
PAL-D DISK ASSEMBLER

DEC-D8-ASAA-D

PAL-D DISK ASSEMBLER

Programmer’s Reference Manual

ApriI I968

For additional copies order No. DEC-DB-ASAA-D from

Digital Equipment Corporation, Program Library, Maynard, Mass. Price $I .00

DIGITAL EQUIPMENT CORPORATION I MAYNARD. MASSACHUSETTS

Copyright 1968 by Digital Equipment Corporation

'V'V‘eiaia'eedeeeeeeeeeeeeeweewwwww
—l O

oompw

CONTENTS

CHAPTER I

INTRODUCTION

PAL-D Language

Syntax

Legal Characters

Illegal Characters

Format Ettectors

Statements

Labels

Operators

Operands

Comments

Symbols

Symbol Distinction

Permanent Symbols

User-Defined Symbols

Symbolic Address

Symbolic Operators

Symbolic Operands

Symbol Tables

Direct Assignment Statements

Numbers

Arithmetic and Logical Operators

Evaluating Expressions

Address Assignments

Current Address Indicator

Indirect Addressing

Autoindexing

Literals

Nesting Literals

Instructions

Memory Reference Instructions

Paging

NMNNNNNN oowomtnoom
00000000

##kA-b

.7.I.2

.7.2

.7.2.1

.7.2.2

.2.I

.2.2

.2.3

CONTENTS (Cont)

Off—Page Referencing

Augmented Instructions

Operate Microinstructions

Input-Output Transfer Microinstructions

CHAPTER 2

PSEUDO-OPERATORS

Current Location Counter

Extended Memory

Radix Control

Listing Control

Text Facility

End of Program

End of File

Altering the Symbol Table

CHAPTER 3

OPERATING PROCEDURE

Loading PAL-D

Saving PAL-D

Expanding User's Symbol Table

Using PAL-D

CHAPTER 4

PROGRAM PREPARATION AND ASSEMBLER OUTPUT

Program Tape

Assembly

Pass I

Pass 2

Pass 3

CHAPTER 5

ERROR DIAGNOSTICS

APPENDIX A

USA SCII CHARACTER SET

APPENDIX B

SYMBOL LIST

2-]

2-]

2-2

2-2

2-2

2-3

2-3

2—3

3-1

3-2

3—2

3-2

4-1

4-2

4-2

4-2

HOW TO OBTAIN REVISIONS AND CORRECTIONS

Notification of changes and revisions to currently available Digital software

and of new software manuals is available from the DEC Program Library for the

PDP-5, 8, 8S, 8I, Linc 8, the PDP-4, 7 and 9 is currently published in DECUSCOPE

the magazine of the Digital Equipment Computer User's Society (DECUS). This

information appears in a section of DECUSCOPE called "Digital Small Computer

News".

Revised software products and documents are shipped only after the Program

Library receives a specific request from a user.

DEC USCOPE is distributed periodically to both DECUS members and to non-

members who request it. If you are not now receiving this information, you are

urged to return the request form below so that your name will be placed on the

mailing list.

-Jznm_——_—-——_“—_~sl----mmm—am—‘t——:‘n-—r—n_—"—‘n—flm_——I

To: DECUS Office,

Digital Equipment Corporation,

Maynard, Mass. 01754

Cl Please send DECUS installation membership information.

[I Please add my name to the DECUSCOPE non-member mailing list.

Name

Company

l

l

l

l

l

l

l

l

l

l

5 [:I Please send DECUS individual membership information.
i

l

l

l

l

i

l

l

l

l

l Address

(Zip Code)

CHAPTER I

INTRODUCTION

PAL-D, the acronym for _Program Assembly Language for the _Disk System, is the symbolic

assembly program designed primarily for the 4K PDP-8 family of computers with disk or DECtape.

The PAL-D Assembler makes machine language programming easier, faster, and more

efficient. Basically, the Assembler processes the programmer's source program statements by translating

mnemonic operation codes to the binary codes needed in machine instructions, relating symbols to

numeric values, assigning absolute core addresses for program instructions and data, and preparing an

output listing of the program, which includes notification of any errors detected during the assembly

process.

The PAL—D Assembler operates under the Disk Monitor System. The assembly system includes

the disk version of the Symbolic Tape Editor for altering or editing the source language tape, the Disk

Debugging Tape for debugging the obiect program by communicating with it in the source language,

and various other utility programs.

PAL-D requires a 4K PDP-8/I, 8, or 8/5 computer with a teleprinter, and a DF32 Disk or

TCOI DECtape unit, or both. It can also use a high speed reader and punch, and up to three additional

D532 Disk units.

l.1 PAL—D LANGUAGE

The PAL-D Assembler is compatible with the PAL III Assembler. However, PAL-D has the

following additional features.

Operators Symbols and integers may be combined by
using the operators
+ Addition 8. Boolean AND
- Subtraction I Boolean Inclusive OR

Literals Symbolic or integer literals (constants)
are automatically assigned.

Text Facility Text facilities exist for single characters

and blocks of text.

Indirect Linkage Indirect links are automatically generated for

Generation off-page referencing.

I . 2 SYN TAX

Programs processed under PAL-D are written using USA SCII characters. Appendix A

contains a complete list of these characters with their octal code equivalents.

I-I

1 .2.1 Legal Characters

The following characters are acceptable to PAL-D.

a. The alphabetic characters

ABCD. . .XYZ

b. The numeric characters

0123456789

c . The special characters

__. Space

+ Plus

- Minus

()
[J

Exclamation Mark

Carriage Return

Tabulation

Comma

Equal Sign
Semicolon

Dollar Sign
Asterisk

Point (Period)
Slash

Ampersand
Quote

Parentheses

Brackets

d . Ignored characters

Form-Feed

Blank Tape
Code 200

Rubout

Line-Feed

Separates symbols and numbers

(see Section 1.5.1)
Combines symbols or numbers

(add)
Combines symbols or numbers

(subtract)
Combines symbols or numbers

(inclusive OR)
Terminates a line

Formats symbols or numbers or source

tape output

Assigns symbolic address

Direct assignment of symbol values

Terminates coding line

(will not terminate comments)
Indicates end of pass

Sets current location counter; redefines origin
Has value equal to current location counter

Indicates start of comment

Combines symbols or numbers (AND)
Generates USA SCll constant

Defines literal on current page

Defines page 0 literal

Indicates the end of a logical page of

source program

Used for leader/trailer
Used for leader/trailer
Follows tabulation characters for

timing purposes

Follows carriage return and causes tele-

printer paper to roll upward one line

Since certain characters are invisible (i.e., nonprinting), the following symbols are used

throughout this manual to represent their presence.

