
Digital Equipment Corporation SHIinnSn
Maynard, IVIassachusetts UIILIUII6JIJ

DISK MONITOR
SYSTEM

PROGRAMMER'S REFERENCE MANUAL
PDP-8 FAMILY

PDP-8/1
DISK MONITOR SYSTEM

PROGRAMMEF^'S REFERENCE MANUAL

For addifional copies specify Order NIo. DEC-D8-SDAB-D to Program

Library, Digital Equipment Corporation, Maynard, Mass. Price: $2.75

DIGITAL EQUIPMENT CORPORATION n MAYNARD . MASSACHUSETTS

1st Printing May 1968

2ncl Printing Rev. July 1968

3rd Printing January 1969

4th Printing Rev. April 1969

Revised July 1969

Your attention is invited to the last two pages of this

manual. The Reader's Comments page, when filled in

and returned, is beneficial to both you and DEC. All

comments received are considered when documenting

subsequent manuals, and when assistance is required, a

knowledgeable DEC representative will contact you.

The Software Information page offers you a means of

keeping up-to-date with DEC's software.

Copyright@ 1968, 1969 by Digital Equipment Corporation

The following are registered trademarks of Digital

Equipment Corporation, Maynard, Massachusetts:

DEC PDP

FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

CONTENTS

CHAPTER 1

INTRODUCTION

Pa£(

1.1 Equipment Requirements 1-1

CHAPTER 2

MONITOR OPERATION

2.1 General Description 2-1

2.1.1 Monitor Residence 2-1

2.1.2 System Modes 2-1

2.2 Bootstrapping the Monitor 2-2

2.3 Starting the Mlonitor 2-3

2.4 Command Strings 2-3

2.4.1 Command String Format 2-4

2.4.2 Examples of Command Strings 2-6

2.5 Loading- Disk System Binary Loader 2-7

2.5.1 Binary Loader Operating Procedures 2-7

2.5.2 Binary Loader Error Messages 2-9

2.6 Saving Programs (Save Command) 2-10

2.6.1 Save Command Format 2-10

2.6.2 Save Command Processing 2-12

2.7 Calling a Program (Call Command) 2-12

2.8 System Error Messages 2-13

CHAPTER 3

SYSTEM PROGRAM LIBRARY

3.1 PIP 3-1

3.1.1 Loading and Saving 3-1

3.1.2 Operating Procedures 3-2

3.1.3 Examples 3-7

3.2 Editor 3-10

3.2.1 Loading and Saving 3-12

3.2.2 Operating Procedures 3-13

3.2.3 Example 3-14

3.3 PAL-D Disk Assembler 3-15

CONTENTS (Cont)

3.3.1 Loading and Saving

3.3.2 Operating Procedures

3.3.3 Examples

3.4 FORTRAN--D

3.4.1 Compiler

3.4.2 Operating System

3.4.3 Examples

3.5 DDT-D

3.5.1 Loading and Saving

3.5.2 Operating Procedures

3.5.3 Examples

APPENDIX A
SYSTEM GENERATION

APPENDIX B

SYSTEM FORMATS

APPENDIX C
COMMAND DECODER

APPENDIX D
BINARY LOADER

APPENDIX E

SYSTEM PROGRAMS

2-1

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

APPENDIX F

I/O PROGRAMMING

TABLES

System Error Messages

Special Key Functions

Summary of Editor Commands

PAL-D Pseudo-Operators

PAL-D Error Messages

Summary of FORTRAN Statements

Compiler Systems Diagnostics

Compiler Compilation Diagnostics

Operating System Diagnostics

DDT-D Commands

Page

3-15

3-16

3-18

3-18

3-21

3-27

3-36

3-38

3-41

3-42

3-42

A-1

B-1

C-1

D-1

E-1

F~l

Page

2-13

3-10

3-11

3-15

3-17

3-19

3-24

3-25

3-30

3-41

ILLUSTRATIONS

B-1 Disk Storage Layout B-2

B-2 DECtape Storage Layout B-3

B-3 Directory Name (DN) Block Format B-4

B-4 Storage Allocation Map (SAM) Block Format B-6

B-5 Contiguous-Page Save File Format B~8

B-6 Noncontiguous-Page Save File Format B-9

B-7 Sample PIP Directory Listing B-10

B-8 Monitor-Time vs User-Time Core Usage B-1

1

B-9 Core Usage During SAVE Command Execution B-1

2

B-10 Core Usage During CALL Command Execution B-13

B-11 Monitor Flov/ Chart (Part 1) B-1

4

B-11 Monitor Flow Chart (Part 2) B-1

5

B-11 Monitor Flow Chart (Part 3) B-1

6

C-1 Output List Produced by Command Decoder C-4

C-2 Command Decoder Core Usage C-5

C-3 Command Decoder Flow Chart (Part 1) C-6

C-3 Command Decoder Flow Chart (Part 2) C-7

C-3 Command Decoder Flow Chart (Part 3) C-8

C-3 Command Decoder Flow Chart (Part 4) C-9

C-3 Command Decoder Flow Chart (Part 5) C-10

C-3 Command Decoder Flow Chart (Part 6) C-11

D-1 Binary Loader Flow Chart (Part 1) D-3

D-1 Binary Loader Flow Chart (Part 2) D-4

D-1 Binary Loader Flow Chart (Part 3) D-5

CHAPTER 1

INTRODUCTION

The PDP-8 Disk/DECtape Monitor System is designed for any PDP-8 computer having at

least one DECdisk or one DECtape. This system consists of a keyboard -oriented Monitor, which en-

ables the user to efficiently control the flow of programs through his PDP-8, and a comprehensive soft-

ware package, which includes a FORTRAN Compiler, Program Assembly Language (PAL-D), Edit pro-

gram (Editor), Peripheral Interchange Program (PIP), and Dynamic Debugging Technique (DDT-D)

program. Also provided is a program (Builder) for generating a customized monitor according to the

user's particular machine configuration (amount of core, number of disks or DECtapes, etc.).

The system is modular and open ended, permitting the user to construct the software required

in his environment, and allows the user full access to his disk (or DECtape) — referred to as the system

device — for storage and retrieval of his programs. By typing appropriate commands to the Monitor,

the user can load a program (construct it from one or more units of binary coding previously punched out

on paper tape or written on the disk by the Assembler, and assign it core), save it (write it out, with an

assigned starting address, on the system device), and later call it (read it back into core from the sys-

tem device) for execution

.

1 . 1 EQUIPMENT REQUIREMENTS

The minimum equipment requirements of the PDP-8 Disk/DECtape Monitor System are as

follows.

A basic PDP-8/I, -8/L, -8/S, or -8

4K of core

Teletype

3 -Cycle Data Break (Option required with PDP-8/S)

At least one DF32 Random Access DECdisk File or a TCOl Automatic Control

with a TU55 DECtape transport. The DECtape must have timing and mark
tracks written on it prior to use.

NOTE

The system will recognize up to 32K of core, up to

four disks (1 Type DF32 and 3 Type DS32's), up to

eight DECtapes (TCOTs only) and a high-speed paper-

tape reader.

1-1

CHAPTER 2

MONITOR OPERATION

This chapter contains a discussion of the operation of the Monitor. Succeeding chapters

contain descriptions and operating procedures for the system programs.

2.1 GENERAL DESCRIPTION

The PDP-8 Disk Monitor System permits the user to control the flow of programs through his

computer and takes full advantage of the extended memory capabilities of disk or DECtape. In addi-

tion to the Monitor, the system also contains a library of system programs. Together, they provide the

user with the capabilities of compiling, assembling, editing, loading, saving, calling, and debugging

his own programs.

2.1.1 Monitor Residence

Monitor, as well as system and user programs, is stored on and retrieved from the user's

system device . To obtain a working Monitor, the user must first build his own customized version, via

the easy-to-use dialogue technique of the System Builder program and store this version on his system

device. Following this, the user then creates his System Program Library on the system device. Both

of these procedures are described in Appendix A.

In core, the resident part of Monitor (called head of monitor) resides in the top page (loca-

tions 7600 through 7777) of field 0. The starting address of Monitor is 7600; 7642 is entry address to

the system I/O routine, which performs all reading and writing on the system device. Nonresident

portions of Monitor, such as those routines which perform SAVEs and CALLs, are automatically called

in as needed, and in core, they share the area from location 7000 through 7^77 , (These portions

disappear after use, leaving this area for the user.)

Specific diagrams showing the allocation of the system, both on the system device and in

core, are given in Appendix B.

2.1.2 System Modes

At any point in time, the system is running in one of tv/o modes: Monitor mode or user mode.

Monitor mode is entered (1) whenever the Monitor is started (see Paragraph 2.2) or (2) when

CTRL/C (tC) is typed while running any system program. Monitor mode is signalled by the Monitor

typeout of a dot (•)• At both Monitor and system program time. Monitor is able to sense a tC typein,

causing the system to enter Monitor mode, return to Monitor at location 7600, and respond with a dot

(•) typeout. At this point, the user can issue any Monitor command via the Teletype keyboard.

User mode is present whenever the system is executing a system or user program. System pro-

grams signal user mode by responding with an asterisk (*) typeout.

^See Appendix F.

2-1

2.2 BOOTSTRAPPING THE MONITOR

The following discussion assumes that the user has built a customized Monitor and has stored

it on his system device, according to the procedure described in Appendix A.

The bootstrapping of Monitor into core is necessary only when the resident Monitor area

(locations 7600 through 7777) has been cleared or its contents otherwise destroyed. System Builder

leaves the resident portion of Monitor in core after building. Turning the computer off and subsequently

turning it on again does not normally destroy the contents of core.

The bootstrap procedure is as follows.

a. Toggle in one of the following boolstrap routines, depending upon the type of system

device.

Disk

Location Conf-ents Symbolic

0200 6603 DMAR

0201 6622 DFSC

0202 5201 JMP .-1

0203 5604 JMP 1 .+1

0204 7600 7600

7750 7576

7751 7^7b

DECtape
Location Contents Symbolic

*200

0200 7600 BEG, 7600

0201 1216 TAD MVB

0202 4210 JMS DO

0203 1217 TAD /V\201

0204 3620 DCA 1 CA

0205 1222 TAD RF

0206 4210 JMS DO

0207 5600 JMP 1 BEG

0210 0000 DO, 0000

0211 6766 DTXA DTCA

0212 3621 DCA 1 WC
0213 6771 DTSF

0214 5213 JMP .-1

0215 5610 JMP 1 DO

0216 0600 MVB,, 0600

2-2

DECtape
Location Contents

0217 7577

0220 7755

0221 775A

0222 0220

Symbolic

M201, -201

CA, 7755

WC, 7754

RF, 0220

b. After toggling in one of the above bootstrap routines, set the switches to 200 and press

LOAD ADDress and START. Monitor should respond with a dot (•) after it has been brought into

core.

2.3 STARTING THE MONITOR

Monitor start is at location 7600. A jump to this location can be made by either (1) stop-

ping the machine, setting the switches to 7600, and pressing LOAD ADDress and START, or (2) typing

tC when in Monitor mode or when a system program (or any user program which includes coding to sense

a t C typein) is running.

Monitor start performs the following actions.

a. Saves the coding from location 7200 through 7577 in the first two scratch blocks on the

system device.

b. Reads blocks 1 and 2 (containing the rest of Monitor) from the system device into these

locations.

c. Transfers control to Monitor, which responds with a carriage return, line feed, and a

dot.

A monitor restart can be performed by typing RUBOUT to Monitor. A Monitor restart performs

the same actions as described above except for Subparagraph a, A common use for RUBOUT is to ter-

minate a command string when the operator has discovered that he has made a mistake. The command

string is ignored, and A/\onitor responds as described in Subparagraph c. The user core image on the

system device is not changed by RUBOUT (it is changed, however, by tC).

2.4 COMMAND STRINGS

The user types commands in the form of command strings to direct Monitor, or a system pro-

gram, to perform some action., Command strings are simple in format and afford the user an easy means

of communicating with the system.

Monitor indicates its readiness to accept a command string by typing a dot, and at this point,

the user can type some Monitor command, such as CALL or SAVE.

A start instruction (ST=7600) is issued when running Loader causes a |ump to 7600 after loading has

been performed. Certain errors ahio cause a jump to this location.

2-3

System programs indicate their readiness to receive information by typing either an asterisk

or a query. The most common queries are as follows.

*OUT- Requests that the us€)r specify one output device name. In the case of

disk or DECtape the filename to be assigned to the output data must

also be specified. '

*IN- Requests that the user specify one or more (up to 5) input device names.

For disk and DECtape, filenames of input files must also be specified. '

*OPT- Requests that the user specify one option or switch, entered as a single

alphanumeric character; see Chapter 3 for options available in each

system program.

This communication between the system and the user is handled by a portion of Monitor

2
known as the Command Decoder. Command Decoder is called into core by the system when needed

and occupies any four contiguous pages of core. A description of its core allocation and calling pro-

cedure, plus a flow chart, is given in Appendix C. Error messages produced by Command Decoder are

listed in Paragraph 2.8. Messages unique to individual system programs are given in Chapter 3.

2.4.1 Command String Format

Command strings are composed of a few basic elements and follow certain rules of punctua-

tion. Their basic elements are as follows.

a. Device names

b. Filenames

c. Punctuation

d. Special characters

Each of these elements is described in the following paragraphs.

2.4.1 .1 Device Names - Device names permitted in command strings are as follows.

Dn: DECtape unit, if both disk and DECtape are present in the system

(n = unit number, through 7)

System device (disk or DECtape unit 0)

High-speed paper tape equipment (reader or punch)

Low -speed paper tape equipment on the Teletype (reader or punch)

Device names and filenames are explained in Paragraph 2.4.1

.

Command Decoder is a system program (.CD.) which is saved on the system device at build time

2-4

2.4.1 .2 Filenames - Filenames are limited to four characters in length and can be composed of any

combination of alphanumeric characters or special characters with the following exceptions,

2
a. Imbedded spaces cannot appear in a filename (they are ignored). However, trailing

spaces are permitted.

b. A filename cannot be one of the following words or symbols.

CALL SAVE I , ; :

Extensions to the filenames specified by the user are automatically appended by the system.

3
They are used internally by the system and cannot be referred to or modified by the user.

SYS (n) Saved system program file in core bank n.

USER (n) Saved user program file in core bank n.

ASCII Source language program file (input to PAL-D Assembler or FORTRAN
Compiler)

.

BINARY Binary program file (output from PAL-D Assembler).

FTC BIN Interpretive binary/ file (output from FORTRAN Compiler).

Filenames (and extensions) are meaningful only for file structured devices (disk and DECtape).

If they are specified for other devices, they are ignored. Both the filename and extension name appear

on directory listings produced by the list feature in PIP."^

Example: NAME TYPE BLK

8D
PIP .SYS(O) 0015
SRCl. ASCII 0007
BIN . BINARY 0001

SRCl.USER(O) 0001

2.4.1.3 Punctuation - Punctuation within commond strings is as follows.

, (comma) Used to separate device names, when more than one is given in a

command string. The comma is also used to separate core references

in a SAVE command string, when more than one contiguous area of core
is specified.

; Precedes the entry point specification in a SAVE command.

t Terminates each device name. The colon is also used following the

filename in a SAVE command to indicate that the file is to be saved as

a user program.

Although both printing and nonprinting keyboard characters are allowable, printing characters are

recommended.

2
Note that Monitor is given the filename EX C; one reason for this unconventional use of an imbedded
blank is to protect Monitor from accidental destruction by the user (e.g., deletion via PIP).

3
The data structure of these files is described in Appendix B under "Data Structure.

"

4
"8D" in example means VERSION 8, change D.

2-5

Separates the beginning and ending addresses of a contiguous core area
specification in a SAVE command.

Follows the filename in a SAVE command when a file is to be saved as
a system program.

2.4.1.4 Special Characters - Special characters are used as described below.

tC

tp

RUBOUT

if given while the system is in Monitor mode or a system program is running,

control is returned to Monitor start (location 7600). Monitor responds with a dot,

^C is typed by holding down the CTRL key and striking C. tC does
not echo (does not print).

Typed in response to a t typeout. Instructs the system to proceed with
the next operation. 1 tp |s typed by holding down the CTRL key and
striking P. tp doe:; not echo (does not print).

Carriage return terminates current command string input. When typed
alone, in response to a system query, it indicates that the user does
not desire to specify the item (e.g., device name) requested.

Causes the current command string to be ignored, and the system
returns to the beginning of the command string and is ready to receive
a new command. RUBOUT does not echo.

2.4.2 Examples of Command Strings

These examples illustrate the elements and rules explained above. Samples of both Monitor

commands and system program commands are given.

^

Monitor Commands:

^CALL PRGl J

. SAVE PALD! 0-7577; 6200 J

System Program Command s

:

*IN- S:PR02 J

*IN- S;TST1,R:^

*OUT-D5:SPEC J

Call the user program file, PRGl , from the system
device into core for execution.

Save a program, previously loaded by Loader into

locations through 7577 of core, on the system
device as a system program (!). Assign a starting

address of 6200 and a filename, PALD.

Use the file PR02 on the system device as the
input file.

Use the file TSTl on the system device and one file

From the high-speed paper tape reader as the input
Files.

Write the output file on DECtape unit No. 5 and
assign it the filename SPEC.

tP can also be used to prematurely terminate certain operations while in progress (e.g., the typing
out of a file directory by the list option in PIP).

2
In all examples, system response (typeout) is underlined for clarity.

2-6

*OUT- T: J

*OPT-M
Punch the output on the Teletype paper tape punch.

Select option M.

Spaces in command strings are ignored. Thus, both examples below are equally correct and
perform the same function.

^SAVE PALD I 0-7577} 6200 J

._SAVE PA LD ! -7577; 6200 J

2.5 LOADING PROGRAMS - DISK SYSTEM EilNARY LOADER^

The Disk System Binary Loader takes as input the binary coding produced by the PAL-D Assem-

bler and loads it intocore inexecutable form. When loading is completed. Loader "disappears" after

first entering the loaded program at the starting address typed by the user just prior to loading (see Para-

graph 2.5.1). Loader accepts input from the system device or paper tape.

Loader requires one pass for any program which does not load above location 6777 (field 0).

Loader uses core from location 167 through 177 and 6000 through 7577, and the resident portion of

Monitor occupies the remainder of field 0. One -pass loading reads input files only once.

Two passes are required for all other programs (i.e., programs loading above 6777). In

two -pass loading, programs can be loaded in all of field 0, except locations 7600 through 7777
."^

Two -pass loading requires that input paper tapes be read through the reader iwice.

