1. IDENTIFICATION
1.1

Digital-8-10-U-Sym
1.2

Binary-Coded-Decimal to Binary Conversion Subroutine
1.3

March 1, 1965

2.
 ABSTRACT

A basic subroutine for converting binary-coded-decimal numbers to their equivalent binary value. Conversion is accomplished by "radix deflation."
3. REQUIREMENTS
3.1 Storage

This subroutine requires 23 (decimal) memory locations.

3.3 Equipment

Standard PDP-8.
4. USAGE
4.1 Loading

Load the subroutine with the Binary or RIM Loader.
4.2 Calling Sequence

Call with the number to be converted in the AC. Return will be to the location following the calling JMS with the result in the AC.

6. DESCRIPTION

6.1 Discussion

The method used is that of "radix deflation." Upon entry, the BCD number may be considered to be in the following form.
6.1.l.E

$$
D_{2} 16^{2}+D_{1} 16+D_{0}
$$

What is desired is the number in the form.
6.1.2.E

$$
D_{2} 10^{2}+D_{1} 10+D_{0}
$$

The PDP-8 can shift (rotate) and add. A right shift is equivalent to a division by a power of two. An appropriate series of shifts, additions, and subtractions is used to convert the number from the form of 6.1.1.E to that of 6.1.2.E.
6.2

Example
Consider the BCD number

$$
\begin{array}{lll}
0101 & 0001 & 1001
\end{array}
$$

representing the decimal number 519.
First, the whole number is stored and then brought back into the AC. Next, the four most significant bits are masked out. At this point, the accumulator contains $16 \times 16 \times \mathrm{A}$ or 010100000000
A shift to the right of one bit yields
001010000000
This number is stored and then brought back to the AC, shifted right two bits, and the stored value added as follows

0000	1010	0000
0010	1000	0000
$\overline{0011}$	$\overline{0010}$	$\overline{0000}$

Now the original number is added to this result

0011	0010	0000
0101	0001	$\frac{1001}{1001}$

and the most significant eight bits masked out as
100000110000
This is stored, brought back and shifted right once, and the stored value added.

0100	0001	1000
1000	0011	$\frac{0000}{1000}$

Next the result of this addition is shifted right two places dividing the number by four as follows
001100010
negated and the original number added

1100	1110	1110
0101	0001	1001
0010	$\overline{0000}$	$\overline{0111}$

This result represents in binary 512 plus 4 plus 2 plus 1 or 519 ,the original number.

6.3 Scaling

This subroutine assumes an integral BCD number and yields an integral binary equivalent.

7.

METHOD
7.2 Algorithm

The algorithm used is illustrated step by step in Section 10.4.

9. EXECUTION TIME

9.2 Maximum

The maximum (and invariant) execution time of this subroutine is 49.6 microseconds.
10. PROGRAM
10.4 Program Listing

A listing of the subroutine with BCDBIN located at 0200 is given below. To simplify mnemonics D_{2}, D_{1}, and D_{0} have been replaced respectively with A, B, and C.

| 0200 | 0000 |
| :--- | :--- | :--- | :--- |
| 0201 | 3223 |\quad BCDBIN, $\quad 0$

02013223
02021223
02030225
02047110
02053224
02061224
$0207 \quad 7012$
$0210 \quad 1224$
0211223
02120226
$0213 \quad 3224$
$0214 \quad 1224$
$0215 \quad 7110$
$0216 \quad 1224$
$0217 \quad 7012$
$0220 \quad 7041$
02211223

02225600
02230000
02240000 TEMPPQ, 0
02257400 MASKKA, 7400
02267760 MASKKB, 7760
0
0
/ABC IN BCD CODE IN AC
DCA TEMPPP
TAD TEMPPP $\quad / 16(16 A+B)+C$ AND MASKKA /16 (16A)
CLL RAR /8 (16A)
DCA TEMPPQ
TAD TEMPPQ /8 (16A)
RTR /2 (16A)
TAD TEMPPQ / 10 (16A)
TAD TEMPPP $\quad / 16(26 A+B)+C$
AND MASKKB / $16(26 A+B)$
DCA TEMPPQ
TAD TEMPPQ $/ 16(26 \mathrm{~A}+\mathrm{B})$
CLL RAR $\quad / 8(26 \mathrm{~A}+\mathrm{B})$
TAD TEMPPQ $\quad / 24(26 A+B)$
RTR $\quad / 6(26 A+B)$
CIA $\quad /-6(26 A+B)$
TAD TEMPPP $\quad / 16(16 \mathrm{~A}+\mathrm{B})+\mathrm{C}-6(26 \mathrm{~A}+\mathrm{B})$
$/=16 \times 16 A-6 \times 26 A+16 B-6 \times B+C$
$/=100 \mathrm{~A}+10 \mathrm{~B}+\mathrm{C}$
JMP I BCDBIN /BINARY VALUE IN AC

400 /MASK FOR MOST SIG. FOUR BITS
/MASK FOR MOST SIG. EIGHT BITS

12. REFERENCES

12.3 DECUS Programs

See DECUSCOPE January 1965, article entitled "Accelerated Radix Deflation on the PDP-7 and PDP-8."

14. ACKNOWLEDGEMENTS

Mr. Donald V. Weaver, Consultant, of New York City, who first described the algorithm used by this subroutine in reference 12.3 has granted his kind permission to include this subroutine in the PDP-8 library so that a detailed description may be available.

