
/@\DECUS
\ / PROGRAM LIBRARY

DECUS NO.

TITLE

AUTHOR

COMPANY

DATE

SOURCE LANGUAGE

12-7

DBLFLT - DOUBLE FLOAT MATHEMATICAL ROUTINES

Doqald A. Overton, Ph. D.

Eastern Pennsylvania Psychiatric Institute
Phi tadelphia, Pennsylvania

Submitted: July 10, 1970

LA P6- D IA L

Although this program has been tested by the contributor, no warranty, express or implied, i s made by the contributor,
Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the
program or related program material, and n o responsibility i s assumed by these parties in connection therewith.

DBLFLT - DOUBLE FLOAT MATHEMATICAL ROUTINES

DECUS Program Library Write-up

Introduction

DECUS No. 12-7

The DBLFLT Mathematical Routines tape contains various LINC mode mathematical subroutines
which operate on a floating point number composed of a 24-bit mantissa and a 12-bit exponent.
AI1 these routines use or are derived from the program DBLFLT which was written for the
classic LINC computer by Michael McDonald.

The source entitled DBLFLT i s identical to the DBLFLT used with LAP4 and LAP6 in the classic
LINC and LINC-8 computers.
number-letter symbolic tags used by LAP4 and LAP6 have been reversed to form letter-number
symbolic addresses which are acceptable to LAP6-DIAL. The reader i s referred to the document
entitled Dovble Precision Point System (DEC-L8-SFAA-D) for a discussion of the use of this
program.

It has not been moved or altered in any way except that the

The source entitled DBLFLTl i s a slightly altered version of DBLFLT in which the utilization
bf certain subroutines has been made slightly simpler than in the original DBLFLT. A docu-
ment describing the use of DBLFLTl is attached. Since DBLFLTl uses mnemonic symbols for
i t s entry points, users wi l l probably find i t easier to use than the original DBLFLT when
developing new programs.
deleted from ,this program source to make it shorter and more manageable.

DBLFLTl S i s identical to DBLFLTl except that comments have been

DBLFLT3 i s a package of mathematical subroutines built around DBLFLTl allowing a more
extended set of mathematical operations. A document describing the use of this program i s

attached. This package of subroutines was originalty put together by Paul Sullivan and w
previously released for the LINC-8 as DECUS No. L-68. DBLFLT3S i s identical to DBLFLi
except that comments have been deleted to shorten the source. DBL3G0, DBL3GOX,
DBL3GOY arid DBL3GOZ are programs used in conjunction with DBLFLT3 and are described
in the DBLFL'T3 document.

Obviously al l credit for these programs belongs to the original authors.
current authcs has somewhat revised both DBLFLTl and DBLFLT3 for the PDP-12, questions
concerning the operation of these programs should be init ial ly directed to the current author:
Doqald A. Overton, Eastern Pennsylvania Psychiatric Institute, 3300 Henry Avenue,
Philadelphia,, Pennsylvania 191 29.

However, as the

DBLFLTl

Source Title: DBLFLTl ’
Source Language: LAP6-DIAL

Computer : PDP-1 2A2

Author : Michael McDonald
3

Biomedical Computer Laboratory
Washington Un ivers i ty
St . Louis, Missouri

ABSTRACT

DBLFLTl i s a double precision floating point package which operates i n the LINC mode and
uses two quarters of the current instruction field. All i t s operations are performed on a
standard format number which has a double precision mantissa and a 12-bit exponent.
DBLFLTl provides the basic mathematical operations (add, subtract, multiply, divide,
absolute value, complement) as well as routines to convert between fixed point and floating
point format and to move floating point numbers from place to place in core.
the central mathematical program used in DBLFLT3 and this document wi l l reference sections
of the DBLFLT3 document wherever possible to avoid duplication.

DBLFLTl is

Utilization

DBLFLTl must be placed in the current instruction f ie ld where i t occupies 776 octal locations
and uses index registers 1-5. Access to i t s routines i s obtained via JMPS to the appropriate
entry points. Most entry jumps are followed by a l i s t of 1-3 arguments which specify the
locations of the numbers to be operated on. The numbers so referenced may be located in
either the current instruction or data fields.

Notation

Same as in DBLFLT3 document.

Floating Point Format

Same as i n DBLFLT3 document.

1 .
LAP4 and LAP6 languages.