I—I

.4

J

Space
Tabulation

Carriage Return

1.2.2 Illegal Characters

All characters other than those listed above are illegal when not in a comment or TEXT field

and, being illegal, their occurrence causes the error message IC (Illegal Character) to be printed by

PAL—D.

l . 2 .3 Format Effectors

Tabulations are usually used in the body of a source program to provide a neat page; they can

separate fields from one another, as between a statement and a comment. For example, a line written

GO, TAD TOTAL/MAIN LOOP

is much easier to read if tabs are inserted to form

GO, -'l TAD TOTAL—ti /MAIN LOOP

Either the ";" (semicolon) or ”J
"

(carriage return-line feed) character may be used as a

statement terminator. The. semicolon is considered identical to carriage return-line feed except that it

will not terminate a comment. Example:

TAD A /THIS IS A COMMENT; TAD B J

The entire expression between the "/" (slash) and J (carriage return) is considered a comment.

The semicolon also allows the programmer to place several lines of coding on a single line.

If, for example, he wishes to write a sequence of instructions to rotate the contents of the accumulator

and link six places to the right, it might look like

RTR 2

RTR I

RTRJ

The programmer may place all three RTRs on a single line by separating them with the special character

,
and terminating the line with a carriage return. The above sequence of instructions can then be

written

RTR; RTR; RTRJ

This format is particularly useful when setting aside a section of data storage for a list. For example, a

IZ—word list could be reserved by specifying the following format.

LIST, 0; O; O; 0; O; O J

O; O; O; O; O; O J

A neat printout (or program listing) makes subsequent editing, debugging, and interpretation

much easier than when the coding is laid out in a haphazard fashion.

1 .3 STATEMENTS

PAL—D source programs are usually prepared on a Teletype, with the aid of the Editor, as a

sequence of statements. Each statement is written on a single line and is terminated by a carriage

return-line feed sequence. PAL-D statements are virtually format free; that is, elements of a statement

are not placed in numbered columns with rigidly controlled spacing between elements, as in punched-card

oriented assemblers.

There are four types of elements in a PAL-D statement which are identified by the order of

appearance in the statement, and by the separating, or delimiting, character which follows or precedes

the element.

Statements are written in the general form

label, operator operand/comment

The Assembler interprets and processes these statements, generating one or more binary instructions or

data words, or performing an assembly process. A statement must contain at least one of these elements

and may contain all four types.

1.3.1 Labels

A label is the symbolic name created by the source programmer to identify the position of the

statement in the program. If present, the label is written first in a statement and terminated by a comma.

l .3.2 Operators

An operator may be one of the mnemonic machine instruction codes (see Appendix B), or

a pseudo-operation (pseudo-op) code which directs assembly processing. The assembly pseudo-op

codes are described in Chapter 2. Operators are terminated with a space if an operand follows or with

a semicolon, slash, or carriage return.

1 .3.3 Operands

Operands are usually the symbolic address of the data to be accessed when an instruction is

executed, or the input data or arguments of a pseudo-op. In each case, interpretation of operands in

a statement depends on the statement operator. Operands are terminated by a semicolon, a slash if a

comment follows, or a carriage return-line feed.

1 .3.4 Comments

The programmer may add notes to a statement following a slash mark. Such comments do not

affect assembly processing or program execution, but are useful in the program listing for later analysis

or debugging .

1-4

l .4 Symbols

The programmer may create symbols to use as statement labels, as operators, and as operands.

A symbol is a string of one or more alphanumeric characters delimited by a punctuation character. A

symbol contains from one to six characters from the set of 26 alphabetic characters and ten digits 0 through

9; however, the first character must be alphabetic.

1.4.1 Symbol Distinction

The PAL—D Assembler makes a distinction between the types of symbols it is processing. These

types are

a . Permanent symbols

JMS a symbol whose value of 4000 (octal) is taken from PAL-D's permanent

operation code symbol table.

b. User-defined symbols

HERE a user-defined symbol; when used as a symbolic address tag, its value is

the address of the statement it tags (this value is assigned by PAL—D).

l .4.1 .1 Permanent Symbols - PAL-D has in its permanent symbol table definitions of its operation codes,

operate commands, and many input—output transfer (IOT) microinstructions (see Appendix B). PAL-D's

permanent symbols may be used without prior definition by the user.

1 4.1 .2 User-Defined Symbols - User-defined symbols are composed according to the following rules.

a. The characters must be alphabetic (A—Z) or numeric (0-9).

b. The first character must be alphabetic.

c . Only the first six characters of any symbol are meaningful to PAL-D; the remainder,
if any, are ignored.

Note that because of the third rule above, a symbol such as INTEGER would be interpreted as INTEGE

since the seventh character is ignored. Remember, if symbols of more than six characters are used, the

programmer must avoid defining two apparently different symbols whose first characters are identical.

For example, the two symbols GEORGEl and GEORGE2 differ only in the seventh character, thus the

Assembler treats them as being the same symbol, GEORGE.

When the symbol following the space is a user-defined symbol, the space acts as an address

field delimiter. Example:

"2117;l

A, CLAJ

JMP,__,A 4/

1-5

where A is user-defined symbol with the value 21 l 7. The expression JMP A is evaluated as follows.

