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CHAPTER 1

FPP12 PROGRAMMING DATA

1.1 SCOPE OF THE MANUAL

This manual contains instructions for programming and servicing the Floating Point Processor (FPP12),

a peripheral device for PDP-8 and PDP-12 Computers. Chapters 1 and 2 contain programming infor-

mation. Chapter 3 describes the logical components of the FPP12. Installation and check-out pro-

cedures are found in Chapter 4. It is assumed that the reader is familiar with the operation of the

PDP-8/I, PDP-8/L, PDP-8, LINC-8, PDP-8/E or PDP-12 Computers. It is suggested that the reader

have as a reference the FPP Assembler Manual

.

1.2 INTRODUCTION

The Floating Point Processor (FPP12) is a programmable, peripheral, digital processor that attaches to

the input/output (I/O) bus of any PDP-8, PDP-8/I, PDP-8/L, PDP-8/E, LINC-8, or PDP-12 Computer.

The FPP12 is a parallel processor with its own instruction set. It utilizes the direct memory access

or data break facility to "steal " memory cycles from the Central Processor Unit (CPU). Similar to

a disk, the FPP12 is activated by the CPU through the use of programmed input/output IOT instruc-

tions. Once activated, the FPP12 steals a maximum of 50 percent of the memory cycles from the

PDP-8, PDP-8/I, PDP-8/L, or PDP-8/E CPU. For the PDP-12 there are two operating modes,

parallel and serial

.

In parallel mode, the FPP12 steals a maximum of 50 percent, or every other memory cycle, from the

PDP-12, thus permitting the PDP-12 and the FPP12 to operate simultaneously. Once initiated in

serial mode, the FPP12 locks out the PDP-12 CPU for the duration of a complete calculation. Serial

mode increases the FPP12 calculation speed by approximately 20 percent.

The FPP12 performs arithmetic operations on floating-point numbers 20 to 100 times faster and with

100 to 200 fewer memory cycles than software interpreters. The FPP12 instruction set facilitates the

programming of complicated algorithms and the building of compilers for mathematical languages.

Variable length instructions are part of a flexible addressing scheme. Direct addressing of 32K of
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core memory is available using a 24-bit instruction format. A 12-bit instruction format, in which

the operand address is relative to a programmable base register, reduces program length and facilitates

re-entrant coding. Any eight sequential core locations can be used as an index register to modify

operand addresses. Index registers are adjusted prior to use in address modification, to account for

the different number of core locations used in the two data formats permitted by the FPP12.

1.3 FLOATING POINT NUMBER SYSTEM

The term floating point implies a movable binary point similar to the movable decimal point used in

scientific notation. An exponent is used to keep track of the number of spaces the binary or decimal

point is moved.

Examples of scientific notation:

234 = 23.4 x 10
1

= 2.34 x 10
2

Examples of binary floating-point notation:

(1011) = (101.1)x 2
1
= (10.11) x 2

2
= (l.Oll)x 2

3

(1.011) x 2
3 =0.1011 x 24 = 0.01011 x 2

5

In the example of binary floating-point notation given above, there are four significant bits. However,

in the last term, the fraction that multiplies the exponent contains six bits. Given a fixed number of

bits, it is desirable to adjust the exponent and the binary point to eliminate leading zeros. This ad-

justment retains the maximum numerical significance for a given format length. The FPP12 normalizes

or removes leading zeros as the last step in every floating-point arithmetic operation.

The floating-point data format used by the FPP12 is identical to the format used by the PDP-8 floating-

point system (DEC-08-YQYB-D) . As shown below, there is a 12-bit signed 2's complement exponent

and a 24-bit signed 2's complement mantissa.

s EXPONENT

0 11

s MSW OF MANTISSA

0 '

It

BINARY POINT

LSW OF MANTISSA

0 II

12-0264
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The FPP12 carries all calculations to 28 bits of precision, then rounds to 24 bits after normalization;

after rounding, the result is rechecked for proper normalization prior to completing the instruction.

In fixed-point arithmetic, the precision of a number varies with the number's magnitude. In addition,

the range of fixed-point numbers is generally limited in most mini computers to 12 or 16 bits. With

the FPP12, the number range is 2+2047 to 2~2048; precision is maintained at 24 bits throughout the

number range. Exceeding the upper limit, 2+2047, causes the FPP12 to interrupt the PDP-12 CPU

and set its exponent overflow status bit. A calculation resulting in a exponent smaller than 2~2048

is an exponent underflow that can cause a program interrupt. At initialization, the programmer

has the option to request that the underflow trap be ignored, in which case the result of calculation

in which underflow occurred is set to 0.

Fixed-Point 24-Bit Fraction Format

For those calculations where full 24-bit precision is not necessary and where core space is at a pre-

mium, the FPP12 can be used in fixed-point 24-bit mode. Each operand consists of a 24-bit signed

2's complement fraction as shown below.

s

0

BINARY POINT

1 2 23

12-0265

As in the case of the floating-point mode, each calculation is carried to 28 bits of precision and

rounded to 24 bits but no normalization is performed. Therefore, leading zeros occur which reduce

the precision of subsequent calculations. In fixed-point mode, calculations resulting in a fraction

overflow cause the FPP12 to initiate a program interrupt with the fraction overflow status bit set to 1

.

1.4 SYSTEM DESCRIPTION

The FPP12 is initialized and interrogated as to its status via PDP-8 IOT instructions issued on the pro-

grammed I/O bus. Once initialized, the FPP12 operates as a processor fetching instructions and

operands via the data break or direct memory access bus. A typical system configuration consisting

of a PDP-12 and a FPP12 is shown in Figure 1-1 . Note that the PDP-12 Computer contains two data

break ports; one is permanently reserved for the LINCtape control, the other is available for a device
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c LINCtapes

LINCtape PORT

PDP-1Z
MEMORY
4-32K
12 BIT
WORDS

PDP-12
CPU

c RELAYS

CRT DISPLAY 3
ANALOG TO
DIGITAL CONV J

PROGRAMMED PDP-8 I/O BUS

FLOATING
POINT PROC.

FPP1 2

EXTERNAL DATA BREAK BUS

TELETYPE
REAL-TIME
INTERFACE
FACE KW12A

The FPP12 attaches to the EXTERNAL data break and programmed

I/O bus of the PDP-12 computer without additional hardware.

Figure 1-1 PDP-12 12/40 System Configuration

such as a disk, data break card reader control CD12, or the FPP12. If two or more data break devices,

in addition to the LINCtape, are attached to the PDP-12, a memory multiplexer (DM12) is generally

required (see Figure 1-2). The exception is that the Analytical Instrumentation Package (AIP12) and

the FPP12 may both be attached to the data break bus without a memory multiplexer. A special cable

that connects the FPP12 to the AIP12 contains the signals necessary to arbitrate data break requests be-

tween the AIP12 and the FPP12.

On the PDP-8, PDP-8/I, and PDP-8/L Computers only one direct memory access port is available;

attaching an FPP12 and DECtape, for example, requires a memory multiplexer. Each data break de-

vice has its own memory port on the PDP-8/E Computer; therefore, a separate memory multiplexer is

not required on the PDP-8/E for up to 12 separate data break devices.

1.5 FPP12 REGISTER ORGANIZATION

There are eight registers in the FPP that are of interest to the programmer. The functions of these

registers, named below, will be discussed in the remainder of this chapter.

Register

Floating Point Accumulator (FAC)

Index Register Address Pointer (X0)

Function

36-bit register split into 12-bit exponent and

24-bit fraction.

Contains the T5-bit core location of index

register 0.
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LINCTAPE
PORT »

D

PDP-12
MEMORY
4-32K
12 BIT
WORDS

PDP-12
CPU

EXTERNAL DATA BREAK BUS

RELAYS 3
)

CRT DISPLAY

( ANALOG TO
^DIGITAL CONy

DATA
BREAK

PRIORITY
MULIPLEXER

DM12

REALTIME
INTERFACE

KW12

PROGRAMMED PDP-8 I/O BUS

256K
FIXED
HEAD
DISK

RF08

800K
REMOVEABLE

DISK

FLOATING
POINT
PROC.

FPP12

ANALYTICAL
INSTR.

INTERFACE

Figure 1-2 Typical Configuration of the PDP-12 with Multiple Devices

Register

Base Register (Base)

Floating Point Program Counter (FPC)

Active Parameter Table Pointer

Command Register

Status Register

Function

Contains the 15-bit base address used in cal-

culating single-word addresses.

Contains the 15-bit address that is the location

of the next FPP12 instruction

.

Loaded via IOTs with the 15-bit address of

the first location of the Active Parameter

Table (APT).

The command register is loaded with an IOT
instruction. The command register selects

FPP12 operating modes, sets the FPP12 inter-

rupt enable, chooses the important parameters

to be saved in the APT, and fixes the most

significant 3 bits of the 15-bit APT pointer.

The status register may be interrogated by the

CPU to determine the cause of an exit opera-

tion by the FPP12. The status register also

indicates if the FPP12 is in the run or (run) A
(F PAUSE) state.
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Register

Operand Address Register

Function

The operand address register is deposited in the

APT and contains one of the following:

a. If the last address-bearing instruction prior

to the exit was of the data reference class,

the operand address register contains the

15-bit address of the least significant word

of the operand.

b. If the last address-bearing instruction prior

to the exit was an executed jump instruction,

the operand address register contains the jump

address.

c. If after initialization an exit is performed prior

to the execution of a jump or data reference

instruction, the operand address register

contains the FPC originally set by the APT.

d. The instructions SET BASE (SET B) and SET XO
REGISTER (SET X) have no effect on the op-

erand address register.

1 .6 ACTIVE PARAMETER TABLE

The Active Parameter Table (APT) (refer to Table 1-1) contains information necessary for starting or

restarting an FPP12 program. The APT is defined as any two to eight locations in core. The APT

pointer is set to point at the first entry of the APT. The initialization procedure for the FPP12 in-

cludes two IOT instructions that set up a command register and set the 15-bit APT pointer to the first

location of the APT, shown as location P in Table 1-1 . Following the second IOT, the FPP12 picks

up the contents of the APT. Whenever the FPP12 performs an EXIT, the current contents of the APT

overlay the initial APT contents.

The APT performs three services for the programmer.

a. It reduces the number of IOTs necessary to initialize the FPP12. This reduces the CPU
program overhead which is critical in multitask and time-shared environments.

b. It automatically saves the status of interrupted FPP12 programs.

c. It provides convenient access to the information necessary for debugging FPP12 pro-

grams and determining the cause of FPP12 "error" exits such as exponent overflow,

underflow, or attempted division by 0.

With the exception of the operand address, all parameters contained in the APT are used in ini-

tializing the FPP12. The operand address is stored for the use of the CPU program when the FPP12

exits.
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Table 1-1

Active Parameter Table Format

Location Contents

P

Field Bits

of Operand

Address

Field Bits

of Base

Register

Field Bits of

Index Register

Location

Field Bits

of FPC

P+l Lower 12 bits c>f FPC

P+2 Lower 12 bits of Index Register 0 location X 0

P+3 Lower 12 bits of Base Register

P+4 Lower 12 bits of operand address

P+5 Exponent of FAC

P+6 MSW of FAC

P+7 LSW of FAC

NOTE: APT address points to location P.

1.7 PROGRAMMING THE FPP12

The FPP12 is initialized and interrogated by PDP-8 type IOT instructions. Once started, the FPP12

operates much like an actual processor, fetching instructions and operands and storing results in the

PDP-8 or PDP-12 core memory. Data breaks or "stolen" memory cycles are generally requested by the

FPP12 as needed. The maximum number of breaks requested is generally one per regular PDP-8 or

PDP-12 instruction. This means that while the FPP12 is operating, PDP-8 or PDP-12 programs can be

run simultaneously at 50 to 70 percent of normal speed. Typically LINCtape, display, analog data

acquisition, and other forms of I/O can be performed by the PDP-12 Computer while the FPP12 is cal-

culating.