2.5.1 Binary Loader Operati ng Procedures

A.OAD J

*IN-

Exomples

*IN-R: J

*IN-R:,R:,R: J

Direct Monitor to bring Binary Loader from the
system device into core for execution.

Loader requests source of input(s). Type one or
more device names, separated by commas. If an
input device is a file-structured device, include
filename(s).

Up to five files can be specified.

Input one tape from the paper tape reader.

Input three tapes from the paper tape reader.

An automatic carriage return occurs after user response to an OPT-request.
2
The Disk System Binary Loader is a system program saved on the disk at build time. It is called by the user
in the same manner as any system program. It occupies locations 7000-7577and hasastartingaddress of 7000,

3
In 8K and larger systems. Loader sets up locations 7574 through 7577 to perform a start in fields other
than U. It IS the user s responsibi lity to protect these locations if he wants to start in other than field 0.

An E or I error message (see Table 2-1) may appear following the entry of an IN command.

Regardless of whether R: or T: is used to specify paper tape input, the high-speed equipment is used
if it was indicated as present in the system at System Builder time, otherwise the Teletype equipment
is used. This convention is unique to Binary Loader.

2-7

*IN-S:INPT^

*IN-S:BIN2,R: J

*IN-S:BIN1,S:BIN2 J

*OPT-

Examples

*OPT- 1

*OPT_2
(or anything else)

*ST=

Examples

ST='

*ST=7600i.^

ST=0'

ST=30225w^

'ST=10000./'

Input the file INPT from the system device.

Input the file BIN2 from the system device and one

tape from the paper tape reader.

Input the files BIN! and BIN2 from the system

device.

if device(s) are valid and filenames (if any) are

actually found on the system device. Loader re-

sponds with one asterisk for each correct input.

Loader requests mode desired (one -pass or two-pass).

One pass loading desired; no programs are loaded

above location 6777.

Two -pass loading desired; programs can be loaded

above location 6777.

Loader requests the starting address to which control

is to be transferred when loading is completed. The

address is typed in the form

'here

and

fnnnn

2
f = field number (omitted if field 0)^

nnnn = location within field

Load into field 0,

Return to Monitor after loading.

Load into field 3.

Jump to location 255, field 3, after loading.

Load into field 1 .

Return to Monitor after loading into field 1

.

Loader now types a series of up -arrows, one at a

time, as explained below.

Following each up -arrow typeout, the user is re-

quired to perform one or more actions.

Regardless of whether R: or T: is used to specify paper tape input, the high-speed equipment is used

if it was indicated as present in the system at System Builder time, otherwise the Teletype equipment

is used. This convention is unique to Binary Loader.

The f-digit forces Loader to start loading into the specified field until a "field setting" is found in the

input file or tape.

2-8

^ ^ ^ ^ First up -arrow: Loader is ready to load. If paper
tape input, put the tape in the reader.

Type tP. I

Second up -arrow: End of pass 1 . If operating in

one-pass mode, type tP to jump to previously

specified starting address.

If operating in two-pass mode, type ^P.

The next two up -arrows appear only if operating
in two -pass mode.

Third up -arrow: Reload paper tape input for pass 2.

Type tP.

Fourth up -arrow: End of pass 2. Type tP to jump
to previously specified starting address.

Multiple Input Files

An up -arrow is typed out as the processing of each
input file is completed. If paper tape input,

insert the next file in the reader and type tp.

Repeat the above step until all files given in re-
sponse to the *IN- request have been processed.

If in two -pass mode, each tape must be entered

twice, in the order

T1,T2,T3,....T1,T2,T3,....

After all files have been entered the required num-
ber of times, type tP to jump to the previously

specified starting address.

NOTE

After each input paper tape is read, the high-speed paper
tape version of Loader loops until the user types tP to continue.
However, the low -speed paper tape version halts . Thus, when
using the Teletype paper tape equipment for input, the user

need not type t P but press CO N T on the console and start

the paper tape reader.

At this point. Binary Loader disappears and control is transferred to the previously specified

starting address.

A flow chart of Binary Loader can be found in Appendix D.

2.5.2 Binary Loader Error Messa ges

An illegal checksum error condition causes Loader to type

?

and return to A/bnitor after the user types t P or tC. Error messages for illegal filenames or devices are

as specified in Paragraph 2.8.

1

If Teletype paper tape equipment is used, type t P before turning on the reader.

2-9

2 . 6 SAVING PROGRAMS (SAVE COMMAND)

The SAVE command enables the user to write core images of system or user programs from

core onto his system device for subsequent call-in (CALL) and execution. For example, a program

which has been loaded by Binary Loader can be stored on the system device by the SAVE command.

Or, a previously saved program which has been called in and modified by DDT can be stored in its up-

dated version on the system device, overlaying the old version if desired.

Core images can be saved in units of one or more pages, each page occupying one block on

the system device. If a core specification (see below) addresses only a portion of a page, the entire

page is written out. For example, the core specification 45-150 is treated as though it were 0-177.

Core areas to be saved may be contiguous or noncontiguous as desired by the user. Up to 32, q core

specifications, in any combination of monotonically increasing single -page or multiple -page requests,

can be entered in a single SAVE command.

2.6.1 SAVE Command Format

.SAVE filenames .'> core -specifications, .. .; entry-pointy

SAVE Directs Monitor to call in the nonresident SAVE routine.

filename The filename (program name) to be assigned to the file on the

systems device. This name will be used to call the file later

when the user wants to read in and execute the program.

Restrictions on the formation of filenames can be found in

Paragraph 2.4.1.2. Any previously saved program with the

same "filename" and having the same extension will be auto-
matically overwritten.

! or : ! is typed immediately after the filename of a file if the user

desires to save it as a system program (e.g., PIP). A program

saved in this manner can be called in by simply typing its

name to Monitor (the word CALL is not required).

.filename^

An extension name of ,SYS is automatically appended to the

filename.

: is typed immediately after the filename of a file if the user

desires to save it as a user program . A program saved in this

manner can be called in and executed later via the CALL
command.

.CALL filename ,;

An extension name of .USER is automatically appended to the

filename.

core -specifications Up to 32 core specifications can be entered in a single SAVE
command. Each core specification is separated from the follow

ing one by a comma. The last core specification in the series

is followed by a semicolon. Addresses are expressed in octal.

2-10

Single -page core specification

fnnnn

where

f ~ field number (can be omitted if field 0).

nnnn = any location within the page which the user

desires to save.

Examples Saves page (locations through 177)

of field 0.

3570 Saves locations 3400 through 3577

of field 0.

30100 Saves page (locations through 177)

of field 3.

Multiple -page core specification

When a user wishes to save a core area of several contiguous

pages, he can t>/pe a multiple -page core specification in the

format

fnnnn i-nnnn«

where

f = field number (can be omitted if field 0).

nnnn, = any location within the first page of the series

of contiguous pages to be saved.

nnnn^ = any location within the last page of the series

of contiguous pages to be saved.

The following rules apply.

a. The beginning address of a multiple -page request must be

smaller than the ending address (nnnn, must be smaller than

nnnn2).

b. Both addresses must be in the same field.

c. The field number (f) must be within the range of your

system; however, no check for the validity of this number is

performed at SAVE time.

Examples

Q)-'7^77 Saves all of field 0.

1 0000 -:7777 Saves all of field 1 . Note that this is

the same as typing

10000-17777

See below for explanation of how the

field number (5th significant digit to

the left of the decimal point) is

"remembered .

"

2-11

30425-745 Saves locations 400 through 111
(pages 3 and 4) of field 3.

NOTE

Only one field can be saved by each SAVE command.

If multiple fields are to be ;>aved, a separate SAVE com-
mand must be given for each.

entry -point The entry point of the saved program, in the format

Fnnnn (see explanation above)

An entry point of causes a return to Monitor at CALL time,

regardless of the field into which the program was saved.

NOTE

The last nonzero field number encountered in a SAVE
command string is remembered and prefixed to all other

addresses in the command string. (Remember: only

one field can be referred to in each command string.)

Example: The following entries are identical in meaning.

SAVE PRGA: 10000-10777, 11400, 1600-17777; 10200
SAVE PRGA: 30000-777, 51400, 26000-7777; 10200
SAVE PRGA: 10000-777, 1400, 6000-7777; 200
SAVE PRGA: 0-777, 1400, 6000-7777; 10200

In each of these examples, all addresses are treated as

being in field 1, because the last five-digit entry seen

contained a most significant digit 1 .

2.6.2 SAVE Command Processing

A list of the required pages is constructed from the information typed by the user and a block

requirement count is kept. When the user types the terminating carriage return (J), allowing the

SAVE process to begin, a directory name search on the system device is initiated. If a file having the

same name as the filename in the SAVE command i«i found, it is replaced by the file now being saved.

If no such file is found, a new file is created. Next, a storage availability search finds a sufficient

number of available blocks on the system device to satisfy the block requirement count. (See above.)

These block numbers are stored in a corresponding block list; the blocks are then filled with the con-

tents of the pages to be saved. When the SAVE process is completed, control returns to Monitor (7600).

2.7 CALLING A PROGRAM (CALL COMM/vND)

Once a file has been loaded and saved, it can be called into core as desired. There are two

types of CALL command strings: one for system programs and the other for user programs.

The CALL command string format for ^stem programs (programs saved by a SAVE command

string in which the filename was followed by a !) i;5

.filename ^

where filename is the same as the one used in the SAVE command string which saved it.

2-12

The CALL command string format for user programs (programs saved by a SAVE command

string in which the filename was followed by a :) is

.CALL filename j

When a program is called, a directory name search is performed on the system device.

Associated with the directory entry is the entry point of the program and information concerning file

protection and memory extension. If the appropriate directory name entry is found and the file has the

proper extension (.SYS or .USER), calling proceeds. If not, the calling process is terminated, ? is

typed and control is returned to A/lonitor.

2.8 SYSTEM ERROR MESSAGES

As an input command string is being typed. Monitor recognizes any incorrect syntax and

remembers it. When the user types a carriage return. Monitor responds with a ? to indicate invalid

input.

Error messages output by Command Decoder are given in Table 2-1

.

Table 2-1

System Error Messages

Message Meaning

? Illegal syntax or miscellaneous error condition

D Directory on the systems device is full

E Too many inputs or outputs were entered

1 No such inputs

S System I/O failure

Local errors in each system program are given in Chapter 3.

Monitor time read or write errors cause a halt to occur. Persistence of this condition indi-

cates a hardware failure, as the system I/O routine attempts to read or write three times before halting,

2-13

CHAPTER 3

SYSTEM PROGRAM LIBRARY

The Monitor System's library of programs presently consists of the Peripheral Interchange

Program (PIP), Disk System Editor (Editor), PAL-D Disk Assembler (PAL-D), 4K Disk FORTRAN

(FORTRAN-D), and Dynamic Debugging Technique for Disk (DDT-D), and this list is destined to

lengthen with time. A section of this chapter is devoted to each program in the library.

To load a program using the Monitor System, the Loader makes certain queries to which the

user must type a reply. The queries are the same for all programs. The user's replies will vary, how-

ever, depending on the particulars of the program being loaded.

When loading a program into core, the user should first check to see whether Monitor is in

core. This is done by typing tC (CTRL key and then the C key). The tC will not echo (not print on

the teleprinter). If Monitor is in core, it will respond by typing a period (*) at the left margin of the

teleprinter paper. If a period is not typed in response to tC, Monitor is not in core. Therefore, the

user should refer to Chapter 2 of this manual for information on building Monitor and putting it into

core.

The library system includess the Binary Loader (LOAD) which is automatically saved on the

disk at build time. (For Loader operating procedures see Paragraph 2.5.)

The user may save any program on the disk by responding to the last period typed by Monitor

with the word SAVE, a four character name of the program, the type of program (user or system),

whether it's a one or more page save, and the location of its starting address, as is thoroughly de-

scribed in Paragraph 2.6.

After each program is saved on the system device, it may be called (i.e., transferred from

the disk into core) merely by responding to Monitor (to a period) with the four characters designated as

the name of that program, as explained in Paragraph 2.7.

3.1 PIP

PIP (Peripheral Interchange Program) performs general utility operations, such as listing the

contents of specified directories, deleting unwanted files from the system device, and transferring files

between devices, and copying specified files. PIP enables the user to do any of the above operations

merely by typing commands from the teleprinter keyboard

.

3-1

3.1.1 Loading and Saving

PIP is loaded into core as indicated in Appendix E. Core requirements, starting address, and

number of passes through the Binary Loader (hereafter frequently referred to merely as Loader) are also

found in Appendix E.

To load PIP into core, the user calls LOAD, using Monitor, and replies to the system re-

sponses as explained in Chapter 2.

When in core, PIP may be saved on the system device as a system program by Monitor, as

indicated in Appendix E. (See Paragraph 2.6.1 for a detailed description of the SAVE format.)

When loading and saving PIP, the printout will take approximately the follov/ing format:

A.OAD J

*IN-R: i
*

*OPT-l

*ST= J

_n (type CTRL/P)

.SAVE PIP! 0--51 77; 1000 j

3.1.2 Operating Procedures

PIP has now been loaded into core and saved on the disk. To use PIP, the user must call

PIP via Monitor which can be done only in response to a period. If a period is not present as the last

system response, the user must type tC, which should cause Monitor to type the needed period. The

printout should appear as follows:

^PIP^

which transfers PIP from the disk into core. PIP now responds with

*OPT-

and waits for the user to select and specify one of the following options.

L List entire directory of device to be specified

D Delete a file to be specified

M Move copy of directory to write-locked area of disk (See below)

P Protect blocks 0-176 of disk

R Restore the previously moved directory

A or ^ Copy ASCII file (destination and origin(s) to be specified)

B Copy binary file (destination and origin to be specified)

3-2

1

1

F Copy FORTRAN binary file (destination and origin to be specified)

U Copy user file (file structured origin and destination to be specified)

S Copy system file (file structured origin and destination to be specified)

The user types only the option character, to which Monitor immediately responds with a carriage return

and line feed. The user does not terminate the line with the RETURN key, it is a meaningful option.

If the user selects an option using any character other than one of those listed above, the

option is illegal, and PIP ignores the request, types ? (question mark), and asks for another option

character. The output would appear as follows:

*OPT-G
?

*OPT~

The L option lists the entire directory of the system device or DECtape on which a directory

exists. For example.

^PIP ^

*OPT-L
*IN- S: J

FB=2426

NAME TYPE BLK

8D
PALP .SYS (0) 0037

EDIT .SYS (0) 0015

LOAD. SYS (0) 0003

.CD . .SYS (0) 0006

PIP ^YS (0) ooifr

User calls PIP

list option of the

system device directory

PIP types number of free (unused)

blocks remaining on specified

device

followed by filename and des-

cription; e.g., PAL-D is a system

program in field and occupies

37p blocks of storage

DDT .ASCII 0062

FOO .USER (0) 0001

BAR .SYS (0) 0037

When the user specifies the D (delete a file) option, PIP responds with

*FILETYPE (A,B,F,U,S)-

where A, B, F, U, and S are the legal options from which the user may choose; indicating ASCII,

binary, FORTRAN binary (compiler output), user (see Section 2.6.1), and system program (see Section

2.6.1), respectively.

If the user's reply is S i ^ indicating a system file, PIP asks

REALLY?

User and system files may not be copied onto paper tape as they are core images and have no defined

paper tape format

.

3-3

F*IP will not delete a system file unless the user answers by typing

Y J (meaning yes)

to the question. Any reply other than Yj causess PIP to repeat the FILE TYPE request. When the user

types Y^ / PIP responds with

*IN-

and waits for the user to specify the device and filename of the system file to be deleted. The printout

would appear as:

*OPT-D delete option speci-

*FILETYPE (A,B,F,U,S) -S j fying system file,

REALLY

?

N J user must reply with Y^ ,

*FILE TYPE (A,B,F,U,S) -S^ PIP repeats request,

REALLY

?

Y ^ user replied correctly,

*IN-S:BAR J PIP needs device and filename,

*OPT- file is deleted and PIP asks

for the next option

.

When the file has been properly identified and deleted PIP returns to ask for another option. If

filename BAR, in the example above, had not been on the specified device, PIP would have ignored the

request and typed a ? before asking for another option. For example,

*IN-S:BAR J BAR is not the name of a

? file on the specified

*'OPT- device

The user should not try to delete the system files .CD. or LOAD.

Options M, P, and R, in conjunction with the hardware write-lock switch, allow the user

to protect the lower 16K of his disk (1/2 of disk for users with more than one disk) while using the

system software. The user may specify either the system device or a DECtape unit numbered 0-7. Since

only input is requested, the action specified by the option is performed solely on the device specified.

For instance, it is not possible to use the M option to move the system directory to another device.

The M option will move a copy of the first directory block (the first 25,^ filenames),

block 177, of the device specified to block 3 of the same device. It also moves a copy of the first

SAM (storage allocation map) block, block 200, of that device to block 4 of that device. If the user

were to move a copy of the system file directory, the printout would appear as follows:

*OPT-M move option specifying

*IN-S; J the system device

*OPT- PIP asks for another option

The P option searches the first SAM block, block 200, for free or unused blocks in the lower

half of the first disk. All unused blocks are marked as being used by Monitor, thus the lower half of

the disk appears to have no unused space— it is protected. The user may now activate the write-lock

3-4

switch on the disk control unit and Monitor will not attempt to write on the protected portion. If all

blocks in the lower half of the first disk are already used, the P option does nothing. This option will

function independently of the M option. Unless the user has previously moved a copy of the true

directory which he can later restore however, there is no way (short of rebuilding the disk) to recover

the space used by the P option. The printout would look as follows:

*OPT-P protect option specifying

*IN-S: J the system device

*OPT- PIP asks for another option

The R option restores the copy of the directory name block (DN block 1) from block 3 back

onto block 177 and the copy of the SAM block from block 4 back onto block 200. It then zeros all

SAM blocks above the first one (if any) as well as directory name blocks 2 and 3. The R option will

do nothing until a Move has been done on the specified device, so that a system may not be destroyed

by inadvertently requesting the R option. The printout would look as follows:

*OPT-R restore option specifying

*IN-S: i the system device

*OPT- PIP asks for another option

The directory which is moved should be one which does not contain files likely to be

deleted from the working directory after the move. Some typical uses for the M, P, and R options

are:

a. M to save a specific disk (or DECtape) status and later R to effectively erase all scratch

files created subsequent to the M, thus restoring the device to its status prior to the M.

b. M, P, set write-lock switch, and operate protected.

c. L to determine the number of unused blocks and for a report on the status of the system

device

.

