guage to another.

Triple Precision Arithmetic Package
for the PDP-5 and "the PDP-8
(DECUS No. 5/8-21), 11-9

TSF (skip if printer flag set), 5-8

TSS/8, see Time-Sharing System

Two’s complement arjthmetic, 1-20

Types of 10T instructions, 5-4

U

USASCII, see ASCIIL
Utility subroutines, library of, 6-6

w

Weighting tables, used in number sys-
tems, 1-6, 1-8

Word: A 12-bit unit_of data in the
PDP-8 which may Be stored in one
addressable location.

Word length: The number of bits in a
word.

Write: To transfer information from
internal storage to an output device
or to auxiliary storage.

Index-——14

NOTES

. Contents

! Computer Fundamentals

Programming Fundamentals

Elementary Programming Techniques
u System Descr’ip?ion and Qperation

H Input/OQutput Programming

ﬂ Operating the System Software

Disk Meonitor System

u Time-Sharing System

H FOCAL Programming

u PDP-8 Family Computers in the Sciences
' Digitz;l Equipment Computer Users Society
u Answers to Selected Exercises

a Character Codes

I Flowchart Guide

u Tables of Instructions

Legal Microinstruction Combinations

! Miscellancous Tables

. Index/Glossary

