DECUS

PROGRAM LIBRARY

DECUS NO.
12-7
TITLE
DBLFLT - DOUBLE FLOAT MATHEMATICAL ROUTINES
AUTHOR
Donald A. Overton, Ph.D.
COMPANY
Eastern Pennsylvania Psychiatric Institute
Philadelphia, Pennsylvania
DATE

Submitted: July 10, 1970

SOURCE LANGUAGE
LAP6-DIAL

Although this program has been tested by the contributor, no warranty, express or implied, is made by the contributor,
Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the
program or related program material, and no responsibility is assumed by these parties in connection therewith.

DBLFLT - DOUBLE FLOAT MATHEMATICAL ROUTINES

DECUS Program Library Write-up DECUS No. 12-7

Introduction

The DBLFLT Mathematica! Routines tape contains various LINC mode mathematical subroutines
which operate on a floating point number composed of a 24~bit mantissa and a 12~bit exponent.
All these routines use or are derived from the program DBLFLT which was written for the

classic LINC computer by Michael McDonald.

The source entitled DBLFLT is identical to the DBLFLT used with LAP4 and LAPé6 in the classic
LINC and LINC-8 computers. [t has not been moved or altered in any way except that the
number-letter symbolic tags used by LAP4 and LAP6 have been reversed to form letter-number
symbolic addresses which are acceptable to LAP6~=DIAL. The reader is referred to the document
entitled Double Precision Point System (DEC-L8~SFAA-D) for a discussion of the use of this

program.

The source entitled DBLFLTT is a slightly altered version of DBLFLT in which the utilization
of certain subroutines has been made slightly simpler than in the original DBLFLT. A docu-
ment describing the use of DBLFLT1 is aftached. Since DBLFLT1 uses mnemonic symbols for
its entry points, users will probably find it easier to use than the original DBLFLT when
developing new programs. DBLFLTIS is identical to DBLFLT1 except that comments have been
deleted from this program source to make it shorter and more manageable.

DBLFLT3 is a package of mathematical subroutines built around DBLFLT] allowing a more
extended set of mathematical operations. A document describing the use of this program is
attached. This package of subroutines was originally put together by Paul Sullivan and w
previously released for the LINC-8 as DECUS No. L-68. DBLFLT3S is identical to DBLFLI
except that comments have been deleted to shorten the source. DBL3GO, DBL3GOX,
DBL3G QY and DBL3GOZ are programs used in conjunction with DBLFLT3 and are described
in the DBLFLT3 document.

Obviously all credit for these programs belongs to the original authors. However, as the
current auther has somewhat revised both DBLFLT1 and DBLFLT3 for the PDP-12, questions
concerning the operation of these programs should be initially directed to the current author:
Donald A. Cverton, Eastern Pennsylvania Psychiatric Institute, 3300 Henry Avenue,
Philadelphia, Pennsylvania 19129.

DBLFLTI

Source Title: DBLFLT'I]

Source Language: LAP6-DIAL
Computer: PDP-12A2

Author: Michael McDonoid3
Biomedical Computer Laboratory
Washington University
St. Louis, Missouri

ABSTRACT

DBLFLT1 is a double precision floating point package which operates in the LINC mode and
uses two quarters of the current instruction field. All its operations are performed on a
standard format number which has a double precision mantissa and a 12-bit exponent.
DBLFLT1 provides the basic mathematical operations (add, subtract, multiply, divide,
absolute value, complement) as well as routines to convert between fixed point and floating
point format and to move floating point numbers from place to place in core. DBLFLTI is
the central mathematical program used in DBLFLT3 and this document will reference sections
of the DBLFLT3 document wherever possible to avoid duplication.

Utilization

DBLFLT1 must be placed in the current instruction field where it occupies 776 octal locations
and uses index registers 1-5. Access to its routines is obtained via JMPS to the appropriate
entry points. Most entry jumps are followed by a list of 1-3 arguments which specify the
locations of the numbers to be operated on. The numbers so referenced may be located in
either the current instruction or data fields.

Notation

Same as in DBLFLT3 document.

Floating Point Format

Same as in DBLFLT3 document.

1. DBLFLTI is virtually identical to the earlier program DBLFLT which was circulated in the
LAP4 and LAP6 languages.

2. DBLFLT1 will operate in the PDP-12C. However, at present the source and binary are
only available on LINC tape.

3. This document was prepared by D. A, Overton, Eastern Pennsylvania Psychiatric Institute,
3300 Henry Avenue, Philadelphia, Pennsylvania 19129, who is also responsible for the
revisions of DBLFLT contained in DBLFLTI.

2

Precision

Same as in DBLFLT3 document.

Argumented Operations

The format for argumented DBLFLT1 operations is identical to that for argumented DBLFLT3
operations except that the JMP is made directly to the desired DBLFLT1 entry point instead
of to the program DBL3GO.

The utilization of index registers is sufficiently different in DBLFLT]1 and DBLFLT3 so that it
will be described separately here for DBLFLT]. An argument may be indirectly addressed by
placing the address of its exponent in an index register in the current instruction field and
using the index register as an argument in the calling sequence. Allowable index registers
are 6-17. The contents of the index register will be indexed by three immediately after its
use by DBLFLTT.

Consider the following instructions, where A is at LOCI and B is at LOC1+3.

SET | 10
LOCI

JMP SUBT /Enter DBLFLT1
10

-10

returns here

B will be subtracted from A and the result stored in the FAC. When control is returned to
the user program, index register 10 will contain LOCI+6.

As another example, the following sequence will add 100 DBLFLT numbers starting at addre
1000 in segment O and leave the result in the FAC.

LDA | /Set FAC=f
4000

STC FAC

STC FAC+I

STC FAC+2

SET 17 /Points to data
2\,1000

SET 110 /]OO]O data values
-144

LDF ¢

JMP ADDT

-7

XSK 118 /Done?

JMP. =3

continues here

Note that when an index register is used to reference a DBLFLT number, it is set equal to
the address of the exponent of the DBLFLT number, nof one address ahead of the exponent.

Halts

There are two halts indigenous to DBLFLTI:

a) location DIVIDE+7 = A halt in this location means that an attempt was made to divide
by zero.

b) Location DF6-1 = A halt in this location indicates an overflow condition, i.e., that the
exponent of the result of some operation exceeds +3777 .

If a halt occurs at one of these DBLFLT1 locations, inspection of location DT7 will show
from where the call originated.

Storage Locations

The DBLFLTI routine includes locations for storage of three DBLFLT format numbers. The
DBLFLT locations designated ARG1 and ARG2 need not generally be referenced by user
programs. The third DBLFLT storage location is called the Floating Point Accumulator (FAC).
It is implicitly referenced by most DBLFLT operations which are followed by only one or two
arguments, and the user will frequently wish to reference this location. Additional storage
“locations may be assigned by the user in either the current dota or instruction fields.

Constants
Several constants in 12-bit fixed point format are located within the DBLFLT1 subroutine,

and hence within the current instruction field. These may be referenced by user programs
using the direct class instruction ADD.

+0 DF6-1
-0 COMI+1
+1 DK7

-1 DL7

3 DS7-1

5 QACI12
”8 ADDT
165 DD6-1
17 ADDT+4

20008 ADDT+1
60008 DC6-1

Assembly

DBLFLTI fills two quarters of the current instruction field. The calling program must be
4

placed in the remaining part of the current instruction field and assembled along with
DBLFLT1 as a single source. The source DBLFLTIS is identical to DBLFLT1 except that
comments have been deleted to shorten the source.

Modifying DBLFLTI

The entire source for DBLFLT] may be relocated within the instruction field if desired, as
long as it does not overlay the index registers which it uses. However, it is wise not to
modify the relative positions of the different DBLFLTI subroutines, i.e., do not insert user
subroutines or storage locations between DBLFLT] subroutines.

Modifying DELFLT Programs to Use DBLFLTI1

Programs written to operate with DBLFLT can be used with DBLFLT] providing the following
modifications are made:

1. All jumps to DBLFLT entry points must be changed to reflect the entry point symbolic
addresses of DBLFLT1. All DBLFLT tags have been changed in DBLFLT1. The entry points
are provided with mnemonic symbolic addresses. The remaining symbolic addresses (which
are generally not of interest to user programs) have been prefixed with the letter D. Note
that the absolute addresses of DBLFLT1 entry points are not identical to those of DBLFLT entry
points.