JMP lOl 000 000 000 (binary representation of permanent symbol JMP)
Address A 000 Oil 001 ill (binary representation of address A)

The operation codes (op codes) are inclusively ORed to form

JMPA 101 Oil 001 ill

or written more concisely in octal as 5317.

l .4.3 Symbolic Addresses

A symbol used as a label to specify a symbolic address must appear first in the statement and

must be immediately Followed by a comma. When used in this way, a symbol is said to be defined. A

defined symbol can reference an instruction or data word at any point in the program. A symbol can be

defined as a label only once. If a programmer attempts to define the same symbol as a label again, the

second or successive attempt is ignored and an error is indicated. The Assembler recognizes only the first

definition. These are legal symbolic addresses:

ADDR,

TOTAL,

SUM,

The following symbolic addresses are illegal:

7ABC, (first character must be alphabetic)
LABH, (comma must immediately follow label)

1 .4.4 Symbolic Operators

Symbols used as operators must be predefined by the Assembler or by the programmer. If a

statement has no label, the operator may appear first in the statement, and must be terminated by a

space, tab, semicolon, or carriage return. The following are examples of legal operators:

TAD (a mnemonic machine instruction operator)
PAGE (an Assembler pseudo-op)
ZIP (legal only ifdefined by the user)

1 .4.5 Symbolic Operands

Symbols used as operands must have a value defined by the user. These may be symbolic

references to previously defined labels where the arguments to be used by this instruction are to be found,

or the values of symbolic operands may be constants or character strings.

TOTAL, TAD ACl + TAG

The first operand, ACl , specifies an accumulator register, determined by the value given to the symbol

ACT by the user. The second operand references a memory location whose name or symbolic address is TAG.

1—6

1.4.6 Symbol Tables

The Assembler processes symbols in source program statements by referencing its symbol tables

which contain all defined symbols along with the binary value assigned to each symbol.

Initially, the Assembler's permanent symbol table contains the mnemonic op codes of the machine

instructions and the Assembler pseudo-op codes, as listed in Appendix B. As the source program is processed ,

symbols defined in the source program are added to the user's symbol table.

1 .4.o.1 Direct Assignment Statements — The programmer inserts new symbols with their assigned values

directly into the symbol table by using a direct assignment statement of the form

symbol = value

where the value may be a number or expression. For example,

ALPHA=5

BETA=17

A direct assignment statement may also be used to give a new symbol the same value as a

previously defined symbol.

BETA=17

GAMMA=BETA

The new symbol, GAMMA, is entered into the user's symbol table with the value 17.

The value assigned to a symbol may be changed.

ALPHA=7

changes the value assigned to the first example from 5 to 7.

The user may also define symbols by use of the comma. When the first symbol of a statement is

terminated by a comma, it is assigned a value equal to the current location counter (CLC). For example,

*100 /set CLC (origin) to 100:)

TAG, CLAJ

JMP AJ

B, O)

A, DCA B.)

The symbol TAG is assigned a value of 0100, the symbol B a value of 0102, and the symbol A a value of

0103.

Direct assignment statements do not generate instructions or data in the obiect program. These

statements are used to assign values so that symbols can be conveniently used in other statements.

1.5 NUMBERS

Any sequence of numbers delimited by a punctuation character is interpreted numerically by

PAL-D .

t

12

4372

The radix control pseudo-operators (pseudo—ops) indicate to the Assembler the radix to be

used in number interpretation (see Chapter 2). The pseudo-op DECIMAL indicates that all numbers

are to be interpreted as decimal until the next occurrence of the pseudo—op OCTAL. The pseudo—op

OCTAL indicates that all numbers are to be interpreted as octal until the next occurrence of the pseudo-op

DECIMAL.

The radix is initially set to octal and remains octal unless otherwise specified.

1 .5.l Arithmetic and Logical Operators

The arithmetic and logical operators are:

+ Plus 25 complement addition

(modulo 4096)

- Minus 25 complement subtraction

(modulo 4096)

I Exclamation Mark Boolean inclusive OR

(union)

& Ampersand Boolean AND (intersection)

_. Space Interpreted as inclusive OR when used

to separate two symbolic operators. Example:

TAG, CLA L_.CLL J

l .5.2 Evaluating Expressions

Symbols and numbers (exclusive of pseudo—op symbols) may be combined by using the arithmetic

and logical operators to form expressions. Expressions are evaluated from left to right. Example:

A B A+ B
'

A—B A I B A&B

Value 0002 0003 0005 7777 0003 0002

Value 0007 0005 0014 0002 0007 0005

Value 0700 0007 0707 0671 0707 0000

1.6 ADDRESS ASSIGNMENTS

The PAL—D Assembler sets the origin, or starting address, of the source program to absolute

location (address) 0200 unless the origin is specified by the programmer. As source statements are processed,

PAL-D assigns consecutive memory addresses to the instructions and data words of the object program . This

is done by incrementing the location counter each time a memory location is assigned. A statement which

1-8

generates a single object program storage word increments the location counter by one. Another statement

may generate six storage words, thus incrementing the location counter by six.

Direct assignment statements and some Assembler pseudo-ops do not generate storage words

and therefore do not affect the location counter.

l .6.l Current Address Indicator

The special character . (point or period) always has a value equal to the value of the

current location counter. It may be used as any integer or symbol (except to the left of an equal sign).

Example:

*200J

JMP .+ 21

is equivalent to JMP 0202. Also,

*3001

.+24OOJ

will produce in location 0300 the quantity 2700. Consider

*22002

CALL=JMS | . J

0027:.)

The second line, CALL = JMS I
.,

does not increment the current location counter, therefore, 0027 is

placed in location 2200 and CALL is placed in the user's symbol table with an associated value of 4600

(the octal equivalent of JMS 1.).

1.6.2 Indirect Addressing

When the character I appears in a statement between a memory reference instruction and an oper-

and, the operand becomes the address containing the address of the statement to be executed. Consider

TAD 400

which is a direct address statement, where 400 is interpreted as the address containing the quantity to be

added to the accumulator. Thus, if address 400 contains 0432, then 0432 is added to the accumulator.

Now consider

TAD I 400

which is an indirect address statement, where 400 is interpreted as the address of the address containing

the quantity to be added to the accumulator. Thus, if address 400 contains 432, and address 432 contains

456, then 456 is added to the accumulator.

When a reference is made to an address not on the same page as the reference, PAL-D sets

the indirect bit (bit 3) of the machine instruction, generating an indirect address linkage to the off-page

reference (see Paging and Off-Page Referencing, Sections l .7.1 .l and 1.7.1 .2).