An optional mode is available to the FPP12 attached to a PDP-12 Computer. For calculations where

the maximum FPP12 program speed is required, setting the proper command register bit (refer to Table

1-2) locks out the PDP-12 processor during FPP12 program execution. Using the "lock out" mode on

the PDP-12 speeds up FPP12 programs by 15 to 25 percent (refer to Table 1-4).

1.7.1 Initialization

To execute the first instruction of any program, the FPP12 must have the 15-bit core address of the

first instruction that is contained in the first two locations of the APT. The contents of other locations
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Table 1-2
/

_ ,

AC After Read Status Instruction h (~> O ia>

AC Bit Function if AC Bit Set to 1

0 Fixed-point mode.

1 Trapped instruction caused exit.

2 FPHLT instruction caused exit.

3 Atfemnted dividf* nv 0 routed f»xit Thp FAC wq< not nlt^rf^H• • 1 IblllUI UIVIUu / uUU JCU OA II. 1 IIC 1 ' ' " VTUg 1 IUI UII^I^VJ.

4 Fraction overflow in fixed-point mode caused exit.

5 Exponent overflow caused exit.

6 Exponent underflow has occurred. Exit on exponent underflow

is optional

.

w Unused

10 The FPP12 is currently paused.

11 The FPP12 is currently in a run state.

Table 1-3 / ~7

Command Register Setting ^> O

AC Bit Function when AC Bit Set to 1

AC bits 0-11 have the following function when the FPCOM IOT is issued.

0 Select fixed-point mode upon initiation.

1 Exit if exponent underflow occurs. Otherwise, set result of cal-

culation and continue.

2 Forbid access to 4K memory fields other than the field that is oc-
cupied by the last location of the APT.

3 Enable CPU program interrupt when FPP12 Interrupt Request flag

is set. Skip is always enabled.

4 Do not store operand address on exits. The operand address is never

retrieved on initiate.

5 Do not store the address of index register 0 from or in the APT.

6 Do not store the base register from or in the APT.

7 Do not store the FAC from or in the APT.

8 Lock out the PDP-12 processor during FPP12 program execution.

Unused on PDP-8 FPP12 systems.

(Continued on next page)
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Table 1-3 (Cont)

Command Register Setting

AC Bit Function when AC Bit Set to 1

AC bits 0-11 have the following function when the FPCOM IOT is issued.

9

10

11

Most-significant 3 bits of APT pointer.

Note: Setting bits 4-7 of the command register speeds up initiation and exit operations.

Setting command register bits 4-7 does not alter the relative position of items on

the APT. In multijob environments, command register bits 4-7 are typically set

to 0.

Table 1-4

Instruction Execution Times*

Serial Mode Parallel Mode**

Instruction Octal Code Double Precision Floating Point Double Precision Floating Point

Execution Time Execution Time Execution Time Execution Time

(us) (us) (us) (us)

FLDA 0200+X 12 13 14 16

FADD 1200+X 13 19 14 23

FSUB 2200+X 13 19 14 23

FDIV 3200+X 24 28 27 31

FMUL 4200+X 23 27 27 31

FADDM 5200+X 17 26 24 30

FMULM 6200+X 27 33 30 39

FSTA 7200+X 12 13 14 16

*AII times were measured using the single-word direct reference format. Timing tolerance is ±20%.

**rbr these measurements the PDP-12 was performing mostly single cycle instructions.

of the APT are often useful in starting a program and essential in restarting an interrupt task. Once

the appropriate parameters are placed in an APT table by the CPU, two IOTs must be issued. FPCOM

(6553) loads a command register and the most significant 3 bits of the APT pointer. The significance

of the bits in the command register is shown in Table 1-3. FPST (6555) loads the least significant

12 bits of the APT pointer and starts the FPP12. A typical initiate sequence is shown in Example 2-1.

Once initiated, the FPP12 will execute instructions until:

a. An error condition, such as exponent overflow, occurs.

b. An FEXIT instruction is encountered.
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c. An FPHLT IOT is issued by this CPU.

d. An I/O preset is issued by the CPU.

e. The CPU encounters any type of halt.

1.7.2 Serial vs Parallel Processing

The most efficient use of resources occurs when the CPU and FPP12 are programmed to operate in par-

allel. For instance, in the display oriented research analysis (DORA) program which faciliates display

interactive manipulation of data files, the PDP-12 refreshes a CRT display, performs Teletype®,

LINCtape, and disk I/O, and samples knob and sense switch positions while the FPP12 is performing

floating-point arithmetic. Because the FPP12 and the CPU access the same core memory, the communi-

cation methods are virtually unlimited; either processor can alter the other's program or data. Usually

the CPU is assigned the job of scheduling and I/O, while the FPP12 performs complex arithmetic.

However, in the DORA program, the FPP12 schedules I/O by passing parameters to the PDP-12 CPU.

There are occasions when it is desirable to complete an FPP12 calculation between operations per-

formed by the CPU„ Setting the appropriate command register bit in the FPP12 permits serial operation

with the PDP-12 Processor. In serial mode, the PDP-12 CPU is locked out from the executing instruc-

tions while the FPP12 is operating.

There is no provision for a true serial mode for an FPP12 on a PDP-8 type processor. The fastest wait

loop for a PDP-8, PDP-8/I, or PDP-8/L Computer consists of a JMP instruction with the programmed

interrupt facility enabled, because data breaks can occur only between complete instructions. On

the PDP-8/E Computer, the data break facility is structured so that data breaks may occur after any

major state or multistate instructions. Therefore, the particular CPU program in progress does not

affect the FPP12 instruction execution time on a PDP-8/E Computer,

1.7.3 IOT Instructions

A complete list follows of IOT instructions with device code 55 that apply to programming the FPP12.

IOT instructions with device code 56 are relegated to maintenance programs. The use of maintenance

IOTs is presented in Chapter 3. If a conflict exists between the FPP device select codes and the de-

vice select codes of another peripheral, the conflict must be resolved in the hardware by altering wired

connections in either the FPP12 or the conflicting device. It is recommended that the FPP12 device

codes not be altered because of the necessity of changing extensive diagnostic and system software.

However, the logic to be altered in changing device codes is found on Prints FPP12-0-CI!

,

FPP12-0-CI2, and FPP12-0-CI3.

Teletype is a registered trademark of Teletype Corporation.

1-10



1.7.4 IOT List

Mnemonic

FPINT

FPICL

FPCOM

Octal Code

6551

6552

6553

FPHLT 6554

FPST 6555

FPRST

FPIST

6556

6557

Function

Skip when the FPP12 Interrupt Request flag is set.

Unconditionally reset the FPP12 including all flags.

To the FPP12, the IOT FPICL is the same as I/O preset.

If the FPP12 is not in a Run state and the FPP12 Inter-

rupt Request flag is not set, the FPP12 command register

is loaded with the contents of the AC*. If the FPP12

is in a Run state, or if the Interrupt Request flag is set,

the FPCOM instruction is ignored.

Force the FPP12 to exit, dump its status in the APT, and

set the Interrupt Request flag at the end of the current

instruction. The FPHLT instruction is used to abort an

FPP12 program in a multijob environment or in software

debugging. The following special features apply to the

FPHLT instruction.

a. If FPHLT is issued prior to the FPST instruction, the

FPP12 will execute only one instruction after in-

itiation and then exit with the FPC pointing to the

succeeding instruction. This facilitates single step-

ping through an FPP12 program under CPU control

.

b. If the FPP12 is in a Pause state, the FPP12 will exit

with the FPC pointing at the pause instruction. This

means that if a job was aborted in a Pause state it

will be resumed in a Pause state.

c. Normally, if an exit is forced by FPHLT, AC02 will

be set to a 1 when either read status FPRST or FPIST

is issued. However, if the forced exit causes the

FPP12 program to abort while an FEXIT instruction

is being executed, the CPU forced exit flag is

cleared. Thus, the CPU forced exit flag is an ab-

solute indicator that a program was prematurely

aborted.

If the FPP12 is not running and the Interrupt Request flag is

not set, the least significant 12 bits of the APT pointer are

set to the contents of the AC and the FPP is started. If the

FPP12 is in a Run state, but paused, the FPST instruction

will cause the FPP 12 to continue. Otherwise, the FPST

instruction has no affect on the FPP12. If the FPST instruc-

tion causes the FPP12 to start or continue, the CPU will

skip the instruction following FPST.

Read the FPP12 status register into the AC. FPRST may
be issued at anytime.

Skip if the FPP12 Interrupt Request flag is set. If the skip

occurs, read the FPP12 status register in the AC and
clear the status flags and the Interrupt Request.

*AC refers to the PDP-12 or PDP-8 accumulator while FAC refers to the FPP12 accumulator.
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1.7.5 Instruction Set-Address Methods

Three types of data reference instructions are available:

a. 24-bit instruction with a 15-bit absolute address.

b. 12-bit instruction with a 7-bit relative address.

c. 12-bit instruction with a 3-bit relative address that specifies a 15-bit indirect address.

Full indexing capability is available for types a and c. The determined operand address points at the

exponent of the operand in floating-point mode and at the most significant word of the operand in

fixed-point mode.

1.7.6 Index Registers

Any core location may be used as an index register. The core address of the current index register 0

is stored in the XO register. The XO register is initially set from the APT, but may be altered by the

SET X instruction. Index register X is in location XO+X, where X = 0, .... ,7.

Accessing an array of data points requires incrementing the address of the current point by the data

length to yield the address of each successive point. Index registers are used to accomplish this

address modification. The index register is incremented by one to access each successive point, but

it is multiplied by the data length, three for floating point and two for fixed point. This quantity is

used as the displacement from the address specified in the instruction to yield the address of the cur-

rent point. Adjusting of index registers simplifies "skipping" through data arrays and permits a single

index register to be used as both a loop counter and address modifier (see Example 2-2). Pre-incrementing

is selected by bit 5 of data reference instructions types a and c. Instructions are available for setting,

testing, and performing arithmetic on index registers. In particular, the instruction ADDX, which

adds the contents of bits 12-23 of the instruction to the contents of the index register specified by

bits 9-11 of this instruction, is useful in manipulating "push-down stacks".

1.7.7 Instruction Set

The FPP12 instruction set is divided into two basic classes: data reference instructions and special

instructions. Data reference instructions are those that operate on the two data formats specified in

Paragraph 1.8. Data reference instructions include the basic arithmetic operations plus load and store.

All other instructions are special instructions that include index registers modifiers, jumps, pointer

moves, and the operate-type instructions.

The instruction set is presented in detail in the following paragraphs. The instruction format follows

each group of instructions.
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1.8 DATA REFERENCE INSTRUCTIONS*

OP Code Mnemonic Data Function

0 FLDA C(Y) - FAC

1 FADD C(Y) + C(FAC) -FAC

5 FADDM C(Y) + C(FAC) -Y
2 FSUB C(FAC) - C(Y) -C FAC

3 FDIV C(FAC)/C(Y) - FAC

4 FMUL C(FAC) * C(Y) -FAC

7 FMULM C(FAC) * C(Y) *Y

6 FSTA C(FAC) - C Y

Data Reference Instruction Formats

OP CODE 1 0 + X ADDRESS

0 2 3 4 5 6 8 9 (1

ADDRESS

12 23

DOUBLE-WORD DATA REFERENCE INSTRUCTION

12-0270

Y = C (bits 9-23) + M * (C (X + XO) + C (bit 5) ) *5 (X)

OP CODE 0 1 OFFSET

0 2 3 4 5 12

SINGLE-WORD DIRECT REFERENCE
12-02 71

Y = C (base register) + 3 (offset)

*In fixed-point mode the exponent of the FAC is never altered.
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OP CODE I 1 + X OFFSET

0 2 3 4 5 6 8 9 (1

SINGLE-WORD INDIRECT REFERENCE
12-0268

Y = C (bits 21-36 of C ( (base reg .) + 3* offset))

+ (M) * (C X + XO) + C(bit 5))* 5 (X)

8(X)= 1 if X/^OandOif X = 0

M = 2 if fixed-point mode

3 if floating-point mode

1.8.1 Special Format 1

OP Code

3

4

5

6

7

Mnemonic

JXN

Trapped

Instruc-

tions

Function

The index register X is incremented if

bit 5 = 1 and a jump is executed to the

address contained in bits 9-23, if in-

dex register X is nonzero.