“2. All non=standard entries to DBLFLT and all addresses calculated relative to DBLFLT tags
must be checked to make sure they still reference the appropriate instructions in DBLFLTT.

3. The routines for absolute value, complement, and MOVE12 have been modified. It is
now unnecessary to set IR.2 before entering COMI or ABST. All three of these routines
increment IR.1 by 3 before returning to the user program, whereas in DBLFLT they increment. '
this register only twice. Similarly, IR.1 and IR.2 are incremented by 3 each time MOVE1"

is used.

The table below lists the DBLFLT tags deleted and their equivalent symbols in DBLFLTI.

DBLFLTI DBLFLT
Symbol Octal Tag Octal
ADDT 1000 5A 1000
SUBT 1043 5B 1045
MULT 1052 5C 1054
DIVIDE 1161 5G 1163
MOVET2 1301 6A 1303
QACT2 1313 6B 1313
COM1 1332 6D-2 1332
ABSI 1335 missing ——
DDé 1337 6D 1334

SETUP
EXIT
ARG

ARG2
FAC
FLOAT
FIX
TRANS

1413
1627
1765

1770
1773
1736
1750
1727

7A
7Q
7X

7Y
7Z
50
5P

SN

1406
1623
1723

1726
1731
1743
1755
1734

APPENDIX | - DBLFLTT OPERATIONS

All DBLFLT1 operations are performed by a JMP to the appropriate entry point in DBLFLTT.
The C(AC) are ignored by all routines. The accumulator is cleared following a return from
the routines ADDT, SUBT, MULT, DIVIDE, TRANS, and FLOAT; and is indeterminate or

contains information following return from the other routines.
ABS1 - Compute Absolute Value via IR.1

ABS1 is an unargumented operation which computes the absolute value of the number pointed
to by IR.1.

First set IR.1 to the location of the exponent of the number to be operated on. Then enter
via: JMP ABS1. Return is to .+1 with C(AC) =8 and the result left in the same locations
where the number was found. IR.1 is incremented by 3. Note that IR.1 must be set
immediately before the JMP to ABST as it is used by most other DBLFLT1 operations.

ADDT - Add Two DBLFLT Numbers

Enter via JMP ADDT followed by 1, 2 or 3 arguments as described in the section on Argumented
Operations. Returns with C(AC) }25 to .+2, to .+3 or to .+4 as appropriate.

COMI - Compute Negative via IR.1

COMT is an unargumented operation which computes the negative of the number pointed to by
IR.1. First set IR.1 to the location of the exponent of the number. Then enter via JMP
COMI. Returns to .+1 with C(AC) = @ and the result left in the same location where the
number was found. IR.1 is incremented by 3. IR.1 must be set immediately before JMP
COMI as most other DBLFLT1 operations will alter its contents.

FIX - Fix a DBLFLT Number

This routine will convert a DBLFLT format number into a signed 2310 bit fixed point number .

Enter via a JMP FIX followed by a single (negative) argument. The argument specifies the
location of the DBLFLT number which is to be fixed and the resulting fixed number is stored
in the mantissa words of the same location. Return is to .+2 with the accumulator cleared
unless the number was too big to fix in 23]0 bits, in which case the accumulator is non-zero

(and shows how many bits too big the exponent was). The (negative) number at location
FIX+7 determines the number of bits to the right of the most significant sign bit that the binary
point is located. It is presently equal to =27 (=2 The FAC is unaffected unless it is
explicitly referenced. Express ones complement dq% field arguments as =2000-L(A).

The following example will fix ¢ DBLFLT numbker in LOC1 placing sign plus 11 bits to the
left of the decimal point and a 12 bit fractional part to the right of the decimal point.

LDA |

-13

STC FIX+7 /Modify FIX routine for 11 bits
JMP FIX

-LOCI

AZE

HLT /Too big to fix

LDA | /Restore FIX routine

-27

STC FIX+7

The signed integer portion of the result is left in LOCT+1; the 12-bit fractional portion in
LOCI+2.

FLOAT - Float a 24-bit Fixed Point Number

This argumented operation will convert a fixed point integer of up to 23 bits plus sign into
the equivalent DBLFLT number. The float routine expects to find the fixed point number
already stored in the mantissa words (.+1 and .+2) of the argument location. The contents
of the exponent location are ignored. The sign bit must be placed in the most significant
bit of the most significant mantissa word. Enter via JMP FLOAT followed by a single
(negative) argument. Return is to .+2 with C(AC) = 8 and the DBLFLT format floated
number stored in the 3 core locations referenced by the argument. The Float subroutine
assumes that the decimal point follows the least significant bit. [f not, the contents of
location FLOAT+7 must be changed to 278—b where b is the number of bits which follow the

decimal point. The FAC is unaffected unless explicitly referenced. Express ones complement
data field locations as ~2000-L(A).

Consider the following examples:

Float a single precision signed number into locations ABC, ABC+1, and ABC+2 in the calling
program instruction field.

LDA | /Load the number

XXX

STA /Put it in ABC+2

ABC+2

SCR 13 /Get rid of number but keep the sign by

scaling right 11 0 places
STC ABC+1 /Put sign in Bit @ of ABC+1
JMP FLOAT /Float number
-ABC
returns here with DBLFLT number in L(ABC)

Float a signed double precision number in which the decimal point is to the left of the least
significant 12 bits. Get from 451-452 and leave the result in LOCT.

LDA |

13

STC FLOAT+7 /Modify FLOAT+7 for 11 bit fixing
ADD 451 /Get sign and most significant 11 bits
STC LOCI+1 /Save in LOCI+1

ADD 452 /Get least significant 12 bits

STC LOCI1+2 /Save in LOCI+2

JMP FLOAT)

~LOC1

LDA | /Restore float routine

27 /to its normal condition

STC FLOAT+7

continue here

MOVE12 - Move a DBLFLT Number via IR.1 and IR.2

MOVE12 is an unargumented operation which transfers the contents of three consecutive
core locations from the address in IR.1 to the address in IR.2. First set IR.1 and IR.2. Then
enter via JMP MOVE12. Return is fo .+1 with C(AC) = £ and with IR.1 and IR.2 each
incremented by 3. MOVE12 essentially duplicates the function of TRANS but is quicker and
in some cases requires a shorter calling sequence. Note that IR.1 and IR.2 must be set
immediately before the JMP to MOVE12 as they are used by most other DBLFLT1 operations.
‘Both the routines below will move a list of 7 DBLFLT numbers from LOCI to LOC2.

SET I'1 SET 16
LOCI LOCI
SET |2 SET 17
LOC2 LOC2
SET I3 SET 110
4 -7
JMP MOVE12 JMP TRANS
XSK 13 6
JMP.-2 -7
continue here XSK 110
JMP .-4
continue

MULT - Multiply Two DBLFLT Numbers

Enter via JMP MULT followed by 1, 2 or 3 arguments as described in the section on
Argumented Operations. Returns to .+2, to .+3 or to .+4 as appropriate with C(AC) = f.

QACI2 - Move MQ Register to AC, All 12 Bits

Enter via JMP QAC12. Return is to .+1 with the accumulator containing 12~bits previously
in the MQ. The original C(AC) are lost.

SUBT - Subtract One DBLFLT Number From Another

Enter via JMP SUBT followed by 1, 2 or 3 arguments as described in the section on Argumented
Operations. Returns with accumulator cleared to .+2, to .+3 or to .+4 as appropriate.

TRANS - Move a DBLFLT Number

Enter with JMP TRANS followed by one or two arguments. The last argument must be
negative. Return is to .+2 or .+3 with C(AC) = g.

JMP TRANS JMP TRANS
2\ LOC1 -2000-LOC1
~-DS2 return here
return here

In the first example, C(LOC1) are moved into L(DS2). FAC and LOCI are unchanged. In
the second example, C(FAC) are moved into L(LOC1). The FAC is unchanged by TRANS
unless it is listed as the second argument. Express ones complement data field addresses as
-2000-L(A).

