
WPPUWDIU<WW<2.Ofl.<z><—2.20....(YLOEEOUFZU_21_DOMJ<F_0_O

wIan43:05

U.Q....>....m|..._lm

UUvim ONES—A .u.»OQ.~>Z:<_—ZQ .<_>ZC>_.

0.9.4.)... NOCZUKNZA. oomuom>4.oz . 7>><Z>mny g>mm>01cmm44m

Copyright I965 by Digi’ral Equipment Corporation

PREFACE

The programs discussed in this manual, though written on the Programmed

Data Processor—8 computer, can also be used without change on Digital's

Programmed Data Processor-5. This compatability between the libraries of

the two computers results in four maior advantages:

l . The PD P-8 comes to the user complete with an extensive

selection of system programs and routines making the full

data processing capability of the new computer immediately

available to each user, eliminating many of the common

initial programming delays.

2. The PDP—8 programming system takes advantage of the

many man-years of field testing by PDP-5 users.

3. Each computer can take immediate advantage of the

continuing program developments for the other.

4. Programs written by users of the PD P—5 and submitted to

the users' library (DECUS Digital Equipment Corporation

Users' Society) are immediately available to PDP—8 users.

CONTENTS

1 INTRODUCTION. .' ... 1

2 SUMMARY OF THE DZTAK SYSTEM 3

Interfacing Transducers 3

Interface Types .. 4

Digital-Parallel Input Signal Buffer 4

Serial-Parallel Input Signal Buffer 4

Multiplexed Analog—to-Digital Conversion Input 5

Programming ... 6

System Inputs .. 6

System Outputs
s

............................... 7

Variables .. 7

Time .. 8

Arithmetic Operators

......... 9

Gray Binary Conversion I0

Format Statements IO

GOTO Statements I0

3 THE DZTAK PROGRAMMING LANGUAGE

-

..... H

DXTAK Statements

I

................................. I I

Clock ... II

Variable Names I2

Format Statements I5

Conditional Program Section

‘

........ I7

4 ERROR MESSAGES ...
..

2I

Compilation ...

'

2I

Run Time .. 2I

CONTENTS (continued)

Appendix Page

1 FLOW CHARTS

'

............. A]

2 PROGRAM EXAMPLES .. A23

vi.

CHAPTER 1

INTRODUCHON

The speed of operation and powerful operation code structure of the Programmed Data Processor-8

make possible a unique programming system for use in data acquisition situations.

This system, called DKTAK (for Ea Equisition), permits a complex, program-controlled,

data acquisition system to be adapted to a particular experimental environment through the

use of a highly sophisticated and precise pseudo code. The necessity of extensive machine

programming to meet a particular data acquisition requirement is thereby eliminated.

In addition to its data acquisition applications, DKTAK furnishes the experimenter with a means

of calibrating transducers and is a powerful aid in troubleshooting a complex data-gathering

system. Programs to accomplish these objectives may be written and readily revised in the

DXTAK language .

The D—ATAK system, when used to record experimental data on paper tape, produces a tape

that may be used as input to a FORTRAN program . Thus the program for the processing of

experimental data may be coded in a widely recognized compiler language if the user so

desires.

A typical D'ATAK equipment configuration is illustrated in Figure l.

DKTAK does not, of course, require all of the equipment in Figure i. If, for example, a

given system did not include a plotter, the PLOT command would never be used.

Finally, the DXTAK system may be readily adapted to special—purpose peripheral devices by

specification of input/output transfer (IOT) commands appropriate to a given device. Thus a

Type 350 Plotter might be replaced by a more elaborate plotting mechanism if desired.

The DZTAK language presents for the first time a unified, systematic approach to the data

acquisition, calibration, experiment modification, and troubleshooting requirements of the

scientist engaged in experimental analysis. The recent use of digital computers in industrial

EEEIS‘ELTRAIN SERML T0 PARALLEL

—v PARALLEL DIGITAL

CONVERTER INPUTS

SWITCH

REGISTER

UP To 64 A-To-o

ANALOG INPUTs
MULT'PLEXER

CONVERTER
POP-3 ASR-33

—.
,

CLOCK

\. PARALLEL
STATIC OUTPUTS

HIGH SPEED DECTAPE

TAPE PUNCH CONTROL PnggER
75A 552

DUAL OECTAPE

TRANSPORT
'

555

Figure l Typical Data Acquisition System

process control has shown that it is a valuable tool for acquiring information, both digital and

analog, and making logical decisions concerning the acquisition of data while concurrently

storing, processing, 'and displaying that information. Certainly a method of data manipulation

similar to industrial control techniques would be advantageous to a scientist conducting an

experiment. DKTAK is a programming system designed precisely for these purposes; this manual

explains how to use the D-ATAK system and language.

CHAPTER 2

SUMMARY OF THE DRTAK SYSTEM

INTERFACING TRANSDUCERS

Three basic types of interfaces are used with the PDP-7 and PDP—8 computers in order to rye-3

ceive data from environment sensors. These interfaces allow data to enter the computer under

control of a simple real-time symbolic compiler that gives the investigator the Following flex-

ibility when he samples the environment:

1 . A variety of preprogrammed interface devices that easily connect the

computer to instrumentation.

2. Simple symbolic assignment of identifying names to physical input var-

iables such as pressure, temperature, etc.

3. Absolute control in sampling the experimental environment with respect

to time .

4. Computer compatibility with respect to rapid respOnse sensors using up

to 176 separate sensing devices.

5. Capability to make logical decisions concerning the acquisition of data

while sampling the environment.

6. Storage of data for future computations as well' as immediate output for

checking quality while obtaining data.

Transducers are sometimes considered unique devices that do not lend themselves to being con-

nected directly to a computer; however, by the use of basic standard interface types,‘ most

instruments can be connected directly to a computer with little additional equipment. 'Let

us examine the basic types of interfaces that would be necessary to interconnect a computer

to various transducers .

INTERFACE TYPES

Digital-Parallel Input Signal Buffer

This buffer permits the direct parallel insertion of a digital number into the computer, using a

method by which the number immediately becomes a computer word. Examples of devices

feeding data in by this method are shaft—position encoders, switch registers, and other allied

devices. Figure 2 shows the general method for digital-parallel input.

f' ———.
.

\

——+—->

—-—-—.

—-—~>

..__._.

TRANSDUCER-4 “r. L- COMPUTER

——>

—---9

-—_>

._._.
-

————>

k “M'
J

US$822“ GATING

Figure 2 Digital-Parallel Signal Buffer

This method can accommodate signals or pulses from a minimum range of O to -l0 mv up to a

maximum of 20 to —15v.- The system can include one buffer for each of several dozen variables.

serial-Parallel Input Signal Buffer

This method would. be used, for example, in telemetry applications where the transmitter is

remotely located and able to transmit a number of input words one bit at a time along

a single conductor cable or by radio (see Figure 3).

DEC TYPE
TRANSDUCER

0 o o o i o o r o I o x xam

SERIAL PULSE TRAIN

WNGllllllllllll
llllllllllll

TTlllllllTlT
COMPUTER

Figure 3 Serial-Parallel Signal Buffer

This buffer can convert a serial pulse train to a l2-bit word in 6 psec, or one bit every 500 nsec.

lt accommodates ranges of input levels from a minimum of 0 to —l0 mv, up to a maximum of 20

to —15v. The flexibility provided in this buffer allows the user to format the data before it is

finally assembled as computer words; that is, he can insert octal constants in the specific serial

word of his choice. It provides the programmer with the following additional instructions in

the computer:

l . Skip if data flag = O.

2. Skip if start flag = 0.

3. Clear data flag and start flag.

4 . Read data into the accumulator.

Multiplexed Analog-to—Digital Conversion Input

This method is particularly advantageous in data acquisition when many devices such as therm—

istors, pressure sensors, and strain gages are working together. One example of where this

method would prove advantageous is a thermistor chain in which each thermistor, pressure

sensor, or conductivity sensor could be individually sampled by the computer. Figure 4 indicates

this relationship.