DBLFLTl is virtually identical to the earlier program DBLFLT which was circulated in the

2. DBLFLTl w i l l operate in the PDP-12C. However, at present the source and binary are
only available on LINC tape.

3. This document was prepared by D. A. Overton, Eastern Pennsylvania Psychiatric Institute,
3300 Henry Avenue, Philadelphia, Pennsylvania 191 29, who i s also responsible for the
revisions of DBLFLT contained in DBLFLTl .

2

Pr e c is ion

Same as in DBLFLT3 document.

Argumented Operations

The format fur argumented DBLFLTl operations i s identical to that for argumented DBLFLT3
operations except that the JMP i s made directly to the desired DBLFLTl entry point instead
of to the program DBL3GO.

The utilization of index registers i s sufficiently different in DBLFLTl and DBLFLT3 so that i t
w i l l be described separately here for DBLFLTl.
placing the address of i t s exponent in an index register in the current instruction field and
using the index register as an argument in the calling sequence. Allowable index registers
are 6-17.
use by DBLFLT1 .

An argument may be indirectly addressed by

The contents of the index register will be indexed by three immediately after i t s

Consider the following instructions, where A i s at LOCl and B is at LOC1+3.

SET I10
LOCl
JMP SUBT /Enter DBLFLTl
TO
-1 0
returns here

B w i l l be subtracted from A and the result stored in the FAC. When control i s returned to
the user program, index register 10 wi l l contain LOC1+6.

As another example, the following sequence w i l l add 100 DBLFLT numbers starting at addre
1000 in segment 0 and leave the result in the FAC.

LDA I
4000
STC FAC
STC FAC+1
STC FAC+2
SET I7 /Points to data

SET I 1 0 /loo, data values
-144
LDF fl
JMP ADDT
-7
XSK 118 /Done?
JMP. -3
continues here

/Set FAC = fl

2\1000

3

Note that when an index register i s used to reference a DBLFLT number, it i s set equal to
the address of the exponent of the DBLFLT number, not one address ahead of the exponent.

Ha Its -
There are two halts indigenous to DBLFLTl:

a) Location DIVIDEt7 - A halt i n this location means that an attempt was made to divide
by zero.

b) Location DF6-1 - A halt i n this location indicates an overflow condition, i .e. , that the
exponent of the result of some operation exceeds +3777.

If a halt occurs at one of these DBLFLTl locations, inspection of location DT7 w i l l show
from where the call originated.

S tor aae Locations

The DBLFLTl routine includes locations for storage of three DBLFLT format numbers. The
DBLFLT locations designated ARG1 and ARG2 need not generally be referenced by user
programs.
It is implicit ly referenced by most DBLFLT operations which are followed !>y only one or two
arguments, and the user wi l l frequently wish to reference this location. Additional storage

The third DBLFLT storage location i s called the Floating Point Accumulator (FAC).

' locations may be assigned by the user in either the current data or instruction fields.

Constants

Several constants in 12-bit fixed point format are located within the DBLFLTl subroutine,
and hence within the current instruction field. These may be referenced by user programs
using the direct class instruction ADD.

+O
-0
+1
-1

3
5

"8

68 ' 78

20008
60008

D F6- 1

D K7
D L7

DS7-1

COM1+1

QAC12
ADDT

DD6-1

ADDT+4

ADDT+l

DC6-1

Assem b I y

DBLFLTl f i l l s two quarters of the current instruction field. The call ing progrqrn must be
4

placed in the remaining part of the current instruction field and assembled along with
DBLFLTl as a single source. The source DBLFLTlS i s identical to DBLFLTl except that
comments have been deleted to shorten the source.

Modifying Dl3 LF LT1 -
The entire source for DBLFLTl may be relocated within the instruction f ie ld i f desired, as
long as it does not overlay the index registers which i t uses.
modify the relative positions of the different DBLFLTl subroutines, i. e., do not insert user
subroutines or storage locations between DBLFLTl subroutines.

However, i t i s wise not to

Modifvina DBLFLT Proarams to Use DBLFLTl

Programs writfen to operate with DBLFLT can be used with DBLFLTl providing the following
modifications are made:

1 . All jumps to DBLFLT entry points must be changed to reflect the entry point symbolic
addresses of CIBLFLT1. A l l DBLFLT tags have been changed in DBLFLTl. The entry points
are provided with mnemonic symbolic addresses. The remaining symbolic addresses (which
are generally not of interest to user programs) have been prefixed with the letter D. Note
that the absoRute addresses of DBLFLTl entry points are not identical to those of DBLFLT entry
points.