The instruction -trap status bit is set and

the FPP12 exits causing a PDP interrupt.

The unindexed operand address is dumped
into the APT.

OP CODE 0 0 + X ADDRESS

0 3 4 5 6 7 8 9 11

ADDRESS

23
SPECIAL FORMAT 1

1.8.2 Special Format 2

OP Code Extension

0 10

0 11

Mnemonic Function

LDX The contents of the index register specified by

bits 9-1 1 are replaced by the contents of bits

12-23.

ADDX The contents of bits 12-23 are added to the

index register specified by bits 9-11.
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1.8.3 Conditional Jumps

Jumps, if performed, are to the location specified by bits 9-23 of the instruction.

OP Code Extension Mnemonic

1 0 JEQ

1 1 JGE

1 2 JLE

1 3 JA

1 4 JNE

1 5 JLT

1 6 JGT

1 7 JAL

1 .8.4 Pointer Moves

OP Code Extension Mnemonic

1 10 SETX

1 11 SETB

1 13 JSR

1 12 JSA

Function

Jump if FAC = 0

Jump if FAC > 0

Jump if FAC < 0

Jump always

Jump if FAC ^ 0

Jump if FAC < 0

Jump if FAC > 0

Jump if impossible to fix the floating-point

number contained in the FAC; i.e., if the ex-

ponent is greater than (23), n .

Function

Set XO to the address contained in bits 9-23

of the instruction.

Set the base register to the address contained

in bits 9-23.

Jump and save return. Jump to the location

specified in bits 9-23 and the return is saved

in bits 21-35 of the first entry of the data block.

An unconditional jump is deposited in the ad-

dress and address + 1 , where address is specified

by bits 9-23. The FPC is set to address + 2.

OP CODE 0 0 EXTENSION F

0 2 3 4 5 8 9 11

Y

12 23

SPECIAL FORMAT 2
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1.8.5 Special Format 3

OP Code Extension Mnemonic Function

0 1 ALN The mantissa of the FAC is shifted until the

FAC exponent equals the contents of the index

register specified by bits 9-11 . If bits 9-11 are

zero, the FAC is aligned so that the exponent =

(23) ]Q-* In double-precision mode, an arith-

metic shift is performed on the FAC fraction.

The number of shifts is equal to the absolute

value of the contents of the specified index

register. The direction of shift depends on the

sign of the index register contents. A positive

sign indicates a shift toward the least significant

bit, while a negative sign indicates a shift

toward the most significant bit. The FAC ex-

ponent is not altered by the ALN instruction in

double-precision mode.

0 2 ATX The contents of the FAC are fixed and the least

significant 12 bits of the mantissa are loaded in-

to the index register specified by bits 9-11. In

double-precision mode the least significant 12

bits of the FAC are loaded into the specified

index register. The FAC itself is not altered by

the FLATX instruction.

. 0 3 XTA The contents of the index register specified by

bits 9-11 are loaded right-justified into the FAC
mantissa. The FAC exponent is loaded with

(23)io and then the FAC is normalized. This

operation is typically termed floating a 12-bit

number. In double-precision mode, the FAC is

not normalized.

0 4 NOP The single-word instruction performs no operation.

0 5-7 i

\ These codes are reserved for instruction

0 12-17 ( reserved set expansion and should not be used.

1 14-17

*Setting the exponent = (23)}0 integerizes or fixes the floating-point number. The JAL instruction

tests to see if fixing is possible.
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1.8.6 Operate Group - Special Format 3

OP Code Extension 9-11 Bits Mnemonic Function

0

0

0

0

0

0

0

0

0

0

0

0

0 FEXIT Dump active registers into the APT,
reset the FPP12 RUN flip-flop to

the 0 state, and interrupt the PDP-12
processor.

1 FPAUSE Wait for synchronizing signal . IOT
FFST (6555) will restart the instruc-

tion following FPAUSE.

2 FCLA Zero the FAC mantissa and exponent.

3 FNEG Complement FAC mantissa.

4 FNORM Normalize the FAC. In double-

precision mode FNORM is a NOP.

5 START F Start floating-point mode.

6 START D Start double-precision mode.

7 JAC Jump to the location specified by

the least significant 15 bits of the

FAC mantissa.

OP CODE 0 0 EXTENSION F

0 2 3 4 5 8 9 11

SPECIAL FORMAT 3

12-0273
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CHAPTER 2

FPP12 PROGRAMMING EXAMPLES

2.1 INTRODUCTION

Programming examples for the Floating Point Processor and a procedure for initializing the FPP12 are

contained in this chapter. Several examples are provided that utilize index registers. A re-entrant

sine subroutine illustrates a technique for writing re-entrant code. Program debugging techniques are

discussed in detail . The mnemonics and syntax used in this chapter are consistent with those of the

FPP assembler. A complete description of the assembler can be found in the manual entitled, FPP

Assembler Manual, DEC-12-AQZA-D. A math package for the FPP is described in a manual entitled

FPP Support Library (DEC-12-YEXA-D).

2.2 PROGRAM INITIALIZATION

Each FPP12 program consists of one or more instructions and an Active Parameter Table (APT). Upon

initialization, the APT (refer to Table 1-1) contains the initial setting of important FPP12 registers.

Whenever the FPP12 finishes or aborts a program, the APT is updated before the CPU is interrupted.

The CPU program in Example 2-1 starts the FPP12 with the APT pointer set to location 01000, which

is word 1000 of field 0. The FPP12 normally does not recognize page or field boundaries. If the APT

started in location 07777 , the least significant 12 bits of the FPC would be found in location 10000.

In Example 2-1 , the FPP12 will pick up locations 02000, 02001 , 02002, 02003, 02005, 02006, and

02007 of the APT. Note that the operand address, location 02004 in this example, is never retrieved

from the APT by the FPP12. After retrieving the contents of location 02007, the FPP 12 will fetch its

first instruction from location 01000. The 4 in the second digit of the contents of location 01000 in-

dicates that the instruction is a 2-word, direct addressing, data reference instruction. The 0 in the

first digit of location 01000 indicates that the instruction is an FLDA. Bits 9-23 of the instruction

specify the address, which is not indexed when bits 6-8 are all zero. After fetching the address, the

FPP12 will break to 12000, 12001 , and 12002 to load the operand into the FAC.

After retrieving the least significant word of the FAC from location 12002, the FPP12 will fetch an-

other instruction from location 01002. The instruction in location 01002 is an FEXIT, equivalent

2-1



/ Sample program to initialize FPP12

ORG 00020

00020 2000 APTPT, APT

/Psuedo OP sets assembler origin at

location (20)8
of field 0.

/Pointer to APT

ORG 200

BEGIN, CLA /Clear AC
FPCOM /Load 0's to FPP12 command register

TAD APTPT

FPST /Set APT points to 02000 and start

HLT /If no skip FPP12 is not ready to be started

FPINT /Wait

JMP. -1

HLT /Program done

/ A Sample

/ FPP12 Program is below

Loc

01000

01001

01002

contents

0401

2000

0000

/ Active parameter table

Loc

02000

02001

02002

contents

0

1000

3000

ORG 12000

12000

12001

12002

0002

3000

0000

TAG,

ORG 01000

FLDA TAG

FEXIT

ORG 02000

APT, 0000

1000

3000

4000

3.0

/Load contents of

/Location TAG into FAC
/Dump APT
/Into core and interrupt CPU

/most sig bits

/FPC
/X0
/Base

/Operand address

/FAC exp

/FAC MSW
/FAC LSW

/constant (3.0)^q

Example 2-1 Sample FPP12 Program

to a halt instruction for the CPU. Prior to stopping, the FPP12 dumps the current APT over the initial

APT, beginning with the least significant word of the FAC in location 02007 and ending with location

02000. The APT at the completion of the FEXIT instruction is shown in Table 2-1

.
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Table 2-1

APT After FEXIT in Example 2-1

02000 1000 /current Field Bits

02001 1003 /current FPC

02002 2000 /XO
02003 4000 /Base

02004 2002 /Operand address

02005 0002 /exponent

02006 3000 /MSW
02007 0000 /LSW

Only after dumping the APT is the FPP12 Skip or Interrupt flag set. In Example 2-1 , the CPU ex-

ecutes a WAIT loop while the FPP12 is operational. It would be far more efficient for the CPU to

perform some other task, such as tape or Teletype I/O, while the FPP12 is calculating.

2.3 INDEX REGISTERS AS ADDRESS MODIFIERS AND LOOP COUNTERS

The FPP12 program in Example 2-2 moves a list of (200)g floating point numbers from an area of core

starting at location ALPHA to an area starting at location BETA. Note that index registers are used

both for loop counting and address modification. Index register 1 is set to -1 and index register 0 is

set to -200 using the LDX instruction. Index register 1 is incremented prior to use as an address modi-

fier for the FLDA instruction at location LOOP. Index register 0 is used as a loop counter by the JXN

instruction.

/set index register 1 = -1BEGIN,

LOOP,

ALPHA,

BETA,

LDX -1, 1

LDX -200 , 0

FLDA ALPHA, 1+

FSTA BETA, 1

JXN LOOP, 0 +

FEXIT

ORG 4000

ORG 6000

0

/set index register 0 = (-200)g

/first C(l + X0)= C (1 + X0)

+ 1 Then load FAC from loc.

ALPHA + C (1 + X0) *3

/Store FAC in loc BETA + C
(1 + X0) *3

/first C (X0+ 0) = C(X0+ 0)

+ 1

/then go to loop if C (X0 + 0) ± 0

/trap to CPU

Example 2-2 Move List from ALPHA to BETA Using Index Registers

It is possible to use the same index register as a loop counter and as an address modifier, because of

the method used in the FPP12 hardware to calculate indexed addresses. In the process of formulating

an address, the FPP12 checks to see if indexing is required. If indexing is required, the contents
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of the specified index register are retrieved and "adjusted" by the appropriate multiplier, which is 3

for floating-point mode and 2 for fixed-point mode. Then the adjusted index register is added to the

unindexed address and the resulting addition, initially performed with 24 bits of precision, is truncated

to 15 bits by dropping the 9 most significant bits of the result. Example 2-3 illustrates the standard

method of indexed address calculation. If it is necessary to use index register 5 as a loop counter,

additional care must be used in selecting the pointer to list A contained in the instruction. Consider

the case where the loop counter is set to (-200)g. Then the pointer to list A must be modified to be

[A + M(C (I) + (30000)g] . C (I) is the initial setting of the index register and M is the number of

12-bit bytes in the data word. Example 2-4 is similar to Example 2-2; however, only one index

register is used.

Initially XO = 14003

C(X0 + 5) = 0001

Instruction FLDA A, 5 0451

2003

A is location 12003

Address calculation proceeds as follows:

1. The contents of (X 0 + 5) are retrieved and multiplied

by three.

2. The "adjusted" index register is added to 00012003 the

unindexed address to yield 00012006.

3. This address is truncated to 12006.

Example 2-3 Indexed Address Calculation

2.4 USE OF INDEX REGISTERS TO CREATE PUSH-DOWN STACKS

The subroutines in Example 2-5 illustrate the use of the ADDX instruction in creating push-down or

last-in-firsf-out lists. The PUSH routine is called with an argument in the accumulator. The POP

routine returns with elements removed from the stack in the accumulator. These subroutines are de-

signed to be called with the JSA instruction which places an unconditional jump to the return in the

first two locations of the subroutine.