‘

-

ANALOG TO

SENSORS THRU "2:112:50?“ —-> DIGITAL i—u COMPUTER

CONVERTER
fl

Figure 4 Multiplexed Analog-to—Digital Conversion

5

Switching from one input to the next in the multiplexer is accomplished in 2 psec, and up to

64 separate inputs can be sampled directly by the computer. The analog—to-digital converter

uses the range of O to -—lOv.

PROGRAMMING

The task of writing a special-purpose program for each installation could be a formidable prob—

lem involving a great deal of time and money. In order to alleviate this problem, Digital

Equipment Corporation has written DKTAK, an algebraic compiler that allows the experimenter

to format his data' acquisition problem in a simple language similar to algebra. By using the

DKTAK language, he is given a- great deal of flexibility concerning the interface hardware

that he has available. This program allows him flexibility in choosing the frequency and con-

ditions under which he samples the experimental environment .as well as making possible the

adding or changing of sensors without the major task of reprogramming in machine coding.

This program is available for the PDP-8, a compact 12-bit computer with a l.5-psec cycle

time .

In summary, this program allows the investigator to analyze his sample using the following

inputs.

Up to 96 independent data variables using digital-parallel input.

Up to 64 independent data variables using a multiplexed A—to-D converter.

Up to 25 independent data variables via serial buffer input.

Each independent variable can be sampled at a rate of up to lOO times per second.

System lnputs

Data can come to the computer from the digital-parallel input buffer, the serial input buffer,

and the multiplexed analog-digital converter. Each Of these devices is assigned

a symbolic name that tells the computer which device is transmitting information.

The symbols are:-

DGIN: Digital-parallel signal buffer; input can be converted from Gray

code to binary.

,BUFR:

ADCV:

Serial, buffer-input.

Multiplexed analog4digital converter:

System Outputs

Data output can be distributed to a number iof‘specificdlly named devices to allow. immediate

presentation as well as permanent storage. The following output symbols and their associated

devices are available:

TYPE

I

-QPNCH:

DCTP: ,

PLOT:

DIG l

DIG 4:

On-line teleprinter. Variables can be typed in decimal Or octal.

Decimal is specified by 1 immediately following the variable

name .

"

-

High-speed paper tape p’Unehx.; FVariablescanibe*pbnched~:invdeci—“

mal or octal. Decimal is specified by 1 immediately following. x'
'

the_variab|e name .

'

Digital's compact DECtape" Variables are "recorded magnetically

ron DECtape in binary with; identifying words 5; . J-

X—Y plotter. The plotter pen is moved to a new position each

time an output is -spec'ifi'ed'.»-' ,

“ *

Up to four digital outputs are available through parallel buffers“...

to other devices such as relays, buffers, sense lines, and range
‘

sWitChin'g devices .>

Variables

Input variables to the computer are aSSigned alphanUmeric symbols by' the investigator. They

can be one to four characters long, and must begin with a lettert-“Some exampleszofthese
'

-'

Would be:

T 123, SURF, DEEP, AIR, X, Y, TEMP, H20, H202

In addition, variables that are inputted through the multiplexer have specified channels; that

is, T 123 (i) would be input through channel 1 of the multiplexer.

Time

Four- types of time can be used by the computer: basic, program, variable, and reference.

Basic Time

Basic time represents the basic interval of .01 sec in which a clock interrupts the program.

Program Time

This time represents the basic rate at which the investigator desires to interrogate the sensors.
*

It is some multiple of the basic time and is under program control.
‘

Its symbology is simply ex-

pressed as fol lows:

QUNT: 50 The investigator has specified that the program time will be (50-)

x (.01) = 0.5 sec; that is, each sensor will be sampled every

0.5. sec. If he desires the fastest rate possible, he may express

the. following:

QUNT: 1 In which case each variable will be sampled every 0.0] sec.

Variable Time

In order to allow more flexibility in timing, digital inputs can be sampled at a slower rate than

the program time specifies. For example, the expression:

DGIN:Ll (4, L2 (4

specifies that the digital input variables Li and L2 should be sampled once in four cycles of

the program time or every (4) x (0.5) = 2 sec.

Reference Time

It is often desirable to know the reference time in order to associate data with time. Within

the program is a 3-word variable, CLOK, which counts the number of seconds, minutes,_ and

hours that have elapsed since start-up time; it can be used as an output variable to reference

data with time.

Arithmetic Operations

Addition and Subtraction

Variables can have constants added to or subtracted from them as they are sampled, or the

variables can be added to or subtracted from each other.

All arithmetic operations are done in 2's complement arithmetic, with the operands being con-

sidered signed, fixed—point numbers. The following examples mean that the variable T2 will

have constants or variables added or subtracted before output:

T2 + 137 Add a constant to the variable.

T2 - 3 . Subtract a constant.

T2 + T3 Add a second variable.

Arithmetic Comparison

Variables can be compared against constants, compared against other variables, or compared

against themselves with respect to sample time. The basic comparison instructions are:

lFEQ X, Y if X is equal to Y

IFLS X, Y if X is less than Y

IFGR X, Y if X is greater than Y

An example of the comparison of a variable against a constant would be:

IFEQ X, 1000;

meaning that is X is equalt010008, execute the operation following the semicolon; otherWise,

go to the next line.

Every time a variable is recorded and outputted, its value is preserved and is given the name

of the original variable. Thus, X and @ X represent the current value of the variable X, and

its value when last used as output, respectively.

The following example of the comparison of a variable and its predecessor:

lFLS X, @ X;

means that if X is less than it was when last recorded and output, execute the operation fol-

lowing the semicolon; otherwise, go to the next line.

Gray Binary Conversion

Gray binary code can be converted to simple binary under program control if the input method

is digital (DGIN). This provides the investigator with a rapid means of conversion in order to

intercompare the usual shaftFencoded Gray binary numbers, if the shaft encoder does not con-

vert from Gray Code to simple binary prior to buffering.

The conversion is accomplished by inserting 1 immediately before the time multiple.

DGIN Li M

This means that the Gray binary variable Ll is sampled every fourth time through the program

and is converted to a simple binary number before comparison or storing.

Format Statements

Format statements are numbered from l-l5 (decimal). They containthe namesof variables and

their 'output forms (octal or decimal for the Teletype or punch). Format numbers appear along

with a device name in every output. statement. Thus, the statement:

FORM: l,X,Y‘l,Z

indicates that the variables X, Y, and Z are to be outputted to the Teletype, with X typed in

octal, Y typed in decimal, and Z typed in decimal.

GOTO Statement

Program control can be unconditionally transferred through the use of the GOTO statement.

l0

CHAPTER 3

THE DATAK PROGRAMMING LANGUAGE

Every DKTAK program consists of four parts:

i . Assignment of input devices.

2. Definition of output formats.

3. Unconditional outputs, i.e., outputs controlled by the clock.

4. The conditional program section. This is illustrated in the short DZTAK

program be low:

QUNT: 62‘
DGIN: SWIT (2 INPUT ASSIGNMENT

FORM:1,CLOK,SWIT,X,Y,Z OUTPUT DEFINITIONS

FORM:7,CLOK,SWIT

<7, PNCH,2> UNCONDITIONAL OUTPUTS

[5: Y=I+(x=SWIT-Io):77 CONDITIONAL

. Z=¥—(X+]7);OUTP(1,TYPE);OUTP(1,DCTP) PROGRAM

6: IFEQ@SWIT,SWIT;GOTO 6 SECTION

GOTO 5

1

END END STATEMENT

The maximum hardware configuration for which DZTAK is designed is illustrated in Figure 5.