1—9

In the case of several off-page references to the same address, the indirect address linkage

will be generated only once.

Example: *ZII7J

A, CLAJ

*26OOJ

TAD_.A

DC.A__.A

The space preceding the user-defined symbol A acts as an address field delimiter. PAL-D will recognize

that the address tag A is not on the current page (in this case 2600-2777) and will generate a link to it

in the following manner. In location 2600, PAL-D will place the word

I777 (octal equivalent of TAD I 2777)

and in location 2777 (the last location on the current page) the word 2II7 (the actual address of A) will

be placed. When it sees the second reference to A it will use the previous link word rather than creating

a new one .

PAL—D will recognize and generate an indirect address linkage only when the address referenced

is to a location on another page, not the current page. The programmer must use the character I to

indicate an explicit indirect address when indirectly addressing to a location on the current page.

PAL-D cannot generate a link for an instruction that is already specified as being an indirect

address. In this case, PAL-D will type the error message ll (Illegal Indirect); the error message is ignored

and assembly is continued.

I .6.3 Autoindexing

Interpage references are often necessary for obtaining operands when processing large amounts

of data. The PDP—8 computers have facilities to ease the addressing of this data. When absolute locations

I0 to I7 (octal) are indirectly addressed, the content of the location is incremented before it is used as

an address and the incremented number is left in the location. This allows the programmer to address

consecutive memory locations using a minimum of statements.

It must be remembered that initially these locations (I0 to I7) must be set to one less than the

first desired address. Because of their characteristics, these locations are called autoindex registers.

No incrementation takes place when locations I0 to I7 are addressed directly.

Example:

Statement is in location 500

Data is on the page starting at 5000

Autoindexing register I0 is used for addressing

0476 1377 TAD (5000-1) / set up auto

0477 3010 DCA 10 / index with 4777

0500 1410 TAD I 10 / C(10) is incremented to 5000 before
’ °

use as address

0577 4777 / literal generated by PAL-D

When the statement in location 500 is executed, the content of location 10 will be incremented to 5000

and the content of location 5000 will be added to the content of the accumulator. If the instruction

TAD | 10 is re—executed, the content of location 5001 is added to the content of the accumulator, and so on.

1.6.4 Literals

Symbolic and integer literals (constants) may be defined as shown below.

cDAJ
TAD (2).;
DCA INDEX .2

The left parenthesis is a signal to the Assembler that the integer following is to be assigned a location

in the table at the top of the current page. This is the same table in which the indirect address linkages

are stored. In the above example, the quantity 2 is stored in the first free location in a list beginning at

the top of the current page (relative address 177), and the statement in which it appears is encoded with

an address referring to that location.

A literal is assigned to storage the first time it is encountered; subsequent references will be

to the same location.

If the programmer wishes to assign literals to page 0 rather than the current page, he must use

square brackets, [], in place of parentheses. Whether using parentheses or square brackets, the right

or closing member is optional and may always be replaced with a carriage return.

TAD (777.;

1.6.4.1 Nesting - Literals may be nested as shown below.

*200 2

TAD (TAD (30 a

will generate

0200 1276

0376 1377 (literals assigned to locations

0377 0030 0377 and 0376; top of current page)

This type of nesting may be carried to many levels.

Literals are stored on each page starting at relative address I77 (only I2710 or I778 literals

may be placed on page 0) . If literals are being generated for some nonzero page and then the origin
is set to another page, the current page literal buffer is punched out during pass 2. If the origin is reset

to the previously used page, the same literal will be generated if used again.

If a single character is preceded by a quote (”) ,
the 8-bit value of the USA SCII code for that

character is inserted instead of taking the letter as a symbol.

Example: CLAo/

TAD ("A I

will place the constant 0301 in the accumulator.

I.7 INSTRUCTIONS

There are two basic groups of instructions: memory reference and augmented. Memory
reference instructions require an operand; augmented instructions do not require an operand.

I .7.l Memory Reference Instructions

In PDP-8 computers, some instructions require a reference to memory. They are appropriately
designated memory reference instructions, and take the following format.

OPERATION MEMORY
CODES 0-5 PAGE

r
A

fifi PM

0 1 2 3 4 5 6 7 8 9 10 11

W4 %

Y
J

INDIRECT ADDRESS
ADDRESSING

Memory Reference Instruction Bit Assignments

Bits 0 through 2 contain the operation code of the instruction to be performed (AND, TAD, DCA, JMS, or

or JMP) . Bit 3 tells the computer if the instruction is indirect, that is, if the address of the instruction

specifies the location of the operand, or if it specifies the location of the address of the operand. Bit 4

tells the computer if the instruction is referencing the current page or page zero. This leaves bits 5

through II (7 bits) to specify an address. In these 7 bits, 200 octal or I28 decimal locations may be

specified; the page bit increases accessible locations to 400 octal or 256 decimal.

The address field of a memory reference instruction may be any valid expression.

Example: A=27O J

*200 c'

TAD A-20 J

I-I2

produces, in location 200, the word

1250

which in binary is 001 010 101 000

which is also TAD 250.

1 .7.1 .1 Mtg
- To ease the programmer's addressing problems, a convention has been defined that

divides memory into sectors called pages. Each page contain 200 octal locations (128 decimal) numbered

0 to 177 (octal) on that page. There are 40 octal or 32 decimal pages numbered 0 to 37 (octal) . Some

examples of page numbers and the absolute and relative locations (addresses) are shown below. It must

be borne in mind, however, that there is no physical separation of pages in memory.

Absolute Relative

Eggs Address Address

0 0 — 177 0 - 177

1 200 — 377 0 - 177

2 400 - 577 0 — 177

36 7400 - 7577 0 — 177

37 7600 - 7777 0 - 177

The Following table offers a comparison of specific absolute and relative addresses on the

same page .

Absolute Relative

133% Address Address

0 10 10

3 617 17

12 2577 177

31 6255 55

37 7777 177

Since only seven bits are necessary to address 200 octal locations, bits 5 to 11 are reserved

for this function .