The PUSH and POP subroutines in Example 2-5 are valid for either fixed-point or floating-point mode,

as long as second and additional calls are in the same mode as the very first call.
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BEGIN, LDX COUNT, 1

LOOP, FLDA ALPHA-(M*COUNT-50000), 1

JXN LOOP, 1 + FSTA ALPHA-(M*COUNT-50000) , 1

M = 3, If floating point mode

2, if fixed point mode

K = (70000L

Example 2-4 Index Register 1 is Used as Both an Address Modifier and Counter

PUSH, 0

0

FSTA STACK, 2 +

JA PUSH
/Place contents of AC in stack

/Return from subroutine

POP, 0

0

FLDA STACK, 2

ADDX 2, -1

JA POP

/Retrieve item from stack

/Decrement stack pointer

/Return from subroutine

Example 2-5 Push-Down Stacks

2.5 BRANCH OR JUMP ON CONDITION INSTRUCTIONS

Seven conditional jump instructions are provided in addition to the JXN instruction. Six of these,

JEQ, JGE, JLE, JNE, JCT, and JGT, test the FAC mantissa. The seventh, JAL, executes a jump

if the FAC cannot be represented as a (24)]q bit binary number. This occurs when the FAC exponent

is greater than (23) -jq or (27)g.

2.6 WRITING RE-ENTRANT SUBROUTINES

A re-entrant subroutine is one in which the code is not altered during execution. This property permits

the interruption of a task which is executing a given re-entrant subroutine and the starting of another

task that uses the same subroutine. The advantage of re-entrant coding is that two or more jobs can

use the same subroutine without concern as to when a given job is interrupted.

The single-word data reference instructions and a re-entrant jump to subroutine facilitate the writing

of re-entrant codes. With the JSR instruction, the return address is saved in bits 21-35 of the location

pointed at by the contents of the base register. If it is necessary to store temporary values during sub-

routine execution, single-word instructions should be used^ This will force addressing to be relative

to the base register setting. Each task will have a unique base register setting; therefore, the effective

addresses for temporary storage for each task will be unique, even though the offsets for the data in-

structions are never charged In the pure subroutine. The return from the re-entrant subroutine consists
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of the two instruction sequence, FLDA ALPHA, JAC, shown in Example 2-6. JSR causes the return

address to be deposited into the first location of the data block, ALPHA, which is defined by the

base register. The return address is deposited into the FAC with the instruction FLDA ALPHA. The

JAC instruction actually executes the return jump by setting FPC equal to bits 9-23 of the FAC.

/ Main Prog

MPROG, JSR SUB
FEXIT

SUB, FLDA ALPHA
JAC

Base ALPHA
ALPHA,

/Jump to sub prog.

/Load return address

/Jump to the address contained in

/bits 9-23 of the FAC fraction

Example 2-6 Return from Re-Entrant Subroutine

2.7 USE OF THE FPHLT INSTRUCTION

The FPHLT IOT (6554) permits the CPU to force the abortion of a running FPP12 program or to force

the FPP12 to execute one instruction each time it is initialized. In a multitask or time-shared en-

vironment, it is often necessary to suspend a calculation prior to completion. When debugging a

program, it is often desirable to examine the results of each instruction's execution.

If FPHLT is issued while the FPP12 is executing a program, that program will be aborted at the end

of the current FPP12 instruction. The FPPI2 will dump the current APT in core and then cause a CPU

program interrupt. If the current instruction is anything except FEXIT, status bit 02 will be set to 1

if FPHLT forced the FPP12 to stop program execution.

Issuing FPHLT prior to FPST will cause the FPP to initialize, execute one instruction, then exit. By

repeating this procedure, the CPU can force the FPP12 to single step through a program.

2.8 DEBUGGING FPP12 PROGRAMS ON UNITS

ATTACHED TO PDP-12 COMPUTERS

The PDP-12 console (described in the PDP-12 System Reference Manual) is a powerful fool for debug-

ging FPP12 programs. Using the switches, one can single step through FPP12 programs, observing the

transfers between the FPP and the PDP-12 memory on the console lights. Alternatively, the FPP12

program can run until a specific memory address is accessed, in which case the computer will halt,

permitting the console light to be examined. While the computer is halted, memory may be examined
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and altered with the switch register without disturbing the program counters associated with either

the CPU or the FPP12. IOT instructions may be issued with the console switches that examine registers

within the FPP12.

If the stop switch is raised during the execution of a FPP12 program, the PDP-12 will stop at the end

of a complete instruction or a data break caused by some external device such as the FPP12. Depressing

the continue switch with the stop switch raised causes the execution of one CPU instruction or one

data break for each actuation of the continue switch. Operating in this mode, the FPP12 will receive

one data break for each CPU instruction. This means that every other time the continue switch is de-

pressed a data break will occur. Whenever the break indicator light is lit, the MA and MB lights on

the console refer to the data break address and memory buffer contents associated with the FPP12

program. The single step switch causes similar results, except the halts occur at the end of each major

state of the CPU instructions. The single step switch is useful when the CPU program that runs in

parallel with the FPP12 program contains tape instructions. The stop switch has no affect for the dura-

tion of LINCtape instructions.

If bit 8 of the FPP12 command register is set to 1, the CPU will be locked out while FPP12 programs

are executing. This is reflected in the fact that the break light will stay on continuously as the con-

tinue switch is actuated.

2.9 USING THE EXECUTE STOP SWITCH

If the execute stop switch is raised the PDP-12 will halt whenever the memory location whose address

is contained in the left switches is accessed during any cycle except a CPU fetch cycle. Setting the

left switches to the first location of the next APT to be used and raising the execute stop switch causes

the PDP-12 to halt following the first FPP12 data break following FPST IOT.

2.10 CARE NECESSARY IN THE USE OF EXAMINE
AND DEPOSIT SWITCHES

Some care is necessary when using the examine and deposit switches, if they are to be used while a

FPP12 program is temporarily halted. Problems arise because of the logical implementation of the

break field register within the PDP-12. The 4K memory field examined on the first push of the examine

switch following a program may be the field into which the FPP12 was breaking when the program stop

occurred. To be sure that the proper data for an examine operation is displayed in the MB register,

the examine switch should be actuated twice for the first operation following a program stop. When

the computer system is restarted, the first PDP-12 cycle following an examine or deposit operation will

be a break cycle if the FPP12 is requesting a data break. To ensure that the FPP12 breaks to the proper

4K memory field, the last operation after any series of examines and deposits must be a fill step.
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2.11 ADDITIONAL PROGRAMMING HINTS

2.11.1 Illegal Mantissa

In the 2's complement number system the number consisting of a one followed by twenty-three zeros

is an illegal number because it and its 2's complement are both equal to -1 . The FPP12 logic will

not allow this number to be generated as the result of any calculation. For instance, if -1/2 is added

to -1/2 the result shows up in the FPP as -1/2 *2 or -1. It is possible for this number to arise in other

than calculations. For instance, it is possible to intentionally place a number into core memory from

the CPU's switches. The routine in Example 2-7 illustrates a test for the illegal fraction.

/The value in location A possibly has an illegal fraction

BEGIN, FLDA A /Get C (A)

JGE GOOD /If C(A) 0 all is OK
FNEG /Form 2's complement of fraction

JLT BAD

GOOD, FEXIT /Number is OK
BAD, FEXIT /Number has illegal fraction

Example 2-7 Test for Illegal Fraction 100000000. . .000

Example of Re-Entrant Sine and Exponential Subroutines

Examples 2-8 and 2-9 contain the FPP code for calculating SINE (X) and X (X **Y). The comments

indicate what each step of the routines is doing. Both subroutines are written in the mnemonics and

syntax of the FPP assembler.
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0001
ENTRIES INCI CI 01

P

v ti yj c / SINE USES THE 1ST 3

0003 / THE BLOCK AND INDEX REG. 0.U2
0004 / X IS PASSED THROUGH THE 2ND ENTRY
00 CSSV V V J / IN THE BLOCK AND SINCX) IS RETURNED
0006 / THROUGH THE SAME LOCATION
0007if p / ORG 10500
0010 BASE 0

0 0 1 1» tl X X X = l#3
0019W W X £ XSQR=2#3

VALUE OF X. INDEX(71511 7«J W X w / CALCULATE ABSOLUTE
v v X

" / REG 0 SET TO 0 INDICATES SIGN OF X

(7101 / WAS NEGATIVE
Pi 9 0 1V C V X SINE, FLDA X

u 10 X / IK'5 W X ft 1 0 0
It

1 X P If LDX -1,0 /INITIATE INDEX REG 1

1 C ffl O
1 IC 5 16 (.

77 7 7lilt
/GO TO CAL IF X IS POSITIVEC?j CI 00 1 0503 1061X *J W X JGT CAL

1 0 5 0 4 P51 9
fc- •* X t-

/GO TO DONE IF X IS 0PI I7I 9 1 1 ft 5 0*5X If ? V J 1001X If ft* X JEQ DONE
1 ft Pi 0 £ 0 6 03

/NEGATE FAC002?wet 1 05 0 7X If If f 0003KJ If iw \i MOD, FNEG
0 Pi 9 3 X It' X *J ft. X f HV LDX 0,0 /SET INDEX REG TO 2ER0

1 051 1 0000X- IV It' IL>

0 094If If £ «t / REDUCE X TO 1ST CYCLE USING THE
00 3R10 if £ 3 / IDENTITY SIN(X)5SIN<N*2*PI*X)
009 AIff £ V 1 (7 5 1 9X ll^ X £ ^401O ^ If X CAL. FDIV TWOPI /DIVIDE X BY 2*PI

0607
0027 10514 6201W c ^ X FSTA X

0030 10515 1 071 JAL ERROR /X IS TOO LARGE
x ^ X w 0606

v If 0 X ALN 0

0032iw v w ** 0004 FNORM /GET INTEGER PART
0033 10521 2201 FSUB X

0034 10522 0003 FNEG /GET FRACTIONAL PART
0035 10523 10014. iy ^ j. JEQ DONE /SIN(2*PI*N> IS 2ER0

10524 0603
0036 10525 4401 REM i FMUL TWOPI /NORMALIZE TO BETWEEN 0 AND 2*PI

10526X t-J -J f~ V 0607
0037 10527 6201 FSTA X

0040 / REDUCE X TO 1ST HALF CYCLE USING
0041 / THE IDENTITY SIN(X) x-SIN(X-PI) FOR
0042 / PKX< = 2«PI
0043 10530 2401 FSUB PI

10531 0612
0044 10532 1051 JLT PCHECK /IF X IS LESS THAN PI GP TO PCHECK

10533 0543
0045 10534 6201 FSTA X /SET X TO X-PI
0046 10535 2101 JXN RESET r 0 + /IF INDEX REG 0 WAS -1 SET TO 0 AND

10536 0541
0047 10537 1031 JA PCHECK+1 /GO TO PCHECK*1

10540 0544
0050 10541 0100 RESET, LDX -1 ,0 /IF INDEX REG 0 WAS 0 SET IT TO -1

10542 7777

Example 2-8 SINE Routine (Sheet 1 of 2)
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0052 / REDUCE X TO 1ST QUARTER CYCLE USING
0053 / THE IDENTITY SIN(X)s SIN(PI-X) FOR
3054 / PI/2<X<=PI
0055 10543 0201 PCHECK, FLO A X

0056 10544 2401 FSUB PIBY2 /IF X IS LESS THAN OR EQUAL TO
10545 0615

0057 10546 1021 JLE PALG /GO TO PALG
10547 0555

0060 10550 0401 FID A PI

10551 0612
0061 10552 2201 FSUB X /REPLACE X WITH P I -X
0062 10553 1031 JA PALG+1

10554 0556
0063 10555 0201 PALG i FLDA X

0064 10556 34 01 FDIV P I BY 2

10557 K615
0065 10560 6201 FSTA X /NORMAL 1 2 E X TO BETWEEN 0 & 1

0066 10561 4201 FMUL X

0067 10562 6202 FSTA XSQR /CALCULATE X«»2
0070 10563 0101 LDX -4,1 /SET UP INDEX REG 1

10564 7774
0071 10565 0102 LDX -1,2 /SET UP INDEX REG 2

10566 7777
0072 10567 io002 FCLA
0073 / CALCULATE SIN(X) = ( < ( <C9#(2«*X/PI )«*2
0074 / C7)*(2«X/PI )«#2 + C5)«(2*X/PI )»*2

0075 / +C3)«(2«X/PI )»*2*PI)«2*X/PI
0076 10570 1521 LOOP, F ADD C9,2+ /ADD C9 ON 1ST PASS, C7 ON

10571 0620
2ND PASS, ECT.