DATAK STATEMENTS

Clock

All sampling of the input is controlled by the clock, except for the serial-parallel cOnverter

which sends a signal to the PDP—*8 when it has twelve bits in its buffer. Output to the devices

may be unconditionally controlled by the clock or may be initiated when certain prescribed

conditions are met. When a variable or quantity is output, its value at output time is stored

and hence may be compared with incoming values to detect changes. The basic clOck cycle

is .Ol sec.

ll

PULSE TRAIN

:0

up TO g
m

300 BITS {5%
fri o
I)
I

SERIAL

' '

fgLSEAEKEfE'i
'2 B'Ts

“P333“ 63.3 cps
—

PUNCH
CONVERTER

‘2 9'T5

100 cps
CLOCK

ANALOG -To-

DIGITAL

CONVERTER ON- LINE

l
TELEPRINTER

64-CHANNEL . STATIC OUTPUT

MULTIPLEXER

12-Bl

T T T T STATIC OUTPUT

64 ANALOG INPUT

12- BIT
'

STATIC OUTPUT
‘

2—BIT
, -

STATIC OUTPUT'

Figure 5 Maximum Hardware Configuration

The sampling period for The analog-digiTal converter is some mUlTiple Of This as specified by

The sTaTemenT:

QUNT: XXXX

where XXXX is a given decimal inTeger. Leading zeros need noT be specified. For example:

QUNT: 5

means ThaT all specified Channels of The analog-'digiTal converTer are To be sampled every

0.05 sec and The values sTored.

Variable Names

"

Variable names may be up To four characTers long, musT sTarT wiTh a leTTer, and may conTain

only leTTers and numbers:

T723 SYMB SWIT HEAD

12

Each variable is assigned two unique addresses. One is used by the input routines and contains

the most recent input value. The second address contains the value of the variable when it

was last output. The output variable may be addressed in the conditional program section by

preceding the variable name with "@." This may be used for comparison purposes, etc.

Variable names are assigned to input devices in the following manner:

1. Analog-to—Digital Converter

ADCV:

Followed by variable names and channel numbers; thus:

ADCV: T723 (6), HEAD (4)

This means that channels 6 and 4 of the analog converter—multiplexer will

be sampled and the values stored in registers T723 and HEAD, respectively.

These will be sampled at some multiple of .Ol sec, where the multiple, is"

specified by a QUNT: statement.

QUNT: 5

ADCV: T723(6), HEAD(4)

Channels 6 and 4 of the converter-multiplexer will be sampled every .05 sec.

2 . Serial- Parallel Converter

BUFR:

The serial-parallel converter sends a start pulse to the compUter, followed by

data pulses every time twelve bits have been assembled. . BUFR: is followed

by variable names in the order in which the 712—bit Words are received. llf

the computer receiVed. If the computer receives more data pulses thanthere

are variables, additional data from the converter is ignOred. If more variables

are specified than there are data pulses, the remaining variables are not used.

Each start pulse causes the list to be reset.‘

BUFR: SYMB,TH|S

l3

After the start pulse from the buffer, succeeding data pulses cause the 12—bit

words to go into registers named SYMB, THIS. If a third data pulse is received

before the start pulse, it is ignored.

3. Digital Inputs

The program is capable of handling up to eight l2-bit digital inputs. These

are sampled at periods that are multiples of the period specified by the QUNT:

statement. These inputs may be converted from 12-bit Gray code to l2—bit

binary if specified.

_

QUNT: 2

DGIN: SWlT(6, CODE12

This means that the first digital input (usually the switch register) is to be

sampled and stored at a period that is six times the period specified by

QUNT: 2 or every .12 sec. The second digital input is sampled every (2)
'

(.02) sec or .04 sec and is to be converted from Gray code to binary before

it is stored. This is useful when sampling shaft encoders, etc.

'4. Digital Outputs

Output is specified with a format number and a device name. Format state—

ments contain the format number and a list of variables. Output form de-

pends on the output device.

DlGl These are static output devices; i.e., relay buffers, etc. The first

3:33 variable in the specified format statement is output to the

DIG4 appropriate device asla l2-bit binary number.

Teleprinter

TYPE The entire list of variables in the specified format statement is
I

typed in octal (or decimal) on the 33 ASR. Each output is pre-

ceded by two decimalidigits which are the format number, followed

by the values of the variables separated by spaces, and finally

a carriage return-line feed. Decimal output is specified in the

format statement.

l4

High-Speed Paper Tape Punch

PNCH

D EC tape

DCTP

Output format is identical to the teleprinter format. Since the

farmat number starts every line, this tape maybe processed with

the PDP-8 FORTRAN SyStem.

The datum is recorded on DECtape using block lengths of 20l8.
The first word of each'block indicates whether 'or not it is the

last block. The second word contains the number of 12-bit words

of data on the black. Each command to output to DECtape causes

a 12-bit identifier word to be placed on the tape followed by 12-

bit binary words. Decimal specifications in format statements-are

overridden. When the DECtape nears the end of the tape, a message

is typed and a fresh tape may be mounted on the second transport.

,X-Y Plotter

PLOT

FORM:

The first tWO variables in the specified format statements represent,

respectively, the X and Y coordinates. The plotter pen is moved
.

from its previous position to this specified position-.11, It is initially
’

set to location (0.0)-—the lower left—hand corner of the plotting

OI'GCI .

Format Statements

Format statements are of the following form:

6,SW|T1, HEAD

This is format statement number 6 which consists of the variables SWlT and HEAD. If output is

to the teleprinter or punch, SWIT is Converted to decimal when it. is outputted.
~

There is a fixed system variable called CLOK. This is a 3-register variable containing, respec—

tively, the hours, minutes, and seconds. The seconds are initially set to 0, and thevhours

and minutes are set from the switch register when the execution of the program is initiated.

15

When output is to the teleprinter or to the'punch-and CLOK is in the specified formatstatement,

it is outputted as three 2-d-i’git decimal numbers. When it is output to the DECtape, it is

written as three 12-bit words. CLOK may not be output to the plotter or to any of the four

digital outputs. However, the following is permissible:

FORM: 3 1-2, X,Y,'CLOK

‘

with format statement 12 being specified in output statements to the punch and to the plotter.

Output may be initiated unconditionally (i.e., by the clock) or Conditionally. Unconditional

output statements contain the format statement number, the device name, and the output period

(a multiple of the clock period established by the QUNT: statement).

The unconditional output statements are delimited by angle brackets < .>.

Example: A program to:

l -. Sample the contents of the switch register every .5 sec;

2. :Punch this vaer in octal every .5 sec; and

3'. Type the value in decimal, along with the time, every 2 sec;

‘

could be programmed as follows:

QUNT: 50

DGIN: swna
FORM: 7,CLOK,SWth
FORM: 6,SW|T

-

<7, TYPE, 4

6, PNCH,]>

END
'

'The first statement, QUNT: 50, established the time interval as (50) - (.Ol sec): - 5 sec.

The second statement, DGIN: SWlT(l , identifies the first
digital input as the variable SWlT

whichIs to be sampled every (l) (.5 sec) = .5 sec.

16

The next two statements identify the output variables. Decimal output is specified for SWIT

in format statement number 7.

The unconditional output statements are interpreted as follows:

7,TYPE,4 output to the teleprinter under control of format statement num-

ber 7 every (4) (.5 sec) = 2 sec.

6, PNCH,l output to the punch under control of format statement number

6 every (1) (.5 sec) = .5 sec.

Format numbers are decimal and may be from l—l5.
" ‘

Conditional Program Section

The conditional program section consists of algebraic and control statements that may be used

to initiate output, test for tolerance levels, or alter variables.

There are four types of statements allowable in this section of the program:

1. Algebraic Expressions

: Variable = Variable Operator Variable

For example:

: Y=A+B.