1 .7.1 .2 Off-Page Referencing - The page on which an absolute address is contained can be determined

from bit 4 of the instruction. If bit 4 is a 0, the address refers to a location on page 0; if bit 4 is a 1,

the address refers to a location on the current (same) page, that is, the some memory page as the instruction.

1 .7.2 Augmented Instructions

Augmented instructions are divided into two groups: Operate and input-output transfer

microinstructions.

1.7.2.1 Operate Microninstructions — Within the operate group there are two groups of microinstructions.

Group 1 microinstructions are principally for clear, complement, rotate, and increment operations and

are designated by the presence of a O in bit 3 of the machine instruction word. (See Appendix B.)

ROTATE 1

ROTATE POSITION IF AO,
OPERATION AC ANDL ZPOSITIONS

CODE 7 CLA CMA RIGHT IFAt

r
A

‘ F—H ,__~_fi r___A._fi f—A—fi

O 1 2 3 4 5 6 7 8 9 10 11

C_Y__J W—J W4 _.Y__J O_Y__J
CONTAINS CLL CML ROTATE IAC

A O TO AC AND L

SPECIFY LEFT

GROUPt

Group 1 Operate Microinstruction Bit Assignments

Group 2 microinstructions are used principally in checking the content of the accumulator and

link and, based on the check, continuing to or skipping the next statement. Group 2 microinstructions are

identified by the presence of a 1 in bit 3 and a O in bit 11 of the machine instruction word (See Appendix B).

REVERSE

SKIP

OPERATION SENSING OF

CODE 7 CLA SZA BITS 5,6,7 HLT

f

A

N f——“—'\ r—J_\ /——~—\ /—~—\

0 1 2 3 4 5 6 7 8 9 10 11

\—v--’ W L_Y__J W4

CONTAINS A1 SMA SNL OSR CONTAINS AO

TO SPECIFY TO SPEC‘EY

GROUP 2 GROUPZ

Group 2 Operate Microinstruction Bit Assignments

Group 1 and group 2 microinstructions can not be combined because bit 3 determines only one

or the other.

Within Group 2, there are two groups of skip instructions. They may be referred to as the

OR group and the AND group.

OR Group AND Group

SMA SPA

SZA SNA

SNL SZL

The OR group is designated by a O in bit 8, the AND group by a l in bit 8. OR and AND group

instructions cannot be combined because bit 8 determines only one or the other.

If the programmer does combine legal skip instructions, it is important to note the conditions

under which a skip may occur.

a. QR Group — If these skips are combined in a statement, the inclusive OR of the conditions

determines the skip.

SZA SNL

The next statement is skipped if

the accumulator contains 0000, or

the link is a l, or

both conditions exist.

b. AND Group - If the skips are combined in a statement, the logical AND of the conditions

determines the skip .

SNA SZL

The next statement is skipped only if the accumulator differs from 0000 and the link is O.

1 .7.2.2 Input-Output Transfer Microinstructions - These microinstructions initiate operation of

peripheral equipment and effect information transfer between the central processor and the input-output

device (5). This is the principal function of the input-output transfer (IOT) microinstructions. Appendix

B lists all valid IOT microinstructions, and each is discussed in detail in the User's Handbook.

CHAPTER 2

PSEUDO-OPERATORS

The programmer may use pseudo-operators (pseudo-ops) to direct the Assembler to perform

certain tasks or to interpret subsequent coding in a certain manner. Some pseudo-ops generate storage

words in the object program, other pseudo—ops direct the Assembler on how to proceed with the assembly.

Pseudo-ops are maintained in the Assembler's permanent symbol table.

The function of each PAL-D pseudo-op is described below.

2.] CURRENT LOCATION COUNTER

The programmer may use the PAGE pseudo-op to reset the current location counter (CLC) to

the first location on a specified page.

PAGE without an argument, the CLC is reset to the first location on the

next succeeding page. Thus, if a program is being assembled into

page I and the programmer wishes to begin the next segment of his

program on page 2, he need only insert PAGE, as follows.

JMP .—71 (Last location used on page I)

PAGE I

CLAJ (First location on page 2)

PAGE n resets the CLC to the first location of page n, where n is an integer,

a previously defined symbol, or a symbolic expression. Example:

PAGE 2 (sets the CLC to location 400)
PAGE 6 (sets the CLC to location I400)

2.2 EXTENDED MEMORY

When using more than one memory bank, the pseudo-op FIELD instructs the Assembler to output

a field setting.

FIELD n where n is an integer, a previously

defined symbol, or a symbolic

expression within the range 0 S n 57.

This pseudo-op causes a field setting (binary word) of the form

II XXX 000 where 000 _<_XXX _<_ I II

to be output on the binary tape during pass 2. This word is interpreted by the Loader, which then begins

loading information from the Loader into the new field.

2—I

2.3 RADIX CONTROL

Integers used in a source program are usually taken as octal numbers. If, however, the

programmer wishes to have certain numbers treated as decimal, he may use the pseudo-op DECIMAL.

DECIMAL all integers in subsequent coding are taken as decimal until

the occurrence of the pseudo-op OCTAL.

OCTAL resets the radix to its original octal base.

2.4 LISTING CONTROL

During pass 3, a listing of the source program is printed (punched). The programmer may,

however, control the output of his pass 3 listing by use of the pseudo-op XLIST.

XLIST Those portions of the source program enclosed by XLIST will

not appear in the pass 3 listing.

2.5 TEXT FACILITY

The pseudo-op TEXT enables the user to represent a character or string of characters in USA SCII

code trimmed to six bits and packed two characters to a word. The numerical values generated by TEXT

are left-iustified in the storage words they occupy, with the unused bits of the last word filled with 05.

A string of text may be entered by giving the pseudo-op TEXT followed by a space, a delimiting

character, a string of text, and the same delimiting character.

Example:

TEXT“ ASTRING OF TEXTA

The first printing character following TEXT is taken as the delimiting character, and the text string is

the characters which follow until the delimiting character is again encountered.

If the example above were at location 0200, the pass 3 listing would be as follows.

200 2324 /ST
201 221 1 /RI
202 1607 /NG
203 4017 /.__, 0

204 0640 /F .__.