Files .SYM and .DDT should not be in the protected area of the disk. They are scratch

files used by DDT-D and PAL-D during their operation and require output to the disk. (See PAL-D

DISK ASSEMBLER, DEC-D8-ASAA--D, and Section 3.5.1 of this manual.)

Options A, B, F, U, and S are used to transfer files from one device to another. When

the user has requested any of these five options PIP responds with

*OUT-

and waits for the user to specify the destination or output file, and if the destination Is disk or DEC-

tape, the name of the file. For example,

*OPT-A copy an ASCII file option

*OUT-S:ASCI ^ specifying the destination and

filename

3-5

Only one destination is legal, and if the user specifies more than one, PIP will ignore the

response, type the error message E, and return control to Monitor. For example,

*OPT-A copy an ASCII file option

*OUT-S:ASCI, E PIP recognizes the comma, which
~

is used to separate file and device
~ names; control returns to Monitor

NOTE

The L and D options return to PIP's option request (*OPT-)

when the user responds illegally, and all other options re-

turn control to Monitor.

PIP indicates acceptance of the user's destination by responding with *, carriage return/line

feed, and *IN-, and waits for the user to specify the input, that is, to state from where the input is to

originate. An attempt to specify more than one input to any but the A option will cause PIP to ignore

the response, type the error message E, and return control to Monitor. For example,

*OPT-F copy a FORTRAN file option

*OUT-S:FORT J specifying system device and filename

* PIP accepts user's destination

*IN-S:, E input to system device, comma is

~ ~ used to separate device names
~ control returns to Monitor

The A option will allow any combination of up to 11 ASCII input files to be merged into one

output file in the order specified by the input list. The user therefore, may write generalized sub-

routines as separate files to do his often repeated operations and then, by combining these with each

specialized program before assembly, eliminate the need to rewrite such operations for each program.

PIP acknowledges each legal input file by printing an *. If, however, the input file specified to oiiy

option is not found on the specified device, PIP prints I in place of the * and returns to the Monitor.

For example,

*IN-S:FIL2 ^ the file does exist; when the user types CTRL/P,

*1 copying begins

*IN-S:FIL3 J
I the file does not exist

7 control returns to Monitor

If the user requests the B option, indicating he wishes to copy a binary file but the filename

he has specified appears as an ASCII file. It is not acceptable, therefore, PIP prints an I and control

returns to Monitor. The user can ascertain file types by using the L option and checking the file

directory.

3-6

A summary of the copy features of PIP is presented in the following table.

Number of High Speed
Option

A

Input Fil

n

es Disk DECtape

Yes

Reader/Punch Teletype

ASCII Yes Yes Yes
Binary B 1 Yes Yes Yes Yes
FORTRAN
Binary F 1 Yes Yes Yes Yes
User U 1 Yes Yes No No
System S 1 Yes Yes No No

3.1.3 Examples

_.PIPj

*OPT"L

*IN-S: J
FB=2426

NAME TYPE
8D
PALD . SYS (0)

EDIT .SYS (0)

LOAD. SYS (0)

.CD. .SYS (0)

PIP . SYS (0)

DDT . ASCII

FOO .USER (0)

BLK

0037

0015

0003

0006

0015

0062

0001

BAR .SYS (0) 0037

*OPT-D
*FILETYPE (A,B,F.U, S)--U ^

*IN-S:FOOj

*OPT-D

*fMIYPi(A,B,F,U,S)-S J
REALLY ?Y J

*IN-S:BAR j

*OPT"L

*IN-S; J

FB=2466

User calls PIP

and requests the list option

of the system device directory

PIP types number of free (unused)

blocks remaining on specified device

followed by filename and des-

cription; e.g., PAL-D is a

system program in field and

occupies 37o blocks of storage

User requests the delete option

and specifies type of file, U(user)

and device and filename; file is

deleted

User requests the delete option

and specifies type of file, S

(system) (PIP double checks); Y
is the only meaningful answer

User specifies file and filename;

file is deleted

User requests list option

and system device directory.

Note increase of 40g free

blocks (see above)

3-7

NAME TYPE
8D

BLK

PALD . SYS (0) 0037

EDIT .SYS (0) 0015

LOAD. SYS (0) 0003

.CD. .SYS (0) 0006

PIP . SYS (0) 0015

DDT .ASCII 0062

*OPT-D
*FILETYPE (A,B,F,,U,S)-Sj

REALLY ?N J

*FILETYPE (A,B,F,,U,S)-S J

REALLY ?W J
*FILETYPE (A,B,F..U,S)-SJ

REALLY ?Y J

*IN-S:EXC J
?

*OPT-D
*FILETYPE (A,B,F,,U,S)-U J

*IN-S:NONE i

?

*OPT-D
*FILETYPE (A,B,F rU,S)-A J

*IN-S:EDIT J
?

*OPT-D
*FILETYPE (A,B,F ,U,S)-Bj

*IN-S:EDIT J

?

*OPT-

Note removal of two deleted files

User requests delete option

Y is only response for deletion of

a system file; other responses

cause PIP to repeat the file type

request

Even if user responds to REALLY?
with Y, PIP will not delete the

Monitor file

PIP knows NONE is not an existing

user filename on the system device

and indicates by typing ?

User requests ASCII file option

PIP also knows when the filename

and file type don't match; EDIT is

a system program

Merge into an ASCII file on disk
'

Teletype, one file from disk called SRC, and

*OPT-A
*OUT-S:ASCI J

'ASCI", one tape from the reader, one tape from the

one file from DECtape 7 called SRCl

.

^IN-R:,T:,S:SRC,D7:SRC1 J

* 1 1 1 1 (type CTRL/P after each f i le)

*OPT-

Copy the system file PIP from disk to DECtape 3 using filename PIPX.

*OPT-S
*OUT-D3:PIPX J

*IN-S:PIP J

11
*OPT-

(type CTRL/P)

3-8

Try to merge two binary files onto disk called BIN from paper tape.

*OPT-B

*OUT-S :BIN J
*

*IN-R:,E (list exceeded)

Try to copy an ASCII paper tape from high-speed reader, a non-existent file from DECtape

5, and a paper tape from Teletype fo high-speed punch.

*OPT-A
*OUT-R: J
*

*IN-R:,D5:FOO,T:^

_ (R: accepted as legal)

I_ ([)5:FOO rejected, no such file

:_ on 05:)

3-9

3.2 EDITOR

Editor (Disk System Editor) enables the user to generate and edit symbolic programs on-line

from the teleprinter keyboard. The symbolic program may be either printed on the teleprinter, punched

on paper tape using the high- or low-speed punch, or saved on the system device as a user program.

Editor operates either in command or text mode. In command mode, all typed input is in-

terpreted as a command instructing Editor to perform a certain operation or to allow the user to perform

an operation on the text stored in the buffer. In text mode, all typed input is interpreted as text to

replace, to be inserted into, or to be appended to the contents of the text buffer.

The command language of the Disk System Editor is identical to that of the PDP-8 Symbolic

Editor (DEC-08-ESAB-D) but with the following exceptions.

a. Special characters:

tP

tC

b. Commands:

P

nP

m,nP

F

E

During output, progress stops and control is returned to command
mode.

Always returns control to AAonitor.

Proceed, and output entire contents of the buffer followed by a form

feed and return fro command mode.

Output line n, followed by a form feed, return to command mode.

Output lines m through n, followed by a form feed, return to com-
mand mode.

Illegal command

Process entire file (perform enough NEXT commands to transfer the

remaining input to the output file) and create an end-of-file indicator

(legal only for output to the system device).

Certain keys have special operating functions. These keys and their associated functions are

listed in Table 3-1

.

Table 3-1

Special Key Functions

Key Functions

^ (carriage return)

*- (back arrow)

\ (rubout)

FORM FEED

Text mode: Enter the line in the text buffer.

Command mode: Execute the command.

Text mode: Cancel the entire line of text and
continue typing on same line.

Command mode: cancel command.

Text mode: Delete from right to left one charac-

ter for each rubout typed (is not in effect during

a READ command).
Command mode: Delete entire command.

Text mode: End of input, return to command mode.

3-10

Table 3-1 (Cont)

Special Key Functions

Key Functions

. (period)

/ (slash)

i (line feed)

ALT MODE

ESCape

< (left angle bracket)

= (equal sign)

: (colon)

—
»| (tabulation)

Command mode: Current line counter used as

argument alone or in combination with + or -

and a number.

Command mode: Value equal to number of last

line in buffer and used as argument.

Text mode: Used in SEARCH command to insert a

carriage return/line feed combination into the line

being searched.

Command mode: List the next line.

Command mode: List the next line.

Command mode: List the next line.

Command mode: List the previous line.

Command mode: Used in conjunction with . and /
to obtain their value (. = 27).

Command mode: Lower case character, same func-

tion as = .

Text mode: On output, is interpreted as

a tab/rubouf combination.

Table 3-2 is a summaPi^ of Editor commands.

Table 3-2
Summary of Editor Commands

Command Format(s) Meaning

READ R^ Read incoming text and append to buffer until a

form feed is encountered.

APPEND A^ Append incoming text to any already in the buffer

until a form feed is encountered.

LIST L J

m,nL J

List the entire buffer.

List the line n.

List lines m through n.

PROCEED

m,nP J

Proceed and output the entire contents of the

buffer and return to command mode.
Output line n, followed by a form feed.

Output lines m through n, followed by a form feed.

TRAILER IJ Punch four inches of trailer.

NEXT Punch the entire buffer and a form feed; kill the

buffer and read next page.

Repeat the above sequence n times.

KILL KJ Kill the buffer.

DELETE nD J
m,nD J

Delete line n.

Delete lines m through n.

3-n

Command

INSERT

CHANGE

MOVE
GET

SEARCH

END FILE

Table 3-2 (Cont)

Summary of Editor Commands

Forma t(s)

nl «f

nC J

m,nC J

m,n$kM J

G J

nG J

S J

nS i
m,nS J

E i

Meaning

Insert before line one all text until a form feed is

encountered.

Insert before line n until a form feed is encountered.

Delete line n and replace it with any number of
lines from the keyboard until a form feed is en-
cour>tered.

Delete lines m through n, replace from keyboard
as above until form feed is encountered.

Move and insert lines m through n before line k.

Get and list the next line beginningwith a tag.
Get and list the next line after line n which begins
with a tag.

Search the entire buffer for the character specified
(but not echoed) after the carriage return;

allow modification when found.
Search line n, as above, allow modification.
Search lines m through n, allow modification,

Proce:>s the entire file (perform enough NEXT com-
mands to pass the remaining input to the output file)

and create an end-of-file indication; legal only
for output to the system device. If the low-
speed paper tape reader is used for input while
performing an E command, the paper tape reader
will eventually run out ot tape, and at this point
typing a form feed will allow the command to be
completed.

Editor will print an error message consisting of a question mark whenever the user requests

nonexistent information or uses an inconsistent or incorrect format in typing a command. The question

mark will be followed by a carriage return/line feed and the command will be ignored. If the computer

halts at location 2330, a system error has occurred while reading from the disk. You should, therefore,

run the disk maintenance tests to determine the cause of the error.

3.2.1 Loading and Saving

Editor is loaded into core from punched jpaper tape in one pass using the Loader. When in

core, it occupies locations show in Appendix E.

To load Editor into core, the user calls LOAD, using Monitor, and replies to the system re-

sponses as explained at the beginning of this chapter and in Paragraph 2.5.

When in core. Editor may be saved on the system device as a system program by Monitor wh-

the user types the command indicated in Appendix IE.

(See Paragraph 2.6.1 for detained description of the SAVE format.)

3-12

When loading and saving Editor, the printout should appear approximately as follows.

^LOAD*^'
*IN- R: v'

*OPT-l
*$T = 7600 J
tt

.SAVE EDITIO-3177; 2600 k* (See Appendix E.)

3.2.2 Operating Procedures

Editor is transferred from the system device into core by Monitor when the user types

EDIT v^

Editor is now in core and responds by typing

*OUT-

The user selects one of the following output devices: (T:) for low-speed reader/punch; (R:) for high-speed

reader/punch; (Srname) for output to the systems device on a file called name and types his choice

immediately after OUT-. If the specified device is not valid, that is, not declared when building

Monitor, Editor will respond with an error message (see Paragraph 2.8) and return control to Monitor.

Thus the user must call EDIT and respond to *OUT- with a valid device.

When Editor recognizes a valid device, it responds with *J (asterisk, carriage return/line

feed) and *IN-, as shown below,.

*

*iN-

The user now specifies the input device by typing T:^ , R: i/ , or Siname*' or*' in the same manner as

when replying to *OUT-, above.

The Editor responds with

*OPT-

asking the user to specify one of the following options.

B Preserve blanks. Editor normally replaces

multiple blanks (spaces) with tabs, resulting

in considerable saving of space on the system

device.

D Enter dynamic deletion mode if input is from the system

device. As the file is read, it is deleted from the system

device, thus allowing space for output if desired. (File

name remains on the directory but without any assigned blocks.)

C Combine the functions of B and D options.

J None of the above options; assume conversion of

two or more blanks to tabs, and not D.

With a System Device output, the user must type E J to properly close the output file.

3-13

After the user has specified one of the options listed above. Editor responds with a carriage

return/line Feed and asterisk. The entire printout night appear as follows.

^EDIT*'
*OUT-R:i^
*

^IN-T:i/
* ~

*OPT-B

The appearance of the last asterisk in the example above indicates that Editor is ready to

accept and operate on the user's symbolic program.

The user may now read the symbolic progjram into core by using the R command or he may

type the symbolic program directly into core by using the A command (see Table 3-2).

3.2.3 Example

^LOAD ^

*

^OPT- 1

*ST= ^

.SAVE EDIT!0-3177;2600 i
^EDIT^

*OUT-S:SRCW
*

*IN-R: i

*OPT- ^
*R,/

5^
.EDITJ

*OUT- ^

*IN-S:SRCU

fOPT-
IR^

*74Q0

ODUM . CLA

DCA LOCK
HLT
OSR
CMA

*/L
"$

Call Loader using Monitor

Inpui" to be from high-speed reader

Inpuil" device valid

One -pass load

Return to Monitor after loading

Editor is loaded

and ;>aved on the system device
Call Editor using Monitor

Output to be on system device, file named SRCl

Input to be from high-speed reader

Inpuii" device valid

No blanks, no dynamic deletion mode
Read incoming text

Process entire file

Call Editor using AAonitor

No output, no dynamic deletion mode, i.e., no option

desired.

Inpuir from filename SRCl

Filename valid

No option desired

Read incoming text

List J-he entire buffer

/STARTING ADDRESS OF PROGRAM

/GET LOWER LIMIT

/GET UPPER LIMIT

(t P v/as typed here, stopped listing of buffer)

(tC was typed here)

3-14

3.3 PAL-D DISK ASSEMBLER

PAL-D, the acronym for Program Assembly JLanguage for the Disk system, is the symbolic

assembly program designed primarily for the 4K PDP-8 family of computers with disk or DECtape.

The PAL-D Assembler performs many useful functions, making machine language program-

ming easier, faster, and more efficient. Basically, the Assembler processes the user's source program

statements by translating mnemonic operation codes into the binary codes needed in machine instruc-

tions, relating symbols to numeric values, assigning absolute core addresses for program instructions and

data, and preparing an output listing of the program which includes notification of any errors detected

during the assembly process.

The user may use pseudo -operators (pseudo-ops) to direct PAL-D to perform certain tasks or

to interpret subsequent coding in a certain manner. Instead of generating instructions or data, pseudo

-

ops direct the Assembler on how to proceed with the assembly. Pseudo-ops are maintained in the

Assembler's permanent symbol table.

The following is a summary of PAL-D's pseudo-ops.

Pseudo-

Operator

PAGE

PAGEn

FIELD n

DECIMAL

OCTAL

XLIST

TEXT

$

PAUSE

EXPUNGE

FIXTAB

Table 3-3

PAL-D Pseudo-Operators

Explanation

Set current location counter to first location on next page.

Set current location counter to first location on page n.

Load subsequent data in field n.

Interpret subsequent integers as decimal.

Interpret subsequent integers as octal.

Data enclosed is not to appear on third pass listing.

Input text strings in USA SCII code trimmed to six bits.

End of symbolic program, terminate current pass.

End of file or paper tape, suspend processing, proceed to next file

or paper tape and resume processing.

Erase permanent symbol table, except pseudo-ops.

Append to permanent symbol table all symbols defined before the

FIXTAB.

The Assembler is thoroughly documented in PAL-D Disk Assembler Programming A/\anual

(Doc. No. DEC-D8-ASAA-D).

3.3.1 Loading and Saving

PAL-D is loaded into core from punched paper tape in two passes using Loader. When in

core, it occupies locations, as shown in Appendix E.

To load PAL-D into core, the user calls LOAD using Monitor and replies to the system

responses as explained at the beginning of this chapter.

3-15

When in core, PAL-D may be saved on the system device as a system program by Monitor

as described in Appendix E. (See Paragraph 2.6.1 for a detailed description of the SAVE format.)

When loading and saving PAL-D, the printout should appear approximately as shown below.

(See Paragraph 2.5.)

A.OADJ

*

"*OPT-2
ST = 7600 k'

ft f t

_^SAVE PA LD 10-7577; 6200*'

3.3.2 Operating Procedures

PAL-D is transferred from the system device to core using Monitor. The user begins by

typing

^PALD V

PAL-D responds with a request for the output device by typing

*OUT-

The user selects the output device by specifying one of the following.

T: J for the low -speed punch

R: J for the high-speed punch

S:name J for output to the <;ystem device as a file called name

PAL-D then responds with

*I N-

and waits for the user to select the input device(s). Up to five input devices may be specified (for

example, R:, T:, R:, R:, T:,^), but in this example the user selected

R: ^^ input from the high-speed reader

If the user had specified the devices in the parenthetical example above, PAL-D would have

typed an asterisk for each input device that it found valid.

When PAL-D is satisfied that the input device is valid (i.e., the device does exist or the

file is present on the file -structured device), it will request the third-pass listing option by typing

*OPT-

3-16

The user types one of the following.