These statements may be nested to any reasonable degree:

: Y=A+(B=C+D)

There are four basic operators:

A+B 2's Complement Addition Arithmetic Operators
A+B 2's Complement Subtraction Arithmetic Operators

A.'B Inclusive OR Boolean Operators
A<-B Clear bit. For every bit in Boolean Operators

B that is a l, clear the cor-

responding bit in A. AAB

l7

Truth tables for the logical operations are as follows:

A E £13. A___"3
0 '0 0 0

0 1
'

1 0

1
_

o 1 1

1 1 1 0

'

Examples:
'

A E 5:8 5:3 .513 _A~.B_

6000 7000 5000 7000 7000 0000

0077 001 7 Cl 16 0060 0077 0060

Expressions within parentheses are evaluated first. The Boolean operators

have a higher priority than the arithmetic operators:

: Y=A+B?—C

is interpreted as if it had been written:

: Y=A+(B«C)

The equal sign (=) means replace the single variable on the left with the value

of the expression on the right. Thus:

: X=B+_(Y=C-D)

is perfectly valid. Two equal signs may not be used in one expression at the

same level. Thus:

:
‘ A=B=0

is not valid, although:

: A=(B=0)

is valid.

‘

An arithmetic statement is terminated by either a carriage-return or a semi-

colon (;). The single quote (') acts as a line continuer as it does in all pro-

gram sections .

18

: Y=A+B; Z=Y+D‘—A

is a valid line and is evaluated from left to right.

2. Unconditional Transfer

Any statement may begin with a statement number delimited by a colon (:.)

There is one transfer instruction:

: GOTO XX

which says: transfer control to statement number XX.

Example:

6: Y=A+(B=C-D)
: GOTOé

The GOTO statement must be the last statement on a line, although it need

not be the first.

6: Y=A+(B=C-D) ; GOTO 7

3. Conditional Expressions

In addition to the unconditional transfer instruction, there must be condi-

tional expressions. Conditional expressions are of the following general

form:

'

FUNCTION EXPRESSION, EXPRESSION;

If the conditions are met, the instruction following the semicolon is executed;

if they are not met, execute on the next line. The expressions may be a

single variable or a statement within parentheses. The conditional functions

are:

lFEQ X,Y; If equal. lf X=Y, the statement is true. The

arguments are considered unsigned.

l9

IFLS X,Y; If less than. IF X is less than Y in absolute

value, the statement is true. The arguments

are considered to be signed integers. Thus:

7770 <2H

IFGR X,Y; If greater than. If X iswgreater than Yin ab-

solute value, the statement is true. The argu—

ments are considered to be signed integers.

IFBE X,Y; if bit equal. IF there are any corresponding

1's in X or Y, the statement is true.

IFBE l77,l; is true.

For example, if:

6: IFEQ A,B; GOTO 6

: GOTO 5
V

This waits in a loop until A and B are unequal. To reverse it:

6: IFEQ A,B; GOTO 5
_

: GOTO 6
'

This waits in a loop until A and B are equal.

4. Output Statements

Output statements are expressed in the conditional section as follows:

OUTP (format number, device name)

Whenever a variable is outpUt, its value at output time is recorded in a loca—

tion that has, as a name, the original variable name preceded by "@.
"

The conditional program section is delimited by square brackets [] .

The last statement in a program is END.

20

CHAPTER 4

ERROR MESSAGES

COMPILATION

During compilation, there may be two diagnostic messages:

LANGUAGE ERROR There was some error in the source language. Since

the source language is typed out as it is processed,

the programmer can see where the error occurred.

5 # NOT FOUND A statement number was referenced by a GOTO

statement in the conditional program section, but

has not been defined anywhere in the program.

Both of these errors cause the compiler to halt. It must be restarted at 2008.

RUN TIME

At run time, there may be several diagnostic messages:

EX INTR Extraneous interrupt. Some device that is not used

by DATAK has caused an interrupt.

INTR OVR Interrupt overflow. DATAK was interrupted at a

rate higher than its processing 'rate.

FORM OVR Format overflow. The output devices are incapable

of handling the specified output rates. The format

list is about 30 positions long.

STACK ERROR Indicates an error in the arithmetic statements that

was not detected by the compiler.

The above errors are catastrophic; that is, no recovery from these errors is possible, and the

object system halts.

2i

DT ERROR

TIMING ERROR

READY TO SWITCH

The DECtape error flag was raised For something

other than an end—zone condition. DZTAK will

clear the flag and attempt to proceed.

The. DECtape buffer was filled before the second

buffer could be written. DKTAK will continue

although some information will be lost.

DECtape block number 2400 is being written.

The write routines will switch from DECtape

unit 1 to DECtape unit 2 at block number 2700.

The next time the switch will be from DECtape

unit 2 to DECtape unit 1, etc.

22

APPENDIX 1

FLOW CHARTS

EXPLANATION OF FLOW CHARTS

DATAK consists of two basic elements: the compiler and the operating system. The function

of the compiler is to read the source language from the ASR-33 Paper Tape Reader or Keyboard.

The compilerproduces the structured lists and other elements that control the operating system,

and compiles the logical and arithmetic statements into an interpretive code that is executed

at run time. When the compiler reads the word END, it initializes the operating system and

halts. The switch register is set to the current time of clay and when the CONTINUE Key is

depressed, the CLOK registers are set to this value and the operating system is started.

The operating system consists of three major sections:

1 . The arithmetic interpreter, which executes the interpretive code generated

by the compiler from the arithmetic and logical statements.

2. The output controlling routines, which call routines for specific devices

and initiate output through use of the interrupt system.

3. The interrupt system, which handles all of the actual output operations,

counts elapsed time, and initiates sampling and unconditional output.

The arithmetic interpreter may call the output controlling routines (conditional outputs), as

may-the clock service routines (unconditional outputs). Either type’of routine may be inter-

rupted except for the DECtape flag servicing routines, which are accorded the highest priority.

Page A3 of the flow charts shows the overall flow of events at run time. After each interpre-

tive instruction is executed, the status of the output waiting list is tested. If there is an out—

put word waiting to be processed, it is transmitted to the appropriate device handling routine.

Page A4 shows the overall flow of the compiler.

Pages A5 and A6 show the list structures used by the input/output routines.

Al

Page A7 shows the interrupt servicing technique. ”the. interrupt was not caused by the DEC-

tape; the C(AC), C(L) and the return address are pushed down onto a list. When the flag

causing the interrupt has been determined, it is cleared and’the interru‘lpt is reenabled.

Page A8 shows the clock service routine. It counts to 1 sec before incrementing the CLOK

registers. It also counts to 1 time quantum (specified by QUNTz) before testing to see if any

input or output is to be initiated. It may call the routines ADCSER (analog-digital converter

service routine), DISERV (digital input service routine) or 95191 (unconditional output con-

troller).

Page A9 illustrates the serial-parallel buffer service routine.

Page A9 shows the teleprinter and punch service routines. Both of these routines have buf—

fers which are cleared before new data is read in.

Pages A10 and A11 show the routines called by the clock service routine to initiate sampling

or output. The digital input routines contain a list of eight IOT's that the user may define to

correspond to his particular equipment configuration.

Page A11 shows the output-control routines. FORMAT is used to place an output word on the

waiting list and to test for overflow. TFORM tests to see whether or not the waiting list is

empty. If it is not empty, the top word on the list is saved and all others are moved up one

position on the list. FOP1 is then called to operate on this format-output word. If the list is
——

empty, TFORM exits. FOP1 calls the appropriate device routine and then returns to TFORM

to test the waiting list status.

Page A12 contains the digital-output routines. The user may define up to four lOT instructions,

one each for DIGl, DIGZ, DIG3, and D104, to correspond to his equipment configuration.

Pages A12 through A15 contain routines used for teleprinter and punch output.

Pages A15 through A20 contain the DECtape output routines. DECtape uses two buffers in core

memory and one may, be filled while the second is being written. The write routine M

determines whether or not the tape is nearing the end; if it is, the message "READY TO SWITCH"

is typed, and 3008 blocks later write-out is continued on another DECtape unit. The DECtape

search routine is informed of the setting of the DT flag by the interrupt service routine lOSERV.

