1. IDENTIFICATION

1.1 Digital-8-35-S-A
1.2 680 5-Bit Character Assembly Subroutines
1.3 November 17, 1965

2.
 ABSTRACT

These subroutines concentrate Teletype data by assembling serial-bit data into 5-bit characters and presenting the user with data similar to that obtained by using a 630 and scanner. They also add start and stop bits to 5 -bit characters and transmit them in serial-bit fashion. Full duplex lines are assumed, but the subroutines can operate with half duplex if the user handles the expected echo.

3. REQUIREMENTS

3.1

Storage
The subroutines as presently coded occupy 400 octal locations plus space for internal buffering of the input and output characters and for the TTI instructions. In addition, space is used in memory page 0 and a limited number of autoindex registers are used as explained below. Within the limits described, the program can be placed anywhere in the first 4K of PDP-8 memory. The total amount of memory used, including the autoindex registers and the locations in page 0 , is as follows:

$$
435_{8}+7 n
$$

where n is the number of teletype lines to the next even multiple of eight lines if the number of lines is not already an even multiple of eight.
3.2 Subprograms and/or Subroutines

Digital-8-35-S-B
680 8-Bit Character Assembly Subroutines for reference or when the user's requirements include a mixture of 5 -bit and 8 -bit lines.

3.3 Equipment

Minimum configuration PDP-8
680 Data Communication System hardware
1 to 128 5-bit Teletype lines

3.4 Miscellaneous

3.4.1 The tag TT5BGN must be defined as the address of the start of the Teletype subroutines. It can be defined as anywhere in memory, but must be equivalent to the start of a PDP-8 memory page.
3.4.2 Four autoindex registers called T5AX1, T5AX2, T5AX3, and T5AX4 must be defined.
3.4.3 The tag TT5PG0 must be defined as the start of an area in memory page 0 where the necessary Teletype constants can be stored. An area of $26{ }_{8}$ registers must be reserved.
3.4.4 The tag T5OBF must be defined as the start of the area reserved for outputting the Teletype characters. It must be equal in length to the number of lines (even multiple of 8) attached to the particular set of subroutines. It can be anywhere in memory and need not start at the beginning of a memory page.
3.4.5 The tag T5OBF2 must be defined as an area equal in length to T5OBF. It is used for doublebuffering the output characters to allow maximum output rate.
3.4.6 The tag T5IBF must be defined as the area for storing incoming Teletype characters and line numbers. It must be equal in length to twice the number of lines attached to the particular set of subroutines.

Page 2

3.4.7 The tag T5IN must be defined as the start of the area used by the subroutines for generating the appropriate number of TTI instructions. It must be equal in length to three times the number of lines plus one register. Here again it need not be defined as the start of a memory page.
3.4.8 The tag TTCHAR must be defined as a single register in page 0.
3.4.9 In the interrupt service routine the following set or sets of instructions must appear:

T5SKP	/SKIP ON CLOCK FLAG
SKP	/TEST FOR NEXT INTERRUPT CAUSE
JMP T5DIS	/JUMP TO APPROPRIATE CLOCK INTERRUPT ROUTINE

Because of the speed necessary for Teletype handling, the checks for clock interrupts should be the first ones in the interrupt service interrogation loop; the link bit and accumulator contents should not be saved prior to interrogation of the appropriate clock flag. If necessary for other interrupts, the link and accumulator contents should be saved only after all clock interrupts have been checked.

3.4.10 Clock IOT's

The IOT's to test the clock for a 1 state, turn the clock on, and turn the clock off must be given the correct octal definitions:

Mnemonic	Clock 1	Clock 2	Clock 3	Clock 4
T5SKP	6421	6431	6441	6451
TT5ON	6424	6434	6444	6454
TT5OFF	6422	6432	6442	6452

4. USAGE

4.2 Calling Sequence

The pseudo command T5INIT must be executed before the instruction TT5ON and also before either of the other pseudo commands T5SOF or T5SIR is executed (See Sections 4.4.1, 4.4.2, and 4.4.3 for definitions of the pseudo commands.)