2. A l l non-standard entries to DBLFLT and a l l addresses calculated relative to DBLFLT tags
must be checked to make sure they s t i l l reference the appropriate instructions i n DBLFLTl .
3. The routines for absolute value, complement, and MOVE12 have been modified. It i s
now unnecessary to set IR.2 before entering COMl or ABSI, A l l three of these routines
increment IR . 1 by 3 before returning to the user program, whereas in DBLFLT they increment. !

this register only twice. Similarly, I R . l and IR.2 are incremented by 3 each time MOVE1'
i s used.

The table below l i s t s the DBLFLT tags deleted and their equivalent symbols in DBLFLTl .
DBLF LT1

Symbol Octa I

ADDT 1000
S UBT 1 043
MULT 1052

DIVIDE 1161
MOVE12 1301
QACl:! 1313

DBLFLT
Tag o c tu I

5A 1000
5B 1 045
5c 1054

5G 1163
6A 1303
6B 1313

COMl 1332
ABS1 1335
D D6 1337

6D-2 1332
missing ----
6D 1334

5

SETUP
EX IT
ARG1

ARG2
FAC
FLOAT
FIX
TRANS

1413
1627
1765

1770
1773
1736
1750
1727

7A
7Q
7 x

7Y
7 2
5 0
5 P
5 N

1406
1623
1723

1726
1731
1743
1755
1734

6

APPENDIX I - DBLFLTl OPERATIONS

A l l DBLFLTl operations are performed by a JMP to the appropriate entry point in DBLFLTl.
The C(AC) are ignored by al l routines. The accumulator i s cleared following a return from
the routines ADDT, SUBT, MULT, DIVIDE, TRANS, and FLOAT; and i s indeterminate or
contains information following return from the other routines.

- ABSl - Compute Absolute Value via I R . l

ABSl is an unargumented operation which computes the absolute value of the number pointed
to by I R . l .

First set IR. 1 to the location of the exponent of the number to be operated on.
via: JMP ABSl.
where the number was found.
immediately before the JMP to ABSl as it is used by most other DBLFLTl operations.

Then enter
Return is to .+l with C(AC) =,d and the result left in the same locations

I R . l i s incremented by 3. Note that I R . l must be set

ADDT - Add Two DBLFLT Numbers

Enter via JMP ADDT followed by 1 , 2 or 3 arguments as described in the section on Argumented
Operations. Returns with C(AC) = ,d to .+2, to .+3 or to .+4 as appropriate.

COMl - Cowpute Negative via I R . l

COMl i s an unargumented operation which computes the negative of the number pointed to by
IR. 1. First set IR. 1 to the location of the exponent of the number. Then enter via JMP
COMl, Returns to .+l with C(AC) = fl and the result le f t in the same location where the
number was found. IR. 1 i s incremented by 3. I R . l must be set immediately before JMP
COMl as most other DBLFLTl operations wi l l alter i t s contents.

FIX - Fix a DBLFLT Number -
This routine wi l l convert a DBLFLT format number into a signed 23

Enter via a JMP FIX followed by a single (negative) argument. The argument specifies the
location of the DBLFLT number which i s to be fixed and the resulting fixed number is stored
in the mantissa woyds of the same location. Return i s to .+2 with the accumulator cleared
unless the number was too big to fix in 23 bits, in which case the accumulator i s non-zero

(and shows how many bits too big the exponent was). The (negative) number at location
FIX+7 determines the number of bits to the right of the most significant sign bit that the binary
point is located.
explicit ly referenced.

bit fixed point number. 10

10

It i s presently equal to -27 (=23). The FAC i s unaffected unless it i s
Express ones complement da?a field arguments as -2000-L(A).

The following example w i l l f ix a DBLFLT number in LOCl placing sign plus 11 bits to the
left of the decimal point and a 12 bit fractional part to the right of the decimal point.

7

LDA I
-1 3
STC FIX+7
JMP FIX
-Loa
AZE
H LT
LDA I /Restore FIX routine
- 27
STC FIX+7

/Modify FIX rotrtine for 11 bits

b o o big to fix

The signed integer portion of the result i s left in LOCl+l; the 12-bit fractional portion in
LOC1+2.