205 2405 /TE
206 3024 /XT
207 0000 /zero filled

NOTE

With TEXT, any printing character

may be used as a delimiting character.

2-2

2.6 END OF PROGRAM

The special symbol $ (dollar sign) indicates the end of a program. When the Assembler

encounters the $, it terminates the pass.

2.7 END OF FILE

The pseudo-op PAUSE signals the Assembler to stop processing the current input file. The

current pass is not terminated, and processing continues when the user types TP on the Teletype.

When processing a segmented program, the programmer must use the PAUSE pseudo-op as

the last statement of each segment to halt processing, giving him time to call (or insert, if paper tape

is being used) the succeeding segment of his program.

2.8 ALTERING THE SYMBOL TABLE

There are two pseudo-ops that may be used to alter the permanent symbol table during pass l.

EXPUNGE Erases the entire symbol table, except for pseudo-ops.

FIXTAB FIX the symbol TABle. All symbols currently in the symbol table

are made permanent.

Example:
EXPUNGE J

TAD = TOOOJ

FlXTABJ

will place the symbol TAD in the permanent symbol table. All other symbols will be erased. Permanent

symbols are not typed out with the users symbols on PASS 2.

CHAPTER 3

LOADING AND OPERATING PROCEDURES

The user receives the PAL-D Disk Assembler in binary format on 8-channel punched paper

tape. The Assembler is incorporated in the system by loading the paper tape into core using the Disk

Monitor System (Monitor). Then the Assembler may be saved on the disk or DECtape as explained below.

If the Monitor is not present on your disk or DECtape, build it according to instructions in

the Disk Monitor System (DEC-D8-SDAA-D).

3.] LOADING PAL-D

PAL-D is loaded in two passes. The procedure for the two-pass load follows (Loader responses

are underlined).

_._LOAD1

*IN-R: ,)

i:

*OPT-Z 2

.51.: J

l<l P>l<l P>l<lP>_l_<l P>

call Loader from disk (2 indicates carriage return)

input to be from high speed reader; T: would indicate input from

Teletype reader

Loader found device R: valid

two-pass load is specified

control is to be returned to the Monitor after loading tape into

core; 7600 I would also transfer control to the Monitor after

loading the tape

Loader is waiting for user to put paper tape in reader and type TP.

After reading tape into core, Loader waits for user to remove tape
and type TP. If checksum error occurs, Monitor types ? in place
of l.

Loader is waiting for user to put paper tape in reader for second pass

and type lP.

After reading tape on second pass, Loader is waiting for user to remove

tape and type TP. Again, checksum error will cause ? to be typed
in place of 1.

NOTE

lP indicates CTRL-P, and< >indicates that

the enclosed portion is not echoed (printed
when the user types).

3-]

3.2 SAVING PAD-D

PAL—D may be saved on the system device as a system program. This is done by typing the

following:

.SAVE PALD! 0—,3377 3600-4377, 4600, 5200,6200-6577, 7000—7577; 6200
"'

V JV

‘J One Page Entry
Progam Save Point

Name

Multiple Page
Save

{1
System Program

: User Program

The PAL-D Assembler in now saved as a system program on the system device. The programmer may now

type PALDJ which brings the Assembler into core for use with symbolic source programs.

3.2.l Expanding User's Symbol Table

The user's symbol table can hold T6010 user-defined symbols. This may be expanded by

saving on the system device a user file named .SYM which can be used by PAL-D to store extra symbols.

Each user—defined symbol occupies four words. The symbol table can be

expanded by 12810 or 2008
locations by saving a file with the following statement.

L
SAVE .SYM:0-l77;0 1

3.3 USING PAL-D

PAL-D is transferred from the system device into core using the Monitor. The user begins by

typing

_._PALD J

PAL-D requests on output file by typing

*OUT-

The user selects the output device by typing

T: J for the Teletype (low speed reader/punch), or

R: J for the high speed reader/punch, or

Szname J for output to the system device as file name:

PAL-D now types

*IN-

3-2

and waits for the user to select the input files. Up to five input files may be specified (e.g., R:, R:,

S:name, R:, R: J),but in this example the user selected

R:.) input from the high speed reader/punch

NOTE

PAL—D checks the validity of each selected file (i.e.,
valid only if the file was declared when building Moni-

tor), and types
* for each valid file and ? for an in-

valid file. When PAL-D finds an invalid file it returns

control to the Monitor, in which case, the user must

start again by calling PALD J .

When PAL-D is satisfied that the input file(s) is valid, it will request third pass listing option by typing

*OPT—

The user may type

T .1 meaning listing and symbols are to be produced
on the Teletype, or

R J meaning listing and symbols are desired on high
speed punch, or

1 meaning symbols only same as (any other character means

no third pass)

When the high speed punch is selected as a listing device, the alphabetic symbol table produced at the

end of pass 2 is also produced on the high speed punch.

PAL-D will now proceed with the assembly, pausing only when user intervention is required

(i.e., placing a new paper tape in the reader, turning on the punch, etc.) . On these occasions,

PAL-D will type an up-arrow (T) on the Teletype to indicate user intervention is required. When the

user is ready to continue with the assembly, he types CTRL-P (T P) (which does not echo).

At the end of pass 2, PAL-D outputs the user's symbol table in alphabetical order (in addition

to the assembled binary output). This symbol table listing may be terminated at any time by typing

CTRL—P, and PAL—D will proceed to initiate pass 3, if requested.

Assembly may be terminated and control returned to the Monitor at any time by typing

CTRL-C (TC) . When the assembly is complete, control will automatically be returned to the Monitor.

CHAPTER 4

PROGRAM PREPARATION AND ASSEMBLER OUTPUT

The source language tape (symbolic tape) is prepared in USA SCH code on 8-channel punched

paper tape or as a named file on the disk or DECtape using the Editor.

4.1 PROGRAM TAPE

Since the Assembler ignores certain characters, these may be used Freely to produce a more

readable symbolic source tape. These useful characters are tab and form-feed.

The Assembler will also ignore extraneous spaces, carriage return-line feed combinations,

rubouts, and blank tape.

The program body consists of statements and pseudo-ops. The program is terminated by the

dollar sign ($). If the program is large, it may be segmented by use of the pseudo—op PAUSE. This often

facilitates editing the source program since each section is physically smaller.