4.3 Switch Settings

None

4.4 Start up and/or Entry

Three pseudo commands for using this set of subroutines are provided to the main program. They are defined as jumps to subroutines and their definitions and instructions are included in the package. These are the only commands necessary in the main program for gathering and outputting the Teletype characters. The user should note that no subroutines are included for packing or unpacking the characters by word or even line number.

4.4.1 Teletype Initialize (T5INIT)

This command (which must be used only once in the main program) assumes that the user enters with the number of lines in the accumulator and that the register following the initialize command
contains the first line number for this type of Teletype line. This subroutine initializes all of the buffer areas, counters, and pointers, and generates the proper number of TTI instructions.

4.4.2 Skip if Output Free (T5SOF)

This instruction skips the next register in memory and transmits the character contained in register TTCHAR if the indicated output line is free. If the output line is not free, the instruction does not skip. The instruction requires that the line number over which the character is to be transmitted be in the accumulator at the time the instruction is issued. The pseudo command takes $24 \mu \mathrm{sec}$ minimum time, and $42 \mu \mathrm{sec}$ maximum time. The accumulator is cleared when exiting from the command.

4.4.3 Skip if Input Ready (T5SIR)

This instruction skips the next location in memory and returns with the line number in the accumulator and the character placed at TTCHAR if an input character is available. If no character is available, the instruction does not skip and the contents of the accumulator equal -1 . Only the low order 5 bits of the character at TTCHAR should be used, as additional bits representing the stop codes are also present in the character. The user should note that the bit structure of the character is reversed from DEC's standard Teletype code. (For example, the character 0 does not appear as 15 in the low order 5 bits, but as 26 . This special consideration may be important if the user is setting up any necessary conversion tables.)

If no character is available, $15 \mu \mathrm{sec}$ are used by the pseudo instructions; if a character is available, $37.5 \mu \mathrm{sec}$ are used; and if the end of the storage area is reached, a maximum of $48 \mu \mathrm{sec}$ are used by the instruction.

5. RESTRICTIONS

5.1 Status Active Registers

The autoindex registers defined as T5AX1, T5AX2, T5AX3, and T5AX4 must not be disturbed after the pseudo operation T5INIT.
6. DESCRIPTION

6.1 Discussion

These subroutines are designed to accumulate 5-bit Teletype characters to and from multiple Teletype lines connected to a PDP-8. They handle input data in serial-bit format and present the user with character and line identification. The user presents the routines with line identification and character format data and they transmit the information in serial-bit format.

Most of the PDP-8 memory is available for data buffering and for packing. A large proportion of the time, however, is used mainly in buffering the Teletype lines themselves. Assuming only minor data handling is necessary before transmission (possibly to a larger computer), present estimates indicate that the user could handle 1285 -bit lines at 50 baud. Exact timing information is shown in Section 9. The user should note that the programming described involves the handling of the Teletype lines only and does not include any packing or unpacking of words, lines, or messages. The main program communicates with the Teletype subroutines via a group of pseudo commands which are described fully in Section 4.4 with examples of their usage in Section 6.2.

If the user's requirements include mixed speeds of 5 -bit lines, these subroutines must be duplicated for each line speed. Or, if a mixture of 5-bit and 8-bit lines is required, it is necessary that the 8-Bit Character Assembly Subroutines (Digital-8-35-S-B) be included with the user's programs and the 5-Bit Character Assembly Subroutines.

Digital-8-35-S-A
Page 4
6.2 Examples and/or Applications
6.2.1 To initialize the subroutines, coding similar to the following should appear in the user's program:

TAD	NUMLIN
TSINIT	/GET NUMBER OF LINES.
SLN	/INITIALIZE SUBROUTINES.
ION	/STARTING LINE NUMBER.
TT5ON	/ENABLE INTERRUPTS.