10

APPENDIX I

DBLFLTT OPERATIONS

SUBROUTINE ENTRY NUMBER C(AC) OTHER RETURNS C(AC)=0 TYPICAL
FUNCTION POINT OF USED? SETUP to .+ AFTER TIME
ARGUMENTS NEEDED RETURN? (msec)
Addition ADDT 1,2,3 no b 2,3,4 yes 1.2-2.4
Subtraction SUBT 1,2,3 no *x 2,3,4 yes 1.2-2.5
Multiplication MULT 1,2,3 no ** 2,3,4 yes 1.6
Division DIVIDE 1,2,3 no k% 2,3,4 yes 9.3
Complement COM1 g no IR.1 1 yes .05
Absolute Value ABS1 J4} no IR.1 1 yes .05
FIX into 24 bits FIX 1 no *k 2 no=error 0.5-1.8
Flogt 24 bit no. FLOAT 1 no e 2 yes 0.6
Transfer DBLFLT NO. TRANS 1,2 no *% 2,3 yes 0.4
Move 3 words MOVEI2 g no IR.1-2 1 yes C D

**Any index registers listed as arguments must be set before entry

11

DBLFLT3
1

Source Titles: DBLFLT3 , DBL3GO

Source Language: LAP6—DIAL2

Computer: PDP-1 2'3

Authors: Paul F. Sullivon4’5’6
Rayna B. Cole

NAS A Electronics Research Center
Cambridge, Massachusetts

ABSTRACT

DBLFLT3 contains LINC mode double precision floating point mathematical youtines. It
can perform many common mathematical functions (add, subtract, sin X e", etc.) as well
as teletype input and output. All operations use a double precision mantissa and a 12-bit
exponent. The program occupies 6 1/2 quarters of memory located outside the current
instruction field. Programs dssigned to use the LINC-8 programs DBLFLT or DBLFLT 2 can
easily be modified to operate with DBLFLT3.

1. DBLFLT3 is a revision of DBLFLT 2 (DECUS NO. L-68) for the LINC-8.

2. Many DBLFLT3 routines have previously been circulated in LAP4 or LAP6 language. The
documents describing these previous versions are DEC-18-FLAA-D, DEC-L8-SFAA-D and the
DECUS NO. L-68 document.

3. DBLFLT3 will operate in the PDP-12C. However, at present the source and binary are
only available on LINC tape.

4. Current address is Cornell Aeronautical Labs, Buffalo, New York 14221

5. The central mathematical program (DBLFLT) as well as some of the subroutines were
originally written by Michael McDonald, Biomedical Computer Labaratory, Washington
University, St. Louis, Missouri. The remaining routines as well as the control programs which
allow DBLFLT3 to be located outside the current instruction field were written by Paul Sullivan
and Rayna Cole.

6. This document was prepared by D. A. Overton, Eastern Pennsylvania Psychiatric Institute,
3300 Henry Avenue, Philadelphia, Pennsylvania 19129.

12

NOTATION

Throughout this report the following notational conventions will be employed:

1. Numbers written with a decimal point are decimal numbers. All other numbers are octal
unless subscripted with a 10 or a 2 to indicate decimal or binary.

2. Single capital letters A, B, C, . . . denote the value of double precision floating
point numbers, each of which numbers occupies three consecutive registers in core.

3. Multiple capital letters and numbers (FAC, TEMI1, ADDT...) represent LAP6-DIAL
symbolic addresses. When referencing DBLFLT format numbers, it is customary to specify the
symbolic addresses of the first word (exponent) of the number.

4, L() designates 1 or 3 consecutive core locations as indicated by the context. [f L(A) is
the address of the first word (exponent) of the floating point number A, then A occupies the
three registers in core symbolized by L(A), L(AR1, L(A}+2.

5. C() specifies the contents of a register or of 1 or 3 memory locations, e.g. C(FAC)
indicates the contents of the FAC.

6.— means "is (are,be) placed into", e.g., A+ B—3L(C) is read "the sum of the floating
point numbers A and B is placed into the three consecutive registers beginning with L(C)."

ORGANIZATION

DBLFLT3 consists of three sections: DBLFLTA, DBLFLTB, and DBL3GO. DBLFLTA and
DBLFLTB can be located in any two memory segments. A copy of DBL3GO must reside in
each segment from which the user program makes a call to DBLFLT3 subroutine.

DBLFLTA contains the basic arithmetic operations (the original DBLFLT), the teletype inp
and output routines, the subroutine COMPARE, some useful consfants in DBLFLT format,
temporary storage areas, and a control program to keep track of the subroutine called and the
calling location.

DBLFLTB contains subroutines)F(or calculating commonly used mathematical functions such as
sine x, square root x, Inx, €, etc. It also contains a control program and a modified

version of DBL3GO.

DBL3G O contains the instructions necessary to accomplish the jump to the proper DBLFLT3
subroutine. Only DBL3GO must reside in the same memory segment as the user program. All
DBLFLT3 routines are entered by a JMP to DBL3GO. DBL3GO also defines those DBLFLT3

symbols which the user will want to reference.
MEMORY FIELD CONTROL
DBLFLTA fills segment SEGA. DBLFLTB occupies locations 0-1112 of segment SEGB. The

unargumented DBLFLTB operations refer only to numbers stored in segments SEGA or SEGB and

13

field control is automatic. Most DBLFLTA instructions (ADDT, SUBT, MULT, DIVIDE,
FLOAT, FIX, TRANS, COMPAR, ABS1, COMI) may refer to DBLFLT numbers located in
any data field and it is the user program's responsibility to have the data field set pointing to
the referenced numbers before entering DBLFLT3. Memory field control is different for
DBLFLTA routines than for DBLFLTB routines and each will be described separately.

When executing a DBLFLTA operation (e.g., SUBT) the user program jumps to the SUBT entry
point in the copy of DBL3G O located in the current instruction field. DBL3GO transfers
control to the control program in segment SEGA. The control program determines what
instruction and data fields were established prior to the jump to DBL3GO. It then sets the
data field to the calling program memory segment in order to obtain the return jump location
and the arguments which follow JMP SUBT in the user program. When this is accomplished,
the data field is restored to that set by the user program prior to the jump to DBL3GO. Now

a jump is made to the actual DBLFLT1 subtract routine in segment SEGA. Note that during
subtraction, the data field is that set by the user program and data field addresses listed as
arguments in the user program will be correctly interpreted. When the mathematical operation
is complete, control returns to the DBLFLTA control program which supervises the return jump
to the calling program. Upon returning to the user program, both data and instruction fields
will be set as they were when the initial jump was made to DBL3GO. If a DBLFLTA argument
specifies an index register (see below), the appropriate data field address (bit 1 = 1) must be
placed in the referenced index register of segment SEGA before entrance to DBL3GO. Note
that argumented DBLFLTA instructions may operate on numbers stored in any memory segment
_either directly or via index registers 6-11 in segment SEGA. Obviously all data field
_addresses referenced by a single argumented DBLFLTA operation (directly or via index registers)
must be in the same data field.

Entrance to DBLFLTB routines is achieved by a jump to the desired entry point in DBL3GO.
DBL3G O effects a jump to the DBLFLTB control program which recovers and saves the instruction
and data fields set prior to entry and the return jump. It then sets the data field to SEGA.

Most DBLFLTB routines operate on specified locations (e.g., FAC) in DBLFLTA and these are
accessed as data field addresses. When the DBLFLTB operation is complete, the DBLFLTB
control program re-establishes the data and instruction fields set prior to entry to DBL3GO,

and executes a return jump to the user program.

If a DBLFLTB routine uses a DBLFLTA operation, control is transferred through the modified
version of DBL3GO located at the end of DBLFLTB. In this case the DBLFLTA control program

is altered (and later automatically restored) so that the DBLFLTA operation is performed with

the data field pointing to DBLFLTB. When the DBLFLTA operation is completed, control is
returned to the calling DBLFLTB routine and ultimately to the user program. Note that the

data field set by the user program has no effect on DBLFLTB operations. The user may essentially
ignore field control when using DBLFLTB routines except in the case of the power series routine.
The Table of Constants for this routine must be placed in segment SEGB in order to be

accessible to the power series routine.

Floating Point Format

A number X is said to be expressed in binary floating point representation if it consists of
two parts: an integer exponent or characteristic C and a mantissa or fractional part f such that

14

X=2£‘ f where0_<_ !f’<].

The number is normalized if the inequality of f is

<1.

v2s e

Any non-zero number can be written in what is termed normalized binary floating point

representation.