The Assembler initially sets the origin (current location counter) of the source program to 0200.

The programmer may reset the current location counter by use of the asterisk.

The following two programs are identical except that format effectors were used in the second

printout.

*200

/EXAMPLE OF FORMAT

/GENERATOR
BEGIN, o/START OF PROGRAM

KCC

KSF/WAIT FOR FLAG

JMP .-T/FLAG NOT SET YET

KRB/READ IN CHARACTER

DCA CHAR

TAD CHAR

TAD MSPACE/IS IT A SPACE?

SNA CLA

HLT/YES
JMP BEGIN + 2/NO: INPUT AGAIN

CHAR, O/TEMPORARY STORAGE

MSPACE, -240/—ASCII EQUIVALENT

/END OF EXAMPLE

$

*200

/EXAMPLE OF FORMAT

/GENERATOR
BEGIN, o /START OF PROGRAM

KCC

KSF /WAIT FOR FLAG

JMP .-T /FLAG NOT SET YET

4-1

KRB /READ IN CHARACTER

DCA CHAR

TAD CHAR

TAD MSPACE /IS IT A SPACE?

SNA CLA

HLT /YES
JMP BEGIN+ 2 /NO: INPUT AGAIN

CHAR, o /TEMPORARY STORAGE

MSPACE, -24o /—ASCII EQUIVALENT

/END OF EXAMPLE

$

Both of these programs will produce the same binary code. The second, however, is easier to read.

4.2 ASSEMBLY

PAL-D is a two-pass assembler with an optional third pass which produces a side-by-side

assembly listing of the symbolic source statements, their octal equivalents, and assigned absolute

addresses .

4.2.1 Passl

During pass 1, PAL—D processes the source tape (or file) and places in its user's symbol table

the definitions of all symbols used. The user's symbol table is printed (or punched) at the end of pass 2.

If any symbols remain undefined at the end of pass 1, the US (Undefined Symbol) diagnostic is printed

during pass 2 when the undefined symbol is encountered (see Error Diagnostics). The symbol table is

printed (or punched) in alphabetical order on either the teleprinter or high-speed punch. The punched

symbol table may be used to expand DDT-8s symbol table for use in program debugging. If the program

listed above were assembled, PAL-D would output the following symbol table.

BEGIN 0200

C HAR 0213

MSPACE 0214

4.2.2 Pass2

During pass 2, PAL-D processes the source tape (or file) and generates binary output using the

symbol table equivalences defined during pass I . The binary output may be loaded in core by the Disk

Monitor System Binary Loader.

The binary coded tape (or file) consists of leader code, an origin setting, and data words.

Every occurrence in the source program of an asterisk causes a new origin setting in the binary output.

At the end of the binary coded tape, a binary checksum is produced and trailer code is generated.

4-2

When using the low speed paper tape punch, diagnostic messages are both typed and punched

and will be preceded and followed by rubouts. The Binary Loader will ignore everything enclosed within

rubouts .

4.2.3 Pass 3

During pass 3, PAL—D processes the source tape (or tile) and prints out a side—by—side listing

of the generated octal code and the original source language. It the program shown above were assembled,

the pass 3 listing would be

*200

/EXAMPLE OF FORMAT

/GENERATOR
0200 0000 BEGIN, 0 /START OF PROGRAM

0201 6032 KCC

0202 6031 KSF /WAIT FOR FLAG

0203 5202 JMP .—1 /FLAG NOT SET YET

0204 6036 KRB /READ IN CHARACTER

0205 3213 DCA CHAR

0206 1213 TAD CHAR

0207 1214 TAD MSPACE /IS IT A SPACE?

0210 7650 SNA CLA

0211 7402 HLT /YES
0212 5202 JMP BEGIN+2 /NO: INPUT AGAIN

0213 0000 CHAR, O /TEMPORARY STORAGE

0214 7540 MSPACE, -240 /-ASCII EQUIVALENT

/END OF EXAMPLE

CHAPTER 5

ERROR DIAGNOSTICS

PAL-D makes many error checks as it processes source language statements. When an error is

detected, the Assembler prints an error message. The Format oF the error messages is

ERROR CODE ADDRESS

where ERROR CODE is a two-letter code which specifies the type oF error, and ADDRESS is either the

absolute octal address where the error occurred or the address oF the error relative to the last symbolic

tag (iF there was one) on the current page.

The programmer should examine each error indication to determine whether correction is

required.

PAL-D's error messages are listed and explained below.

Error

Code
Explanation

BE Two PAL-D internal tables have overlapped - This situation

can usually be corrected by decreasing the level oF literal

nesting or number oF current page literals used prior to this

point on the page.

DE Systems device error
- An error was detected when trying to

read or write the system device; aFter three Failures, control is re-

turned to the Monitor.

DF Systems device Full - The capacity oF the systems device has been

exceeded; assembly is terminated and control is returned to the Monitor.

IC Illegal character - An illegal character was processed neither in

a comment nor a TEXT Field; the character is ignored and the

assembly continued.

ID Illegal redeFinition ot a symbol — An attempt was made to give a

previously deFined symbol a new value by other means than the

equal sign; the symbol was not redeFined.

IE Illegal equals — An equal sign was used in the wrong context.

Examples:

TAD A += B (the expression to the leFt oF the equal sign is not

a single symbol or, the expression to the right oF

A +B=C the equal sign was not previously defined)

11 Illegal indirect -— An oFF-page reFerence was made; a link could

not be generated because the indirect bit was already set.

5-]

Error

Code Explanation

Example:

*200

TAD I A 1

PAGE J

A, 7240 J

PE Current nonzero page exceeded - An attempt was made to

a. override a literal with an instruction, or

b. override an instruction with a literal; this can be

corrected by

(l) decreasing the number of literals on the page or

(2) decreasing the number of instructions on the page.

PH Phase error
- PAL-D has received input files in an incorrect order;

assembly is terminated and control is returned to the Monitor.

SE Symbol table exceeded — Assembly is terminated and control is

returned to the Monitor; the symbol table may be expanded to

contain up to 1184 user symbols by saving a file named .SYM

on the system device.