A2

Page A21 contains the plotter service routines. The plotter attempts to draw a diagonal line

from its previous position to its new position.

Page A22 contains the arithmetic interpreter. It calls routines to carry out indicated opera-

tions. This is the main "background" program for DZTAK. If there are no arithmetic state-

ments in the source prOQTam, D-ATAK executes a loop in the interpreter.

TFORM

FOR I

FORMAT

SAM PLE
V

DIGITAL

INPUTS

TELETYPE SERVICE

ROUTI N E

PUNCH SERVICE

ROUTINE

SERIAL BUFFER

SERVICE ROUTINE

INTPGO

EVERY
INSTRUCTION ARITHMETIC

“$031338 INTERPRETER
0

LIST
LIST EMPTY (ARITHMETIC AND

LOGICAL STATEMENTS)

CALL OUTPUT

CONTROLLING ROUTINE EXECUTE INTERPRETIVE

INSTRUCTIONS; CALL

EXECUTION ROUTINES:

DIGITI (STATIC) I FE XFER

DIGITZ .. EL LOAD

DIGIT3 .. IFG STORE

DIGIT4 « IFBE

PLOTF (START MOTION) —+ OUT

PUFOR SL3.
BUFFERED

TTFOR
OUTPUT

5TB

DECTPE SUBT

ADD

DECR

PLACE FORMAT WORD

ON WAITING LIST

UNCONDITIONAL

OUTPUT

ADCSER

CLOCK SERVICE smngsAriaLgeIN RR PT Aa DI TE U EN LE)
STORE

L

7

PROGRAM INTERRUPT DECTAPE SERVICE

SERVICE ROUTINE ROUTINE

DECTAPE HAS '_ DISMISS

HIGHEST PRIORITY
'

INTERRUPT

INTERRUPT IS ENABLED lQS—E—R—v PROGRAM
AFTER EACH PROGRAM f INTERRUPT

INTERRUPT

Figure A]

A3

Overall Flow (Run Time)

START

25w

STOPCM

COMPILE

BUFR:

COM PILE

DGIN :

COMPILE
ADCV:V

COMPILE
FORM:

COMPILE

QUNT:

INITIALIZE

ALL LISTS

(INPUT SYMBOL)
GETSYM

DISPATCH
E

UCGOI

< UNCONDITION >

OUTPUT
COMPILER

ACOMP

c

ARITHMETIc
a

'

COMPILER

(END)

INITIALIzE
OPERATING

SYSTEM

HALT

READ TIME
FROM SR

START
OPERATING

l Tom

235m

ADCV

59m;

OUNT

(CARRIAGE -RETURN)

Figure A2 Overall Flow (Compile Time)

A4

CONTROL LIST FOR ADC

ATABLE.

1281°
POSITIONS

CHANNEL #

ADDRESS

......

TERMINATOR

gggggg

CONTROL LIST FOR SERIAL/ PARALLEL CONVERTER

BUFTAB,

25 IO

POSITIONS

ADDRESS

ADDRESS

C(SCONTR) I - NUMBER OF INPUTS -I

ooooooo

CONTROL LIST FOR DIGITAL INPUTS

DTABLEP TYPE CODE cooE=o BINARY INPUT
‘

'

CURRENTCOUNT 1 GREY INPUT

ADDRESS
‘

7777 TERMINATOR

32.0 RESET COUNT

POS|T|°N3
C

7 7 7 T

Figure A3 Input Device Control Lists

FORMAT WORD

[Oh 1213l41516-l7181911011i]

-——————§ NUMBER OF 12-BIT WORDS

* b TYPE CODE

——,+ DEVICE NAME WE ADDRESS

ooo DIGITAL 1 FORMTD, TYPE CODE

OOI~ DIGITAL 2 o ——->
......

OIO DIGITAL 3 1
7 7 7 7

on DIGITAL 4- 2 4 TYPE CODE

Ioo PLOTTER 3
ADDRESS

'0' PUNCH 4
............

‘110 TELEPRINTER 5
7 7 7 7

III DECTAPE 6
ETC

7

IO

17

UNCONDITIONAL OUTPUT LISTS
TYPE CODE

0 -CLDK

UTABLE, CURRENT COUNT 1 —DEcINIAL

FORMAT WORD 2 -OCTAL

RESET COUNT 3-MESSAGE OUTPUT

9°“)
7 7 7 T—TERMINATOR

POSITIONS
LONG FORMAT WORD

RESET COUNT C(UCOUNT E - NUMBER OF UNCONDITIONAL

OUTPUT STATEMENTS

Figure A4 Output Control Lists

A6

PROGRAM INTERRUPT

HARDWARE
C(PC)90

FUNCT|ON

SAVE SERVICE

C(AC),C(L)
DECTAPE ER

E RFLAG

YES SAVE SERVICE

DECTAPE C(AC),C(L)
DECTAPE FLAG

F LAG
DTFLAG

N 0

POP

ammo C(AC)
FROM LIST ENAB

I NTERRUPT

ERROR-

YES ORFLow

(INT OVRNHALT) DISABLE

INTERRUPT
NO

@Es
NO

YES SERVICE
BUFFER

BUFFER
NO

YES SERVICE
TELEPRINTER

TELEPR

NO

@Es
NO

.

SERVICEYES
PLOTTER

PLTSER
NO

YES

KEYBOARD ?

N0

'

STOP THEYES
PROGRAM

EXTRANEOUS

INTERRUPT

(HALT) INTERR (Ex INTR)

Figure A5 Interrupt Service Routines

A7

CLOCK'

(WAIT FOR

I SECOND)

(l QUANTUM
OF TIME ?)

(RESET
QUA NTU M)

CALLED FROM IOSERV

CLKCLR

IN CONTINUE
STOPPING

STATUS? 333qu M
+1—>

“0 SECONDS

CLEAR FLAG
ENABLE

INTERRUP‘I’

SECONDS

I =60?

YES

+1->

§ECNT
o=> SECONDS

+19 MINUTES

YES»

YES
o=> MINUTES

"° +19 HOURS

NO

I
+1—> QCNT

No

:49 ?

YES

QCNTe—

QUANT

ADCSER
SERVICE —-

ANY ADC ADC INPUTS
INPUTS?

SERVICE m
ANY DIGITAL DIGITAL

INPUTS INPUTS

ceou
ANY

UNCONDITIONAL
OUTPUTS

NO

IRETURNTO POP I

Figure A6 Clock Service Routine

A8

SERIAL / PARALLEL BUFFER
CALLED FROM IOSERV

BUFFER
_

SETCLEAR INITIAUZE

FLAG
F’

usr (3%?ng

CLEAR

FLAG

ENABLE

INTERRUPT

+1—>

BTEMPZ

'55 -1=>

BTEMPZ

NO

GET NEXT

ADDRESS

READ

BUFFER

STORE
IN THIS

ADDRESS

7

EXIT TO POP

Figure A7 Buffer Service Routine

TELEPR CALLED FROM CALLED FROM

1% l L95_ER_V

m
CLEAR FLAG

“E32596 wasINTERRUPT

GET NEXT
'

CGHR‘QET’EE CHARACTER

M

YES

SETFngNE SEFTL28NETER INATOR ?
_

Figure A8 Teletype Service Routine

PRINT IT

JMP POP

A9

PUNCH IT

V

7

JMP POP

Figure A9 Punch Service Routine

lCALLED
BY CLOCK

DISERV
.

SAVE
TYPE

CODE

FROM
O=> .