FLOAT - Float a 24-bit Fixed Point Number

This argumented operation w i l l convert a fixed point integer of up to 23 bits plus sign into
the equivalent DBLFLT number. The float routine expects to find the fixed point number
already stored in the mantissa words (.+l and .+2) of the argument location. The contents
of the exponent location are ignored. The sign bit must be placed in the most significant
b i t o f the most significant mantissa word. Enter via JMP FLOAT followed by a single
(negative) argument. Return i s to .+2 with C(AC) = fi and the DBLFLT format floated
number stored i n the 3 core locations referenced by the argument. The Float subroutine
,assumes that the decimal point follows the least significant bit. If not, the contents of
location FLOAT+7 must be changed to 27 -b where b i s the number of bits which follow the 8
decimal point. The FAC i s unaffected unless explicit ly referenced. Express ones complement
data field locations as -2000-L(A).

Consider the following examples:

Float a single precision signed number into locations ABC, ABC+l, and ABC+2 in the calling
program instruction field.

LDA I /Load the number
xxx
STA /Put i t in ABC+2
A BC+2
SCR 13

STC ABC+l
JMP FLOAT /Float number
-ABC
returns here with DBLFLT number in L(ABC)

/Get r id of number but keep the sign by
scaling right 1 1 places

/Put sign in B i t ,d!f ABC+l

Float a signed double precision number in which the decimal point i s to the left of the least
significant 12 bits. Get from 451-452 and leave the result in LOCl .

8

LDA I
13
STC FLOAT+7
ADD 451
STC LOC1+1 /Save in LOC1+1
ADD 452
STC LOC1+2 /Save in LOC1+2
JMP FLOAT
-LOCl
LDA I /Restore float routine
27 /to i t s normal condition

continue here

/Modify FLOAT+-/ for 11 bi t fixing
/Get sign and most significant 11 bits

/Get least significant 12 bits

STC FLOAT+7

MOVE12 - Move a DBLFLT Number via I R . l and IR.2

MOVE1 2 i s an unargumented operation which transfers the contents of three consecutive
core locations from the address in I R . l to the address in IR.2. First set I R . l and IR.2. Then
enter via JMP MOVE12. Return is to .+l with C(AC) = $ and with I R . l and IR.2 each
incremented by 3. MOVE12 essentially duplicates the function of TRANS but i s quicker and
in some cases requires a shorter calling sequence. Note that I R . l and IR.2 must be set
immediately before the JMP to MOVE12 as they are used by most other DBLFLTl operations.
Both the routines below w i l l move a l i s t of 7 DBLFLT numbers from LOCl to LOC2.

SET I 1
LOCl
SET I 2
LOC2
SET I 3
-7
JMP MOVE12
XSK I 3
JMP. -2
continue here

SET 16
LOCl
SET I 7
LOC2
SET I 1 0
-7
JMP TRANS
6
-7
XSK I 1 0
JMP .-4
continue

MULT - Multiply Two DBLFLT Numbers

Enter via JMP MULT followed by 1, 2 or 3 arguments as described in the section on
Argumerlted Clperations. Returns to .+2, to .+3 or to .+4 as appropriate with C(AC) =8.
QAC12 - Move MQ Register to AC, Al l 12 B i t s

Enter via JMP QAC12. Return is to .+1 with the accumulator containing 12-bits previously
in the MQ. The original C(AC) are lost.

9

- SUBT - Subtract One DBLFLT Number From Another

Enter via JMP SUBT followed by 1, 2 or 3 arguments as described in the section on Argumented
Operations. Returns with accumulator cleared to .+2, to .+3 or to .+4 as appropriate.

TRANS - Move a DBLFLT Number

Enter with JMP TRANS followed by one or two arguments. The last argument must be
negative. Return i s to .+2 or .t3 with C(AC) = $.

JMP TRANS JMP TRANS
2\LOC1 -2000-L0cl
-DS2 return here
return here

In the first example, C(LOC1) are moved into L(DS2). FAC and LOCl are unchanged. In
the second example, C(FAC) are moved into L(LOC1). The FAC is unchanged by TRANS
unless i t i s listed as the second argument. Express ones complement data field addresses as
-2000- L(A) .

10

APPENDIX II

DB LFLTl 0 PERAT IONS

SUBROUTINE ENTRY NUMBER C(AC) OTHER RETURNS C(AC)=O TYPICAL
TIME

ARGUMENTS NEEDED RETURN? (msec)
FUNCTION POINT OF USED? SETUP to .+ AFTER

Addition

Subtraction

Multiplication

Division

Complement

Absolute Value

FIX into 24 bits

Float 24 b i t no.

Transfer DBLFLT NO.