6.2.2 To output a character, coding similar to the following should appear:

TAD	CHARAC	/GET OUTPUT CHARACTER.
DCA	TTCHAR	/FOR OUTPUT SUBROUTINE.
TAD LINE NO	/GET LINE NUMBER.	
TSSOF		/OUTPUT, SKIP IF FREE.
JMP OUTNA	/OUTPUT NOT FREE.	
CONTINUE	/CHARACTER ACCEPTED, CONTINUE.	

6.2.3 To test for an input character available, coding similar to the following should appear:

T5SIR		/CHECK FOR INPUT.
JMP	-1	/WAIT FOR A CHARACTER.
DCA	SAVLIN	/SAVE LINE NUMBER.
TAD	TTCHAR	/GET CHARACTER INPUT.
AND	THREE7	/37, CLEAR STOP BIT.

7. METHODS

7.1 Discussion

7.1.1 Input Character Assembly

The 5-Bit Character Assembly Interrupt Subroutine executes a TTI instruction for each line selected every clock interrupt. The program then scans one fourth of the TTI character assembly words for fully assembled input characters. When an assembled input character is found, the program shifts off the start bit, stores the character and line number in the input buffer, zeros the TTI status word and resets the character assembly word to 0400. Note that bit 3 is initially set to a 1 and the rest of the character assembly word is zero. As the input character is assembled bit by bit, the character assembly word is shifted one position to the right for the start bit, each data bit, and the stop bit. When the bit that was initially in the character assembly word can be set into the link by a RTR, the character is fully assembled.

7.1.2 Output Character Handling

Initially, the pseudo operation T5SOF adds start and stop bits to the output characters and places the characters in the second output buffer (T5OBF2). Eventually, the interrupt subroutine transfers the characters from the second output buffer to the first output buffer (T5OBF). In the interrupt subroutine, the program outputs on one eighth of the lines selected every clock interrupt. That is, for any one line the program outputs a data bit every eight clock interrupts. If the first output buffer location for a line is zero, there is no output on that line. After 56 clock interrupts (7 bit times), the program halts the output process and utilizes each of the next four interrupts (one half bit time) to scan one fourth of the second
output buffer for new output characters. Again, if the second output buffer location for a line is zero, there is no output. When a location is found that is non-zero, the character is placed in the first output buffer and the second output buffer location is set to zero.

8. FORMAT

8.1 Input Data (T5SIR)

If the pseudo operation T5SIR skips, the input data is the following format:
8.1.1 The accumulator contains the line number.
8.1.2 The lower five bits of the register TTCHAR contain the input character. (See NOTE in Section 8.3)

8.3 Output Data (T5SOF)

The user presents the pseudo operation T5SOF with output characters in the following format:
8.3.1 The lower five bits of the register TTCHAR contain the output character.
8.3.2 The accumulator contains the number of the line on which the character is to be output.

NOTE: As mentioned in Section 4.4.3, the bit structure of the 5-bit codes is reversed from standard. These subroutines present the user with this reversed code and similarly expect the user to present them with the reversed code.
9. EXECUTION TIME
9.1 Minimum
9.2 Maximum

9.3 Average

The table below indicates the percentages of machine time used for two speeds of 5-bit systems and is as accurate as presently possible. Any additional features which may be required for the Teletype handling would add appreciably to the times shown:

TIMING TABLE

Numbers indicate the percentage of available machine time used in the average case.

No. of Lines	5-Bit 50 Baud	5-Bit 75 Baud
32	20.0%	30.0%
64	35.1%	52.7%
96	50.3%	75.5%
128	65.5%	98.3%

Digital-8-35-S-A
Page 6
9.4 Timing Equations
9.4.1 50 Baud Rate

Where $n=$ the number of lines, the 5-bit subroutines require an average time of $11.85 \mathrm{n}+120 \mu \mathrm{sec}$. Clock flags (at 50 baud) occur every $2500 \mu \mathrm{sec}$.
9.4.2 75 Baud Rate

The percentages for 75 baud are merely 1.5×50 baud rate. Clock flags occur every $1667 \mu \mathrm{sec}$.