Any number X that is manipulated (or generated) by DBLFLT must be (or is) in a normalized
binary double precision floating point format consisting of three consecutive words, a one
word signed exponent £ , and two signed mantissa words as follows:

Exponent
cey= & =
7 (11
]
sign ”]0 bits of precision Po/li\fion
bit of binary
point
Most significant portion h
of mantissa
LX) + 1) =f, = | 7
v R L Lo
% i | L
- (o T —
sign bit coefficient coefticient ... coefficient
of 271 of 27 of 2711
position
of binary y
point
total of
22]0 bits
of precision
Least significant portion (
of mantissa
C(L(X)+2) = f2 =
o
| | (7
coefficient coefficient ... coefficient sign/’__;ji’gn
of 2—]2. of 2-]3. of 2-22. bit bit of
15 f])
-

For f> 1/2 (i.e. for the number to be normalized) bit 1 of f] must be different from the sign

of the mantissa (bit 0 of f. and 11, of f A normalized zero is defined to be T= 4000 =

1 2)'

-3777 (most negative exponent) and f] = f2 = 0000. Negative exponents and mantissas are

ones complement numbers. The two sign bits in the mantissa must, of course, be equal.

For clarification, let us look at a few examples of numbers in DBLFLT format.

1. X=+1.0
0001
2000
0000
E=1 and f = 2000 0000=0 A 10 000 000 ... OOO2
binary
point

1 2

£rg=2 +0°2 % ...)=2(1/2)=1.0

X=2 "f=2(1-2

2. X=-100.0

0007
4677
7777

E=7and f= 4677 7777
= - f=~(3100 0000) ==(0 . 11001 000 ... 000,) .

binary
point
x=2Ff=-2702711.27%0.5%0. 2747 2750278)
=P+ 224 2% = -(64+ 32+ 4) = -100.0

3. X=+.125

7775
2000
0000

E =7775= -(0002) and f = 2000 0000

=0, 10 000 000 ... 0002

binary
point

Vi0.2724 . y=1/401/2)=1/8=+ .125

16

x=2Ff=271.2"

Precision

Two extra bits of precision, beyond the 22]0 bits in the double precision fraction, are

maintained by the DBLFLTT subroutines during their operation in order to insure there always
being an extra bit on which to round. After the mantissa of the result is calculated, its
absolute value is obtained; this value is normalized and then rounded to 2210 bits by the

addition of a 1 to the 23rd bit followed by truncation after the 22nd bit. Finally the correct
sign is resfored.

The user is advised to note that many numbers which terminate in the decimal system, e.g.
0.1, are periodically infinite when expressed in their binary representation. Thus truncation
error can become a problem where none is normally expected; such error cannot be totally
eliminated, but can be minimized by careful programming, e.g., to calculate 0.1°X"Y,
instead of multiplying 0.1 by X and that result by Y, divide the product XY by 10.0.

For a thorough discussion of the errors associated with roundoff in both fixed and floating
point computations, it is recommended that the reader see J. H. Wilkinson's book, Rounding
Errors in Algebraic Processes, Prentice~Hall, 1963.

ARGUMENTED OPERATIONS

_Execution of the DBLFLT3 operations ADDT, SUBT, MULT and DIVIDE is accomplished by a

- jump to the DBL3GO entry point for the specific routine followed in consecutive registers by
a list of arguments. This argument list may consist of 1, 2, or 3 items. The method of
argumenting these instructions is described below. The DBLFLT3 operations FLOAT, FIX,
TRANS and COMPAR are also argumented but only with one or two arguments. The procedure
for argumenting these latter operations is described in Appendix | for each operation indi-
vidually. All other DBLFLT3 operations are accomplished by unargumented jumps.

The three argument calling sequence is as follows:

General Form Specific Examples
JMP EP JMP SUBT JMP DIVIDE JMP MULT
L(A) TEMI DSl 2\ LOC1
L(B) DSI1 FAC 2\ LOC2
+L(C) DS2 -TEM2 FAC

return here

EP is the DBL3GO entry point. The arguments are the locations of the exponents of 3-word
DBLFLT numbers (A, B, and C). Letting R stand for one of the operations (+, -, X, %),
the action taken by the subroutine will be:

AR B——> L(C)
i.e., the operation R will be performed on the floating point numbers A and B, in the order

indicated, and the floating point result will be stored in L(C), L(C)}+1, and L(C)+2. Control
is returned to the main program at location .+4; A and B are unchanged. The minus sign is

17

optional in 3-argument entries and need not be present. (It may only be placed in front of

the third argument.) In the first example the DBLFLT format number in DS1 will be subtracted
from that in TEMI1 and the result left in DS2. The FAC is not effected by this operation, nor
are TEM1 or DS1. In the second example the C(DS1) are divided by the C(FAC) and the 3-word
result is left in TEM2. DS1 and FAC are unchanged. In the third example, the number in
LOC1 is multiplied by that in LOC2 and the result is placed in the FAC. Both 2\ LOCI and
2\ LOC2 are data field locations and the data field must have been correctly set prior to the
JMP MULT operation. LOC1 and LOC2 must be in the same memory segment.

The same four DBLFLT operations may be followed by only two arguments. In this case the
three consecutive addresses in DBLFLT called the floating point accumulator (FAC) are assumed
to be the third argument and the result is left in these locations.

General Form Specific Examples
JMP EP JMP SUBT JMP DIVIDE
L(A) TEMT 2\ LOC1
-L(B) -2000-LOCI ~-TEM2

returns here
These operations will perform:
AR B—3 L(FAC)

' Note that the second item must be =L(B), the ones complement of L(B). Control is returned
to the main program at location .+3; A and B are unchanged. In the first example C(LOCI)
in the data field are subtracted from C(TEMT) and the result is left in the FAC. The second
example divides C(LOC1) by C(TEM2).

The one argument calling sequence is as follows:

General Form Specific Examples
JMP EP JMP SUBT JMP ADDT
-L(A) -TEMI -TEM1

returns here

The stated argument is taken to be the second argument and the first and third arguments are
assumed to be the FAC. The action taken is:

C(FAC) R A —3 L(FAC)

i.e., the first argument is the current contents of the FAC and the result is stored into the
FAC. Note that the argument must be =L(A), a ones complement number. Control is returned
to the main program at location .+2; A is unchanged. The first example subtracts C(TEMI1)
from C(FAC) leaving the result in the FAC. The second adds C(TEM1) to C(FAC) leaving

the result in the FAC.

The FAC is always altered if these operations (+, =, X, %) have only one or two arguments.
However, the FAC is not altered by operations with three arguments unless it is specifically
referenced. Many unargumented DBLFLT3 operations alter the FAC (see Appendix I1).

18

An argument may be indirectly addressed by placing the address of ifs exponent in an index
register of segment SEGA and using the index register as an argument in the calling sequence.
Allowable index registers are 6=11. Registers 13-16 may also be used if the routines TTYIN
and TTYOUT are not called. The location of the argument will be indexed by 3 immediately
after its use by DBLFLT]. Consider the following instructions, where A is at LOC1 and B is
at LOC1+3.

LDF SEGA /Data field to DBLFLT A
LDA | /Load IR.10 in SEGA
2\\LOC1
STA
2\ 10
LDF SEGC /Data field to LOCt
JMP EP
10
-10

returns here

The operaticn R will be performed on the numbers A and B, in that order, and the result stored
in the FAC. When control is returned to the main program, index register 10 in SEGA will
contain LOCI1+6. Note that when an index register is used to reference a DBLFLT number,

it is set equal to the address of the exponent of the DBLFLT number, not one address ahead of
the exponent.

As another example, the following sequence will add 100 DBLFLT numbers starting at address
1000 in segment @ and leave the result in the FAC.

JMP TRANS /Set FAC =8
DCd
-FAC :
SET 17 /Set IR.7 in SEGA
2\ 1000 /Points to DATA
JMP IRLOAD
SET 17 /]0010 data values
-144
LDF ¢ /Points to data
JMP ADDT /Add one data value to FAC
-7
XSK 1./ /Added 100?
JMP -3 /No, do another

continue here

The coding of ones complement addresses for argumented instructions requires some comment.
For locations within DBLFLTA, a simple minus sign will suffice (e.g., -FAC, -DS1). To
assemble a ones complement data field address for LOC1, you must type =2000-LOC1. DIAL
does not assemble the correct code from the statement -2\ LOC1, nor from -2\ -LOC1

or 2\ -LOCI.