. l Eta-5‘0 COUNTER

ADCSER
-

l
SELECT

CURRENT

l
COUNT

REQUEST -

CONVERSION No

l YES

DELAY

3O usoc GET
STORAGE

l
ADDRESS

GET STORAGE
l

ADDRESS
RESET

CURRENT

l
COUNT

READ
l

CONVERTER EXECUTE

IOI *

l
C (COUNTER)

GREY

STORE
VALUE N0 CONVERT

GREY ->

i
BINARY

_

YES

GET NEXT
_

CHANNEL
NUMBER STORE

VALUE
‘

RNIINATOR
GET NEXT UPDATE

TYPE LIST

CODE POINTER

RETURN To C351

+‘ 9
H $¢¥E

No

TERMINATOR '2
COUNTER

CODE

YEs

RETURN TO CLOCK

Figure A10 Analog—Digifal‘S‘ervice Routine Figure All Digital Input ServiC'e Routine

A10

CALLED BY

CLOCK SERVICE

ROUTINE

SET

COUNT

l
+I->

ELEMENT 1

”0
YES

ELEMENT 2T0

WAITING LIST

1
ELEMENT 3 -)

ELEMENT I

UPDATE
POINTER BY +3

RETURN TO CLOCK SERVICE

Figure A12 Unconditional Outputs

FOPI

LOOK-UP

DEVICE
HANDLER

LOOK-UP
FORMAT

LIST

PLOT F
4

5

PUFOR
6

TTFOR
7

DECTPE

L‘

T

RETURN TO

TFORM

COM

EM. FORMAT

TFORM

TEST FORMAT

WAITING LIST

CALLED BY

1% ANY DEVICE FORMAT HANDIERS

FORMAT WORD
ONTO LIST

NO

_
PRINT

FORM ova“
HALT

RETURN

l
CALLED BY INTPGO

DISABLE

INTERRUPT

@ms
NO

RETURN TO

INTPGO

TOP OF UST

I-> FORM

I
SLI OE-UP

UST ENABLE
I NTERRUPT

l
PROCESS

°
mmTI

1

2
mmTz

3 mst

mmT4

Figure AI 3

TEST STATUS OF

WAITING UST

Figure AM Call Output Device
Format Routines

AH

C (FORM)
FOPI

Format Output Routines

iCALLED
BY FOPI

FETCH

ADDRESS OF

VARIABLE

I
FETCH

VARIABLE

l
+19

ADDRESS

I
STORE

VARIABLE
AT ADDRESS

I
OUTPUT

VARIABLE

I
RETURN TO

FOPI

(AT VARIABLE)

Figure‘AI5 Digital Output Format Routine

PUFOR
'

CALLED BY

FOP!

NO

—1 =>

0 FLAG

I
GET FORMAT
CONVERT

TO OCTAL
ASC II

I
0 =>

0 SIEE

PLACE IN

BUFFER

CALL

TELETYPE
FORMAT
ROUTINE

SET PUNCH

BUSY FLAG

I
RETURN TO

FOPI

DISABLE
INTERRUPT —H

C(FORM) ONTO
WAITING LIST

ENABLE
INTERRUPT

(OCTAL)

(OSUBR)

(TGO’I)

(FORMAT)

Figure A16 Punch Format Routine

A12

TTFOR

T601

CALLED BY

FOP!

TELETYPE
BUSY _?

C(FORM) ONTO

0 =>
0 FLAG

l
CONVERT TO

OCTAL ASCII

O S) OSIEE

GET FORMAT #

PLACE IN

BUFFER

FETCH CODE

WORD

TERMINATOR

NO

RETURN
DISABLE WAITING , LIST

__. _—. To
1 T RR PT ENABLEN E U

INTERRUPT €921

(FORMAT)

(OCTAL)

(OSUBR)

GET HRS
PUT IN

SAME FOR

CONVERT 10—. BUFFER —' MlNUTES,
DECIMEL SECONDS

CONVERTTO
GET SAVE m

DEaMEL

VAmABLE
“’

ADEfiESS
“" PUT IN

BUFFER

. 2335522 .. away
VAWABLE

+ 1 IN BUFFER

GET

ADDRESS

l
. ADD 5le V

BITS

l
'

STORE

(ADDRESS
or TABLE)

l
GO TO

OEXIT

PUT TABLE
'

IN BUFFER

Figure A17 Teleprin’rer Forma’r Rou’rine

A13

BUFFER

I
DZ INTO

PUNCH
BUFFER

l
03 INTO
PUNCH

BUFFER

SPACE INTO

PUNCH
BUFFER

I

OFLAGIO?

XIT

SUBROUTI NE

CALLE H OR TELETYPE
FORMAT ROUTINES

DI INTO
TELEPRINTER

BU FFER

T
02 INTO

TELEPRINTER
BU FFER

I
03 INTO

TELEPRINTER

BUFFER

I
D4 INTO

TELEPRINTER

BUFFER

I
SPACE INTO

TELEPRINTER
BUFFER

J

Figure AI 8 OSU BR

OEXIT

CALLED BY TGOI

PLACE cm:
IN PUNCH ‘

BUFFER

- 1L
SET BUFFER

POI NTER
PUNCH FIRST
CHARACTER

i
EXIT TO

PU FOR

Figure A19 OEXIT

A14

0FLAG=D‘
PLACE CR.I.F IN
TELEPRINTER

BU FFER

J
SET BUFFER

POINTER
TYPE FIRST
CHARACTER

l
SET BUSY

FLAG
0‘) TFLAG

J
EXIT TO

FOPI

CALLED BY ‘

OCTAL TELEPRINTER AND PUNCH

l FORMAT ROUTINES

CONVERT

C(AC) TO

OCTAL ASCII

l
RESULTS T0

01, 02,03,134

l
EXIT

ROUTINE

CALLED BY
DECMAL TELEPRINTER AND PUNCH

FORMAT ROUTINES

CONVERT
C(AC) TO

DECIMAL ASCII

i
RESULTS TO

01.02.015.04

l
EXIT

ROUTINE

Figure A20 Conversibn Routines

7A15

CALLED BY

FOPI

H u

PM TO NUMBER or
WORDS IN BUFFER

SWITCH

TO WRITE

NO

2991.4
PLACE

FORMAT
WORD IN

BUFFER

I

I

He won

COUNT

I

GET CODE

TERMINATOR

?

GET VARIABLE

AND SAVE IN

TS ADDRESS +1

I
PLACE WORD

Figure A2I

IN BUFFER

ROUTINE
TO FOP!

EXIT

PLACE HRS

IN BUFFER

+2-9WORD
COUNT

A16

DEC’rape Forma’r Routines

0‘=>
HRST WORD

DWRT

l
SWHCH

ALL BUFFER

PGNTERS

l
0‘€> WORD

OF NEW

BUFFER

l-
+v—>
BLOCK

TYPE

"READY TO

swncn“

swncu

UMT +3=>

NUMBERS 92925

—1 =>
FIRST woao

v

TYPE

DECTAPE "TIMING PUTRFORMAT 5X” To

ausv ? ERROR" wo ° 0"
FOP1

59M
WAITING LIST —-——

SET

BUSY FLAG

Figure A22 DECfope Write

A17

99
DSTART

SEARCH FOR

BLOCK

DSERCH

LOAD WRITE

FUNCTION

I
LOAD MAC

REGISTER

WAIT FOR

FLAG

WAIT

0 =>
FUNCTION.

MOTION

WAIT FOR

FLAG

WAIT

CLEAR

BUSY FLAG

'

JMP EXIT

Figure A22

WAIT

SAVE
(JMS WAIT)

C(PC)=>

WAIT

I
+19

DSTA RT

a
NO

JMP EXIT

DTFLAG

l
CLEAR FLAG

I
C(WAIT) ==>

C(PC)

(JMP i WAIT)

DEC’rope Write (continued)

AI8

DSERCH

lCALLED
BY DWRT

S ET

DIRECTION

TO FORWARD

I
-10 '>

DCNT

DTURN +1.)

DCNT

ERFLAG

MOVING

FORWARD

SET SET

DIRECTION DIRECTION

TO FORWARD TO REVERSE

I l
'BL°°K=> -IBLOCK-1)

”BLOCK => DBLOCK

I
LOAD UNIT.