10. PROGRAM

10.3 List of Items and Pseudo Commands
10.3.1 List of Items

TT5BGN $\quad \begin{aligned} & \text { Start of subroutine, must be equated to the start of a page. } \\ & \text { Area includes } 2 \text { pages. }\end{aligned}$
T5AX1 Autoindex register .
T5AX2 Autoindex register .
T5AX3 Autoindex register .
T5AX4 Autoindex register .
TT5PG0 Start of constant area in page 0.
T5OBF Start of output buffer (Length $=n$).
T5OBF Start of second output buffer (Length $=n$).
T5IBF Start of input buffer (Length $=2 n$).
T5IN \quad Start of TTI area (Length $=3 n+11$).
TTCHAR Character area page 0 (Single register).
10.3.2 List of Pseudo Operations

Operation	Meaning	Times (User's) Min.	Av.	Max.
		N.A.		
T5INIT	Initialize	24	-	42
T5SOF	Skip if output free	15	37.5	48
T5SIR	Skip if input ready			

Program Listing
/TYPE 680 IELETYPE LINE MULTIPLEXER
/CHARACTER ASSEMBLY ROUTINE
/LMH 91D/15/65 5 BIT
TII $=6402$ /TELETYPE INPUT COMMAND
TTO $=6404$ /TELETYPE OUTPUT COMMAND
TTCL=6411 /CLEAN LINE REGISTER
ITRL=6414
TTSL $=6412$
/READ LINE REGISIER
II SON $=6424$
IT50FF=642C
/SEI LINE REGISTER, CLR AC
/ TUKiV CLOCK ON
T 5 SK $P=6421$
/IURN CLOCK OFF
/SKIP ON CLOCK FLAG
TTINCR $=6401$
/increment line register
1030 LINE MULTIPLEXER
/LIST JF ITEMS
TSIBF $=7200$
$150 B F 2=7 D D 0$
T5UBF $=6600$
ISIN $=5600$
TT5PuD=145
I $5 A X 1=10$
T 5 AXC $=11$
I 5 AXS $=12$
T 5 AX4 $=13$
IT5B ain $=5200$
I ICHAR $=177$
*TI5PGロ
01450000 0147 D000 T5NL, 01505400 0151542 81525447 0153560 0154777 0155000 0156000 015701 3160700 016180 0162 001 $0163 \quad 77$
816456
0165777
016684
016766
0170522
0171000
317265
0173525
8174536
$0175 \quad 522$
217670

01467177 ISBFK, ISIBF-1 /TO RESET INPUT BUFFER POINTER

Digital-8-35-S-A
Page 8

```
*TT5BGN
/MULTIPLE LEVEL INTERRUPI ROUTINE
/ALLOWS MULTIPLE LEVEL INIERRUPT TO THIS ROUTINE
/AND UNLIMITED
```


5200	2366
5201	5216
5202	3367
5203	7010
5204	3370
5205	1000
5206	3571
5207	6414
7210	3572
5211	$64=4$
5212	6001
5213	1171
5214	6413
5215	5554