Halts

There are two halts indigenous to DBLFLTI:
19

a) Location DIVIDA+7 - A halt in this location means that an attempt was made to divide
by zero.

b) Location DF6-1 - A halt in this location indicates an overflow condition, i.e., that the
exponent of the result of some operation exceeds +3777.

If a halt occurs at one of these DBLFLT1 locations, inspection of V4+4 and V4+5 in the
DBLFLTA control program and DT7 in DBLFLT] will show from where the call originated.

If underflow occurs, i.e., the exponent of the result becomes more negative than -3777,
the result is set equal to 0.0 and no halt occurs. N.B. Dividing 0.0 by a number with
exponent greater than zero or multiplying 0.0 by a number with exponent less than zero will
result in the correct result of 0.0, but this answer will be obtained because of underflow.

There are also halts in other DBLFLT3 routines. The listing indicates the meaning of each halt.

Storage Locations

Space for temporary storage of 6 DBLFLT numbers is provided within DBLFLTA, These 18
memory [ocations are not used by DBLFLT3, unless listed as an argument. They are as follows:

Symbolic Octal
DSI1 1731
DS2 1734
DS3 1737
DS4 1742
DS5 1745
DS6 1752

In addition user programs will often want to refer to the following four DBLFLTA storage
locations:

FAC 1763
TEMI 1766
TEM2 1771
TEM3 1774

Additional storage locations may be placed in any memory segment and referenced as data
field addresses. Be sure to correctly set the data field before executing DBLFLTA operations
referring to such locations.

Constants

DBLFLTA contains the following useful constants in DBLFLT format:

Symbolic Address Octal Location
Number of Exponent of Exponent
0.0 DCP 1660
1.0 DC1 1663
2.0 DC2 1674

20

Symbolic Address Octal Location

Number of Exponent of Exponent
3.0 DC3 1645
4.0 DC4 1666
10.0 DC14 1655
90.0 DC9Y ' 1642
A7 DCRT2 1671
log; 42 DCLOG2 1652
1n 2 DCLN2 1647
" DCPI 1701
Pz DCPID2 1704
/4 DCPID4 1676

Additional constants which are frequently used may be added to this list at the sacrifice of
these constants or of temporary storage locations. Constants which are seldom used should be
located elsewhere in memory and accessed by using the appropriate data field address. The
constants for the expansions of sin X, arctan X, and arcsin X are stored in the memory bank
of DBLFLTB since they are not of general use. Many of the constants in DBLFLTA are used
by the routines in DBLFLT3.

~ ASSEMBLY

The DBLFLT3 source practically fills the working area so that user programs cannot be
added to it, and must be assembled separately. Typically DBLFLT3 will be assembled first,
followed by the user program.

The source DBL3G O defines the locations in DBLFLT3 which the user may have to access
Four versions of DBL3G O have been prepared with non-identical entry point symbols (r
ADDT, ADDTX, ADDTY, ADDTZ).

To illustrate the use of these sources, suppose the user program consists of two sources. One
fills segments 0 and 2. The second fills segment 5. All three segments require access to
DBLFLT3. DBL3GO may be located in segments 2 and 5 and DBL3G OX in segment .
Assemble DBLFLT3 first (it need not be removed from file). Then assemble segment 5. Assemble
segments 0 and 2 last.

MODIFYING DBLFLT3

The package DBLFLT3 is designed to permit ready modification by user. Some advice in making
certain types of modifications is mentioned in this section.

The simplest type of modification is a change to a different memory field configuration. To
accomplish this change, it is necessary only to modify the Memory Segment Assignment
equalities at the beginning of DBLFLT3 and in DBL3GO. The symbols SEGA and SEGB must
be set to the desired memory segments of DBLFLTA and DBLFLTB. Ordinarily, these symbols
will have the same values in every program segment in which they occur.

21

The DBLFLTB control program can easily be used to access additional routines placed in
locations 1113-1777 of segment SEGB. Additional entry points must be added to DBL3G (.
just ahead of location NEGFAC and the jump list in SEGB must be expanded to show the
new entry points. New entry points to DBLFLTA can also be added if desired.

DBL3G O may be shortened only by deleting unused entry points starting at the top of each
XSK I 17 series (i.e., starting with NEGFAC and KBD). It is not legal to delete entries
internal to the XSK | 17 series (i .e., SIGN) unless all entry points abave the one to be
deleted have also been deleted.

If a wholesale reshuffling of DBL3GO is attempted, it is necessary that the jump lists in
SEGA and SEGB match the sequence of entry points in the copies of DBL3GO located in
each segment of the user program (and at the end of DBLFLTB). Note also the instructions
at locations V6+10 to V6+14 in the DBLFLTA control program.

If a slight increase in speed will help, the DECUS No. L-68 conirol program (along with
the program called DBLFLTGO) takes about half as long as that in DBLFLT3 and may be
modified for use with DBLFLT3. However, it uses more locations in the main program in-
struction field than DBL3G O and, in its present form, does not give the user control over
the data field established during DBLFLT1 operations.

The subroutines SQROOT, FIX12, ARCSIN, and LOGS are presently set up to return to

~ location .+1 if the argument is outside the interval normally expected for these routines.

_ This configuration was designed to permit easy error recovery but it necessitates the alloca-
tion of an extra memory location to each call to one of these routines. If the error recovery
option is not needed and the programmer is strapped for space, these routines can be readily
modified by replacing certain XSK and JMP instructions with NOP's and HLT's so that the
program halts in DBLFLTB under error conditions and returns to .+1 as the normal exit. The
changes necessary are obvious from the program listings.

If you wish to delete substantial sections of DBLFLT3 it may be reassuring to know that all
memory references are symbolic except those within individual subroutines and the JMP 20
instruction in DBL3GO. Hence, if assembly causes no error messages, the resulting binary
will probably run. DBLFLTB, along with its half of DBL3G O, may be deleted entirely (or
overlaid) without affecting the operation of DBLFLTA.

Modifying DBLFLT Program to Use DBLFLT3.

Programs written for use with the original DBLFLT can generally be used with DBLFLT3,
provided the following modifications are made:

1. All jumps to locations in DBLFLT or its subroutines must be changed to become jumps to
DBL3GO. Some infrequently-used entry points to DBLFLT have not been included in DBL3GO.
These entries to DBLFLT are not possible without modifying DBL3GO.

2. Addresses relative to tags in DBLFLT, IFORL8(TTYIN) or OFORL8 (TTYOUT) should ke

checked to determine whether the modifications in these routines necessitate modification of
the address calculation.

22

3. All references to locations in DBLFLT except those appearing as arguments of DBLFLT
instructions must be incremented by 2000, i.e., made into data field addresses. (This is
most easily accomplished by typing 2\ prior to the address in manuscripts to be assembled
by LAP6~DIAL.) Note that this precludes direct addressing of these locations.

4. All references to locations in the main program which appear as arguments of DBLFLT
instructions must be incremented by 2000, i.e., made into data field addresses.

5. Dato field control must be inserted so that DBLFLT3 references the appropriate arguments.

6. Instructions which set index registers for use as arguments of DBLFLT instructions must be
replaced by routines which set the equivalent SEGA register.

7. The manuscript of DBL3G O must be added to the main program saurce.

23

APPENDIX | - DBLFLT3 OPERATIONS

All DBLFLT3 operations are performed by a JMP to the appropriate entry point in DBL3GO.
The C(AC) are used by a few operations and are ignored by the other routines. Upon return
the contents of most registers (Multiplier Quotient, FLO) are indeterminate. The accumulator
is cleared in many cases, indeterminate in others and in a few cases contains information
(KBDI, FIX12).

ABS1 - Compute Absolute Value via IR.1

ABS1 is an unargumented operation which computes the absolute value of the number pointed
to by IR.1 in segment SEGA. First set IR.1 to the location of the exponent of the number to
be operated on using IRLOAD. Then enter via JMP ABS1. Return is to .+1 with C(AC) =
and the result left in the same locations where the number was found. IR.1 is incremented
by 3. Note that IR.1 must be set immediately before the JMP to ABSI as it is used by most
other DBLFLT3 operations.

ADDT - Add Two DBLFLT Numbers

Enter via JMP ADDT followed by 1, 2 or 3 arguments as described in the section on Argu-
mented Operations. Returns with C(AC)=f to .+2, to .+3 or to .+4 as appropriate.

__In this routine the exponents of A and B are compared. The larger exponent becomes the

_ exponent of the result; and the fraction of the number with the smaller exponent is shifted
right a number of places equal to the difference between the two exponents, i.e., the binary
points are aligned. The fractions are then added, the sum becoming the mantissa of the
result.