T meaning listing and symbols are to be produced on the teleprinter

R meaning listing and symbols are to be produced on the high-speed
reader/punch

meaning no third pass desired, symbols are printed on the teleprinter

(any other character means no third pass desired)

The entire printout might appear as follows. PALD J

*

"*IN- R:i^
*

"*OPT- T

PAL-D is now ready to proceed with the assembly, pausing only when user intervention is

required (i.e., placing a new paper tape in the reader, turning off the punch, etc.). On these occa-

sions, PAL-D will type on an up-arrow (t) on the teleprinter and wait for the user to type tP, indicating

that the user is ready to continue with the assembly. When using the low-speed reader on input

(*IN-T ;), an tP must be typed before turning the reader on.

Assembly may be terminated and control may be returned to Monitor at any time by typing

tC. When assembly is complete, control is automatically returned to Monitor.

PAL-D makes many error checks as it processes source language statements. When an error

is detected the Assembler prints an error message. The format of the error messages is

ERROR CODE ADDRESS

where ERROR CODE is a two -letter code which specifies the type of error, and ADDRESS is either the

absolute octal address where the error occurred or the address of the error relative to the last symbolic

tag (if there was one) on the current page.

PAL-D's error messages are listed and explained below.

Table 3-4
PAL-D Error Messages

Error Code Explanation

BE Two PAL-D internal tables have overlapped.

DE System device error

DF System device full

JC Illegal character

ID Illegal redefinition of a symbol

IE Illegal equal sign

II Illegal indirect address

PE Current nonzero page exceeded

PH Phase error

SE Symbol table exceeded

US Undefined symbol

ZE Page zero exceeded

3-17

3.3.3 Examples

The following example shows the entire process covered in this section.

^LOAD 4

*IN- R; i

*

*OPT-2
*ST= J
tttt

TS^E PA LD 1 0- 7577} 6200 J

J'ALD J
*OUT-S:BIN J
*

*IN-R: ^
*

*OPT-R

ill

_^LOAD

*IN-S:BIN ^
*

*OPT-2
*ST=7636 J

tttt

Call Loader

Input to be from high-speed reader

Loader found input device valid

Two -pass load

Return to A/\onitor after loading

PAL-D is loaded
PAL-D is jiaved on disk (see Appendix E)

Call PAL-D
Output to Filename BIN on system device

Filename and system device valid for output

Input from high-speed reader

Reader is valid input device

Output listing and symbols on high-speed punch

tP should be typed after inserting source tape in reader for each

pass (If both input and output are to system device, no t's are

typed
.

)

Assembly i:5 finished; control returns to Monitor; user called

the Loader.

Input from filename BIN on system device

Filename and system device valid for input

Two-pass load required

Transfer control to the HALT in the Monitor after loading the

user program

tP typed four times in response to each t

User program is loaded; the computer halts with user program in

core

3.4 FORTRAN-D

FORTRAN-D (FORmula TRANslation for the _Disk System), is an expanded version of standard

PDP-8 FORTRAN designed for PDP-8 computers with disk or DECtape units.

FORTRAN-D contains a compiler and an operating system. The FORTRAN compiler is used

to convert a source program into an object program.. The FORTRAN operating system is used to execute

the object program.

This version of FORTRAN is designed to Facilitate user/system communication by typing

appropriate commands from the teleprinter keyboard, eliminating the need to toggle input using the

switch registers.

FORTRAN statements specify the computiations required to carry out the processes of the

FORTRAN program. There are four types of statements provided for by the FORTRAN language:

a. Arithmetic statements define a numerical calculation.

b. Control statements determine the sequence of operation in the program.

c. Specification statements define the properties of variables, functions, and arrays ap-

pearing in the source program. They also enable the user to control storage allocation.

d. Input-output statements are used to transmit information between the computer and re-

lated input-output devices.

3-18

A summary of the FORTRA,N statements Is given in Table 3-5.

Table 3-5
Summary of FORTRAN Statements

Statement and form

1. Arithmetic Statements

2. Control Statements

GO TOn
GO TO (n^,n2,...n^),i

IF (e) n^,n2,n2

DO n i = ki,k«,l<o

CONTINUE

PAUSE

PAUSE n

STOP

END

3. Specification statements

DIMENSION v,(n,),v.,(n^,...v (n)11 2 2 n n

DEFINE device

FORAAAT(s^,S2,...s^)

COMMENT

4. Input -Output Statemen ts

ACCEPT fjist

TYPEfJist

READ u,f,list

WRITE u,fjist

Explanation

V is a variable (possibly subscripted); e is

an expression.

n is a statement number.

n , , . . .n are statement numbers; i is a non -

subscripted integer variable.

e is an expression; n^^n^An^ are statement
numbers.

n is a statement number of a CONTINUE;
i is an integer variable; l<,,k«,ko are

integers or nonsubscripted integer variables.

Proceed

Temporarily suspend execution.

n is an address; subroutine execution will

commence at n.

Terminate execution.

Terminate compilation; last statement in

program.

Vw...v^ are variable names; ni,...n areIn In
integers.

Device is DISK or TAPE, system I/O device.

s is a data field specification.

Designated by C as first character on line.

f is a FORMAT statement number; list is a
list of variables.

f is a FORMAT statement number; list is a
list of variables.

u is an integer, representing device from
which data is to be read,

f is a FORMAT statement number; list is a
list of variables.

u is an integer, representing device onto
which data will be written,

f is a FORMAT statement number; list is a
list of variables.

3-19

The following functions are allowed:

SQTF(x) square root of x

SINF(x) sine of x

COSF(x) cosine of x

ATNF(x) arctangent of x (in radians)

EXPF(x) exponential of x

LOGF(x) logarithm of X

ABSF(x) absolute value of X

Certain input-output statements have special characteristics when used with disk or DECtape

units.

a. The READ and WRITE statements disable the user from performing sequential input and

output either on paper tape or on the system device.

b. A DEFINE statement must precede the first executable statement in any program by using

the system device to input or output data.

c. When the operating system is called, the input or output filename must be specified by

using the S option if data is to be read from or written on the system device.

d. When a READ statement is used with the teleprinter, the statement differs from the

ACCEPT statement in that the data being read is not echoed on the printer.

e. A WRITE statement used with the teleprinter differs from a TYPE statement in that it

always terminates by typing a carrige return-line iFeed.

f. The READ and WRITE statements allow the user to input and output data on either th6

teleprinter, the high-speed reader/punch, or the system device.

g. When the ACCEPT statement is used, the rubout character deletes the previous number as

shown in the following examples.

Typed and Corrected Read Floating-point numbers ;

Integer Number s:

128 1028
128 -28

-128 128 +128 42 -42.2 -42.2 .

10^

h. When the READ statement is used, the rubout character is completely ignored.

The device assignments for FORTRAN-D READ and WRITE statements are:

1 Teletype

2 High-speed reader/punch

3 System device

For example,

READ2,f,list

will read from the high-speed reader.

The following examples show how the READ and WRITE statements might be used in a typica'

FORTRAN program.

3-20

2 42 +42.0

+1028 +2. 42 +42.0
-128 -2.0 2.0 +2.0

+128 42 -42.2 -42.2
20E6 5 +2.0 X

2.0E-6 5 +2.0 X

C EXAMPLE PROGRAM TO READ COORDINATE PAIRS
C FROM THE TELETYPE AND STORE THEM ON
C THE SYSTEM DEVICE

DEFINE DISK
TYPE TOO

TOO FORMAT ("ENTER THE NUMBER OF COORDINATE PAIRS"/)
ACCEPT 10,N

10 FORM/a (I)

TYPE 102
102 FORAA/vT ("NOW ENTER THE COORDINATES"/)

DO 20 1
= 1,

N

ACCEPT 30,X,Y
WRITE 3,30,X,Y

20 CONTINUE
STOP

30 FORM/J(E,E)
END

Several READ and WRITE statements may occur within a single DO loop and may refer to dif-

ferent devices. The data is written in USA SCI! format regardless of the device used. The following

program demonstrates how information previously stored on the disk might be read, processed, and

punched using the high-speed punch,,

C FORTR^^N EXAMPLE PROGRAM
DEFINE DISK
DIMENSION X(100),Y(100)

C READ DATA FROM THE DISK DEVICE NR3
IDEV = 3

6 SUMX=0
SUMY-0
DO 10 1=1,100
READ IDEV,20,X(1),Y(1)
WRITE2,20,X(1),Y(1)
SUMX= SUMX + X(1)
SUMY=SUMY + Y(1)

10 CONTINUE
TYPE 30,SUMX,SUMY
ACCEPT 40,J
IF (J) 12,12,6

12 STOP
20 FORMAT (E,E)

30 FORMAT ("SUM OF X VALUES = ",E," SUM OF Y VALUES = ",E,"
//"TYPE TO STOP, 1 TO CONTINUE")

40 FORMAT (1)

END

3.4.1 Compiler

The compiler consists of a loader (FORT) and the main portion of the compiler (.FT.) • This

version of the compiler differs from the standard PDP-8 4K FORTRAN compiler in the following ways.

a. It uses the disk or DECtape unit during its operation.

b. It will compile programs which have been stored on the system devices or programs
which have been prepared on punched paper tape.

c. It will generate a FORTRAN binary output file either on the system devices or on
punched paper tape.

d. Significant improvements have been employed with the READ and WRITE statements.

3-21

e. Input and output devices are determined using the Command Decoder

f.. It is possible to terminate compilation at any time by typing ^C, thus returning control

to Monitor.

g. Within certain restrictions, a program compiled on a system device may be executed
immediately when the user types tP after compilation of the program.

h. Statement numbers need not be delimited by a semicolon, unless the user wishes them to

be employed for appearance.

i. Statements without preceding numbers must be preceded by a space, a tab, or a semicolon,

3.4.1 .1 Loading the FORTRAN Compiler — To load the compiler, the following steps must be

performed

.

a. Load the compiler loader (FORT) into core using Loader in one pass and save it on

the system device as shown in Appendix E.

b. Load the compiler (.FT.) into core using Loader in two passes and save it on the sys

tern device as shown in Appendix E. The compiler is now loaded and saved on the system device and is

ready for use. The entire procedure will generate the following printout.

_^LOAD J
*IN- R; J

"*OPT- 1

*ST=7600i;

u

—

^SAVE FORTlO-1777; 200j (See Appendix E.)

^LOAD J
*IN- R: i
*

*OPT-2
*SJ=7600J
ft ft

^SAVE .FT. 1200-7377; i (See Appendix E.)

The loader occupies core locations 0-1777 with a starting address at 200. The compiler

occupies core locations 200-7377, its starting address is not specified since the loader (not the user)

calls .FT. when needed.

3.4.1 .2 Operating Procedures — The FORTRAN compiler is transferred from the system device into

core when the user responds to Monitor's period with FORT, as shown below.

^FORT i

Command Decoder then types

*CUT-

and waits for the user to specify one of the followiing:

T: J Output on low -speed punch/printer

R: J Output on high-speed punch

S:name J Output on system device and assign name

J No output desired

3-22

Command Decoder will respond with cm * when it recognizes a valid output device, and then types

*IN-

and waits for the user to specify one of the following:

T: J Input to be from low -speed reader

R: Jl Input to be from high-speed reader

Srname j Input to be from system device file named

Command Decoder will type an * when it recognizes a valid input device.

The compiler now assumes control, and if the program to be compiled is on paper tape, the

compiler types t when it is ready to receive the tape for compilation.

When the user is ready to read in his program he should type f P, which initiates compilation,

At the end of compilation the compiler will type any error diagnostics necessary, a carriage return/line

feed , and t

.

The process described above would produce the following printout.

^FORT i

*OUT- R; J
*

*IN~R: i

t (tC typed here; compilation finished)

3.4.1 .3 Compiler Diagnostics — Certain errors can make it impossible for the compiler to proceed in

the normal manner. These are referred to as system errors. They may be caused by improperly loading

the compiler, by not having an END statement on a source file, by a machine malfunction, or for

various other reasons.

There are two types of system errors: those which occur before the compiler has been loaded

into core, and those which occur after the compiler has been loaded into core. In the first case, the

compiler will type a four-digit error code and return control to the Monitor. In the second case, the

compiler will type SYS followed by a four-digit error code. At this point the operator must type ^C

to return control to the Monitor,

Table 3-6 lists the system error messages.

3-23

Table 3-6
Compiler Systems Diagnostics

Error

Code

0227

0231

0326

0330

1425

1521

1626

1726

3100

3417

4737

6141

6145

6207

6211

6223

6226

6257

6407

6416

6467

6724

6746

7114

7136

7150

7173

Explanation

Could not find Command Decoder on system device

Same as above

Could not find .FT. on «;ystem device

Same as above

READ error during direclory or SAM block search

Same as above

Same as above

WRITE error during SAM block search

Illegal operator on compiler stack

Pre -precedence error

No input device or invalid input device specified

Attempt to execute a program not compiled onto the system device

Could not find FOSL on system device; if the error occurs, it may
be necessary to reload FORT and FOSL.

READ error while loading FOSL

Error while doing SAM block manipulation

Error while loading .FT.

Same as above

Same as above

Illegal overlay request

Same as above

System device READ error

No END statement on source device

Same as above

Same as above

READ error on system device source file

System device full

WRITE error on system device output file

1

1

Error may be due to a compiler error or a machine malfunction.

3-24

The example below illustrates the appearance of the error codes.

Command Decoder not on system device

^FORT J
0227
^FORTi/
*OUT- i
*

*IN- S;name J
SYS 6141 <tC> No output file specified

Error messages for errors which occur during compilation of a program are typed out upon

completion of the compilation. These errors are referred to as compilation errors and take the form:

XXXX XX XX

The error code

The number of statements since the appearance
of last numbered statement (octal)

' The statement number of the last numbered statement

For example, during compilation of the statements

10 A=I(J+1)
B = A*(B + SINF(THTA)

the error message

10 11 11

would be printed, indicating that an error exists in a statement which occurs 11 statements (octal) after

the appearance of statement 10. The message corresponding to error code 11 shows that the number of

left and right parentheses in the statement is not equal. The statement is examined and corrected, then

compilation is resumed.

Table 3-7 lists the compilation error

Table 3-7
Compiler Compilation Diagnostics

Error

Code

00

01

03

04

05

06

07

10

Explanation

Mixed mode arithmetic expression

Missing variable or constant in arithmetic expression

Comma was found in an arithmetic expression

Too many operators in this expression

Function argument is in fixed -point mode

Floating-point variable used as a subscript

Too many variable names in this program

Program too large, core storage exceeded

3-25

Table 3 --7 (Cont)

Compiler Compilation Diagnostics

Error

Code

n
12

13

14

15

16

17

20

21

22

23

25

26

Explanation

Unbalanced right and left parentheses

Illegal character found in this statement

Compiler could not idenlrify this statement

More than one statement with same statement number

Subscripted variable did not appear in a DIMENSION statement

Statement too long to process

Floating-point operand should have been fixed -point

Undefined statement number

Too many numbered state;ments in this program

Too many parentheses in this statement

Too many statements have been referenced before they appear in

the program

DEFINE statement was proceeded by some executable statement

Statement does not begin with a space, tab, C, or number

3.4.1 .4 Debugging Aid (Symbolprint) — Symbol print is a program which may be used with the

FORTRAN compiler. Its purpose is to help the user create and debug his FORTRAN programs by pro-

viding certain information about the compiler-generated interpretive code. Symbolprint may be used

only immediately after a program has been compiled by using the Disk/DECtape FORTRAN compiler.

Symbolprint provides the following information:

a. The limits of the interpretive code..

b. A list of variable names and their corresponding locations (the symbol table).

c. A list of statement numbers and their corresponding locations (the statement number table),

Symbolprint is loaded into core from punched paper tape and may be saved on the system de-

vice approximately as shown below (see Paragraph 2.5).

^LOAD J

*IN- R;j
*

*OPT- 1

*ST= J
U_
\.SAVE STBL!600-777;600 i (See Appendix E.)

When in core, Symbolprint occupies locations 600-777 with its starting address at location

600.

3-26

When symbolprint is called into core, it types the interpretive code limits, symbol table,

statement number table, carriage return/line feed, and t . At this point the user may execute his pro-

gram by typing tP, or he may return to Monitor by typing tC.

In the following example, a program named SRC is compiled with no output specified. Sym-

bolprint is then used as shown above.

^FORT J
*OUT- J
*

*IN- S;SR(: J
*

T (tC typed here)

_^STBL.,;

6154 7565

1 757A (Symbol Table)
X Tsn
Y 7566

0100 6033
0010 6060
0102 6066 (Statement Number Table)
0020 '6U-5

0030 6147

I<tC>

In the example above, location 615^ is the highest location used for interpretive code and location 7565

is the lowest location used for data, indicating that the part of core between 6145 and 7565 is unused.

Interpretive code starts at location 600 if a DEFINE statement appears in the program; otherwise, the

code starts at location 5200.

3.4.2 Operating System

The FORTRAN operating system consists of a loader (FOSL) and the interpreter and arithmetic

subroutine package (.OS.). This version of FOSL differs from the paper tape FORTRAN operating sys-

tem in the following ways.

a. It will load and execute programs which have been compiled and saved on the system

device or programs which have been compiled on paper tape.

b. FOSL may be called directly by the compiler when a program has been compiled and
saved on the system device. This; is referred to as compile -and -go mode.

c. FOSL is able to recognize READ and WRITE statements which may read and write data in

USA sen format on either the low-speed paper tape reader/punch, the high-speed paper tape reader/
punch, or the system device.

d. The execution of a FORTRAN program may be interrupted by the user at any time by
typing tC; control will be returrjed to Monitor.

3-27

3.4.2.1 Loading the FORTRAN Operating System — To load the operating system, the following

steps are performed

.

a. Load the operating system loader (FOSL) using Loader in one pass and save it on the sys-

tem device as shown in Appendix E.

b. Load the operating system interpretive and arithmetic package (.OS.) by using Loader

in one pass and save it on the system device as shown in Appendix E. The FORTRAN operating system

is now loaded and ready for use. The loading process will generate the following printout.

^LOAD J
*IN- R: J

*OPT-l
*ST- ^
ft

",SAVE FOSL10-1577;200 i (See Appendix E.)

."LOAD,/
*IN- R: ,i

*OPT- 1

*ST= J
ttt t

.SAVE .OS. I0-5177;0 J (See Appendix E.)

The loader occupies core locations 0-1 ')77 with its starting address at 200. The arithmetic

and subroutine package occupies core locations 0-5177; its starting address is not specified since the

loader (not the user) calls .OS. when needed.

3.4.2.2 Operating Procedures — The FORTRAN operating system may be transferred from the system

device into core in one of two ways: by typing tP immediately after compiling a FORTRAN program

onto the system device, or by typing FOSL immediately after Monitor types a period.