2257	3010		DCA Z ISAXI	/RESET TTI POINTER
5260	1171		TAD 2 T 5 Kg	/SIARI LINE-I
5261	7001		IAC /SEI IO	Finsi line
5262	3375		UCA I5LN2	/̇ESET LINE NUMBER
5253	1377		TAD T5KCA	1-4
5264	3154		DCA I5CNI	/INPUT CHECK COUNTER
5265	2151		ISZ Z ISCNI5	/HAVE ALL OUIPUI LINES BEEN.
5266	5310		JInP I 5CuM5	/RESEI AND DISMISS
5267	1165		TAD Z T 5 K 5	/-2
5270	3151		DCA Z TSCN15	/RESET COUNTER
5271	1171		TAU Z T 5k9	/SIART LINE-1
5272	3375		DCA I5LN	/RESET LINE NUMBER
5273	2162		ISZ Z T5CNI 6	/ENDING 7TH BIT?
5274	5353		JMP T5COMY	/NO RESET NONMALLY
5275	1163		IA I I 5 Kc	-10
5276	3162		DCA Z ISCNI6	/RESET COUNTER
5277	2161		ISZ Z T5CNT5	/ADD 1 TO COUNTER
5308	1172		IAD Z TSK9A	/T50EF-1
5301	3013		DCA Z T 5 AX4	/OUTPUT POINTER
5302	1160		TAD Z T5K36	/T50BF2
5303	3153		DCA T5OUTK	/2ND BUFFER POINTER
5304	1173		TAD Z I SK 9B	/SPECIAL ADDRESS, T5CMIA
$53>5$	3170		DCA 2 I 5 K	/RESET ADDRESS
5306	1174		TAD Z T 5K9C	/JMP T 5CMI. 0
5307	3247		DCA I SCOMS	/SET TO DO OUIPUT
5310	6002	T5COM5,	I OF	/TURN OFF INTERRUPI
5311	7240		STA	/-1
5312	1366		TAD I 5LC	/LEVEL COUNTER
5313	3366		DCA T5LC	/RESTORE LEVEL COUNTER
5314	1366		TAD T5LC	/LEVEL COUNTER
5315	7700		SMA CLA	/RESTORE AC, ETC.
5316	5212		JMP I50ISE	/CHECK INPUT AGAIN, ETC.
5317	1372		TAU TSSVLN	/LINE NUMBE?
5320	6413		ITSL+1	/SEI LINE REGISTER, CLR AC
5321	1370		TAD T 5S VLK	/PICK UP LINK
5322	7104		CLL RAL	/RESTORE LiNK
5323	1367		IAD T5SA	/RESIORE AC
5324	6001		I UN	/RE-ENABLE PROGRAM INTERRUPT
5325	5771		JMP I I5SVD	/RETURii T J IHE MAIN PROGRAM
5326	7112	T5COM6,	C LL RIR	/ REMOVE START CODE
5327	7812		RT?	
5330	3411		DCA I Z TSAXC	/Store Character
5331	1376		TAD T5LN2	/LINE NUMBER
5332	3411		DCA I Z T5AXZ	/STONE LINE NUMBER
5333	1010		TAD 2 I5AXI	/TII POINTER
5334	1165		TAD 2 T5K5	1-2
5335	3010		DCA 2 T5AXI	/RESET PJINIER
5306	3410		DCA I Z T 5AXI	/ZETO STATUS AND COUNTER
5337	1166		TAD 2 T5K6	/WURD IO RESTOPE ASSEMBLY WB
5340	3410		DCA I Z 15 AXI	/RESEI CHARACTER ASSEMBLY WB
5341	2145		ISZ Z I SINFL	/SET INPUT READY FLAG
5342	2156		ISZ 2 T5CNI3	/HAS END OF BUFFER BEEN REAE
5343	5247		JMP T 5COM	/Cuntinue
5344	1146	I 5com7,	IAD Z I 5BFK	/T51BF-1
5345	3011		DCA 2 ISAXC	/RESET INPUI BUFFER ADDRESS
5346	1147		[AD T5NL	/-IUMBER OF LINES
5347	3156		DCA Z I SCNI3	/RESET LENGTH COUNTER
5350	5247		JMP ISCOMS	CUNIINUE