ARCSIN - Compute Arcsin X
ARCSIN calculates ARCSIN X for =1<X<1. The answer is given in radians between - /2

and 7/2. To use ARCSIN, place X in the FAC and enter via a JMP ARCSIN. The program
returns fo .+1 if X! >1. Otherwise, return is to .+2 with arcsin X in the FAC and

&—C(AQ) # 4.

This subroutine uses the approximation, given by Hastings*:
Arcsin X = 0/2 -1 - X \V (X).

where:

*Hastings, Cecil, Jr., Approximations for Digital Computers, Princetan University Press
(1955).

24

_ 2 3 4 5
q)(X)—AO+A]x+A2X +A3X +A4X +A5X

AO = 1.570795207
A] = =-0.214512362
A2 = 0.087876311
A3 = ~0.044958884
A4 = 0.019349939
A5 = -0.004337769

and C'SXi] .

For X<0, the subroutine uses the absolute value of X in the calculation and complements
the answer automatically.

- ARCTAN - Compute Arctangent X

ARCTAN calculates the arctangent of X for any X. The answer is given in radians between
- "/2and "/2. To use ARCTAN, place X in the FAC and enter via a JMP ARCTAN.
Return is to .+1 with arctan X in the FAC and C(AC) # 4.

The following approximation from Hastings is used:

Arctan Y = 11/4+C Z+ c323 N c525 v+ c9z9
where:

C, = 0.9998660

C, = -0.3302995

C, = 0.1801410

C, = -0.0851330

C, = 0.0208351
and 0<Y<

25

If X<0, the calculation is performed wi’rh‘X and the result is complemented automatically

before exiting ARCTAN.

COMI1 - Compute Negative via IR.1

COMI is an argumented operation which computes the negative of the number pointed to

by IR.T in segment SEGA. First set IR.1 to the location of the exponent of the number using
[RLOAD. Then enter via JMP COMI. Returns to .+1 with C(AC) = @ and the result left

in the same location where the number was found. [R.1 in SEGA is incremented by 3. IR.1
must be set immediately before JMP COM1 as most other DBLFLT1 operations will alter its
contents.,

COMPAR - Compare Two Numbers

Compare is argumented instruction which looks at any two DBLFLT numbers and determines
whether A=B, A>B or A<B. The entry jump to COMPAR must be followed by one or two
arguments (the last argument is negative).

JMP COMPAR JMP COMPAR
-L(A) L(A)
+2 -L(B)
43 43
44 .+4
.+5

If a single argument is used, the routine compares the FAC with the number A at location
L(A). Return is to .+2 if FAC=A, to .+3 if FAC>A, and to .+4 if FAC<A. If two arguments
are used, A and B are compared. Return is to .+3 if A=B, to .+4 if A>B, and to .+5 if

A<B. C(AC) # f upon exit. The numbers referenced by the arguments are not changed by
COMPAR. Express ones complement data field arguments as-2000-L(A).

COSINE - See SIN COS

DIVIDE - Divide One DBLFLT Number By Another

Enter via JMP DIVIDE followed by 1, 2 or 3 arguments as described in the section on
Argumented Operations. Returns to .+2, to .+3, or to .+4 as appropriate, with C(AC) =g,

In this routine the exponent of the result is set equal to C(L(A)) = C(L(B)). The mantissa
of A is then divided by the mantissa of B, the quotient becoming the mantissa of the result.

EXPON - Computes ex

To use EXPONENTIAL, place the DBLFLT number X in the FAC. Then enter via JMP
EXPON. Return is to .+1 with e’ left in the FAC and C(AC) = g.

F_IX_ - Fix a DBLFLT Number

This routine will convert a DBLFLT Format number into a signed 23, | bit fixed point number.
Enter via a JMP FIX followed by a single (negative) argument. The argument specifies the
location of the DBLFLT number which is to be fixed and the resulting fixed number is stored

26

in the mantissa words of the same location. Return is to .+2 with the accumulator cleared
unless the number was too big to fix in 2310 bits in which case the accumulator is non-zero

(and shows how many bits too big the number was). The (negative) number at location
FIXA+7 determines the number of bits to the right of the most significant signbit that the binary point

is located. It is presently equal to -27 (=23]0). The FAC is unaffected unless it is explicitly

referenced. Express ones complement data field arguments as =2000-L(A).

The following example will fix a DBLFLT number in DS1 placing sign plus 11 bits to the
left of the decimal point and a 12 bit fractional part to the right of the decimal point.

LDF SEGA /Data field to DBLFLTA
LDA |

-13

STA /Modify FIX routine for
2\ FIXA+7 /11 bits before decimal point
JMP FIX

-DS1

AZE

HLT

LDA | /Restore FIX routine
-27

STA

2\ FIXA+7

The signed integer portion of the result is left in DS1+1; the 12~bit fractional portion in
DS1+2.

FIX12 - Fix DBLFLT Number Into 12 Bits

Enter via JMP FIX12. This routine takes the DBLFLT number in the FAC and aftempts t-
make it into a signed 12 bitinterger. If successful, return is to .+2 with the 12 bit niv

in the accumulator. If the number is too big to fit in 1T bits plus sign ('X' >2047),
return is to .+1 with C(AC) equal to the number of bits by which the DBLFLT number ex-
ceeded 11 bits. In either case, FAC is altered. The fraction to the right of the decimal
point is rounded into the integer to minimize truncation error,

FLOAT - Float a 24-bit Fixed Point Number

This argumented operation will convert a fixed point integer of up to 23 bits plus sign into
the equivalent DBLFLT number. The float routine expects to find the fixed point number
already stored in the mantissa words (.+1 and .+2) of the argument location. The contents
of the exponent location are ignored. The sign bit must be placed in the most significant
bit of the most significant mantissa word. Enter via JMP FLOAT followed by a single
(negative) argument. Return is to .+2 with C(AC) = and the DBLFLT format floated number
stored in the 3 core locations referenced by the argument. The Float subroutine assumes
that the decimal point follows the least significant bit. If not, the contents of location
FLOATA+7 must be changed to 278-b where b is the number of bits which follow the decimal

point. The FAC is unaffected unless explicitly referenced. Express ones complement data

field locations as =2000-L(A). o7

Consider the following examples:

Float a single precision signed number into locations ABC, ABC+1, and ABC+2 in the calling
program instruction field.

LDF SEGC /Set data field to calling program

LDA 1 /Load the number

XXX

STA /Put it in ABC+2

ABC+2

SCR 13 /Get rid of number but keep the sign
/by scaling right ”]O places

STC ABC+1 /Put sign in Bit § of = ABC+I

JMP FLOAT /Float number

-2000-ABC /in data field register

returns here with DBLFLT number L(ABC).

Float a signed double precision number in which the decimal point is to the left of the least
significant 12 bits. Get from 451-452 and leave the result in DS1.

LDF SEGA /LDF to DBLFLTA
LDA I
13
STA /Modify FLOATA+7 for fixing
2\ FLOATA+7 /with 11 bits prior to decimal point
SET I'1
2\ DS1
SET 12
451
LDA 2 /Get sign and most significant 11 bits
STA 11 /Save in DS1+1
LDA | 2 /Get least significant 12 bits
STA I /Save in DS1+2
JMP FLOAT
-Ds1
LDA | /Restore float routine
27 /to its normal condition
STA

2\ FLOATA+7

continue here
FLOT12 - Float Contents of Accumulator
This subroutine will float a signed single precision (12-bit) fixed point number. Enter via
JMP FLOT12 with the number to be floated in the accumulator. Return is to .+1 with the
number left in the FAC in DBLFLT format and C(AC) = . This entry is not argumented.
IRLOAD - Load Index Registers in DBLFLT3

Enter this routine via JMP IRLOAD. Return is to .+1 with C(AC) ¥ 8. The routine transfers
28

the contents of locations 1-11 and 13-16 from the calling program field into the corresponding
locations in segments SEGA and SEGB. This allows the programmer to use SET and STC
commands followed by JMP IRLOAD to set index registers in DBLFLT3. Registers 12 and 17
are specifically excluded from transfer as these are used by the control program and must not
be disturbed. Not all of the 14 registers transferred are available for use. In DBLFLTA
registers 6-11 are free and 13-16 may also be used if TTYIN and TTYOUT are not called.