0077 10572 4202 FMUL XSQR /MULTIPLY PARTIAL SUM BY X«»2
0100 10573 2111 JXN L00P.1+ /GO TO LOOP 4 TIMES

10574 0570
0101 10575 1401 F ADD PIBY2

10576 0615
0102 10577 4201 FMUL X

0103 10600 2001 JXN DONE,0 /GO TO DONE IF X WAS POSITIVE
10601 0603

0104 10602 0003 FNEG /NEGATE ANSWER
0105 10603 6201 DONE, FSTA X /STORE ANSWER
0106 10604 0200 FLDA 0
0107 10605 £007 JAC /RETURN TO CALL
0110 10606 0000 ERROR, FEXIT /EXIT ON ERROR
0111 10607 0003 TWOPI, 3.1415926#2.0

10610 3110
10611 3756

0112 10612 0002 PI, 3,1415926
10613 3110
10614 3756

0113 10615 £001 PIBY2, 3,1415926/2.0
10616 3110
10617 3756

0114 10620 7764 C9, *1 .5146190E-04
10621 2366
106 22 5615

0115 10623 7771 C7, -4.6737656E-03
10624 5466

001/
0116 10626 7775 C5, +7.9689679E-02

10627 2431
10630 5053

0117 10631 0000 C3, -6.4596371E-01
10632 5325
1 FfiZZ Example 2-8 SINE Routine (Sheet 2 of 2)
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0001
0002
0003
0004
0005
0006
000 7

0010
0011
0012
0013
0014
0015
0016
0017
0020
0021
0022
0023
0024

0025

0026

0027

0030

0031

0032
0033

0034
0035

0036
0037
0040
0041
0042

0043
0044
0045
0046
0047

0050
0051

10500
10501
10502
10503
10504
10505
10506
10507
10510
10511
10512
10513

10514
10515
10516
10517
10520
10521
10522
10523
10524
10525
10526
10527
10530

0201
0103
7777
1041
0511
0401
0601
1031
0573
1061
0516
0103

0000
0003
4401
0576
6203
0401
0601
6204
0203
0010
0020
0110
0001

/ EXP USES THE 1ST 6 ENTRIES IN
/ THE BLOCK
/ INDEX REG, 0 MUST BE SET TO THE
/ POSITION OF THE EXPONENT OF THE
/ 5TH ENTRY IN THE BLOCK
/ X IS PASSED THROUGH THE 2ND ENTRY
/ IN THE BLOCK AND EXP(X) IS RETURNED
/ THROUGH THE SAME LOCATION

ORG 10500
BASE 0

X = l#3
F = l»3
FSQR=2»3
TEMP=3»3
10X0=4*3

/ CALCULATE THE ABSOLUTE VALUE OF X

/ INOEX REG 3 SET TO 0 INDICATES THAT
/ THE SIGN OF X WAS NEGATIVE

EXP

,

NZRO,

FLDA X -

LDX -1,3

JNE NZRO

FLOA Kl

JA RETURN

JGT GT2ER0

LDX 0,3

FNEG
GTZERO > FMUL LG2E

FSTA TEMP
FLDA Kl

FSTA 10X0
FLDA TEMP
ALN 0

ATX 0

AODX 1,0

/GET X

/INITIATE INDEX REG 3 TO -1

/GO TO NZRO IF X IS NOT EQUAL TO

/SET FAC TO 1

/RETURN TO CALL

/GO TO GTZERO IF X WAS POSITIVE

/SET INDEX REG 3 TO 0 TO INDICATE
X WAS NEGATIVE

/NEGATE THE FAC
/MULTIPLY X BY L0G2(E)

/STORE RESULT TEMPORARILY

/SET IDX0 TO l*2»»l»i/2

/F AC=Ns I NTEGER PART OF X*L0G2(E)
/IDX0=2»*N*l/2
/IDX0=2*»<N+1)«1/2=2»»N

10531 0004

10532
10533

2203
0003

0052 10534 6201

THE 5TH ENTRY IN THE BLOCK
CONTAINS 2«#N WHERE N IS THE
INTEGER PART OF X*L0G2CE>
FIND F = FRACT I ONAL PART OF X*L0G2(E)

FNORM /FAC CONTAINS INTEGER PART OF
X»L0G2(E)

FSUB TEMP
FNEG /FAC CONTAINS FRACTIONAL PART OF

X*L0G2(E>
FSTA F

Example 2-9 Exponential Subroutine (Sheet 1 of 2)
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0054
0055
0056
0057
0060

0061
0062

0063
0064
0065

0066
0067

0070
007i
0072
0073
0074

0075
0076

0077
0100
0101
0102

0103
0104
0105

0106
0107
0110
0111
0112

0113

0114

0115

0116

0117

0120

/ CALCULATE 2»»FH*2»( A-F*B*F*»2t

10535
10536
10537
10540
10541
10542
10543
10544
10545
10546
10547
10550
10551
10552
10553
10554
10555
10556
10557
10560
10561
10562
10563

4201
6202
1401
0620
6203
0401
0615
3203
2201
1401
0607
6203
0401
0612
4202
1203
6203
0201
4401
0604
3203
1401
0601

C/(D+F«*2>
FMUL F

FSTA FSQR
F ADD 0

10564 4204
10565 2031
10566 0573

10567
10570
10571
10572
10573
10574
10575
10576
10577
10600
10601
10602
10603
10604
10605
10606
10607
10610
10611
10612
10613
10614
10615
10616
10617
10620
10621
10622

FSTA TEMP
FLO A C

FDIV TEMP
FSUB F

FADD A

FSTA TEMP
FLDA B

FMUL FSQR
FADD TEMP
FSTA TEMP
FLDA X

FMUL K2

FDIV TEMP
FADD Kl

/FSQR*F«»2

/TEMP=D*F»»2

/FAC=C/(D*F»«2>

/TEMP=A-F*C/(D*F»»2)

/TEMP=B»F«»2+A-F*C/(0*F»*2)

/FAC*2»F

/FAC s l*2»F/< B*F«»2*A-F + C/(D*F«»2> )

6201
0401
0601
3201
6201
0200
0007
0001
2705
2434
0001
2000
0000
0002
2000
0000
0007
3070
5703
7774
2157
5161
0012
2323
7434
0007
2566
5341

/ CALCULATE EXP < X > =2 »• ( X«L0G2 < E >
)

=

/ <2»«N)M2»*F)
FMUL IDX0
JXN RETURN. 3 /GO TO RETURN IF X WAS POSITIVE

/ CALCULATE EXP(-X)*1/EXP<X)
FSTA X

FLDA Kl

FDIV X

RETURN i FSTA X

FLOA 0

J A C

LG2E. 1,442695

Kl, 1,0

K2, 2.0

A. 9,954596E*01

8 , 3.465736E-02

C. 6,179723E*02

0, 8,741750E*01

/STORE RESULT IN X

/RETURN TO CALL

Example 2-9 Exponential Subroutine (Sheet 2 of 2)
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CHAPTER 3

FPP12 COMPONENTS

3.1 FPP12 HARDWARE DESCRIPTION

The FPP12 is a peripheral processor that attaches to both the programmed I/O bus and the data break

I/O bus. Figure 1-2 shows a typical configuration of an FPP12 attached to a PDP-12, with several

other peripherals. It is of major importance to fully understand the differences between the I/O bus

of the PDP-12, LINC-8, PDP-8, PDP-8/I, PDP-8/L, and PDP-8/E Computers. All of DEC's 12-bit

computers share a compatible I/O structure. Most peripherals such as the FPP12 are nearly plug-in

compatible with all of these computers. Major differences are listed below:

a. PDP-8/L, PDP-8/E, PDP-12, and some PDP-8/l's have what is referred to as a positive

I/O bus which implies that the I/O signal levels are TTL compatible. The PDP-8,

LINC-8, and some PDP-8/l's have a negative I/O bus which implies that the I/O signal

levels are 0 and -3V with reference to chassis ground. Bus driver and receiver modules

in the FPP12 are selected for either positive or negative bus computers.

b. The sense of the IOP pulses is inverted on those computers with a negative I/O bus. To

account for this, certain wiring changes must be made on FPP12 logic to convert it to

negative bus units. These changes are detailed in Chapter 4. If the original purchase

order for the FPP specifies an FPP12N, the negative bus changes will be factory installed.

c. Data break timing on the PDP-12 Computer differs slightly from data break timing on

the PDP-8 type computers. On the PDP-12, the trailing edge of ADDRESS ACCEPT
indicates memory buffer strobe; on the PDP-8s, PDP-8/1, PDP-8/L, and PDP-8/E the

leading edge of BUFFERED TIME STATE 3 indicates memory buffer strobe. The line

that carries the signal BUFFERED TIME STATE 3 on the PDP-8 type computer is the same

one that carries BUFFERED TIME STATE 5 on the PDP-12 Computer. Therefore, the

FPP12 wired in the positive-bus PDP-8/1, PDP-8/L, and PDP-8/E configuration will

operate on a PDP-12 but will not achieve optimum performance.

d. Raising pin N16V2 of the I/O cable on a PDP-12 Computer will lock out the CPU.
The FPP12P will utilize this option when command register bit 8 is set to 1. Time

comparisons are shown in Table 1-3. On computers other than the PDP-12, pin N16V2
is used for different purposes. Therefore, run F05U2 - B03V2 is deleted in the FPP12

when it is configured for processors other than the PDP-12.

Data break timing diagrams for the PDP-12 and other Family of 8 Computers are shown' in Figures 3-1

and 3-2.
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"•3 TP4 TPS Tfl TPJ TfS TP* TW TPI TPS TPSIII
I I I I I I II

PREVIOUS
CYCLE frf* MEM CYCLE *f* NEXT CYCLE

SET AT SAMPLE TIME
1 SAMPLE L_
AT TP I i Q USED TO SELECT BREAK CYCLE AT TP I

DATA ADDRESS
INPUT LEVELS

(INPUT TO PROCESSOR)

GNO

IN (+3V) -

OUT (GNO)

AVAIL <+3V) -

NOT AVAIL «M01

AVAIL (43V

I

NOT AVAIL (+3V) -

NO REOU£ST(+3V)

REQUEST (CNO)

+3V

GRN •

+3V

OHO

START Of BREAK CYCLE END Of WEAK CVCLE

/EXT. MEM HEAD AT
ADORESS I TP I BY
READ —k»l PROCESSO,
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~
j

TPI -TP

LATEST POSSIBLE TIME IS TP

2

—CAN CHANGE ANYTIME AFTER TPS

WffiF
7

AVAILABLE AT TP 3 TIME DURING WHICH DATA MUST BE STROBED BY I/O DEVICE

MUST OCCUR EARIER THAN 1PZ "yt-ut'n
"l REQUIRES II

MUST OCCUR ONLY WHEN B BREAK

Figure 3-1 PDP-12 Single Cycle Data Break Timing

3.2 DESCRIPTION OF REGISTERS

Floating Point Processor Systems organization is shown in Figures 3-3, 3-4, and 3-5. The User IOT

Decoder System (see Figure 3-3) describes the simplest communication path between the CPU and the

FPP12. LOT (device code 55) instructions of interest to systems programmers are described in detail

in Chapter 1. Maintenance IOT's (device code 56) are described in Paragraph 3.9.

The FPP12 Timing and Enable system are shown in Figure 3-4. The Major State and Time Slot gen-

erator provides up to 16 major time states in any 6 major or enable states. Each major time state con-

tains 4 mini states; therefore, a total of 384 time slots are provided by the FPP12 timing system. The

timing diagram for the state generator is shown in Figure 3-6. Typically at any one instant of time,

one or two gates in one of the 6 state enable sections is qualified. A qualified gate in the state

enable system may conditionally qualify any number of Register Gates. A conditionally qualified

register gate causes a register transfer on the next clock pulse. It is appropriate to observe that the

FPP12 logic is fully clocked, i.e. , all flip-flops change state on the occurrence of a pulse from the

system clock generated by a free-running RC oscillator adjusted to a frequency of 5 mHz.
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Figure 3-2 PDP-8 Single Cycle Data Break Timing
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Figure 3-4 Timing and Enable System in FPP12
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- DATA BREAK DATA LINES
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REGISTER
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DIGITAL
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REGISTER

B
REGISTER

APT
POINTER

PROGRAM
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OPERAND
ADD REG.
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Figure 3-5 FPP12 Data Flow System

The FPP12 data flow system is shown in Figure 3-5. In some respects FPP12 architecture is similar to

the PDP-8 in that major registers are multiplexed through a central arithmetic logic unit. However,

FPP12 logic design is based on the use of medium-scale integrated circuit technology (MSI). The

Operand Address Register, Program Counter (FPC), and APT pointer are formed from 4-bit binary

up/down counters. This permits the incrementing of address registers and the performance of arithmetic

operations on data variables simultaneously. The arithmetic logic unit consists of seven 24-pin MSI

devices that can each perform all 16 Boolean and 16 different arithmetic functions on two variables.