If the operating system is called from Monitor, specify the desired input device by t/ping

T: «i for low-speed reader, R:^ for high-speed reader, or Smame,;' for system device input. FOSL.will

type * when it recognizes a valid input device.

FOSL will type *OPT-. If input or output is to be to or from the system device, type S. Any

other character indicates that the system device is not to be used. However, if the S option is used,

FOSL will type *OUT-. The user should now specify the desired output filename (if any) by typing

S.-namej (name is the name of the file). FOSL will ask for the input filename by typing *IN-. The

user should respond with S: and the name of the file, followed by a carriage return.

If the FORTRAN program is on paper tape. Loader will type t when it is ready to begin

loading. When the user is ready to load his program, he types tP and the tape will begin loading.

When the FORTRAN program or file is loaded, FOSL will type *READY, followed by a

carriage return/line feed and t . Place data tapeu in the appropriate reader and type tP to begin exe-

cuting the program. (If the low -speed reader is U!>ed, turn the reader ON after typing tP.)

When a STOP or END statement is executed, or when an end-of-file is read on the system

device, the operating system will type ! and return control to the Monitor.

3-28

The following examplej; show bow the FORTRAN operating system may be used.

Example 1

*IN-S:FBIN^

*OPT- ^
*READY
t

Example 2

I

^FOSL*'
*IN- R;,R:J
*

ERROR 01

*READY
t

Example 3

_^FORTJ
*OUT- S;SMSQ,<>
*

*IN- S:SM$Q J
*

T
*READY «/

Example 4

_^FOSLv^
*IN- S;BIN«/
*

*OPT- S

*OUT- S:DAT2 J
*

"*IN- S;DAT1 J

^READY

(Program execution occurs here)

(tP typed here)

(Program execution begins here)

Compile
and

Go

(Program execution begins here)

(Program execution begins here)

In example 2 a checksum error was detected on the second input tape. In this case the operator de

cided to attempt to execute the program in spite of the checksum error.

3-29

3.4.2.3 Operating System Diagnostics — When an error occurs during program execution, the opera

ting system will type ERROR followed by a two-digit error code number which will indicate the cause

of the error. Depending on the nature of the error, it may be possible to continue program execution

by typing tP or it may be necessary to return to the Monitor by typing tC.

The following is a list of the operating system error messages.

Table 3-8
Operating System Diagnostics

Error

Code

01

02

04

05

06

11

12

13

14

15

16

17

20

21

22

40

41

76

n

Explanation

1

Checksum error on FORTRAN binary input

Illegal origin or data address on FORTRAN binary input

System device input-output error

High-speed reader error

Illegal FORTRAN binary input device

Zero divide error

Floating-point input data conversion error

Illegal op code

System device input-output error

Non- FORMAT statement used as a FORMAT

Illegal FORMAT specification

Floating-point number larger than 2048

Square root of a negative number

Exponential negative number

Logarithm of a number less than or equal to zero

Illegal device code used in READ or WRITE statement

System device full, could not complete a WRITE statement

Stack underflow error

2
Stack overflow error

May be caused by machine malfunction or operating system error.

May be caused by source program or liDoding error; to correct, do the following

in descending order.

a. Use Diagnose to determine where the error occurred.

b. Recompile the source program.
c. Examine source program (in particular the arithmetic statements and sub-

scripted variables).

When an error occurs, execution will stop and the operating system will wait for the user to

type tP or tC.

3-30

3.4.2.4 Debugging Aid (Diagnose) — Diagnose is a basic system program whose purpose is to help

the user debug his FORTRAN program. It is intended to be used in conjunction with the PDP-8 4K
FORTRAN Operating System and revised FORTRAN Symbolprint. Diagnose provides the following

information.

a. If stack overflow or underflow has occurred, it will type a message indicating which of
the five run -time stacks caused the error.

b. It will type a message indicating the contents of the current location counter (CLC).

c. If the counter stack is nonempty, it will type the contents of that stack.

d. If location zero is nonzero, it will type the contents of that location (minus one), indi-
cating the point at which some FORTI^AN systems error occurred.

Diagnose is loaded into core from punched paper tape and may be saved on the system device

as shown in Appendix E.

_^LOADfc^
*IN-R:^

*OPT- l

*ST== J
tt

^SAVE DIAGI200-n77;200<^ (See Appendix E.)

When in core. Diagnose occupies locations 200-1 177 with its starting address at location 200.

Diagnose is called by typing the letters DIAG to the Monitor. It may be used any time the

FORTRAN 4K Operating system is in core. (If it is called any other time, the information typed will be

meaningless.)

The use of Diagnose is demonstrated by the ejxample of the following test program which con-

tains a large amount of arithmietic calculations.

Program]:

*L
C FORTST
C PDP-8 ADVANCED SOFTWARE
C FORTRAN TEST 1/2/68

DIMENSION ADIFE(6),AFAC(3),APIPE(6),IMRCD(3),PP(27)
,ACPRI(3)
TYPE 1

1 FORMAT("PDP-8 4-K FORTR/^N TEST'/)
ASPVA = .60
APIPE(1) = 12„09
APIPE(3)=6. 66
APIPE(4)=5.
APIPE(5)=5.0
IMRCD(1)=30
IMRCD(2)=30
ADIFE(1)==47.
AD I FE (2) ==47.

ADIFE(4)-508.
ADIFE(5)-38,57048.
AF=37.96

3-31

SC=3.1416
AMEAS=9.02
FSUBB^IO.O
ASUVA = 100.98
DO 200 1=1,27
RtEAD2,199,PP(l)

199 FORMAT(E)
200 CONTINUE

AGAST=38
INORU=2

25 BSPVA=n ./ASPVA)**.5
DO 550 JCB=l,INORU
AVEDE=IMRCD(JCB)
BE=APIPE(JCB+3)/APIPE(JCB)
I F(BE-.75)471, 472,472

472 AK = .731
GO TO 16

471 AG = .075
DO 100 IE = 1,27
AG=AG + .025
IF(AG-BE) 100,100,110

100 CONTINUE
110 TOTA=PP(IE)

TOTB=PP(IE-l)
SC = .025-(AG-BE)
WRITE 2,991,TOTA,TOTB,SC,AG,BE,IE

991 FORMATC/" r',E,E,E,E/" ",E,I)

I F(TOTA - TOTB)l 20, 1 20, 1 30

120 AK=TOTA
GO TO 16

1 30 AK =TOTB +(SC *(TOTA - TOTB))/. 025

16 FRD=830.-5000.*BE+9000.*BE**2-4200.*BE**3+(530./APIPE(JCB)**.5)
BMEAS=AMEAS+14.4
FR=1 . +((F RD/(12835. *AK))/((BMEAS*AVEDE)**.5))
XSUB2=AVEDE/(27.7*BMEAS)
YTTA = (XSUB2+1.)**.5
YTTB = .35*BE**4. +41.

YTTC=XSUB2/(1 .3*YTTA)
YSUB2 =YTTA - YTTB*YTTC
ACPRI(JCB)=YSUB2*FR*1.0177*FSUBB
AFAC(JCB)=ADIFE(JCB)*BSPVA

3-32

992
550

38

14

993

WRITE 2,992,AK,FRD,AMEAS,BMEAS,FR,XSUB2,YTTA,YTTB,'
YTTC,YSUB2,ACPRI(JCB),JCB
FORAAAT(/"2",E,E,E,E)
CONTINUE
AFTF-(520./(460.+AGAST))**.5
AFPV=(l.+(ASUVA*AMEAS)/((AGAST+460.)**3.825))**.5
FLOW=0
RATE=0
DO 38 l

=l,INORU
AMWP=(ADIFE(1)*AMEAS)**.5/1000.
RATE = R/aE+ACPRI(l)
FLOW=FLOW+AFTF*(AFAC(l)*AFPV*AMWP)
CONTINUE
WRITE 2, 993,AFTFvAFPV,AMWP, FLOW, RATE
TYPE 14, FLOW, RATE
FORMAT(E,E/)
STOP
FORMAT(/E,E,E,E)
END

.STBL

6360 6756

ADIF 7555 A

AFAC 7544
APIP 7522
IMRC 7517
PP 7376
ACPR 7365
ASPV 7362
AF 7310
SC 7302
AMEA 7274
FSUB 7266
ASUV 7260
1 7254
AGAS 7246
INOR 7244
BSPV 7240 0,

JCB 7231 i^

AVED 7225 1^

BE 7222 -Q

7213 "1AK
AG 7205 J;

IE 7201
TOTA 7171
TOTB 7166
FRD 7153
BMEA 7124
FR 7116
XSUB 7102
YTTA 7074
YTTB 7063
YTTC 7047
YSUB 7041
AFTF 7032
AFPV 7016
FLOW 6///
RATE 6773
AMWP 6766 ^

3-33

0001 5203 A
0199 5411

0200 5414
0025 5426 JV

0472 5507 -8

0471 5515 *Z
0100 5547 J
0110 5550 z.

0991 5615 z
0120 5650
0130 5656 5

0016 5676 5

0992 6147 o

0550 6162 7
0038 6323
0014 6342
0993 6350 V

Example 1(a)

1

"READY
t

PDP-8^^-K FORTRAN TEST

]

0.255323E+1 -0.825572E+1

• DIAG

CURRENT LOCATION COUNTER AT 6347

Example 1(b)

.FOSL
*IN-S:BIN
*

*READY

PDP-8 4-K FORTRAN TEST

ERROR 05
.DIAG

(tC typed here)

CURRENT LOCATION COUNTER AT 5407

Example 1(c)

.FOSL
*IN--S:BIN
*

*READY
t

PDP-8 4-K FORTRAN TEST (tC typed here)

.DIAG

CURRENT LOCATION COUNTER AT 4404

COUNTER STACK...
4733
4716
4673
6024

3-34

In example 1(a), the program was run to completion after which Diagnose was called.

Diagnose indicated that the current location counter contained 6347. By referring to the statement

number table (top of page 3-29, we can see that the CLC was pointing to an address just above state-

ment 993 (address 6350), verifying that the program terminated normally at that point.

In example 1(b), program ejxecution was attempted without paper tape in the high-speed

reader. After observing the error diagnostic 05, Diagnose was called, indicating that CLC=5407.

Again referring to the statement number table, we note that the address 5407 must refer to a statement

just before statement number 199 which is indeed the READ statement at which the error occurred.

In example 1(c), program €;xecution was arbitrarily stopped when the user typed tC. It

should be noted that in this case the CLC contained a 4404 which is outside the user's interpretive code

area. In such cases it is necessary to refer to the counter stack in order to determine where the pro-

gram interruption occurred. The last address on the counter stack points to location 6024, and by

again referring to the statement number table we can determine that the program was interrupted at

some point beiween statements 16 and 992.

Program 2 is a FORTRAN program in which a missing operator appears on the 6th line. When

program execution is attempted a stack overflow (error 71) occurs. Diagnose indicates that the operand

stack has overflowed, which suggests some noncompiler detected error in the source program. By re-

ferring to the statement number table, which is typed oftenA^ards, we note that the CLC points just

before statement 10, which happens to be the source of the error. It should be pointed out, however,

that when stack overflow or underflow occurs the CLC will not always point to the source of the error.

It may be necessary to examine the entire program for errors of this type.

Program 2:

.EDIT
*OUT-S:SRC
*

*IN-
*

*OPT-B

*l

C FORTRAN TEST
B = l

C=2
D=3
DO 10 1

= 1,160
A=B(C+D)

10 CONTINUE
TYPE 20, A

20 FORMAT(E)
STOP
END

*p

.FORT
*OUT-S:BIN
*

*IN-S:SRC

3-35

*READY

ERROR 77
(tC iyped here)

.DIAG
OPERAND STACK OVERFLOW

CURRENT LOCATION COUNTER AT 5231

.FORT
*OUT-
*

*IN-S:SRC
*

t

.STBL

(tC typed here)

5251 7555

B

C
D
1

A

757A
7570
7564
7562
7555

0010
0020
t

5237
5244

When Diagnose finishes typing the appropriate information control returns to the Monitor

since it is impossible to resume FORTRAN program execution.

3.4.3 Examples

^LOAD**

*

"^OPT- 1

*ST= J
ft

.SAVEFORT!0-1777;200,;

^LOAD J
*IN- R:^

*OPT-2
*ST- ^

t ft t

^SAVE .FT.!200-7377;0i^

^LOAD i

*IN- R:^
*

*OPT- l

*ST= ^
ft

.SAVE FOSL!0-1577;200,/

Call Loader

Input to be from high-speed reader

Input device is valid

One -pass load

Return to Monitor after loading

Loader-driver is loaded

and saved on the system device

Call Loader

Input to be from high-speed reader

Input device is valid

Two-pass load

Return to Monitor after loading

Compiler is loaded

and saved on the system device

Call Loader

Input to be from high-speed reader

Input device is valid

One -pass load

Return to AAonitor after loading

Operating system loader is loaded

and saved on the system device

3-36

^LOAD*'
*IN- R:.>

"^OPT- 1

TSAVE .OS.l0-5]77}0J

^LOAD i

*OPT-l
*ST= J

ft

^SAVE STBL!600-;777;600V

^EDIT«/
*OUT- S;FORT J
*

*IN- R;;
*

*OPT- B

*E

.FORT^
*OUT-S:FORTJ
*

^IN-S:FORT,/
*

T<tC>,/

^STBL«'

6177 7565

M 7576
A 7573
B 7570
ANS 7565

0001 5200
0002 5257
0003 5413
0004 5570
0005 5717
0006 5754
0009 5760
0100 5763
0200 5766
0300 6//1
0400 5774
0500 5777
1000 6027
2000 6040
3000 6051

4000 6062
1500 6071

0008 6077
0007 6123

Call Loader

Input to be from high-speed reader

Input device is valid

One -pass load

Return to Monitor after loading

Interpretive and arithmetic package is loaded

and saved on the system device

Call Loader

Input to be from high-speed reader

Input device is valid

One -pass load

Return to Monitor after loading

Symbolprint is loaded

and saved on the system device

Call Editor

Output to be on system device
Output device is valid

Input to be from high-speed reader

Input device is valid

Leave blanks (spaces) unchanged
Write the program on the system device
then write an end -of -file

Call FORTRAN compiler
FORTRAN binary output to be on system device
Output device is valid

USA ASCII input to be from system device
Input device is valid

Compilation is finished, return to Monitor

Call FORTRAN Symbolprint

Core beliween 6200 and 7564 is unused

Symbol fable (typed by Symbolprint)

Statement number table (typed by Symbolprint)

3-37

± Symbolprint is finished, load operating system

and interpretive code
*READY J Operating system and interpretive code are loaded

J Execute the program

THIS IS A DEMONSTRATION OF PDP FORTRAN.
THIS PROGRAM WAS COMPILED IN ONE PASS (tC typed here)

^FOSL *' Call operating system and loader

*IN- S:FORT>^ FORTRAN binary input is on system device

^ Input device is valid

*OPT- J No input or output to be done on system device
during program execution

*READY k^ Operating system and interpretive code have been
loaded

j^ Begin program execution

THIS IS A DEMONSTRATION OF PDP FORT (tC typed here)

^FORT./ Call FORTRAN compiler

*OUT- S:FORT J Output to be on the system device

^ Output device is valid

*IN- S:FORT»^ Input to be from the system device
* Input device is valid
t_ Compilation is finished, loading operating system

and interpretive code
*READY tJ Operating system and interpretive code are loaded

^ Begin program execution

THIS IS A DEMONSTRATION OF (tC typed here)

3.5 DDT-D

DDT-D (Dynamic Debugging Technique for the Disk/DECtape System) is used for on-line

checking, testing, and altering object programs by typing from the teleprinter keyboard. When de-

bugging on-line, the user checks his program at the computer, controlling its execution, and making

corrections or changes to his program while it is running on the computer.

When using DDT-D, the user should have a listing of his program and its symbols so that he

can update the program listing as corrections and changes are made to his program. The user may refer

to variables and tags by their symbolic names or by their octal values.

DDT-D operates as described in DDT Programming A/\anual, DDT-8 (Doc. No. DEC-08-

CDDA-D), except where that manual differs from this one, in which case this manual has precedence.

DDT-D can be considered as being in three sections.

a. DDT Proper A slightly modified version of DDT-8 (Low), occupies core

locations 200-4577 and the three breakpoint locations.

b. Driver Resident in core with its origin set above DDT proper

(above 4577); it is a two -page program plus a one -page
once -only program, and it contains breakpoint insertion

and removal logic, overlay routines, continuation iteration

count and control, and breakpoint list.

a-38

c. User Core Image File Occupies same storage area as DDT proper and is used for

swapping DDT proper and the user program to and from the
system device.

DDT-D is an expanded version of DDT-8 with the following exceptions.

a. Three breakpoints (as opposed to only one in DDT-8)

b. No punching (program may be output on the system device)

c. No switch options (user direction is via keyboard)

d. No halts (continues when user types t P)

1

Variations in commands follows.

a. [O, [S, [Y, [L, [M

b. tP

c.

d.

tc

n[Bk

e.

f.

n[B, [T, a;b[P, [IE

fR

Are temporary modifications to their respective constants;
are reset at every entrance to DDT-D from a [G or [C

Continue (DDT types t to indicate that it is waiting
for tP)

Restore user core image and return to Monitor

Set breakpoint; where n is the address of the break, [B is

the breakpoint command, and k is 1, 2, or 3

NOTE

If user tries to set two breakpoints at the
same address, a ? is typed and no action
occurs.

Have been removed

Is switch independent

The following subroutines have been added.

a. ADDCHK

b. ADDMOD
c. DDTB

d. STOSYM

e. READS
and
SYMIO

Finds word to be examined and puts it in WORD 2; remembers if

last virtual word referenced was in same buffer as present virtual
word and reads only if required.

Updates real or virtual core.

Updates symbol table pointer, gets value of breakpoint and its

contents, types breakpoint number and a - (hyphen) if a breakpoint,
and goes to TRAP or types nothing and goes to START if breakpoint
number = 0.

Updates DDT proper symbol area (DDT proper must be on unprotected
disk).

Input-output routines for disk; a failure in either types S and goes
to start of DDT.

The ALT MODE key precedes each command character and is echoed as [

3-39

b. FINIS

c. CHANGE

d. TODDT

e. TRAP

The following subroutines have been modified as indicafed.

a. REDTAB Assumes user wants to add to existing symbol table; user must type

[X to clear the symbol table.

Does not halt, instead, it waits for the user to type ^P,.