MOTION.
FUNCTION

WAIT

FOR FLAG

21m

PM LOAD MAC O—G

WAIT

FOR FLAG

WAIT

Figure A23 DEC’rOpe Search

A19

N0
3 o ?

YES

DTURN

ERFLAG

?
THIS BLOCK
+0 BLOCK

THIS BLOCK
- BLOCK

ROUTINE
EXIT SEARCH

(TO DWRT)

CLEAR
FLAG

STOP TAPE

I

MOVING IN

CORRECT DIRECTION ?

DTURN

TURN AROUND

TYPE

"0T ERROR"

CLEAR BUSY

FLAG
JMP EXIT

CONTINUE IN

THIS DIRECTION

Figure A23 DECfape Search (continued)

A20

CALLED BY

FOPI

RLOTTER
BUSY 2

DISABLE

INTERRUPT

PLACE C(FORM)
ONTO WAITING

LIST ENABLE
———> T0

RETURN

FOPI

INTERRUPT

SET BUSY

FLAG

—1 => STORE
pCOUNT

PWAIT C(cp) (JMS RWAII)

FETCH x

€>STOREIN CLEAR 1
AT ADDRESS EEI§§§ FLAG PCOUNT
X/4 => TX

FETCH Y =

STORE IN C(ppgwimp> N0
AT ADDRESS EflT T0

Y/4 => TY
I PWAIT) POP

l' YES

_‘ =

MFLAG
Exn T0

FOP1

—4 +> Rx +4 €> Rx
SET DONEREN LEFT PEN RIGHT

FLAG

WAR O=> WAN +1->
(PWAW) MFLAG (RwAn) PCOUNT

”0
Exn TO

&
—1 €> RY

T +1€>PYDRUM DOWN
YES

$ $’
EmT T0

FOP!WAR WAW ___

(PWAIT) (PWAIT)

YES

Figure A24 Plotter Format Routines

A2]

INTPGO

FETCH NEXT

INSTRUCHON

TEST STACK

UMWS

PMNT
WITHIN NO

"STACK
LIMITS ERROR"

? HALT

YES

TEST
WAHTNG IJST

STATUS

TFQRM

ADDRESS OPERATION

NO _

BITS BITS 0-1-
_

0-14 9 LOOKUP
3' LE“ BITS 2-11:

‘

RELATIVE

STACK ADDRESS

OPERATION YES

i
BITS 7—11: MAKE ABSOLUTE;

LOOKUP STORE IN PSEUDO

2 = STORE PROGRAM

COUNTER

I= LOAD

BITS 2—11= BITS 2—11:

IFE = 1 RELATIVE RELATIVE

m = 2 ADDRESS; ADDRESS;

In; = 3 MAKE ABSOLUTE MAKE ABSOLUTE

IFBE =4

OUT = 5

<sufg =‘6/ FETCH AND FETCH TOP

sum- :10
RETURN

PUSH ONTO OF STACK;
ADD = II STACK STORE IT

DECR =12

+1 —> PSEUDO ; I
PROGRAM

COUNTER

Figure A25 Arifhmefic lnIerpre’rer Interrupted by
Clock and l/O Devices

APPENDIX 2

PROGRAM EXAMPLES

PROBLEM I: A SIMPLE PROGRAMMING PROBLEM

An in situ pressure, temperature, and salinity sensing instrument is lowered into the ocean.

Data is transmitted along a single conductor cable and is brought into the computer using a

serial buffer input.

We want to sample the ocean in the Following manner:

I . From the surface to 100 meters, record at each meter the pressure, tem—

perature, and salinity.

2. From 100 meters to I000 meters, record the pressure, temperature, and

salinity whenever the absolute change of temperature is greater than .05°C

or the absolute change of salinity is greater than .02 "/00. Also record the

pressure, temperature, and salinity every I00 meters from 100 meters to

I000 meters.

Let us assume that the oceanographic sensors have the following precision; that is, unity is

equal to'the following:

I unit of pressure
= I meter

I unit of temperature
= .OI°C

I unit of salinity = .0I °/°°

A program to accomplish this sampling is written as follows:

BUFR : PRES, TEMP, COND

FORM: I, PRES, TEMP, COND

[: OUTP (1, DCTP)
,

1 : IFGR PRES, 144; GOTO 2
- IFGR (PRES -@PRES), 1; OUTP (1, DCTP)

GOTO 1

A23

2 : |FLS (PRES -@PRES), 144; ‘IFLS (TEMP -@TEMP), 5;'
IFLS (COND -@COND), 1; GOTO 2

OUTP (1, DCTP); GOTO 2

END

This program says, in effect:

BUFR: PRES, TEMP, COND

Three variables named PRES, TEMP, and COND are to be sampled using the serial buffer.

FORM: 1, PRES, TEMP, COND

Three variables named PRES, TEMP, and COND are to be outputted together.

:OUTP (1, DCTP)

This says output is to be recorded on magnetic tape.

l:lFGR PRES, T44; GOTO 2

This states that if the absolute change of pressure is greater than 100 (1448), the control of the

sampling will be transferred to statement number 2; otherwise, it will go to the next line.

:lFGR(PRES -@PRES), l; OUTP (l, DCTP)

This line states that if the absolute change of the pressure between two successive readings is

greater than 1, output onto magnetic tape according to Format l; that is, OUTP (l, DCTP)

which means store data on DECtape using Format l; otherwise, go to the next line.

GOTO i

This says to go to statement number 1 and test the environment again.

2: IFLS (PRES -@PRES), 144; IFLS (TEMP -@TEMP), 5;'
IFLS (COND —@COND), 1; GOTO 2

This states that if the'absolute change of pressure is less than 100 meters 'or the absolute change

of temperature is less than .05°C, or if the absolute change in salinity is less than .02 °°§

then go to statement number 2 which begins the tests over again. Otherwise go to the next line.

A24

:OUTP (1, DCTP); GOTO 2

This says to output data onto magnetic tape and transfer control to statement number 2. The

sampling and testing procedure begins again.

END

This last instruction is self explanatory.

As shown in the above description, the computer has been programmed to make logical deci-

sions specified by the investigator in sampling the marine environment. It also has been used

as a means of storing data. In the above instance, data has been stored on magnetic tape and

can be used in other programs to determine variables such as Sigma T, anomaly ofspecific

volume, and sound velocity. Table Al shows a portion of the calculated output from stored

data on magnetic tape transport number 1 that can be run immediately after the sample prOgram.

TABLE Al REDUCED DATA

INPUT SOURCE? T

OBSERVED VALUES

DEPTH TEMP. SALIN. SIGMA-T DELTA-A SOUND—VEL

0000 8.35 34.17 +26.590
'

+145.53
‘

+l483.4

0001 8.28 34.19 +26.616 +143.08 +l483.2

0002 8.20 34.21 +36.644 +140.45 '+1482.9

0003 8.13 34.24 +26 .678 +137.20 +1482.7

0004 8.05 34.26 +26.706 +134.59 +1482.4
'

0005 7.98 34.28 +26.732 +132.19 +1482.2

0006 7.91 34.31 +26.766 +128.98 +1482.0

0007 7.83 34.33 +26.793 +126.38 +1481.7

0008 7.76 34.35 +26.819 +123.94 +1481.4

0009 7.69 34.37 +26.845 +121.45 +1481.2

0010 7.61 34.39 ,+26.873 +118.89 +1480.9

PROBLEM 2: A MORE SOPHISTICATED PROGRAM

For a better demonstration of the flexibility of this programming technique, consider the follow-

ing program .

An investigator desires to use a thermistor, pressure, and conductivity chain towed from an

oceanographic vessel. He will sample at the same time a telemetering buoy that transmits

A25

data from these current meters. In addition, he desires to obtain Loran lines of position and

sample the ship's speed and ship's heading. These can be summarized as follows:

l . Log the time on magnetic tape every 50 meters of distance traveled. Ship's

speed is l0 knots; it will cover 50 meters in approximately 9.70 sec.