US Undefined symbol - A symbol has been processed during pass 2

that was not defined before the end of pass 1 .

ZE Page 0 exceeded - Same as PE except with reference to page 0.

Character

N<X§<CHmWQT02§FKLHIQWWUOW>
Code

301

302

303

304

305

306

307

310

31 1

312

313

314

315

316

31 7

320

321

322

323

324

325

326

327

330

331

332

APPEN DIX A

USA SCII CHARACTER SET

Character Code

\OCDNO‘UW-kwM-‘O
260

261

262

263

264

265

266

267

270

271

Character

geVA"

0m%:“'
90»

\

.

+

LAP-1.0”"
.-

BELL

TAB

LINE FEED

CARRIAGE-RETURN

SPACE

RUBOUT

Code

241

242

243

244

245

246

247

250

251

252

253

254

255

256

257

272

273

275

277

333

335

207

21 1

21 2

21 5

240

377

Mnemonic

AND

TAD

ISZ

DCA

JMS

JMP

NOP

IAC

RAL

RTL

RAR

RTR

CML

CMA

CLL

CLA

HLT

OSR

SKP

SNL

S-ZL

SZA

SNA

SMA

SPA

CIA

STL

GLK

STA

LAS

DECIMAL

EXPUNGE

FIELD

FIXTAB

I

OCTAL

PAGE

,APPEN DIX B

SYMBOL LIST

Code Operation

MEMORY REFERENCE INSTRUCTIONS

0000 logical AND

1000 2s complement add

2000 increment & skip it zero

3000 deposit & clear AC

4000 jump to subroutine

5000 jump

GROUP 1 OPERATE MICROINSTRUCTIONS

7000 no operation
7001 increment AC

7004 rotate AC & link left one

7006 rotate AC & link left two

7010 rotate AC & link right one

7012 rotate AC & link right two

7020 complement link

7040 complement AC

7100 clear link

7200 clear AC

GROUP 2 OPERATE MICROINSTRUCTIONS

7402 halts the computer
7404 inclusive OR switch register with AC

7410 skip unconditionally
7420 skip on nonzero link

7430 skip on zero link

7440 skip on zero AC

7450 skip on nonzero AC

7500 skip on minus AC

7510 skip on plus AC (zero is positive)

COMBINED OPERATE MICROINSTRUCTIONS

7041 complement & increment AC

7120 set link to 1

7204 get link (put link in AC, bit 11)
7240 set AC = -1

7604 load AC with switch register

PSEUDO-OPERATORS

B-1

Event Time

—L——k—l—A—d

PSEUDO—OPERATORS

PAUSE

TEXT

XLIST

Z

Mnemonic Code Operation Event Time

IOT MICROINSTRUCTION 5

Program Interrupt
ION 6001 turn interrupt on

IOF 6002 turn interrupt off

Keyboard/Reader
KSF 6031 skip if keyboard/reader flag = 1

KCC 6032 clear AC & keyboard/reader flag
KRS 6034 read keyboard/reader buffer

KRB 6036 clear AC & read keyboard buffer, & clear

keyboard flag

Teleprinter/Punch
TSF 6041 skip if teleprinter/punch flag = 1

TCF 6042 clear teleprinter/punch flag
TPC 6044 load teleprinter/punch buffer,

select & print
TLS 6046 load teleprinter/punch buffer,

select & print, and clear teleprinter/punch
flag

High-Speed Reader (Type PC02)
RSF 6011 skip if reader flag = 1

RRB 6012 read reader buffer & clear flag
RFC 6014 clear flag & buffer & fetch character

High-Speed Punch (Type PC03)
PSF 6021 skip if punch flag = 1

PCF 6022 clear flag & buffer

PPC 6024 load buffer & punch character

PLS 6026 clear flag & buffer, load & punch

Disk File and Control (type DF32)
'

DCMA 6601 clear disk memory request & interrupt flags
DMAR 6603 load disk from AC, clear AC, read into core,

clear interrupt flag
DMAW 6605 load disk from AC, write onto disk from core,

clear interrupt flag
DCEA 6611

A

clear disk extended address & memory address

extension register
‘

DSAC 6612 skip if address confirmed flag = 1

DEAL 6615 clear disk extended address & memory address

extension register & load same from AC

DEAC 6616 clear AC, load AC from disk extended address

register, skip if address confirmed flag = 1

DFSE 6621 skip if parity error, data request late, or

write lock switch flag = 0 (no error)

B-2

Mnemonic

DFSC

DMAC

Code

6622

6626

Operation Event Time

sl<ip if completion flag I 1 (date transfer

completed)
clear AC, load AC from disk memory

address register

DECtape Transport (Type TU55) and Control (Type TCOT)
DTRA 676T

DTCA 6762

DTXA 6764

DTSF 677T

DTRB 6772

DTLB 6774

Memory Extension Control (Type 183)
CDF 62nl

CIF 62n2

RDF 6214

RIF 6224

RMF 6244

RIB 6234

read status register A

clear status register A

load status register A

skip on flags
read status register B

load status register B

change to data field n

change to instruction field n

read data field into AC 6-8

read instruction field into AC 6-8

restore memory field

read interrupt buffer

B—3

(ADM—‘wM—‘

... Fold Here

: .. Do Not Tear — Fold Here and Staple ...

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

mflgfl'au
Digital Equipment Corporation
Software Quality Control

Building 12

146 Main Street

Maynard, Mass. 01754

READER’S COMMENTS

PAL-D DISK ASSEMBLER

PROGRAMMER'S REFERENCE MANUAL

DEC-DB-ASAA-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its publications.
To do this effectively, we need user feedback: your critical evaluation of this manual and the DEC products described.

Please comment on this publication. For example, in your judgment, is it complete, accurate, well—organized, well-

written, usable, etc?

Did you find this manual easy to use?

What is the most serious fault in this manual?

What single feature did you like best in this manual?

Did you find errors in this manual? Please describe.

Please describe" your position.

Name Organization

Street State

DIGITAL EOUIPMENT CORPORATION O MAYNARD. MASSACHUSETTS

PRINTED IN U.S.A.