Allows lookup of values to change limit of search and search mask.

Handles breakpoint insertion; transferred to DDT driver.

Breakpoint handler; transferred to DDT driver.

The following subroutines have been removed.

a. PUNWOR

b. FSTPUN

c. FUN

d. PUNCHK

e. PUNLDR

f. WHICH

g. CHKSUM

From the teleprinter keyboard, the user can automatically stop his program at up to three

strategic points by setting breakpoints, which may be set before the debugging run is started or during

another breakpoint stop. To set a breakpoint, the user types the absolute address or symbolic tag of the

location where he wants his program to stop, the ALT MODE key, the B key, and then the breakpoint

number. For example,

3400[B1 (absolute address, ALT MODE, B, 1)

HERE[B2 (symbolic tag, ALT MODE, B, 2)

Locations 3,4, and 5 on page zero are used as the breakpoint locations. The user may, by

reassembly of the furnished DDT Driver source resei- the breakpoint locations to any three contiguous lo-

cations on page zero. Changing the breakpoint locations is done by setting BRKCEL=n, where n is the

lowest of the three locations desired

.

The following symbols represent certain registers in DDT-D whose contents are available to

the user by typing:

[A Accumulator storage (at breakpoints)

[Y Link storage (at breakpoints)

[M Mask used in search

[L Lower limit of search

[U Upper limit of search

Table 3-9 lists the DDT-D commands available to the user.

3-40

Table 3-9
DDT-D Commands

Character ActI on

(space) Separation character

+ Arithmetic plus

Arithmetic minus

/ Location examination character; when it follows the

address of a location, it causes the contents of that

location to be printed

J (carriage return) Make modifications, if any

t (line feed) Make modifications, if any, and print the contents of

the next sequential location

= Type last quantity as an octal integer

. (period) Current location

*- (left arrow) Delete the line currently being typed

[S Sets DDT-D to type out in symbolic mode

[0 Sets DDT-D to type out in octal mode

n[W Word search for all occurrences masked with C([M) of

the expression n

k[Bn Insert breakpoint n at location k (n=1, 2, or 3)

[Bn Remove breakpoint n (n =1, 2, or 3)

n[C Continue n times automatically; if n is absent, it is

assumed to be 1

k[G Go to location k

[R Append symbol table into external symbol table or define

symbols on line

3.5.1 Loading and Saying

DDT-D is loaded into core from punched paper tape. The tape is in two sections. The first

section contains DDT proper which loads in one pass, occupies core locations 200-4577 (Appendix E)

and uses three locations on page for the breakpoint locations.^ After loading DDT proper, the user

should reserve on the system device a user core image file name .SYM, which should also be assigned

to core locations 200-4577.'

The next section of DDT (the driver) loads in two passes and occupies two pages in core with

its origin anywhere above DDT proper, that is, anywhere above location 4577. The driver is resident

in core. For setup, it uses five more pages: one for once -only code plus four for Command Decoder.

Command Decoder expects two inputs to be assigned as files to be used by the driver. These files are

assigned only once unless the system is changed or destroyed, in which case the user must reassign these

two files.

.SYM is used also by PAL-D to store a'Iditional symbol table entries.

2Binary tape of DDT driver uses locations 3, 4, 5, and 7200-7577.

3-41

The sections of DDT are loaded and saved as described below.

. LOAD J
"

^IN- R:,^*
"

^OPT- 1

*ST= V

11
^SAVE .DDT:200-4577;0 li

^SAVE .SYM:200-4577;0i;

^LOAD*'

*

*OPT-2
*ST= 7000^
tt ft

*IN- S:<.DDT>,S;<:USER>,/

*IN- S:,DDT,S;.SYM./

*

TSAVE DDT!7200-7577;7200 J

(See Appendix E.)

(See Appendix E.)

Call Loader using Monitor
Input to be from high-speed reader

Loader found input device valid

DD f proper loads in one pass

Return to Monitor after loading

DDT proper is loaded

Saved as a user program
User core image file also

saved as a user program

Call Loader using Monitor
Input to be from high-speed reader

Loader found input device valid

Driver loads in two passes

Transfer to once -only code after loading

Driver is loaded
DDT Loader expects names of 2 input files saved

above for use by driver (See Appendix E.)

Inputs to be from DDT proper and user

core image files

Loader found input files valid (an

asterisk for each valid file (device)

Saved as a system program (See Appendix E.)

The error message DDT? is typed whenever an error is encountered while loading DDT-D.

Errors may be caused by the following.

a. User file too large

b. System device read error

c. No Command Decoder

3,5.2 Operating Procedures

DDT-D is now saved on the system device. The user must now load into core the program to

be debugged. This is done as described in Paragraph 2.5.

When the program to be debugged is in core the user types DDT in response to Monitor's

period as shown below.

.DDT

The user may now use DDT-D in debugging this program, directing execution and making

modifications to his program as described above and in the DDT-8 programming manual.

A brief example of using DDT-D is shown in Paragraph 3.5.3.

3.5.3 Example

^LOAD^
*IN- R;,^
*

*OPT- 1

ST= ^

Call Loader

Input to be from high-speed reader

Loader found input device valid

One -pass load

Return to Monitor after loading

3-42

_^SAVE .DDT:200-4577; .?

^SAVE .SYM:200-457:^;0,»
^LOAD.;
*IN- R:J
*

*OPT-2
SI = 7000 J

Sk:DDT>,S:<.SYM>V

*IN- S:.DDT,S:.SYM>>>

*.

_*

^SAVE DDl\7200-75T/}7200^

3400/AND 0007 lACi^

3401/AND JMP3400v'
3400[B1^^
3400 [Gv^
1 -3400)0000
[CJ
^ -3400)0001

JOOiC**
1 -3400)0701

DDT proper is loaded

DDT proper is saved on disk (See Appendix E.)

User code image file also saved

Call Loader

Input to be from high-speed reader

Loader found input device valid

Two -pass load

Transfer to once -only code after loading

Driver is loaded
DDT Loader expects names of 2 input files saved
above for use by driver

Inputs from DDT proper and user code image file

Loader found both input files valid

Driver is saved on disk (See Appendix E.)

Call DDT using Monitor

Examine contents of location

3400 and 3401

Set breakpoint No. 1 at location 3400

Start execution at location 3400

Location 3400 contains 0000
Continue
Location 3400 now contains 0001

Pass through location 3400 700 times

Location 3400 now contains 0701

tC was typed here

3-43

APPENDIX A
SYSTEM GENERATION

This appendix describes the creation of a Disk/DECtape System (Disk/DECtape Monitor and

system programs) on an empty disk or JDECtape (if DECtape, it must have timing and mark tracks previously

written on it).

The steps involved in system generation are as follows.

a. Toggling in the Readin Mode (RIM) Loader.

b. Loading the Binary (BIN) Loader

c. Loading and executing Disk/DECtape System Builder to create Monitor.

d. Loading and saving any system programs.

A . 1 TOGGLING IN THE READIN MODE (RIM) LOADER

The Readin Mode (RIM) Loader is a short program which loads any program in RIM format on

paper tape into core. Although the RIM LDoder has various uses, its sole purpose in the System Building

process is to load the Binary Loader.

There are two versions of the RIM Loader, one for loading programs from the high-speed paper

tape reader and the other for loading from the Teletype paper tape reader.

High-•Speed Reader Teletype Reader

Location Instruction Location Instruction

7756 6014 7756 6032

7757 6011 7757 6031

7760 5357 7760 5357

7761 6016 7761 6036

7762 7106 7762 7106

7763 7006 7763 7006

7764 7510 7764 7510

7765 5374 7765 5357

7766 7006 7766 7006

7767 6011 7767 6031

///O 5367 ///O 5367

777\ 6016 7771 6034

j/n 7420 ///2 7420

7772 3776 ///2 3776

777A 3376 ///A 3376

7775 5357 7775 5356

///6 0000 7776 0000

A-1

A detailed description of the toggling and checking procedures for the RIM Loader can be

found in the PDP-8 Console Manual (Doc. No. DE:C-08-NGCA-D). Acomplete discussion of the

RIM Loader is contained in the PDP--8 Readin Mode Loader Program writeup (Doc. No. Digital-8-1 -U).

A. 2 LOADING THE BINARY (BIN) LOADER

The Binary (BIN) Loader loads any program in binary format on paper tape into core. Its pur-

pose in the System Building process is to load the Disk/DECtape System Builder. The procedure for

loading BIN is as follows.

a. Check that the RIM Loader is in core.

b. Place the paper tape containing BIN in the paper tape reader (high-speed or Teletype,

according to version of RIM).

c. If Teletype reader is to be used, turn it on.

d. Place the address 7756 into the SWITCH REGISTER and press LOAD ADD.

e. Press START. Tape should begin reading (if it does not, check that the SING INST and

SING STEP switches are down and that the reader is on line). (Note: The Teletype reader is always

on line.) If the Teletype begins to print, flip Teletype switch from LOCAL to LINE and back up the

tape to the leader/trailer.

f. After paper tape reads in, wait until only bit of the accumulator is on. Press STOP
on console. If the high-speed reader is used, a 7402 (HLT) appears in the accumulator, and the tape

stops over the leader/trailer (200 code).

A detailed description of BIN and its use can be found in the PDP-8 Console Manual and PDP-8
Binary Loader Program writeup (Doc. No. Digital-8-2-U).

A. 3 LOADING AND EXECUTING DISK/DECTAPE SYSTEM BUILDER

Next, the Disk/DECtape System Builder program, in binary format on paper tape, is loaded

by the Binary Loader. Loading procedures are as follows.

a. Place the address 7171 (starting address of BIN) into the SWITCH REGISTER. Press

LOAD ADD.
b. If the high-speed paper tape reader is to be used, put down (or set to 0) bit of the

SWITCH REGISTER, place the System Builder tape in the reader.

If the Teletype reader is to be used, leave up bit of the SWITCH REGISTER, place the

System Builder tape in the reader, put the Teletype to line, and set reader to START.

c. Press START on the console. Tape should read in.

d. When tape has been read, the accumulator should contain all zeroes (if not, the pro-
gram has loaded incorrectly; begin the loading procedure from the beginning).

e. Turn off WRITE PROTECT on the disk (if present). Otherwise, mount a DECtape reel on
one of your DECtape units, set the unit selector to 8, and set the WRITE switch to WRITE.

f. To begin System Builder execution, place the address 0200 into the SWITCH REGISTER,
press LOAD ADD, and then START.

g. As the following questions are typed out, answer them according to your machine
configuration.

A-2

*TYPE SIZE OF CORE (IN K)^

*HIGH SPEED PAPER TAPE?
*YES J

*Disc? I)
r ^ <t^

*YES^
'^fl^PE NUMBER OF DISC UNITS

*TAPE? p l:^ ^f\ ft
*YES,(I

(^

User enters core size of his machine {% 8 Jl2, 16,
20, 24, 28, or 32),

User answers YES or NO« A^
;' '

-—
ji/

User answers YES or NO.

\ User answers YES or NO.
^X^A(^ ^

User fypes number of disk units on his machine.

User types YES if he has DECtape, NO if he does
not

Monitor creation is completed, the resident

portion is moved to the appropriate core area

(7600 through 7117) , and the nonresident por-

tions are written on the system device.

NOTE

If specified as present, the disk is

automatically selected as the system
device; if not, DECtape unit 8 is

selected.

Monitor is loaded and ready.
If the response

WRITE ERROR

occurs:

a. If disk, start over at Para. A. 2; there may be
a hardware problem.

b. If DECtape, try a new DECtape and start at

Para. A. 2. Or, rewrite the timing and mark
tracks and start at Para, A. 2.

tr/.̂ If \

^y

A.

4

LOADING AND SAVING SYSTEM PROGR>A.MS

Binary Loader is one of the nonresident portions of Monitor and is used to load system and

user programs into core. It is fully described in Chapter 2. An example follows.

.LOAD,/
*IN-R:^

*OPT-l
ST =7600 k

.SAVE PIP! 0-3177; 1000^

Calls Binary Loader from the system device.
Input device is paper tape reader (high-speed reader
if specified as present at System Builder time;

otherwise Teletype reader).

Device is valid

.

One -pass loading mode selected.

Return to Monitor after loading.

After each up -arrow typeout, user types t P to

continue (also must press CONTinue on console
if Teletype reader is being used).

Saves program (in this case, PIP) on system device.
Note that a I must follow name of system program.
The SAVE command is explained in Chapter 2. The
SAVE command program is given in Appendix E.

Repeat the procedure above for each system program to be saved.

A-3

APPENDIX B

SYSTEM FORMATS

This appendix contains the following information.

a. System Device Layouts

Disk Storage Ljayout

DECtape Storage Layout

Directory Name (DN) Block Format

Storage Allocation Map (SAM) Block Format

Table of System Device and Core Capacities

b. Data Structure

Source File (ASCII)

Binary File (BINARY, FTC BIN)

Saved Files (SYS, USER)

c. PIP Listing of System Device Map (for Disk)

d. AAonitor Core Usage Diagrams

B . 1 SYSTEM DEVICE lAYOUTS

Figures B-1 and B-2 illustrate the layout of the system device for both disk and DECtape.

Note that, although the layouts differ in arrangement, they are logically equivalent.

A relatively sophisticated file structure is used for all automatic retrieval of storage by the

system. Two special types of blocks are required: Directory Name (DN) Blocks, and Storage Allpca-

tion Map (SAM) Blocks.

B.1.1 Directory Name (DN) Blocks

The format of a Directory Name Block is illustrated in Figure B-3. Each file has an entry

in one of the three DN blocks on the system device.

DN^ - Contains entries for internal file numbers 01 through 31g (25, q) and a link to DN«.

DN2 - Contains entries for internal file numbers 32 through 62o (50iq)
and a link to DN^

DNo - Contains entries for internal file numbers 63 through 77q (63,^) and an end-of-chain
-^

link of 0. ^ '^

Thus, the system device can contain up to 63 files. Each file entry contains the filename, start address,

entry point address, file type, and an internal file number (1 through 77g). When a file is to be added

on the system device, an entr/ for the file is created in the first open entry slot found in the DN blocks.

When a file is deleted, its DN entry is cleared and the slot is made available for some other file.

B-

BLOCK

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

21

22

177

200

201

202

373

374

375

376

377

MONITOR HEAD

MONITOR (1ST PAGE OF SAVE)

MONITOR (START)

DN (BACKUP - SEE PIP)

SAM (BACKUP - SEE PIP)

MONITOR (2ND PAGE OF CALL)

MONITOR (3RD PAGE OF SAVE)

MONITOR (2ND PAGE OF SAVE)

MONITOR (1ST PAGE OF CALL)

MONITOR (4TH PAGE OF SAVE)

LOADER

LOADER

LOADER

COMMAND DECODER

COMMAND DECODER

COMMAND DECODER

COMMAND DECODER

COMAAAND DECODER

COMMAND DECODER

DN] (USER)

SAMi (USER)

DN2 (USER)

DN3 (USER)

SCRATCH BLOCK

SCRATCH BLOCK

SCRATCH BLOCK

FIRST DISK

BLOCK

401

SECOND DISK (OPTIONAL)

1001

vLOWER
/ HALF

SAM3 (USER)

rrwrrwiS'fww^^

THIRD DISK (OPTIONAL)

1401

UPPER
>HALF

FOURTH DISK (OPTIONAL)

DN = Directory Name Block

SAM = Storage Allocation AAap Block

AREA AVAILABLE FOR
SAVING CORE IMAGES

Rgure B-1 Disk Storage Layout

B-2

BLOCK

1

2

3

4

5

6

7

10

n
12

13

14

15

16

17

20

21

22

23

24

25

177

200

201

202

203

204

205

206

207

2701

MONITOR HEAD

MONITOR (1ST PAGE OF SAVE)

MONITOR (START)

DN
SAM

SCRATCH BLOCK

SCRATCH BLOCK

SCRATCH BLOCK

MONITOR (2ND PAGE OF CALL)

MONITOR (3RD PAGE OF SAVE)

MONITOR (2ND PAGE OF SAVE)

MONITOR (1ST PAGE OF CALL

MONITOR (4TH PAGE OF SAVE)

LOADER

LOADER

LOADER

COMMAND DECODER

COMMAND DECODER

COMMAND DECODER

COMAAAND DECODER

COMAAAND DECODER

COMMAND DECODER

DN] (USER)

SAMi (USER)

DN2 (USER)

SAM2 (USER)

SAM3 (USER)

SAM4 (USER)

SAM5 (USER)

SAM6 (USER)

DN3 (USER)

DN = Directory Name Block
SAM - Storage Allocation Map Block

AREA AVAILABLE
FOR SAVING CORE
lAAAGES

Figure B~2 DECtape Storage Layout

B-3

25

ENTRIES

PER DN

BLOCK NUMBER OF FIRST SCRATCH BLOCK
(DISK = 0373; DECTAPE - 0005)

2-DIGIT VERSION NUMBER

BLOCK NUMBER OF FIRST SAM BLOCK (0200)

DN ENTRY FOR FIRST FILE

(INTERNAL FILE NUMBER == 01)

DN ENTRY FOR SECOND FILE

(INTERNAL FILE NUMBER = 02)

DN ENTRY FOR THIRD FILE

(INTERNAL FILE NUMBER == 03)

^

) 1ST DN BLOCK ONLY; OTHER
BLOCKS CONTAIN ZEROES IN

THESE WORDS

-JL

DN ENTRY FOR TWENTY-FIFTH FILE

(INTERNAL FILE NUMBER == 31

J

o

LINK

FIRST DIRECTORY NAME (DN) BLOCK

DN
ENTRY
FORMAT

Link to DN (files 32

through 62J

N N

N N

START ADDRESS

ENTRY POINT

1 1 1

INTERNAL FILE

NUMBER

N = 4-CHARACTER
FILENAME

EXTENDED MEMORY BITS ^1 = SYSTEM PROGRAM

PROGRAM TYPE

00 = ASCI I

01 = BINARY
10 = FTC BIN

11 = SIYSOR USER SAVE FILE

Figure B-3 Directory Name (DN) Block Format

B-4

B . 1 .2 Storage Allocation Map (SAM) Blocks

SAM blocks contain a record of which files are occupying which blocks on the system device,

Each SAM block contains a record of a 377o-block area. (See Figure B-4,)

SAM, contains the map for blocks through 377o and a link to SAM«.

SAM^ contains the map for blocks 400 through 777o and a link to SAM^.

SAMq contains the map for blocks 1000 through 1377o and a link to SAMi.