Full carry -look -a head permits the addition or subtraction of two variables in under 100 ns.

3.3 MAJOR STATES

The FPP12 logic is organized into six major states:

INITIATE

FETCH
PROCESS
EXECUTE
DEPOSIT
EXIT
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With one exception, if any major state flip-flop on print CNR is set the FPP12 will be actively

calculating. If all major state flip-flops are reset, the FPP12 will be inactive. The single exception

has to do with the instruction FPAUSE, which causes the FPPI2 to wait for a synchronizing signal be-

fore preceding.

The FPP12 operations that occur in each major state are detailed below:

INITIATE INITIATE begins at the trailing edge of IOP 4 when IOT instruction 6555

is issued by the CPU, if the FPP12 is not running and the FPP12 and the

FPP12 Interrupt Request flag is reset. During INITIATE, the contents of

the APT are retrieved.

NOTE

Only the first two locations of the APT must be used as

these contain the 15-bit initial setting FPP12 program

counter (FPC). The fifth location of the APT, the op-

erand address, is not retrieved during INITIATE.

Following the completion of INITIATE the FPP12 proceeds to FETCH time

state 0.

Schematic drawings for INITIATE are found on print ARS2.

FETCH During FETCH, preliminary decoding of instructions occurs. Instructions

that require only one major time state to be completed, such as FCLA,

are completely finished during FETCH State 0. Special instructions that

require more than one major time state, such as ALN 0, or more than one

memory cycle, such as ATX, cause the FPP12 logic to go from FETCH
State 0 to PROCESS State 1. All data reference instructions require

FETCH to continue beyond FETCH State 0 in order to calculate the op-

erand address. At the end of the FETCH cycle for all data reference

instructions, a transfer is made to EXECUTE State 0, with the Operand

Address Register appropriately loaded. FETCH begins in State 0 and ends

when the address calculation is complete. FETCH schematics are found

on prints FTH1 through FTH3.

PROCESS Most special instructions that require more than one major time state or

more than one memory cycle are completed in PROCESS. With the ex-

ception of NORM and XTA, the FPP12 returns to FETCH State 0 after

the completion of PROCESS. Processing for XTA and NORM is completed

in DEPOSIT. PROCESS begins in major time state 1. PROCESS schematics

are found on prints SPIT through SPI3.

EXECUTE The execution of all data reference instructions begins during EXECUTE.

FLDA and FSTA are completed during EXECUTE. For all other data

reference instructions the FPP 12 proceeds to DEPOSIT at the completion

of EXECUTE if no EXECUTE error is encountered. EXECUTE errors are

defined as:

a . An attempt to divide by 0

b. A fraction overflow in fixed-point mode.
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EXECUTE At the completion of EXECUTE for instructions other than FLDA and FSTA,

(Cont) the un-normal ized result of any calculation is stored in the O register and

an exponent is stored in the MQLSW. The exponent contained in the

MQLSW is the operand exponent for FMUL, FMULM, and FDIV and the

resultant exponent before normalization for FADD, FADDM, and FSUB.

The shift counter is 0 if no fraction overflow occurred, and 1 if a floating-

point fraction overflow occurred. EXECUTE schematics are found on

prints ASTO through AST3.

DEPOSIT DEPOSIT begins in major time state 11 and ends in major time state 15.

As DEPOSIT is the only function performed during these time states,

DEPOSIT enables shown on prints DEP1 through DEP3 are not gated with

the DEPOSIT flip-flop found on the CNR print. During DEPOSIT the

following functions are performed in the order listed:

a. The results of all floating-point arithmetic calculations are

normalized. The number of shifts is stored in the shift counter.

b. The normalized result is rounded to 24 bits.

c. For FMUL and FMULM the FAC exponent is added to the

MQLSW.

d. For the FDIV instruction the MQLSW is subtracted from the

FAC exponent.

e. The contents of the shift counter are added to the un-normalized

exponent.

f . If the exponent resulting after normalization is within bounds,

-2048 to +2047, the resultant answer is stored in the FAC for all

operations except FADDM and FMULM. For FADDM and FMULM,
the resultant answer is stored in the addressed location. After

storing the resultant answer, the FPP12 returns to FETCH State 0,

unless the IOT FPHLTwas issued by the CPU during the current

instruction

.

g. If the exponent is not within bounds after normalization the ap-

propriate status bit is set and the FPP12 enters EXIT State 0.

DEPOSIT schematics are found on prints DEP1 through DEP3.

EXIT During EXIT the current APT is deposited into core over the initial APT.

Only the first two locations of the APT must be deposited; the other lo-

cations are optional according to the command register setting. The items

in the APT are always located in the same position relative to one another.

If the programmer chooses not to deposit the operand address the fifth lo-

cation of the APT is simply skipped. The field bits of the base register,

X0, and FPC are the first retrieved on INITIATE and last deposited during

EXIT.

EXIT is entered for any of the following conditions:

a. A FEXIT instruction is encountered.

b. A fraction overflow occurs in fixed-point mode.

c. An exponent overflow or underflow occurs in floating-point

mode. If EXIT is entered for an exponent underflow command,
register bit 1 is tested. If it is set to 1, the EXIT is continued.

If it is set to 0, the result of the previous calculation is set to 0
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EXIT (Cont) and the FPP12 returns to FETCH State 0. If an exponent underflow

occurs, status bit 6 is set as an indicator, even if command reg-

ister bit 1 is set to 0.

d. An attempt to divide by 0 is made.

e . A FPHLT IOT is issued by the CPU.

At the end of EXIT the FPP12 halts in major time state 0 with all major

state flip-flops reset. The FPP12 skip flag is set and the CPU program

interrupt is actuated if command register bit 3 is set to 1.

3.4 DESCRIPTION OF REGISTERS

Most major registers of the FPP12 are described in Paragraph 1.5. The MQ, shift counter, A register,

B register, and O register are hidden from the programmer. Their characteristics are as follows:

MQ The MQ is a 28-bif parallel-serial input, parallel output, left-right shift

register. It is divided into an MQLSW of 12 bits and an MQMSW of 16

bits. During multiplication, the MQ contains the absolute value of the

multiplier mantissa. During division, the MQ temporarily contains the

un-normalized absolute value of the quotient. When entering deposit, the

MQLSW contains the un-normalized resultant exponent for FADD, FADDM,
and DSUB and the operand exponent for FMUL, FMULM, and FDIV. The

MQ is found on print MQR1

.

SHIFT COUNTER The SHIFT COUNTER is a 6-bit binary up/down counter. As its name

implies, it is used to count shifts. The SHIFT COUNTER is found on

print CAR 6.

A REGISTER

AND
B REGISTER

O REGISTER

These 28-bit registers are inputs to the arithmetic logic unit (ALU) of the

M190. The A register is a 28-bit storage register; the B register is a

parallel-serial input parallel output shift register that shifts towards the

least significant bit.

The O register is the 28-bit output buffer for the M190. It is a parallel-

serial input, parallel output shift register that shifts towards the most

significant bit.

The A, B, and O Registers are found on the AMSW, ALSW, and EXT prints.

The following registers (listed below with the prints on which they are found) were described in

Paragraph 1.5.

FAC CAR 2 and CAR 3

X0 REGISTER CAR 4

BASE REGISTER CAR 5

FPC CAR 1

APT POINTER CAR 1

OPERAND ADDRESS
REGISTER CAR 1

STATUS REGISTER CAR 8

COMMAND REGISTER CAR 8
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The operand address register, the FPC, and the APT pointer provide the addresses for data breaks.

These registers are attached to a digital multiplexer that drives the EXT address lines of the CPU, The

FAC, XO register, base register, 0 register, MQ, and shift counter feed the digital multiplexer that

loads the A and B Registers.

3.5 REGISTER GATING SYSTEM

The OR gates in the register gating system found on prints RG1 through RG10 funnel enables from many

sources into signals that, when added with a clock pulse, cause a register action. This action can be

a load, shift, count, or a clear. The signals that actuate the data multiplexer are found on prints RG7

through RG10. The multiplexer gates are enabled for at least the duration of a mini time state. The

time from the beginning of the mini time state until the clock pulse, shown on Figure 3-6, is allowed

for the data to settle on the register inputs.

3.6 DATA BREAK CONTROL

The FPP12 accesses core memory via the single-cycle data break facility. The data break control

serves the following functions:

a. Channels data break and direction requests to the CPU from the state enables.

b. Gates the proper address register onto the EXT ADD bus of the CPU.

c. Gates the proper data register onto the EXT DATA bus of the CPU if an input break

is required.

d. Synchronizes the FPP12 time state generator to the particular CPU memory timing

to which the peripheral is attached.

The synchronizing logic for the data break control is shown on print DBC1. The signal DBC1 REQUEST

BREAK L requests the data break from the processor. This signal is actuated by the condition:

(REQ BRK CYCLE (1) H) (BREAK (0) H)

The first term is the output of a flip-flop that permits the FPP12 to remember that it is currently re-

questing a data break. The second term is the signal from the CPU that a break is not in progress.

Once the break cycle begins, noted by the disqualification of Break (0) H, the FPP12 break request

must be removed

.

In the lower right-hand side of the DBC1 prints there is a signal DBC1 ENAB DATA H. The equation

for this signa I is:

(BREAK (1)H) (DBC1 REQ BRK CYCLE (1) H) + CI2 MAINT READ L
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The signal DBC1 ENAB DATA H permits the placing of data on the I/O bus during the break cycle

requested by the FPP12. The DONE flip-flop, which is clocked by the trailing edge of ADDRESS

ACCEPT in the PDP-12 or the falling edge of BTS3 in the PDP-8, restarts the FPP12 timing chain.

A data break may be initiated by any of the function enables placing a low level on the input of three

sets of OR gates found on DBC2. These OR gates funnel break requests to the DBC1 REQ BRK CYCLE

flip-flop and choose which of three address registers to use for the break address.

A data break for the purpose of retrieving data from core memory is an OUTPUT BREAK. A data break

for the purpose of storing data in core memory is an INPUT BREAK. If a core memory location is in-

cremented an INCREMENT BREAK is performed. The FPP12 data source for INPUT BREAKS is selected

There are four data sources used for INPUT BREAKS. They are: the field bits of the APT, the operand

address register, the least significant word of the B multiplexer, and the most significant word of the

A multiplexer.

If the data source selected for an INPUT BREAK is either the A or B multiplexer, an additional eight

There are several wiring changes specified for converting a positive bus FPPI2 logic to a negative bus

logic. These changes are in Chapter 4 of this manual.

3.7 MODULES INTRODUCED IN THE FPP12

There were three etch boards and five new modules introduced for the FPP12. The following list shows

the module number and the function of these modules.

Module No. Function

on DBC3.

possibilities exist. The actual data source is resolved on prints RG7 through RG10.

M155 One of 16 decoders using 74154 IC decoders.

M238

M190

M191

4-bit arithmetic logic module using 74181 arithmetic logic unit

integrated circuit.

Two carry look-ahead 74182 ICs for the 74181

.

Two separate 4-bit synchronous binary up/down counters with

separate up and down clocks. Uses two 74193 ICs.