5511	7010		RAR		／－N／8
5512	3355		Alvi T 5 K Cis		117
5513	1366		TAD I 5k＜6		／7760，MAKE NUMEER NEGAIIVE
5514	3767		DCA I I 5K＜7		1 T Sinivc
5515	1767		IA C I I $5 \mathrm{~K}<7$		1 T Minc
5516	1767		IAJ I T $5 \mathrm{~K} \subset 7$		／I5MiCC－ $\mathrm{N} / 4$
5517	3774		DCA I I5KSz		／T5inivCe
5520	7240		STA		／－1
5521	3246		DCA T5CNT4		／SET CNTR TO SkIP IST TIME
5522	1146		IAD Z T 5BFK		／T5IBF－1
5523	3011		DCA Z T 5 AX2	／SET	INPUT BUFFER POINTER
5524	1370		TAD T5K28		／－4
5525	3154		DCA Z T5CNT1		／MAJOR LOOP COUNTER
5526	1165		TAD Z I5K 5		1－2
5527	3161		DCA 2 I SCNT5		／OUTPUT COUNTE？
5537	1164		TAD 2 I 5Ki		／T5IN＋1
5531	3018		DCA Z I5AXI		／SET ITI POİNTER
5532	1157		［AU T5K7		1T508f
う53う	3153		DCA Z T50UIK		／SET OUTPUT BUFFER POINIER
5 534	7240		STA		1－1
5535	1647		TAU I I 5GOS		stanling line number
5536	3171		DCA 2 T5K9		SSTARINNG LINE NO－1
5537	1171		IAU Z ISKS		／Starting Line－1
5540	7340		CMA		／MAKE NEGATIVE
5541	3217		DCA T5SL		／－Sfarling line NUMBER
5542	3145		DCA 2 I 5iNFL		／Clear inpul flag counter
5543	7240		STA		／－1
5544	3771		DCA I［5K35		／TSLC，RESET INTERRUPT LEVEX
5345	2247		ISZ I5GOS		IINDEX EXIT
5546	1372		IAD I5K35A		／－7
5547	3162		DCA 2 I5CNT6		／SET SPECIAL 5－BIT COUNTER
5550	1175		IA 2 I 5 K 9 D		1 T 5 COM
5551	3170		DCA Z I5K8		／TII RETURN
5552	1176		TAU Z I 5 K 9 E		／NOP
5553	う 775		DCA I T5K40		／T 5COM3
5554	5647		JMP I I 5GOS		$/ E X I T$
		CONSTA	NTS		
5555	0377	T5K14，	377		／FOR ANDING
5556	0007	T5K15，	7		／FOR EVEN MULTIPLE OF 8
5557	0010	T5K16，	10		／FOR EVEN MULTIPLE OF 8
5560	0378	T 5 K17，	370		／FOR EVEIV MULTIPLE OF 8
5551	5577	T5K20，	T5IN－1		／FOR STURING TTI＇S
5562	6577	I5Kて1，	T 50BF－1		／FOR OUTPUT AREA
5563	6403	T 5 K 22 ，	ITI＋1	／III	
5564	5570	T5K24，	JMP I Z I 5K8		／FOR FiNAL JUMP
5565	2017	T 5 K 25,	17		／FOR－N／8
5565	7752	「5Kこ6，	7760		／FOR MAKIn＇negative
5567	5373	I 5k－7，	T 5inc		／FOR－ $\mathrm{F} / 8$
5570	7774	T 5K2も，	－4		／FJR MAJOR LOOP COUNTER
5571	5360	T5k35，	「5LC		／FOA L NTERTUPI LEVEL COUNIE？
勺572	7771	T5K35A，	－7		／Futi 5－EIT CuUnter
5573	6777	I 5k37，	T50BF2－1		／FOR DUUELE BUFFER
5574	5374	15k○J，	15 MivCe		／FJis－N／4
5575	5247	I 5 K 40 ，	I 5coms		／FJr SwITCH

11.1
 Flow Charts

Digital-8-35-S-A
Page 14

12. REFERENCES
12.1 Other Library Programs

Digital-8-35-S-A
680 5-Bit Character Assembly Subroutines