In DBLFLTE, registers 10, 11, and 13-16 are free.

KBD - Read ASR33 Keyboard

Enter with JMP KBD. Returns at .+1 with 8-bit ASCIl code in accumulator if a character
was waiting. Otherwise returns immediately to .+1 with C(AC) = #.

KBDI - Read ASR33 Keyboard |

Enter with JMP KBDI. If no character has been struck the routine waits until one is struck.
Return is to .+1 with the 8-bit ASCII code in the accumulator.

LFCR - Type Line Feed and Carriage Return

Enter with JMP LFCR. Returns to .+1 with C(AC) = . Typing can be speeded up by
changing JMP TYP8B to NOP at location TLFCR+5.

. LOGS - Compute LOG X

LOGS calculates |og2 X, |og]O X, or loge X depending on the entry point. To use LOGS,
place the DBLFLT number X in the FAC. Then enter via a JMP LOG2 if 1092 X is desired
(mostly for logarithmic scaling of data), JMP LOGI0 for log]O X, or a JMP LOGN for t'
natural logarithm, Ioge X. LOGS returns to .+1 if X <0 with the FAC unchanged. If X

return is to .+2 with the appropriate logarithm in the FAC. The accumulator is cleared 3=
turn is to .+2 but not cleared if return is to .+1.

The basic calculation in this subroutine yields Iog2 X; the other logarithms are derived

from this one by multiplying by the appropriate constants. The algorithm makes use of the
special format of DBLFLT numbers:

1) x =2t (v)

where 1/25 IY]‘ <1.

Taking the logarithm of eq. 1,

2) log2 X=L+ |092 Y] .

and L is the first approximation to log,, X. If X itself satisfies the inequality 1/2 < X <1,
then L = 0 and we have no significanfzbifs yet for the log calculation. On the other hand,
if X lies outside this interval, then we have already obtained some bits (at most 11) of Iog2 X.

29

To get the remaining bits, we must get an approximation for |092 Y] . As it stands, Y]

would have zero in the exponent register, and so the above scheme would not give us o
useful approximation to Iog2 Y] . Since Y] is less than 1, raising it to some positive power

Q will result in a non-zero, negative number in the exponent register, and this number
can be used to derive an approximation of log2 Y] from the relation:

3) log Y= Q-] log YQ

The higher the power Q, the more significant bits in the approximation, so Q should be as
large as possible without producing overflow. The value of Y. for which the exponent
register increases fastest is the smallest value, namely 1/2. In this case,

4 1/2%=27= 2@ a9

where the far right term of the equality represents the DBLFLT format number. In order
that the most bits be obtained without the exponent register overflowing,, Q should be
chosen so that Q-1 is equal to the capacity of the exponent register or 2 '-1. In DBLFLT
format, we then have:

Q_M
5) Y] =2 (Y2)
_ and
-1
6) |092 Y] =Q (M+ |o‘c_;2 Y2).

From this we get a better approximation to l092 X, namely
7) log, X = L+ 271 .

If we now treat Y, as we did Y], we get

2

11 22

8) |092X=L+2_ M+2“N,

where N is the exponent which results from raising Y2 to the 2] Tth power.

Since the original uncertainty in Y, was at least equal to the least significant bit or i2-22,

1
and the uncertainty of a number raised to a power Q is Q times the uncertainty or the
original number, we can extract no more significant bits by continuing this process. The
subroutine LOGS, therefore, uses eq. 8 to determine |092 X.

MAGTST - Magnitude Test

This subroutine determines whether ,Xl <1 or iX >1. Place X in the FAC. Then enter
via JMP MAGTST. Return is to +1 if |X| >Torto .42 f IXI <1 with C(AC) # 8.

30

MULT - Multiply Two DBLFLT Numbers

Enter via JMP MULT followed by 1, 2 or 3 arguments as described in the section on Argu-
mented Operations. Returns to .+2, to .+3, or to .+4 as appropriate with C(AC) =4,

In this routine the exponent of the result is set equal to the sum of the exponents of A and

B. The least significant portion of the mantissas of A and B are rotated right one place in

order to restore the sign bit to its normal position for use by the MUL command. The result
fraction is calculated by forming the proper sums of the most and least significant products
of the most and least significant parts of the fractions of A and B.

NEGFAC - Complement FAC

This subroutine computes the negative of the number in the FAC. First place X in the FAC.
Then enter via: JMP NEGFAC. Return is to .+1 with =X left in the FAC with C(AC) # #.

POWSER - Power Series

For any reasonable number of terms, this program calculates the power series:

n-1

cxX"+c X"+, +CX+C
n n-1 o

1
.. The table of constants must be placed in segment SEGB (in DBLFLT format) ordered sequen-
- tially beginning with Cn in the lowest 3 addresses and ending with Co. Before entering the

routine place X in TEM2 in DBLFLT format and set C(IR.4) = -n in segment SEGB (n =
number of terms - 1). Put the starting address of the table of constants in the accumulator
(as a data field address). Then enter via JMP POWSER . Return is to .+1 with the result
left in the FAC and C(AC) = 8. A sample calling sequence follows:

to compute C3n:3 + C2n2 + C]n +C

LDF SEGB /If necessary

LDA | /Put -n in IR.4
1-4

STA

2\ 4

JMP TRANS /Put X in TEM2
L(X)

-TEM2

LDA |

A\ L(Cy)

JMP POWSER

returns here
SIGN - Sign Test

SIGN TEST determines whether X = 0, X>0, or X<0. Place the DBLFLT number X in the

31

FAC. Then enter via: JMP SIGN. Return isto .+1 if X=0, to .+2 if X>0, or to .+3
if X<0 with C(AC) # @.

SIN COS - Compute Sine or Cosine

To use SIN COS, place X in the FAC. Then enter via one of the following jumps:

To compute sin X:

JMP SINDEG if X is expressed in degrees
JMP SINRAD if X is expressed in radians
JMP SINPI2 if X is expressed in " /2 radians

To compute cos X:

JMP COSDEG if X is expressed in degrees
JMP COSRAD if X is expressed in radians
JMP COSPI2 if X is expressed in "/2 radians

Return is to .+1 with the answer left in the FAC and C(AC) # 4.

SIN COS calculates sin /2 X according to the following approximatioh from Hastings:
sin /2 X = C X + C X+ C X + €X'

" where 1 3 7
C] = 1.570794852
C3 = =0.645820978
C5 = 0.079487663
C7 = =0,00436246

SIN COS calculates the sine or cosine of any argument. Internal prescaling permits the
direct calculation of sin x for either radian or degree arguments. Cosines are calculated
by increasing the argument by "/2 radians and then calculating the sine of the resultant.
An internal normalization routine automatically shifts the argument to the interval between
- /2 and ™ /2 radians, thus allowing solutions for any value of the argument. The (/2
radians) measure equals 1 for 90° angle, 2 for 180°, etc.

SQROOT - Square Root
This program calculates square root X. Place X in FAC as a DBLFLT number. Then JMP

SQROOT. The program returns with square root |X in the FAC. Retfurn is to .+1 if X<¢
and to .+2 otherwise with C(AC) # 8.

SUBT - Subtract One DBLFLT Number From Another

Enter via JMP SUBT followed by 1, 2 or 3 arguments as described in the section on Argu-
mented Operations. Returns with accumulator cleared to .+2, to .+3 or to ,+4 as appro-
priate. In this routine the mantissa of the second argument is complemented and control
is transferred to the add subroutines.

32

TEN2N - Compute 10™

This routine will raise 10 to the power N where N is a positive or negqhve integer. N
must be a signed 12 bit fixed point number with N '<1 000 Enter via JMP TEN2N with

N in the accumulator. Return is to .+1 with 1ON left in TEM] as a DBLFLT number and
C(AC) # 8. This routine alters FAC, TEMI1, and TEM2. An overflow halt will occur in
DBLFLTT if |N | >777g.

TRANS - Move a DBLFLT Number

Enter with JMP TRANS followed by one or two arguments. The last argument must be
negative. Return is to .+2 or .+3 with C(AC) = g.

JMP TRANS JMP TRANS
2\ LOC1 -2000-LOC1
-DS2 return here

return here

In the first example, C(LOCI1) are moved into (DS2). FAC and LOC1 are unchanged. In

the second example, C(FAC) are moved into (LOC1). The FAC is unchanged by TRANS unless
it is listed as the second argument. Express ones complement data field addresses as

_ =2000~L(A).