SAMi contains the map for blocks 1400 through V777 r, and either an end-of-chain link of

(if disk) or a link to SAM^ (if DECtape).

The next two SAMi blocks are present only if a DECtape is the system device.

SAMc- contains the map for blocks 2000 through 2377o and a link to SAM,

.

SAM, contains the map for blocks 2400 through 2701 o and an end-of-chain link of 0.

On disk, one SAM block is present for each disk unit (up to four allowed) and each SAM

block resides on the disk which it maps (SAM, on the first disk, SAM-^ on the second disk, etc.).

When a file is to be added, a search is made through the SAM blocks for an entry containing (block

is unoccupied), the internal file number of the file is placed in that entry (and in as many other unoc-

cupied entries as are needed for the file), and the storage block linking is adjusted. When a file is

deleted, all SAM block entries containing the file's internal file number are set to 0. The block num-

ber of the beginning block of the SAM chain (200) is stored in the third word of the first DN block.

B-5

SPECIAL INTERNAL FILE NUMBERS: 01 =

04

05

ALL MONITOR, DN, SAM,
AND SCRATCH BLOCKS
LOADER BLOCKS
COMMAND DECODER BLOCKS

WORDO

WORD 1

WORD 2

WORD 3

WORD 4

WORD 5

WORD 6

WORD 7

WORDS

WORD 122

WORD 123

WORD 124

WORD 125

WORD 126

WORD 127

WORD 128
10

EXAMPLE

FILE #1 - BLOCKS 0, 1, 2

FILE #3- BLOCKS 5, 6, 11

FILE #4- BLOCK 10

FILE #13- BLOCKS 201,

202, 206, 207

FILE #15- BLOCKS 200,

203, 205, 210

UNUSED - BLOCKS 3, 4, 7,

204, 211

^200 ^000

^201 ^001

^202 ^002

^203 ^003

^204 ^004

^205 ^005

^206 ^006

^207 ^007

^210 ''oio^ -J
b:—^^^^Z'^^ 1

^67

''370 ^70

''371 ^71

^372 ^72

^373 ^73

^374 ^74

^375 ^\1^

^376 ^76

^377 '^Ml

LINK

nnn
internal file

number of file

occupying block

nnn (0 =

unoccupied)

LINK TO SAM

I
(BLOCKS 400-777)

2

STORAGE ALLOCATION MAP (SAM)

15 01

13 01

13 01

15 00

00 00

15 03

13 03

13 00

15 04

00 03

10

12

Figure B-4 Storage Allocation Map (SAM) Block Format

li-6

Table B--1

System Device and Core Capacities

B.2

Unit Words
Highest Page (Block)

Number (1st Page = 0)

1 DISK

2 DISKS

3 DISKS

4 DISKS

32,768

65,536

98,303

131,072

(3753)

(773g)

(1371g)

(I767g)

1 DECTAPE 190,146 (2701g)

4K CORE

8K CORE

12KCORE

16KCORE

20K CORE

24K CORE

28K CORE

32 K CORE

4,096

8,192

12,288

16,384

20,480

24,576

28,672

32,768

(378)

(773)

(1373)

(1773)

{237g)

(277g)

(337g)

(3778)

DATA STRUCTURE

The data structure of each type of program file is described in the following paragraphs.

B . 2 . 1 Source File (ASCII) Data Structure

All characters are stored in 6-bit ASCII code as described below.

All nonprinting characters (200 through 237 and 340 through 377) have their two most

significant bits dropped and a 77 prefixed to them. (The one exception to this rule is

RUBOUT, 377, which is nonexistent.) All printirig characters are trimmed to six bits,

except for ? (277), which is packed as 7777

.

B . 2 . 2 Binary File (BINARY, FTC BIN) Data Structure

All binary (BINARY) and FORTRAN binary (FTC BIN) files are stored as two words per three

paper tape frames. Frame 1 contains the rightmost eight bits of word 1, frame 2 contains the rightmost

eight bits of word 2, and frame 3 contains the leftmost four bits of words 1 and 2 (the most significant

bits of frame 3 are those of word 2).

B-7

Example:

Paper tape Meaning Disk(Octal) Disk (Binary)

200 Leader 5600 1011 10000000

102 ORG 0502 0001 01000010

033 Second half

of ORG word

This procedure is repeated until a trailer code is found.

B . 2 . 3 Saved File (SYS, USER) Dote Structure

Saved files are stored on the system device as an integral number of pages and each page

occupies one disk or DECtape block. Storage conventions differ between saved files of contiguous pages

of core and those of noncontiguous pages.

Contiguous Pages

All system device blocks contain core images (Figure B-5) . The Start Address word in the

Directory Name (DN) entry for the file is set to the starting page address.

SAVE FILC:200-600;433

Block 1

Contains core

image of locations

200 through 377

F 1

L C

2

4 3 3

6 2 5

Filename

Start Address

Entry Point

File Type/File Number

Block 2

Contains core

image of locations

400 through 511

DIRECTORY NAME ENTRY

Block 3 Contains core

image of locations

600 through 111

SYSTEM DEVICE BLOCKS

Figure B-5 Contiguous-Page Save File Format

B-8

Noncontiguous Pages

The first system device block of a saved file composed of noncontiguous pages of core con-

tains a list of core page assignments and the core images sotred in subsequent blocks. The last entry in

this list is set to 7177 (Figure B-6) . The Start Address word in the Directory Name entry for the file is

set to 7777 to indicate that the first block does not contain a core image but a page assignment listing.

SAVE FILN: 0,400, 1000;433

Block 1

0000 List of

0400 page

1000 assign-

7777 ments

F 1

L N

7 7 7 7

4 3 3

6 2 6

Filename

Start Address

Entry Point

File Type/File Number

Block 2

Contains core

image of locations

through 177

DIRECTORY NAME ENTRY

Block 3

Contains core

image of locations

400 through ^77

Block 4

Contains core

image of locations

1000 through 1177

SYSTEM DEVICE BLOCKS

Figure B-6 Noncontiguous-Page Save File Format

B-9

B.3 PIP DIRECTORY LISTING

A directory listing of the system device can be obtained by running PIP (Figure B-7) . A

sample output is given below.

.PIP

*OPT-L

*IN-S:

FB=ono 110 free blocks remain

8D
PALD.SYS
EDIT. SYS

LOAD. SYS
.CD.. SYS
PIP .SYS

FORT. SYS
.FT.. SYS

.OS.. SYS
FOSL.SYS
STBL.SYS
.DDT. USER

.USR.USER
DDT^.SYS

0030

0015

0003

0006

0020

0010

0035

0024

0006

0001

0022

0023

0002

Number of blocks used

Field number

Extension name

Filename

Figure B-7 Sample PIP Directory Listing

B-10

B.4 MONITOR CORE USAGE DIAGRAMS

The following illustrations show Monitor usage of locations 7000 through 1117 at

a. Monitor Time and User Time (Figure B-8)

b. SAVE Command Processing (Figure B-9)

c. CALL Command Processing (Figure B-10)

1111

7600

7400

7200

7000

SYSTEMS I/O ROUTINE
MONITOR HEAD

MONITOR
TELETYPE SERVICE

SAVE COMMAND DECODER
AND

PAGE STACK BUILDER

X

nil

7600

7400

7200

7000

SYSTEMS I/O ROUTINE
MONITOR HEAD

USER AREA

USER AREA

USER AREA

(a) Monitor-Time Core Usage (b) User-Time Core Usage

Figure B-8 Monitor-Time vs User-Time Core Usage

B-11

. SAVE filenamercore-specifications, . . .;entry-point'

rni

7600

7400

7200

7000

SYSTEMS I/O

MONITOR HEAD

PAGE STACK BUILT HERE

TTY SERVICE ROUTINE

DIRECTORY NAME ENTRY BUILT HERI

SAVE COMMAND DECODER
AND

PAGE STACK BUILDER

X

(a) "SAVE filename:" Processing

SYSTEMS I/O

MONITOR HEAD

MONITOR AND TTY SERVICE ROUTINES
ARE NOW DESTROYED; VARIOUS STATUS
REGISTERS ARE HELD HERE.

PAGE STACK MOVED HERE

BUFFER FOR DN SEARCH

CODE HERE IS SWAPPED OUT TO
SYSTEM DEVICE SCRATCH BLOCK;

DN BLOCK SEARCH AND UPDATE
ROUTINE LOADED HERE

(b) "Core-specifications, . .;entry-point'

Processing

1711

7600

7500

7400

7200

7000

SYSTEMS I/O

MONITOR HEAD

BLOCK STACK

PAGE STACK

SAM BLOCK SEARCH AND UPDATE
ROUTINES LOADED HERE

(CREATE BLOCK STACK)

SAM BUFFER

SYSTEMS I/O

MONITOR HEAD

BLOCK STACK

PAGE STACK

ACTUAL SAVE ROUTINE LOADED HERE

(RETURNS TO MONITOR START -

7600-WHEN FINISHED)

SWAPPED-OUT CODE BROUGHT BACK

(c) SAM Search (d) Actual Save Time

Figure B-9 Core Usage During SAVE Command Execution

B-12

CALL filename^ or .filename^

nil

7600

7400

7200

7000

SYSTEMS I/O

MONITOR HEAD

BUFFER FOR DN AND SAM BLOCKS

CALL: DN AND SAM SEARCH
ROUTINES

(LOCATE FILE AND DEFINE RANGE OF CALL)

X

(a) "CALL filename" Processing

nil

7600

7400

7200

7000

SYSTEMS I/O

MONITOR HEAD

READ ROUTINE

(PERFORMS ACTUAL CALLING IN OF FILE;

CAN DISAPPEAR AT USER TIME)

CONTIGUOUS-PAGE PROGRAM:
THIS AREA IS NOT TOUCHED.

NONCONTIGUOUS-PAGE PROGRAM:
SCATTER-GET READS CORE

ALLOCATION (BLK 1) INTO HERE

X

(b) Actual CALL Time

Figure B-10 Core Usage During CALL Command Execution

B-13

MONITOR START

I 7600 1

SWAP OUT CORE
(7200-7577) AND
READ MONITOR

SET NONSYSTEM-
PROGRAM
MODE IND.

READ AND
SEARCH DN

NAME FOUND -y - ^l ^ypE "?"

READ SAM
BLOCK

CONSTRUCT
PA(!E LIST

CONSTRUCT
PAGE LIST

SET ENTRY
POINT TO 200

YE:S set SYSTEM
MODE INDICATOR

CONSTRUCT
ENTRY POINT
ADDRESS

^ F IND
-y*<;^FILENO

Figure B-1 1 Monitor Flow Chart (Part 1)

B-14

READ IN DN BLOCK

SEARCH FOR
FILENAME

READ BLOCK 1

(CORE ALLOC. LIST)
INTO 7200

READ BLOCK OF
SAVE FILE INTO
PROPER PAGE

JUMP TO ENTRY
POINT ADDRESS

AN OLD VERSION
OF THE FILE
EXISTS AND IS

BEING OVER-
WRITTEN BY
A NEW VERSION

CONSTRUCT DN ENTRY

WRITE OUT UPDATED
DN BLOCK

READ IN SAM BLOCK

Figure B-11 Monitor Flow Chart (Part 2)

B-15

EXTRACT A
SAM ENTRY

y^ REQUIREMENTS^^
\,. SATISFIED^^

NO
»

TYPE

"FULL"^\
YES

'

PICK UP
PAGE FROM
PAGE LIST

M 7600
J

SET LINK
WORD TO

PLACE FILE NUMBER
OF FILE BEING SAVED

INTO SAM ENTRY

PICK UP BLOCK
NUMBER FROM
BLOCK LIST

WRITE BLOCK

WRITE PAGE
CONTENTS
INTO BLOCK

IF AN OLD FILE IS

BEING OVERWRITTEN
CONTINUE SEARCHING
SAMS FOR OLD FILE
NUMBER AND CHANGE

TO e

Figure B-1 1 Monitor Flow Chart (Part 3)

B-16

APPENDIX C
COMMAND DECODER

Command Decoder is a genera I -purpose program used by all system programs to read in and

interpret command strings entered by the user via his Teletype keyboard. Command Decoder is gener-

ated and stored on the system device by System Builder.

Command Decoder uses four pages of core (see Figure C-2) and is called in by a system pro-

gram in the following way.

a. The internal file number of Command Decoder (filename = .CD.) is obtained.

b. The starting block of the Command Decoder file is obtained.

c. This block is then read into the second of the four pages to be used by Command

Decoder. Command Decoder is position-independent and can be read into any four contiguous pages

of core between locations 200 and 1S71 inclusive.

d. Command Decoder Is then entered by jumping to the second location of page 2 (the

first location is an error return)

.

C . 1 LOCATIONS USED BY COMMAND DECODER

Locations 167 through 177, page 0, are used as follows.

Table C-1

Page Locations Used by Command Decoder

Location

167

170

171

172

173

174

175

176

177

Purpose

Preloaded with 7171 if input and output filenames and extension names

are different.

Scratch location.

Scratch location.

Points to the first block of Command Decoder.

Scratch location.

Points to the output list. Information concerning each device request

is placed in this list by Command Decoder.

Contains the option bits. This location is not left in its original state

upon exit from Command Decoder

Scratch location.

Contains the address of the return from Command Decoder.

C-1

C.2 INPUT AND OUTPUT REQUIREMENTS F-OR COMMAND DECODER

Location 174 (CDPTRP), the output list fxjinter, must point to a block of code, the length of

which must be 3*n+l, where n is the total number of device requests expected. For example, a program

with one output file plus three input files requires 13 locations. (See Figure C-1 .)

The option bit location (175) is constructed as follows.

Bits and 1

Bits 2 and 3

Bit 4

Bit 5

Bit 6

Bit 7

Bits 8-11

Contain output file extension code (or input, if no output is

requested) J

Contain the input file extension code.

1 = Output file is expected (Command Decoder will type

*OUT-" query (in addition to *IN-))

.

1 = Saved output file is a system program (bit 5 of word 4 in

DN entry is set to 1)

.

1 = Option is available (Command Decoder will type *OPT-)

1 = Saved input file is a system program (bit 5 of word 4 in

DN entry is checked for a 1)

.

(Total number of input files allowed) -1 .

11

J

System/user input

(Number of input files) -1

2

Output extension

' OPT- option

— System/user output

— Output option

Input extension

1

This option word must be set up by the system program before calling Command Decoder.

Extension codes: 00

01

10

11

1 = System, = User

ASCII

BINARY
FTC BIN

Saved file (USER, SYS)

C-2

The first block of the Command Decoder Is read into the second of the four blocks into which

it is to run. In the following examples, assume Command Decoder is to be run in locations 2000-2777;

that you have already loaded FBLK with the first block number of the Command Decoder; output list is

in 3000; return is at 203 and you are looking for user file output, system file input, no *OPT- is

desired, and three input files are allowed.

Example 1

*1700

TAD (203

DCA 177 /RETURN
TAD (7622 /111 110 010 010 = BITS

DCA 175

TAD (3000

DCA 174 /POINTER TO LIST

TAD FBLK
DCA 172 /BLOCK 1 OF .CD. (DISK)

CMA
DCA 167

JMSI {76A2

3 /READ
FBLK, /BLOCK 1 OF COMMAND DECODER

2200 /INTO LOCATION 2200
/LINK

HLT /BAD READ
JMPI .+1

2201 /ENTER .CD.

Example 2

*2200

TAD (203

DCA 177 /RETURN
TAD (7622 /111 110 010 010= BITS

DCA 175

TAD (3000

DCA 174 /POINTER TO LIST

TAD FBLK
DCA 172 /BLOCK 1 OF .CD.
CMA
DCA 167

JMS I {76A2

1003 /READ AND RETURN THRU
FBLK, /ADDRESS IN ERROR RETURN

2200 /IF ERROR,OR ERROR RETURN
All IF CORRECT RETURN

2200 /NOTE THIS CODE IS OVER-WRITTEN

C-3

OUTPUT
(OR INPUT 1

IF NO OUTPUT)

INPUT 1

(OR INPUT 2

IF NO OUTPUT)

FOR DISK OR DECTAPE:

DEVICE
CODE

UNIT
NUMBER

INTERNAL FILE

NUMBER

END OF LIST

ASCII

CHARACTER ^^

u 0-7
6 = System Device

1 4 = Not System Device

FOR TELETYPE OR HIGH SPEED READER:

DEVICE
CODE

1 = Teletype

2 = High Speed Reader

= Null Device

DISK OR DECTAPE (INPUT):

START BLOCK NUMBER

DISK OR DECTAPE (OUTPUT):

PAPER TAPE:

Figure C-1 Output Lisi- Produced by Command Decoder

C-4

«IN-,»»OUT-
TYPEOUTS

TYPE
ROUTINE

CHARACTER
FETCH AND
Dl S PATCH

COMMAND
DECODER INIT,

READ ROUTINE
FOR PAGES I

,

3 , AND 4

COMMA, CARRIAGE
RETURN HANDLER

DEVICE LOOKUP
AND VALIDITY CHK.

TYPE OUT ¥r

IF VALI

D

READ BLOCK 5
INTO PAGE 2

DN CHECK

READ BLOCK 6

ERROR DISPATCH

ERROR ROUTINE

TYPE-OUT RTE

I/O DEVICE
CHECK ROUTINE

DECTAPE I/O

DN SEARCH
ROUTINE

DIRECTORY
UPDATE

SAM BLOCK
SEARCH ROUTINE
(INPUT ONLY)

READ IN BLOCK
1 INTO PAGE 2

(OUTPUT ONLY)

OPT-READ IN
OPTION CHAR

EXIT TO USER

Figure C-2 Command Decoder Core Usage

C-5

PAGE 2 (BLOCK 1)

PAGE 1 (BLOCK 2)

TYPE CHARACTER

PAGE 2 (BLOCK 1)

(^ COMMA V,^°j;
MMA FOUND IN
T STRING)

STORE la;jt
DEVICE/'

NAME VALUE

PLACE "E" IN AC

PAGE 1 (BLOCK 2)

READ IN
DEVICE NAME

READ IN
FILENAME

WAIT FOR COMMA
OR CARRIAGE

RETURN

TYPE "*OUT-

Figure C-3 Command Decoder Flow Chart (Part 1)

C-6

(BLOCK 2) I
^^'''^

)
'^'^^'^ * CHARACTER FROM THE TELETYPE KEYBOARD)

LINE
>FEED

\cOMMA

STARTDISPATCH \ PAGE 1

J
(BLOCK 2)

'carriage
3PTIIDM

(CARRIAGE
RETURN

END I FOUND
IN INPUT
STRING)

Figure C-3 Command Decoder Flow Chart (Part 2)

C-7

PAGE 3
(BLOCK 3)

READ BLOCK 5
INTO PAGE

2

PLACE "?"