2. Sample each thermistor, conductivity, and pressure sensor in the chain

every half second. This defines the program time as QUNT: 62.

3. Sample the Loran, ship's speed, and ship's heading every 2 sec, thus,

Ll(4, L2(4, SP(4, HEAD(4.

4. Conditional Output - Since the near—surface values of temperature and

conductivity will fluctuate the most, it might be most desirable to set thres—

holds so that relatively large changes of temperature and salinity will be

stored. However, deeper values will not change as significantly, so small

incremental changes have more meaning and thus should be outputted and

stored. Arbitrary values have been chosen and are shown in Table A3.

Determination of Octal Constants to be Used in Testing - In order to test the

variable it must be determined to what its unit value corresponds. This is

found by dividing the range of the thermistor, pressure transducer, or other

device by the precision of measurement; thus if the range of the thermistor is

20°C and the precision of measurement is 1 part in 2000, then each unit

equals .0l °C .

TAB LE A2 SUMMARY

Variable
'

Range Precision UNITY Corresponds to

Thermistor 20°C
.. 1:2000 3 .o1°c

Pressure l00 meters lz2000 3" .05 meters

Conductivity 20 °/0° 1:2000 2 .01 °°°
Vane 360° 1:120 2 3°

Compass 360° , 1:120 2' 3°

Rotor g l centimeter per second

A26

5. General Output Requirement

Every variable should be recorded on magnetic tape it the specified con-

ditions are met.

Plot T0 versus SO if it is recorded.

Type Current Meter Data in Decimal if it is recorded.

Punch TO, P0, and SO if they are recorded.

By outlining the problem, the investigator'will have thresholds established for recording changes

in the variables listed in Tables A3, A4, and A5. Figure A26 shows the equipment needed to

do the work .

The/program listing to sample these variables and record those which exceed the established

thresholds is given below.

ADCV:

BUFR :

DGlN:

QUNT;

FORM;

FORM:

FORM:

FORM:

FORM:

l
3

—l

.TO(0), T10), T2(2), T3(3), T4(4). T5(5), P0(6),'
PT(7), P2(10), P3(H), P4(T2), P5(13), 50(14), 51(15),'
52(16), 53(17), 54(20), 55(21)
V1, C], RI, v2, C2, R2, V3, C3, R3

L1 (4, L2(4, SP(4, HEADM

62

I, T0, T1, T2, T3, T4, T5, P0, P1, P2, P3,'

P4, P5, $0, $1, $2, $3, $4, $5

2, T0, SO

3,v1 ,Cl ,RT ,V2,C2,R2,V3,'
C3 , R3

4, T0, P0, 50

5, L1, L2, SP, HEAD, CLOK

<5, DCTP, 22>
-

OUTP(T, DCTP); OUTP(2, PLDT); OUTP(3, TYPE); OUTP(4, PNCH)
lFEQ (V1+C2), 3; GOTO T

IFEQ (V2+C2), 2; GOTO t

IFEQ (V3+C3), 1; GOTO 1

IFLS RT, I2; IFLS R2, I2; IFLS R3, 12; GOTO 2

OUTP (3, TYPE)
'

IFLS (T0 -@TO), l2; IFLS (P0 —@PO), I2; IFLS (SO -@SO), 5;'
IFLS (T1 -@Tl), 7; IFLS (P1 -@P1), l2; IFLS (ST —@ST), 5;'
IFLS (T2 -@T2), 5; IFLS (P2 -@P2), 2; IFLS ($2 -@'52), 4;'
IFLS (T3 -@T3), 3; IFLS (P3 —@ P3), 6; IFLS (S3 —@ S3), 3;'
IFLS (T4 -@ T4), 2; IFLS (P4 —@ P4), 4; IFLS (S4 -@ S4), 2;'

IFLS‘(T5 -@T5), 2; IFLS (P5 -@ P5), 2; IFLS ($5 -@ 55), T;'
GOTO 2

OUTP(T, DCTP); OUTP(2, PLDT); OUTP(4, PNCH); GOTO3

END
,

A27

83V

TABLE A3 MULTIPLEXER A-D CONVERTER ASSIGNMENT (ADCV)
(Data Originating in Thermistor Chain)

Depth Thermistor Multi- ,
Record if Pressure Multi- Record if Conductivity Multi- Record if

in Variable plexer Absolute Variable plexer Absolute Variable plexer
'

Absolute

Meters Name Channel # Change of Name Channel # Change of Name Channel # Change of

0 TO (0) .l°C PO (6) .5 meter SO (I4) .05 °°°

IO TI (l) ..07°C PI (7) .5 meter SI (I5) .05 °°°

20
'

T2 (2) .05°C P2 (IO) .5 meter 52 (I6) .04 °°°

30 T3 (3) .03°C P3 (I I) .3 meter S3 (I7) .03 °°°

40 T4 (4) .02°C P4 (I2) .2 meter S4 (20) .02 °°°

50 T5 (5) .Ol°C P5 (I 3) .1 meter 55 (2i) .OI °°°

TABLE A4 SERIAL DATA INPUT BUFFER ASSIGNMENT (BUFR)
(Data Originating in Moored Current Meter String)

TABLE A5 DIGITAL INPUT BUFFER

ASSIGNMENT (DGIN)
(Data Originating in Ship's Instrumentation)

Vane Compass Rotor

Variable Variable Record/if Variable Record if Variable Time Gray
Name Name Name

'

Name Multiple Code ?

Current Meter I VI Cl Vl + CI = 9° RI Rl > IO Loran Line LI (4

Current Meter 2 V2 C2 V2 + C2 = 6° R2 R2 > ID Loran Line L2 (4

Current Meter 3 V3 C3 V3 + C3 = 3 R3 R3 > ID Ship's Speed SP (4

Ship's Head HEAD I4 yes

63V

MOORED CURRENT

METER STRING

SHIP'S KOINSTRUMENTATION
4L

SERIAL/ PARALLEL
PARALLEL BUFFERS

TELETYPE

33- ASR

PAPER TAPE
PUNCH

75B

BUFFER

(BUFR) (DGIN)

——: PDP-8 COMPUTER

1388
PARALLEL

*

ADCV , a

100 CPS

CLOCK

(ADCV) (CLOK)

139 MULTIPLEXER

CONTROL

Y

THERMTSTOR CHAIN

Figure A26 Equipment Configuration for Problem 2

v v

555 / 552

DECTAPE

X-Y

PLOTTER -

PARALLEL BUFFERS

H - -

H,L

OUTPUT CONTROL SIGNALS

Dl-ITAK ADDENDA

STANDARD DZTAK CLOCK IOT'S

IOT I Skip 4 Clock flag = O

IOT 2 Clear Clock flag and Connect Flag to interrupt

IOT 4 Disconnect Clock flag from interrrupt

INSTRUCTION LIST

I. Skip if Flag 0

2. Clear Flag and enable Clock

Disable Clock

IOS

AM INI.

If: E
'

N
AL K

“I J
‘L _

R202 abcx

1

AT p

AS K
R40t

T u

80 <>—-———~ T

”BE
R202 ENABLE

BF R

BH
u

BJ
v

ex ‘=

M8

mrsq
3L

3‘8 BM

an

a?

an

as

Lat
SPARE-8U

SPARE-3V

Standard DKTAK Clock

Refer to FLIP CHIP Catalog for further information about module logical design.

5444

Eflfifllafl
Washington, D. C. - Parsippany, N. J. - Los

Angeles - Palo Alto - Chicago 0 Ann Arbor

Pittsburgh ° Denver 0 Huntsville 0 Orlando

Carleton Place, Ont. - Reading, England ' Paris,
France - Munich, Germany - Sydney, Australia

PRINTED IN U.S.A. 20-6/65