TTYIN - Enter Numbers via Teletype. Make a DBLFLT Number.

This subroutine allows the user to enter decimal numbers via the ASR-33 teletype. A
number may be entered in any allowable FORTRAN |, F, or E format, e.g., the number
497 may be entered in any of the following ways:

497

497.

497.0
49.7000 E+1
.497 E3.0
4970 E-1

To use this routine enter via JMP TTYIN with the accumulator either cleared or with the

first 8=bit ASCIH character in the accumulator. The routine then interrogates the teletype
and enters decimal digits and characters until RETURN is struck. Each character except
RETURN is echoed on the printer as it is struck. Normal return is to .+2 with the number
left in the FAC in DBLFLT format, and C(AC) =@. Striking RUBOUT causes an immediate
return to .+1 (in this case the contents of FAC are meaningless). The minus sign may be
entered at any point in the number. The decimal paoint (.) is sensed and interpreted.
Commas, spaces, and illegal characters are ignored. This routine alters FAC, TEMI, TEM2,
and TEM3.

33

TTYOUT - Type a DBLFLT Number in Exponential Format

This routine will print out a DBLFLT number on an ASR33 teletype. Only the number itself
is printed by TTYOUT; any desired formatting (including line feed or carriage return) must
be done by the user. The printed number will be in the format:

x . xxxxxxEtyyy

Enter via JMP TTYOUT with the number to be printed in the FAC. Return is to .+1 with
C(AC) = . This routine alters FAC, TEM1, TEM2, and TEM3.

TYP6 - Type 6-bit ASCII Character

Enter via JMP TYP6 with é-bit ASCII code in bits 6-11 of accumulator and bits 0-5 set to
zero. Returns to .+1 with C(AC) = 8. Typing may be speeded up if the present instructions
are replaced with those on the right below. However, the user program must then issue a
TLS command before the first use of the teletype routine.

Present Faster
TTYPS, SET 4 TTYP8, SET 4
/) g

IOB IOB
6046/TLS 6041/TSF
108 JMP.-2
6041/TSF IOB

JMP.-2 6046/TLS

TYP8— Type 8-bit ASCIl Character

Enter via JMP TYP8 with 8-bit ASCI| code in bits 4-11 of the accumulator. Return is to
.+1 with C(AC) = 4.

34

_

- suou IIJSV'Q T ou ou) Iged (3F7em) 1I0SV 3T9-8 PeEY
€°0 auou HHum< T ou ou agy (Sur3irem OU) TIDSV 3ITG-8 PEAY
L°0 auou p# T ou ou] aQvOTdI 9T-¢T1 ® TTI-T'¥I vmoﬂ
1 i) T ou sak) 110714 iequnu 379 ZT © 3IBOTI
g°0 ‘3aw 0 z 241 ou T LVo1d Isqunu 3Tq 47 ' IBOTL
G-I1=8-0 1 iequnu _ 7° T A ou) ZIX14 S31Tq 7T 03Ul XI4
0°2-L°0 i *3xe I0AXT:IP# 4 gdl ou T XI14 $1Tq H7 03UT XTI
Q00eT-9 Wiazmwhh g T I ou i) NOdXA %° a3ndwo)
G'6 ‘81w) VAR A edl ou €Tt HAIAIC 2pTATA
‘LT NWHSMH.m P# T a ou) ¢1ds03 - AmGWﬂva W\mw X 80D
‘LT 7-TRAL‘d D# T I ou) avisod (sueIpe1) X So0)
LT T-TRAL‘A g+ T i ou) 9IAS0D (so9218ep) X s0)
SeT0 duou P Ssviece Y1 ou T YV KOO uostiedwod DTIBWYITIV
GE'0 gl ¥I ®BTA] T el ¥4I ou)} THOD T'¥I ®IA (°3€8au) juswaldwo)
AT A i A A g# T I ou ¢ NVIOUV Ovd Fo 3jusSuel day
07T g-TRAL‘A ot T T a ou ¢ NTSOUV Ov4 3O Suts 2y
9' 27’1 “3ae 0 weeT 24l ou €21 1aav UOTITPPY
Se'0 _ma.MHm._.b ;] T gl I ou & 1s9v 1°¥I ®IA onIeA 23nT0SqY
("5asm) QEUELIV NSOLEM ;0IqTEN SINTAoNY Iniod
ARIL SYdLSIDTd dILIV +* 0L d1LES &adSsn 40 K4INA NOILIONNAL
TVOIdAL IT474dd (OV)0 sSNInIxg YdHLO (OV)O AHTANN 0De19d ANILNOYENS

SNOIIVYEdO € I1T474d 40 ITIVL — II XIANZddV

35

99°0 *3xe 1) €z 2dl ou 2T SNVII Ioquau J79q A9FSued]

*0%-0'% Z-TWELA B# T ou sof [4] NZN4I N I3mod 2y31 o3 (T °9sI®Y

L°C-%"1 *3ae)] vieg¥e 2dl ou £c‘t Igns uof3oRIIqNG

*OTT €-TWHL‘A p# YA a ou ¢ I00¥DdS OVd JO 3001 aaenbg

‘LT T-TWAL‘A p# T I ou] CI4NIS (suerpexa z/u) X uis

LT MIHEMHaw g# T d ou & aQviNIs (sueTpe1) X UIg

LT CT-TWHL‘d g# T a ou 8 DEANIS (se2189p) ¥ urs

Z°0 suou p# €21 a ou ¢ NDIS ovd yo u3ts 3s3]

uial/g ¢ WAL d) T pq.mH CEY Y) YASMOd _ S9Ta98 19mog

0 d - p# T d ou g . OVI9IN ova Amummmnv JuswaTduon

8’1 ‘3ae () 7e‘e R:0 ou g¢'r I10K ArdratnR

0 auou B# T Y ou 1] ISIOVIH snTeA ?a3nTosqe ummH

‘0§ €-TWIL‘J 0 p# A | L4 ou) N9OT X Jo @ eseq So7

05 €-TWHAL‘Z o o# AN | I ou B 01901 X Fo QT @seq 807

‘0§ €-TWAL‘d | 0 o# °5T I ou ¢ 2901 X Jo g oseq 8o

*00€ auou @ T ou ou ’ @ ¥od1 uinjiai 98BTIARD § PPOF OUTT -

(*o°sw) @WIAITV NEnLAd {QAATAN SINTHODYV INIOQ

OAIL SYAISIOM YLV +* 0L dnras iazsn a0 KYINA NOTIONNI

TVOIdAL 1147490 (OV)o sN¥nIEE YIHLO (V)0 ¥AgWaN 09¢714a mzHH:ommpm

(z .@8ed)

SNOILVEEdO € 174790 40 AIEVLI - 11 XIGNdddv

36

«£iqus 910j2q (VOIS jududas ur) 398 °q isnu s3I

+zoqunu TeSSTTT 10 3ulpeOTi

+gqusum3re weadoid Iesn 8yl £q po13Toeds se si33s13=21

uoun8ie Se po3lsT] Si931ST391 XIpufl Auy

&S

9y4 Jo siuajuod siwl[e 10 sasn (4

€114T4dq 193 1® suotpleisdo asayl

oA0 ¢*9°T ‘1011® S93IBDTPUT UOTIBOOT STUI 03 uiniax (@

goms juswdes ut (4
vods 1usudas uf (e

(8ae

‘00T 2uou ¢ 1 ou sok 1) gdAlL IID0SVY 319~8 Iutid

*00T suou ¢ T ou sak) 9dAL 1I0SY 379-9 IUFid

00¥T €-TWAL‘d) T i ou) INO0KLL . ioqunu B 3INO0 3UTAJ

--- g-TRaL‘d 9 (AN ou 1105V) NIALL zaqunu & up 2d4L
(FoeswW) QMEIITY NAOLHE {qUQEEN SINTNNOWY ~ INIOd .

TAII SEEISIOEE ®EsdV +° 0L dni¥s 43St i0 ANINE NOTIONDA
TVOLIdAL 174744 sNEnI¥¥ ~ WdHIo (OV)D ¥AGAAN 00ETHd ANILNOY¥EAS

(ov)0

(¢ o8ed)

v

SNOILVIAd0 € 11a149ad 40 4'19vl - IT XIONIddY

37