IN AC
I ERROR A

^(PAGE 4)y

(DNSRCH)

DN BLOCK SEARCH
(PAGE 2

BLOCK 5)

(CDNODN)

FOUND
ATTEMPT TO MAKE
NEW [IN ENTRY

(PAGE 2, BLOCK 5)

YES

READ BLOCK 6
INTO PAGE

2

PAGE 2
(BLOCK 6)

Figure C-3 Command Decoder Flow Chart (Part 3)

C-8

I DNSRCH 1 (DN BLOCK SEARCH)

INITIALIZE POINTERS
AND COUNTERS

(CDIOX)

READ DN BLOCK
(PG 4 , BLK 4)

SET INTERN FILE
NUMBER IN AC

»/ FOUND
1^^ RETURN J

NO (READ NEXT DN BLOCK)^ _

YES (END OF DN CHAIN)

/ NOT \
FOUND

V RETURN

y

Figure C-3 Command Decoder Flow Chart (Part 4)

C-9

CLEAR OUTPUT
BIT IN

LOCATION 175

SET UP TO READ
BLOCK 1

(CDIOX)

TYPE
' *OPT-

RESET
COUNTER

GET OPTION
CHARACTER

Figure C-3 Command Decoder Flow Chart (Part 5)

C-10

PAGE 4 (BLOCK 4) PAGE 2 (BLOCK 5)

DEPOSIT
CHARACTER
FROM AC

I V-

TYPE \

fCARRIAGEirLINElKl
LreturnJLpeedJI^J

PAGE 4 (BLOCK 4)

H SIMULATE JMS
DECTAPE I/O

SYSTEM DEVICE

SEARCH FOR
EMPTY DN SLOT

©(MAKE DN ENTRY IF
OUTPUT FILE)

NO (DIRECTORY FULL)

CREATE NEW DN
ENTRY IN SLOT

WRITE OUT
DN BLOCK

GET INTERN.
FILE NUMBER

Figure C-3 Command Decoder Flow Chart (Part 6)

C-lll

APPENDIX D

BINARY LOADER

Binary Loader loads binary output from Assembler into one or more fields in core in executa-

ble form. It operates in either 1-pass or 2-pass mode (all input files must be read in once for each pass)

A field bit indicator, which determines the field into which loading occurs, is initially set equal to the

field bit of the address typed in response to the ST= typeout. This indicator can be changed during

loading by the occurrence, in any input file, of a FIELD word (generated by the PAL-D pseudo-op

FIELD).

In 1-pass mode. Binary Loader can load core from locations through 6777 in field and

all of fields 1 through 7. In 2-pass mode, it can load core from through 1571 in field and all of

fields 1 through 7. Two-pass loading, then, is required when any of the input files require that coding

be loaded into locations 7000 through 1511 in field 0; the reason for this is that Loader occupies these

positions and cannot load the information over itself. To handle this situation, 2-pass loading operates

as described in the following paragraphs.

PASS 1

All input files are read to find those portions of coding residing in the area from 7000 through

ISJl . Such coding is loaded into locations 6000 through 6577 instead. All other coding is bypassed.

At the end of Pass 1 , the contents of locations 6000 through 6577 are written into three scratch blocks

on the system device.

PASS 2

Normal loading is performied, just as in the single pass of 1-pass loading, except that coding

to be loaded in the 7000-7577 area is ignored. At the end of Pass 2, the contents of the three scratch

blocks written during Pass 1 are read into locations 7000 through 1511 .
A jump is then made to the

ST= address.

The ST= address has a double significance.

a. It initially sets the field bit indicator for loading .

b. It specifies the address (either in the loaded program or Monitor) to which control is to

be transferred after loading.

1ln 8 through 32K systems it is the user's responsibility to specify existing bank settings. In 4K systems,

a 5-digit specification is illegal

.

D-1

Examples

ST-10000 Begin loading in field 1 and jump to Monitor start (7600) after

loading.

ST=31015 Begin loading in field 3 and jump to location 1015, field 3,
after loading.

ST=27600 Begin loading in field 2 and jump to location 7600, field 2,
after loading.

D-2

I START 1

OR 40 > "(7600 1

'p
CLEAR CHECKSUM

SET UP TO INPUT
FROM SYSTEM

DEVICE

SET UP TO READ
FROM PAPER TAPE

SET UP FIELD INST.
FROM ST- ADDRESS

Figure D-1 Binary Loader Flow Chart (Part 1)

D-3

Figure D-1 Binary Loader Flow Charf (Part 2)

D-4

PASS 2

(OR 1-PASS

READ 3 SCRATCH
BLOCKS INTO
7000 -7577

READ A
CHARACTER

^ RUBOUT \^

READ A
CHARACTER

?<^ rubout\1o_

SET RETURN
TO NOT -

LEADER/TRAILER

SET UP FIELD
INSTRUCTION

Figure D--1 Binary Loader Flow Chart (Part 3)

D-5

APPENDIX E

SYSTEM PROGRAMS

E.l LOADING STATISTICS

Name Core Limits Entry Point Pass

PIP 0-5177 1000 1

EDIT 0-3177 2600 1

PALD 0-3377, 3600-4377,

4600, 5200,

6200-6577, 7000-7577

6200 2

FORT 0-1777 200 1

.FT. 200-7377 ~ 2

STBL 600-777 600 1

FOSL 0-1577 200 1

.OS. 0-5177 —
1

DIAG 200-1177 200 1

.DDT 200-45// —
1

.SYM 200-4577 — -

DDT 7200-7577 7200 2

E.2 SAVE STATISTICS

PIP SAVE PIP!0-5177;1000

EDIT SAVE EDIT!0-3177;2600

PALD SAVE PALD!0-7577;6200

FORT SAVE FORT!0-1777;200

.FT. SAVE .FT.!200-7377;0

STBL SAVE STBL !600;600

FOSL SAVE FOSLI0-1577;200

.OS. SAVE .OS.I0-5177;0

DIAG SAVE DIAG 1200- 11 77;200

E-1

. DDT SAVE . DDT ! 200"4577;0

.SYM SAVE .SYM!200-4577;0

DDT SAVE DDT! 7200-7577;0 (User may assemble anywhere above

location 4577)

E-2

APPENDIX F

I/O PROGRAMMING

F.l GENERAL

The modular concept of Input/oui-put (l/O) handling of the disk system provides for easy

maintenance and programming. The system device l/O is found in the following places (all l/O routines

must be in field 0),

a. Top page of field (location 7642) which is the l/O routine used by all system programs
for normal l/O. A copy of this page is on block of the system device. Block of each DECtape is

the DECtape l/O routine.

b. Interrupt versions of disk and DECtape routines are found in PIP.

c. Paper tape l/O is handled by individual programs.

F.2 CALLING SEQUENCE FOR BASIC I/O ROUTINE

The basic l/O routine (see Paragraph F. 1 .a.) is called as shown in Figure F-1 . It is called

in two ways, as determined by bit 2 of the function word.

a. Normal - The l/O routine returns to JMS +6 (normal) or JMS +5 (error). For example,
the following routine would read consecutive blocks from a file on the system device. The routine is

initialized by putting the first block number of the desired file into location LINK. If an attempt is

made to read past the last block of the file, an exit will be made to a routine called ENDFIL.

GETBLK,

BLOK,

LINK,

TAD LINK
SNA
JMP I (ENDFIL
DCA BLOK
JMS I (7642

3

BUFFAD

JMP I (ERROR

JMP I GETBLK

/GET LINK FROM LAST READ
/IS THIS END OF FILE?

A'ES

/CALL DISK I/O ROUTINE
/FUNCTION - READ

/BUFFER ADDRESS

/ERROR RETURN

b. Indirect - The l/O routine returns to the 12-bit address in the error return word +1

(normal or the 12-bit address in the error (ERROR)) . An example of the indirect routine is given on
page C-2a of this manual

.

F.3 GENERALIZED DISK/DECTAPE I/O ROUTINE

The user or system programs may use the generalized l/O routine in Appendix C. The calling

sequence to this routine is the same as that used by the basic l/O routine, except for certain restrictions

explained below.

F-1

Calling Sequence Explanation

JMS I SYSIO Location SYSIO points to l/O

FUNCT Function word*

BLOCK Block to be accessed

CORE Low-order core address

LINK Filled by READ, used by WRITE

ERROR Error return here

Normal return here

*Function word: Bits 0-1 unused

Bit 2 =0, normal return

=], indirect return at end of read/

write to address +1 in error

return

Bits 3-5 unit no. if DECtape

Bits 6-8 memory field

Bits 9-1 1 function: READ = 3; WRITE = 5

Figure F-1 Calling Sequence of System Routine

a. The Command Decoder must be called as shown in Examples 1 and 2 on page C-2a. The

entry point for the generalized l/O routine is the first location of the Command Decoder plus 603g

locations, i.e., in the previously mentioned examples the entry point would be at location 2603.

b. The generalized l/O routine uses location 0171 on page zero. This location must con-

tain the address which points to the l/O list created by the Command Decoder. If the JMS instruction

which calls the routine is at an even numbered location, location 0171 must point to Word B (see

Appendix C) of a Command Decoder list entry. If the JMS is at an odd numbered location, location

0171 must point to Word A of a Command Decoder list entry. The contents of Word A then determines

whether the DECtape or system device will be used.

c. The contents of the function word in the calling sequence determine whether informa-

tion is to be read from or written on the selected device and DECtape unit (if applicable) as shown in

Figure F-1

.

The following examples illustrate the use of the generalized l/O routine. It is assumed that

the Command Decoder was called and placed in locations 2000-2777, and that its list begins at loca-

tion 3000.

F-2

3000 4312 (Word A) Output device - DEOape #3,
3001 0000 (WordB) internal file #12
3002 6007 (Word A) Input - system device, internal
3003 0065 (Word B) file #7, starting at block 65
3004 1777

^^^^ 0215 Option - carriage return was typed

300 4777 JMS I (2603
301 0305 FUNCTION WORD
302 0160 BLOCK NR
303 7000 BUFFER ADDRESS
304 0161 LINK NR
305 7402 ERROR HALT
171 3001

377 2603 ENTRY POINT

The above code will write the contents of locations 7000-7177 onto block 160 of DECtape unit 3 and

will write link word of 161.

501 4777 JMS I (2603
502 0003 FUNCTION
503 0065 BLOCK NR
504 7200 BUFFER ADDRESS
505 0000 LINK NR
506 7402 ERROR HALT
171 3002
^"^"^ 2603 ENTRY POINT

The above code will read the contents of block 65 of the system device into locations 7200-7377 and

will place the link to the r\eY,\ block of this file in location 505.

F-3

INDEiX

ALT MODE, 3-39

B

Binary File, B-7

Binary Loader, Disk System App. D

Error Messages, 2-9

Examples, 2-8

Flow Charts, D-3 to -5

Operating Procedures, 2-7

Bootstrap Loader, 2-2

Builder, Disk System, A-2

C

Command Decoder, 2-4, B-2, App. C

Core Usage, C-1 -4

Error Messages, 2-13

Flow Charts, C-5 to -10

I/O Requirements, C-2

Output List, C-4

Command Strings, 2-4

Device Names, 2-4

Examples, 2-6

Filenames, 2-5

Format, 2-4

Monitor Commands, 2-6

Punctuation, 2-5

Special Characters, 2-6

System Program, 2-6

Commands

CALL, 2-12

DDT-D, 3-41

Editor, 3-11

Format, 2-10

Monitor, 2-6

PIP, 3-2

Processing, 2-12

SAVE, 2-10

Strings, 2-3 to -6

System, 2-6

Compiler, FORTRAN-D, 3-21

Core Usage App. B

D

Data Structure

Binary File, B-7

Saved File, B-8

Source File, B-7

Device Names, 2-4

DDT-D, 3-38

Commands, 3-39

Core Requirements, 3-38

Loading and Saving, 3-41

Operating Procedures, 3-42

Subroutines, 3-39

Directory Name, B-1

Format, B-4

DN, see Directory Name

Dynamic Debugging, see DDT-D

E

Editor, Disk System

Commands, 3-10 to -12

Example, 3-14

Loading and Saving, 3-12

Operating Procedures, 3-13

Special Characters, 3-10

Special Keys, 3-10 -11

INDIEX (Cont)

Equipment Requirements, 1-1

Error Messages

Binary Loader, 2-9

Command Decoder, 2-13

FORTRAN -D, 3-23 to -26 -30

PAL-D, 3-17

t:xamples

Command Decoder, 2-6

Command Strings, 2-6

DDT-D, 3-42

Editor, 3-14

FORTRAN-D, 3-36

Monitor Commands, 2-6

PAL-D, 3-18

PIP, 3-7 to -9, B-10

F

Filenames, 2-5

Flow Chart

Binary Loader App. D

Command Decoder App. C

Monitor, B-14 to -16

FORTRAN-D, 3-18

Compiler, 3-21

Debugging Aids, 3-26 -31

Diagnostics, 3-23 to -26 -30

Examples, 3-36

Operating Procedures, 3-28

Operating System, 3-27

Statements, 3-19

I

Input/Output

Calling Sequence, F-1 -2

Device Names, 2-4

PIP, 3-1

Programming App. F

Routines, F-1

L

Loading and Saving

DDT-D, 3-41

Editor, 3-12

FORTRAN-D, 3-22 to -31

PAL-D, 3-15

PIP, 3-1

System Programs, 2-7, A-3, E-1

Loader

Bin, A-2

Bootstrap, 2-2

Disk System Binary, 2-7, App. D

RIM, A-1

M

Mode

Monitor, 2-1 -3

System, 2-1

User, 2-1

Monitor

Bootstrapping the, 2-2

Commands, 2-6

Core Usage, B-11

Flow Charts, B-14 to -16

Residence, 2-1

Starting, 2-3

System Generation App. A

O

Operating Procedures

INDEX (Cont)

Binary Loader, 2-7

DDT-D, 3-41

Editor, 3-13

FORTRAN-D, 3-18

PAL-D, 3-16

PIP, 3-2

System Generation App. A

P

PAL-D Assembler, 3-15

Error Messages, 3-17

Examples, 3-18

Loading and Saving, 3-15

Operating Procedures, 3-16

Output Devices, 3-16

Pseudo-Operators, 3-15

Peripheral Interchange Program, see PIP

PIP, 3-1

Directory Listing, B-10

Examples, 3-7

Loading and Saving, 3-1

Operating Procedures, 3-1 to -7

Options, 3-2, 3-7

Program Assembler Language, see PAL-D

R

RUBOUT, 2-3, 3-10

S

SAM, B-5

Format, B-6

SAVE Command

Core Usage, B-12, -13

File Format, B-8, -9

Format, 2-10

Processing, 2-12

Statements, FORTRAN -D, 3-19

Storage

Capabilities, B-7

DECtape, B-3

Disk, B-2

Storage Allocation Map, see SAM

Symbolprint, see FORTRAN-D

System

Builder, A-2

Formats App. B

Modes, 2-1

System Programs

Loading and Saving, A-3, E-1

READER'S COMMENTS DISK MONITOR SYSTEM
DEC-D8-SDAB-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its

publications. To do this effectively we need user feedback - your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, organization, usabihty, and readability.

Did you find errors in this manual?

How can this manual be improved?.

DEC also strives to keep its customers informed of current DEC software and publications. Thus, the following period-

ically distributed publications are available upon request. Please check the appropriate box(s) for a current issue of the

publication(s) desired.

Q Software Manual Update, a quarterly collection of revisions to current software manuals.

D User's Bookshelf, a bibliography of current software manuals.

Q Program Library Price List, a list of currently available software programs and manuals.

Please describe your position.

Name Organization

Street Department
.

City State ^ Zip or Country

— Fold Here

Do Not Tear - Fold Here and Staple

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 33

MAYNARD, MASS.

Postage will be paid by:

Digital Equipment Corporation

Software Information Services

146 Main Street, Bldg. 3-5

Maynard, Massachusetts 01754

HOW TO OBTAIN SOFiTWARE INFORMATION

Announcements for new and revised software, as well as programming notes, software problems, and documenta-

tion corrections are published by Software Information Service in the following newsletters.

Digital Software News for the PDP-8 Family

Digital Software News for the PDP-9/ 1 5 Family

PDP-6/PDP-10 Software Bulletin

These newsletters contain information applicable to software available from Digital's Program Library.

Please complete the card below to place your name on the newsletter mailing list.

Questions or problems concerning DEC Software should be reported to the Software Specialist at your nearest DEC
regional or district sales office. In cases where no Software SpeciaUst is available, please send a Software Trouble

Report form with details of the problem to:

Software Information Service

Digital Equipment Corporation

146 Main Street, Bldg. 3-5

Maynard, Massachusetts 01754

These forms, which are available without charge from the Program Library, should be fully filled out and accompa-

nied by teletype output as well as listings or tapes of the user program to facilitate a complete investigation. An
answer will be sent to the individual and appropriate topics of general interest will be printed in the newsletter.

New and revised software and manuals, Software Trouble Report forms, and cumulative Software Manual Updates

are available from the Program Library. When ordering, include the document number and a brief description of

the program or manual requested. Revisions of programs and documents will be announced in the newsletters and

a price Hst will be included twice yearly. Direct all inquiries and requests to:

Program Librai-y

Digital Equipment Corporation

146 Main Street, Bldg. 3-5

Maynard, Massachusetts 01754

Digital Equipment Computer Users Society (DECUS) maintains a user Library and publishes a catalog of programs

as well as the DECUSCOPE magazine for its members and non-members who request it. For further information

please write to:

DECUS
Digital Equipment Corporation

146 Main Street

Maynard, Massachusetts 01754

Send Digital's software newsletters to:

Name.

Company Name.

Address

My computer is a

My system serial number is.

PDP-8/I D
LINC-8 D
PDP-9 D
PDP-10 D

PDP-8/L D
PDP-12 D
PDP-15 D
OTHER D
(if known)

(zip code)

Please specify

— Fold Here

Do Not Tear - Fold Here and Staple

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 33

MAYNARD, MASS.

Postage will be paid by:

SDIDDSD
Digital Equipment Corporation

Software Information Services

146 Main Street, Bldg. 3-5

Maynard, Massachusetts 01754

Digital Equipment Corporation
Maynard, IVIassachusetts

printed in U.S.A.