M245 Two separate, 4-bit parallel-serial input, parallel serial output

shift registers. Uses two 8271 ICs.
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The M178 Digital Multiplexer, with 8 inputs for each of 6 outputs, is used in the FPP12 although this

module was originally built for a new PDP-10 processor. The M191, M238, and M245 use a common

etch board, the 5008912, which is a mount for 2-16 pin dip packages with pin 16 reserved for +5V

and pin 8 reserved for ground. The M155 is constructed on a 24-pin DIP mount, the 5008908. The

M190 is a unique module layout containing 8 ICs including the 24-pin arithmetic logic unit.

Full specifications for new MSIs may be found in either the DEC specification file or from the

manufacturer's catalog. The 74182, 74181, 74193, and 74154 ICs are listed in catalog number CC301

by Texas Instruments Inc. The 8271 and the 8291 (74197 from TI) are listed in Signatic's MSI

Specifications Handbook, DCL Vol. II.

All five of the modules introduced with the FPP12 are tested on Digital Equipment Corporation's com-

puterized module tester.

3.8 FLOW DIAGRAMS

The flow diagrams are the key to troubleshooting the FPP12 logic. In order to understand the flow

diagrams, it is necessary to understand the timing generator and the register structure. It is recom-

mended that the reader thoroughly study Chapter 3, Paragraphs 3. 1-3.7 and Chapter 4 of this manual

before attempting to understand this section.

A brief review of the timing generator and the register structure is presented here. The timing gen-

erator has the following properties:

1 . There are 16 possible major time states. These are named State 0 through State 15.

2. The timing generator can be forced to jump to any state; that is, if the timing gen-

erator is in State 3, the next state could be State 11 if the proper enables are gen-

erated .

3. During the time a state is enabled, four different enabling pulses are generated; they are

called Mini State 1 through Mini State 4. These pulses occur sequentially and are one

clock cycle long. The end of the major time state occurs at the end of Mini State 4 and

the next major time state is enabled at the trailing edge of the next clock cycle. When
a state is entered, the timing generator stops until it receives a timing advance. When
the advance is enabled, the four mini states are generated. During an output break

cycle, Mini State 1 is used to enable the clocking of the data from the MB into the

appropriate register.

The characteristics of the M190 are important also in understanding the flow diagrams. Recall that

there are three registers; the outputs of the A and the B registers are connected to the two inputs of

the ALU, DEC 74181. The output of the ALU is connected to the input of the O register. The A, B,

and O registers each have unique properties. The A register can be loaded with the true or the com-

plemented value of the inputs. The B register is a shift register that can be shifted toward the least
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significant bit; the O register is a shift register that can be shifted toward the most significant bit.

It is important to realize the many functions that the DEC74181 can perform. The functions used in

the FPP12 are listed in Table 3-1, along with the enables that are required to perform the function.

Table 3-1

Functions Performed by DEC74181

S
3

S
2

S
l

s
o

Inhibit

Carry

Carry

In

A minus B - O L H H L H

A plus B - O H L L H L

A plus A -* O H H L L L

A -O H H H H L

A plus 1 - O H H H H H

Logical 1 * O L L H H H

B -O H L H L H

Logical 0 - O H H L L H

Note that the function B minus A cannot be performed. In order to do this the I's complement must

be loaded in A, A plus B with a carry insert enabled, and the result loaded into O.

The following paragraphs contain a brief description of each of the flows.

3.8.1 INITIATE

The initiate flow diagram refers to the INITIATE major state. When the INITIATE flip-flop is set,

INITIATE (1) H A STATE 0 H generates an output data break request at the address selected by the

ADRS register. As with all enable states where a data break is requested, the timing generator is

advanced at the trailing edge of address accept. When the timing generator is advanced, the four

mini states are generated. The first mini state loads the data read from core (the first location of the

APT table) into the most significant 12 bits of the A register (AMSW) and into the field bits of the

appropriate address registers. The second mini state increments the ADRS register so that it points to

the second location of the APT table. Mini States 3 and 4 are not used in this case. At the end of

Mini State 4, State 0 is reset; at the trailing edge of the next clock cycle, State 1 is generated.

(State 1 H A ) (INITIATE (1) H) again requests an output data break at the address selected by the ADRS

register. The trailing edge of address accept will again advance the timing generator and produce
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the four mini states. In this case, Mini State 1 is used to load the data from memory into the least

significant 12 bits of the A register (ALSW). Note that the least significant 15 bits of the A register

now contain the initial setting of the FPP12 program counter (FPC). During (STATE 1 A) (MINI STATE 2),

the contents of the A register are transferred to the O register, and the ADRS register is incremented

to point at the next location in the APT table. Mini State 3 is used to enable the transfer of the least

significant 15 bits of the O register to the operand address register (OP ADDR) and the FPC is loaded

from the OP ADDR during Mini State 4.

All the other registers are conditionally loaded from the APT depending on the state of the appropriate

bit in the command register (refer to Table 1-3). In the case where the register is not loaded from the

APT, the timing generator is advanced when the ENABLE state is entered and the only function per-

formed during that time state is incrementing the ADRS register to the next location in the APT table.

At the end of the INITIATE cycle, the FETCH major state flip-flop is set, and the timing generator is

set to State 0.

3.8.2 FETCH

A block diagram of the FPP12 FETCH flows is shown in Figure 3-7. (FETCH (1) H A ) (STATE 0 H ) generates

an output data break request at the address specified by the FPC. Mini State 1 generates the enable

that causes the data read from core to be loaded info the FPP12 instruction register (FIR). During

Mini State 1 , a 27_ is loaded in the A register and the exponent of the contents of the FPP12 accumu-
8

lator (FAC) is loaded in the B register. The difference is then loaded in the O register during Mini

State 2. The result that is stored in the O register is used only if a JAL instruction was fetched. In

this case, the O register can be tested during Mini State 4 to see if the FAC exponent is greater than

27Q . This allows the JAL instruction to be treated the same as the other conditional jumps.
8

If FIR3 = 0 and FIR4 = 0, the FIR is decoded in a different fashion from that of the data reference

instructions. Each of these special instructions has a unique flow diagram. The FIR and the FPP12

mode bit (CRO) determine which flow diagrams are pertinent.

a. LDA (FLDA)

b. STR (FSTA)

c. D.P. ADD & SUB (FADD, FADDM, or FSUB & Double-Precision Mode)

d. ADD & SUB of F.P. NOS. (FADD, FADDM, or FSUB & Floating Point Mode)

e. MULTIPLY (FMUL or FMULM)

f. DIVIDE (FDIV)
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Figure 3-7 Block Diagram of FPP12 FETCH Flow

3.8.3 DEPOSIT

At fhe end of any arithmetic calculation, the FPP12 normalizes and rounds off the result. Along with

the calculation of fhe exponent of the result, this is done during the DEPOSIT major state (see

Figure 3-8). The DEPOSIT major state is enabled by causing the timing generator to jump to State 1 1.

When State 11 is enabled, the 0 register is shifted toward the most significant bit until the number is

normalized; this is indicated in the flows as 0 (N) 0 (N-l). The 2's complement of the number of

shifts required is tallied in the SHFT CNTR. When the number in the 0 register is normalized, the

timing generator is advanced and the four mini states are generated. Normalization is performed by

the clock that is free running even when the timing generator is not running. State 11 Mini State 1

clears the B register, loads the A register with the contents of the 0 register, and sets the CHECK FOR

FLO flip-flop if the number in the 0 register is positive. State 11 Mini State 2 causes the rounding

off of the result. The only case where overflow can occur is if the 0 register contained a 37777777

and the most significant bit of the 0 register extension was set. Hence, if the 0 register is negative

after the rounding operation and the CHECK FOR FLO flip-flop is set, an overflow has occurred. If

the FPP12 is in the double-precision mode, the overflow causes the FPP12 to exit. If the FPP12 is in

floating-point mode and the rounding causes an overflow, the contents of the 0 register are shifted

right one position and one is added to the exponent. This is done during State 12 Mini State 1 and 2.

Since the 0 register cannot shift right, the contents of the 0 register are right-shifted through the

multiplexer and loaded into the B register. The B register is then loaded info the 0 register and the
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Figure 3-8 Block Diagram of FPP12 DEPOSIT Flow

SHFT CNTR incremented. The mantissa of the result is now in the 0 register^ the number of left shifts

that was required to normalize the 0 register is contained in the SHFT CNTR.

State 13 is used to store the least significant half of the mantissa in memory, in the case of an FADDM

or FMULM instruction. During State 14, the most significant half of the 0 register is stored in memory

in the case of an FADDM or FMULM instruction. The 0 register is loaded into the least significant 24

bits of the FAC for all other instructions during State 14. During State 14 of DEPOSIT, the value of

the exponent of the normalized and rounded result is calculated. The exponent of the un-normalized

result is assumed to be stored in the least significant 12 bits of the MQ (MQLSW) for all instructions

except FMUL, FMULM, and FDIV. In the case of these three instructions, note that there are still

two mini states (3 and 4) that can be used to generate enables so that the special instructions requiring

only two mini states can be completed during FETCH and State 0. The other special instructions that

require more time states cause FETCH to be reset and the PROCESS major state to be set at the end of

State 0.

If FIR3 = 1 or FIR4 = 1, the instruction is decoded as a data reference instruction. In the case of a

double-word instruction (FIR3 = 1 and FIR4 = 0), States 1, 2, and 3 are skipped, and State 4 is enabled

after State 0. The operand address or the location of the indirect address for single-word instructions
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is calculated during States 1 and 2, and the indirect address is fetched during States 3 and 4. The

remaining time states in the FETCH cycle are used to modify the operand address with the contents of

an index register if any index modification has been specified. In the case of the single-word indirect

instructions, the indirect address is stored temporarily in the MQ (State 3 Mini State 2 and State 4

Mini State 1) and then loaded into the A register when it is required (State 7 Mini State 1).

There is also a flow diagram for each of the data reference instructions. When the OP ADDR has been

set to the appropriate value, the FETCH flow diagram indicates a transfer to the EXECUTE major state.

In this case, the EXECUTE flip-flop is enabled and the timing generator returned to State 0. The in-

struction in the operand exponent is assumed to be stored in the MQLSW. State 15 of DEPOSIT loads

the exponent of the normalized and rounded result in the appropriate register and checks the value of

the exponent to see if it is out of range; that is, less than 4000 or greater than 3777.

3.8.4 EXIT

The EXIT major state is discussed in detail in Paragraph 3.3. After INITIATE, the ADRS register is

pointing at the highest memory location in the APT. During EXIT, the active registers are loaded

into APT starting at the highest location and decreasing to the lowest.

The conditional trapping of an exponent underflow error is performed in the EXIT major state; that is,

all error conditions including exponent underflow cause the EXIT major state to be set instead of the

FETCH major state. During EXIT State 0 the cause of the exit is checked to determine if it was an

exponent underflow. If bit 1 of the command register is set, the usual exit routine is followed. If,

on the other hand, bit 1 of the command register is not set, the FAC or the operand (for ADDM or

MULM) is set to 0 and the FETCH major state is set; this allows the program to proceed.

3.8.5 LDA and STR

The LDA flow diagram is executed during the EXECUTE major state of an FLDA instruction. If the

FPP is in floating-point mode, the contents of the three sequential memory locations defined by the

contents of the OP ADRS register are loaded into the FAC. In double-precision mode, only the

contents of two sequential memory locations are loaded in the FAC. The STR flow diagram is im-

plemented during the EXECUTE major state of a FSTA instruction. In this case, the appropriate 12-bit

bytes of the FAC are stored in the memory locations defined by the OP ADRS register.

3.8.6 DP ADD and SUB

This flow diagram refers to the EXECUTE state of an FADD, FADDM, or FSUB instruction, when the

FPP12 is in double-precision mode. If the result is greater than 37777777) or less than 40000001)Q
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the fraction overflow bit (bit 4 of the status register) is set and the EXIT major state is enabled

causing the FPP12 to halt.

3.8.7 ADD/SUB of FP NOS

This flow diagram is implemented during the EXECUTE major state of an FADD, FADDM, or FSUB

instruction, when the FPP12 is in floating-point mode. In order to add or subtract two floating-point

numbers, the exponents must be aligned; that is, the fractional part of the number with the smallest

exponent must be shifted right and the exponent incremented until the two exponents are equal.

Since the A register cannot be shifted, the fraction of the number with the smallest exponent must

be loaded into the B register. This is done in the following fashion. During State 0 Mini State 1

and 2 the difference between the FAC exponent and the operand exponent is calculated and stored

in 0. The operand exponent is stored in the MQLSW for future reference. The sign of the difference

is used to determine which exponent is larger and, hence, which fraction must be loaded into the

B register. The absolute value of the difference is also loaded into the SHFT CNTR which is sub-

sequently used to determine the number of times the B register is shifted. During State 0 Mini State 3

and 4, the number of shifts required is checked to determine if it is more than 27)
g ;

that is, if the

fraction to be shifted will be completely shifted out of the B register. The OVERSHFT flip-flop,

which is set during State 1 Mini State 2, is used to indicate that the required number of shifts is

greater than 27)g.

State 1 and State 2 are used to fetch the most significant word of the operand fraction. In the case

of FSUB, where the operand exponent is greater than the FAC exponent, the 1
's complement of the

operand fraction is loaded into the A. This is necessary since the ALU cannot perform the operation

B minus A.

Before the B is shifted, the fraction of the number with the largest exponent (which is stored in the A

register) is checked to make sure that it is nonzero. This prevents the loss of significance when a

number with a nonzero exponent and a zero fraction is added to or subtracted from another number.

If the fraction of the number with the largest exponent is zero, the fraction stored in the B register

is loaded into the 0 register and its associated exponent is loaded into MQLSW and the DEPOSIT

major state is enabled.

When State 3 is enabled, the B register is shifted toward the least significant bit. The number of

positions is determined by the number contained in the SHFT CNTR. When shifting is completed, the

timing is advanced and Mini State 1 is used to perform the required operation between the A and B

registers. If the operation causes an overflow condition, adjust the fraction one bit position right and

set the SHFT CNTR to 1.
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At the end of State 3, the result of the addition or subtraction of the aligned fractions is stored in

the 0 register, MQLSW contains the value of exponent of the aligned fractions, and SHFT CNTR

contains a 0 or contains a 1 in the case when the fraction of the result was shifted right. The

DEPOSIT major state is entered to perform the normalization, rounding, exponent calculation, and

storage of the result.

3.8.8 MULTIPLY

The MULTIPLY flow diagram details the algorithm used by the FPP12 to perform floating-point and

double-precision multiplications. The absolute values of the two fractions are multiplied together to

give a positive result which is negated if either but not both of the fractions are negative. The ab-

solute value of the operand fraction is loaded in the MQ during State 0 and State 1. If the FAC

fraction is negative, the complement is loaded in A and a CARRY INSERT is generated when A and B

are added during the multiply cycle so that the 2's complement of the FAC fraction is added to the

contents of the B register.

The multiplication of the two fractions is performed in State 2. Each cycle of the algorithm requires

two clock pulses. The first clock pulse is used to load A plus B into the O register and to decrement

the SHFT CNTR. The second clock pulse loads the partial sum divided by 2 into the B register if the

23rd bit of the MQ is 1. If the 23rd bit of the MQ is 0, the previous partial sum that is contained

in B is divided by two. The second clock pulse also shifts the MQ toward the least significant bit,

which brings the next binary bit of the multiplier into the 23rd position for testing on the next cycle.

The final product is stored in the B register.

The remaining time states used in MULTIPLY store the product in O and load the operand exponent

in the MQLSW for use in the DEPOSIT cycle.

3.8.9 DIVIDE

The Divide algorithm used in the FPP12 is shown in the DIVIDE flow diagram. Again, the divide

routine makes both the divisor and the dividend positive, calculates the quotient, and negates it if

either but not both of the divisor or the dividend was negative.

During State 0 and State 1, the FAC and the absolute value of the operand fraction are loaded into

A and the B registers, respectively. During State 2, the division of the fractions occurs. Again, like

the MULTIPLY algorithm, two clock cycles are required for a shift cycle of the divide algorithm. Dur-

ing the first half of the cycle, the divisor is subtracted from the current remainder (which is stored in

the A register) and, if the result is positive (CARRY OUT = 1), the difference is loaded into the
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O register and a 1 is shifted into the least significant bit of the MQ. During the second half of the

cycle, the new remainder is multiplied by two and stored in the A register. The O register is also

shifted left so that the contents of the A and the O registers are the same. If the result of the trial

subtraction is negative (CARRY OUT = 0), a zero is shifted into the least significant bit of the MQ

and the current remainder, which is stored in both the O and the A registers, is multiplied by two.

This multiplication is done by shifting the O register. The second half of the cycle then loads the

contents of O register into the A register. The 28-bit quotient is found in the MQ when division is

complete. The remaining time states used in the divide routines load the MQ into the O, and the

operand exponent into the MQLSW. During State 2 Mini State 3, the quotient is divided by two

and a one is loaded into the shift counter if the first subtraction gave a positive result. This will

occur if the dividend is greater than the divisor.

3.8.10 SPECIAL INSTRUCTIONS

The remaining flow diagrams are those associated with the instructions that use Special Format 1 , 2,

and 3. Four of these instructions (FEXIT, FCLA, STARTF, and STARTD) are performed completely in

FETCH State 0. All of the conditional jumps are also completed in FETCH State 0, if the condition

is not true; that is, if the jump is not performed. In all other cases, the PROCESS major state is

entered at the beginning of State 1 . Table 3-2 shows the equivalence between the instruction mnemonic

and its corresponding flow diagram heading.

3.9 MAINTENANCE LOGIC

Maintenance logic, built into the FPP12, permits the CPU to examine, in detail, the operation of

the FPP12. For instance, the CPU can issue IOTs that force the FPP12 to cease operation after every

major time state. Other IOTs permit the CPU to examine internal registers in the FPP12. Using these

tools, a diagnostic program can pinpoint the exact step in the flow charts in which the FPP12 fails.

This should isolate the failure to within one or two gates. Diagnostic instructions can sometimes be

used to debug programs. For instance, there is a maintenance instruction that reads the 12 least

significant bits of the APT pointer. If a program has more than one APT it can be desirable to deter-

mine which APT is currently in use. This can be done by issuing the maintenance IOT 6565 with the

AC clear.

A complete list of maintenance IOTs and their functions follows. Data from the FPP12 is inclusively

ORed into the AC when the maintenance mode IOTs are used.
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Octal Code Mnemonic Function

6561 Enter Maintenance Mode
or Maintenance Step

6562

6563

6564

6565

6566

6567

Read States

Read OMSW

Read OLSW

Read APT

Read MQLSW

Load Shift Counter

a. This IOT is typically issued prior to FPST

to begin maintenance mode.

b. 6561 is issued when halted at the end of

a major time state to cause the advance

to the next time state.

c. Maintenance mode is cleared whenever

the FPP Interrupt Request flag is cleared.

The current major time state and enable state

are ORed into the AC, according to Table 3-3.

OR the OMSW register into the AC.

OR the OLSW into the AC.

OR the least significant 12 bits of the APT
pointer into the AC.

OR MQLSW into the AC.

Load the shift counter with the significant 6

bits of the AC.

Maintenance Instructions are detailed on print D-BS-FPP12-0-C12.

Table 3-2

Equivalence Between Instructions and Flow Routines

Instruction Flow Diagrams

FEXIT EXT
FPAUSE PSK
FCLA CLR
FNEG NEG
FNDRM NRM
STARTF STF

STARTD STD
JAC RTN
ALN ALN
ATX ATX
XTA XTA
FNOP NOP's
LDX LDX
ADDX ADX
JEQ JMPS

(Continued on next page)
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Table 3-2 (Cont)

Equivalence Between Instructions and Flow Routines

Instruction Flow Diagram

JGE JMPS
JLE JMPS
JA JMPS
JNE JMPS
JLT JMPS
JGT JMPS
JAL JMPS
SETX MUX
SETB MVP
JSA JSB

JSR JMK
JXN JXN

Table 3-3

Definition of AC Bits After IOT 6562 Read States

AC
Function

Bit

00 Most significant bit of major time state counter

01 Bit 1 of major time state counter

02 Bit 2 of major time state counter

03 Bit 3 of major time state counter

04 CRN deposit flop (1) H

05 CNR fetch flop (1) H

06 CRN execute flop (1) H

07 CNR exit flop (1) H

08 CNR initiate flop (1) H

09 CNR process flop (1) H

10 AST0 shft FAC FRAC H

11 AST1 no shft (1) H
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CHAPTER 4

FPP12 INSTALLATION

4.1 INSTALLATION

The Floating Point Processor is a standard PDP-8 type, data break I/O bus peripheral. The FPP12 is

attached to positive bus computers with BC08B cables and to negative bus computers with BC08D

cables, according to drawing D-UA-FPP 12-0-0. Standard FPP12 logics are wired for PDP-12 com-

puters. Slight wiring alterations for PDP-8/I, PDP-8/L, PDP-8/E, PDP-8, and LINC-8 Computers

are normally made as the units are checked out in the factory. The wiring changes for field conver-

sion are shown in Tables 4-1 and 4-2. It is also necessary to exchange six modules when converting

the FPP12 from a positive to negative I/O bus. These modules and their locations are shown in

Table 4-3.

4.2 AC POWER REQUIREMENTS

Typically, the FPP12 is shipped in a standard DEC 19-in. cabinet. The AC power for the H721 Power

Supply is controlled through a H854 (H854B for 50 Hz) Power Control . This power control is connected

to the AC power with a line cord terminated in a Hubbell 30-amp twist-lock male plug.

Total power consumption for the FPP12 logic and power supply is 150W.

Table 4-1

PDP-8/L, PDP-8/I Positive Bus and PDP-8/E

Name Run Add Delete

CI1 ADD ACC (1) L D04D1 - D30N1 X

EXT ENAB INT PAUSE H F05U2 - B03V2 X

CI1 BIS 05 (1) H D30N1 - A11T2 X
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Table 4-2

PDP-8, LINC-8, and PDP-8/I with Negative Bus

Name Run Add Delete

EXT ENAB INT PAUSE H F05U2 - B03V2 X

CI1 IOP 1 H C01M2 - E01M2 X
A01H1 - C01M2 X

X
C01M2 - A10FI X

CI1 IOP C01N2 - E01N2 X

C01N2 - A10P2 X

C01N2 - E01N2 X
C01N2 - A10N1 X

cn iop h C01P2 E01P2 YA

C01P2 - A10S1 X

C01P2 - E01P2 X

C01P2 - A10R1 X

CIl INIT L B31P2 - A21D1 X

CI1 INIT H B31P2 - A21E1 X

All ADD ACC (1) L A11V2 - D04D1 X
D04D1 - D30N1 X
D04D1 - A11V2 X

CIl BTS 05 (1) L D30N1 - A11S2 X

Table 4-3

Module Changes for Negative Bus Computers

Slot Positive Bus Modules Negative Bus Modules

B08 M101 Ml 00

C3 M623 M633

C4 M623 M633

C5 M623 M633

D05 M623 M633

E3 M101 Ml 00

E4 M101 M100

E8 M623 M633

F05 M623 M633
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4.3 CHECK OUT

Diagnostic programs necessary for checking out the FPP12 are as follows:

FPP12 Instruction Test 1 MAINDEC-12-D0LA

FPP12 Instruction Test 2A MAINDEC-12-D0MA

FPP12 Instruction Test 2B MAINDEC-12-D0NA

FPP12 Instruction Test 2C MAIND EC- 1 2-DOOA

FPP12 Address Test MAIND EC- 1 2-DOPA

FPP12 Exerciser MAINDEC-12-D0QA

These diagnostic programs should be run in accordance with instructions packed with the diagnostic

programs. On the PDP-12 Computer, it is advisable to run the system program for Display Oriented

Research Analysis (DORA). DORA is part of the Analytical Instrumentation Package Operating System

(AIPOS). AIPOS and DORA will run on any PDP-12 Computer equipped with 8K of core memory, the

AD12 analog knobs, and the FPP12. Instructions for the operation of DORA are contained in a separate

manual (DEC-12-SQ1A-D).
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