Move 3 words

ADDT 1,213

SUBT 1,213

MULT 1,2,3

DIVIDE 1,2,3

COM1 pf

ABS1 pf

FIX 1

FLOAT 1

TRANS 112

MOVE12 p(

no

no

no

no

no

no

no

no

no

no

**

**

**

**

IR. 1

IR. 1

**

**

**

IR. 1

21314

2,314

2,3,4

21314

1

1

2

2

213

,2 1

1.2-2.4

1 .2-2.5

1.6

9.3

.05

.05

0.5-1.8

0.6

0.4

c -1

**Any index registers listed as arguments must be set before entry

11

D B LF LT3

Source Titles: DBLFLT3, DBL3G01

Source Language: LAP6-DIAL2

3
Computer: PDP-12

Authors: Paul F. Sullivan 4,516

Rayna B. Cole
NASA Electronics Research Center
Cambridge, Massachusetts

ABSTRACT

DBLFLT3 contains LINC mode double precision floating point mathernatica outines. It
can perform many common mathematical functions (add, subtract, sin X e , etc.) as well
as teletype input and output. A l l operations use a double precision mantissa and a 12-bit
exponent. The program occupies 6 1/2 quarters of memory located outside the current
instruction field. Programs dasigned to use the LINC-8 programs DBLFLT or DBLFLT 2 can
easily be modified to operate with DBLFLT3.

k

1 . DBLFLT3 is a revision of DBLFLT 2 (DECUS NO. L-68) for the LINC-8.

2. Many DBLFLT3 routines have previously been circulated in LAP4 or LAP6 language. The
documents describing these previous versions are DEC-L8-FLAA-D, DEGL8-SFAA-D and the
DECUS NO. L-68 document.

3. DBLFLT3 wi l l operate in the PDP-12C. However, at present the source and binary are
only available on LINC tape.

4. Current address i s Cornell Aeronautical Labs, Buffalo, New York 14221

5. The central mathematical program (DBLFLT) as well as some of the subroutines were
originally written by Michael McDonald, Biomedical Computer Laboratory, Washington
University, S t . Louis, Missouri. The remaining routines as well as the control programs which
allow DBLFLT3 to be located outside the current instruction field were written by Paul Sullivan
and Rayna Cole.

6. This document was prepared by D. A. Overton, Eastern Pennsylvania Psychiatric Institute,
3300 Henry Avenue, Philadelphia, Pennsylvania 191 29.

12

N OTAT IO N

Throughout t h i s report the following notational conventions wi l l be employed:

1. Numbers written with a decimal point are decimal numbers. A l l other numbers are octal
unless subscripted with a 10 or a 2 to indicate decimal or binary.

2.
point numbers, each of which numbers occupies three consecutive registers in core.

Single capital letters A, B, C, . . . denote the value of double precision floating

3. Multiple capital letters and numbers (FAC, TEMl , ADDT.. .) represent LAP6-DIAL
symbolic addresses. When referencing DBLFLT format numbers, i t i s customary to specify the
symbolic addresses of the first word (exponent) of the number.

4. L() designates 1 or 3 consecutive core locations as indicated by the context. If L(A) i s
the address of the first word (exponent) of the floating point number A, then A occupies the
three registers in core symbolized by L(A), L(A)+I, L(A)+2.

5. C() specifies the contents of a register or of 1 or 3 memory locations, e.g. C(FAC)
indicates the contents of the FAC.

6. -+ means 'lis (are, be) placed into", e. g. , A + B +L(C) i s read "the sum of the floating
,point numbers A and B i s placed into the three consecutive registers beginning with L(C)."

ORGANIZATION

DBLFLT3 consists of three sections: DBLFLTA, DBLFLTB, and DBL3G0. DBLFLTA and
DBLFLTB can be located in any two memory segments.
each segment from which the user program makes Q call to DBLFLT3 subroutine.

A copy of DBL3GO must reside in

DBLFLTA contains the basic arithmetic operations (the original DRFLT), the teletype iny
and output routines, the subroutine COMPARE, some useful constants in DBLFLT format,
temporary storage areas, and a control program to keep track of the subroutine called and t1-e
cal I ing location.

DBLFLTB contains subroutines for calculating commonly used mathematical functions such as
sine x , square root x , I n x , e , etc.
version of DIBL3G0.

X
It also confains a control program and a modified

DBL3GO contains the instructions necessary to accomplish the jump to the proper DBLFLT3
subroutine. Only DBL3GO must reside in the same memory segment as the user program.
DBLFLT3 routines are entered by a JMP to DBL3GO. DBL3GO also defines those DBLFLT3
symbols which the user wi l l want to reference.

A l l

MEMORY FIELD CONTROL

DBLFLTA f i l l s segment SEGA. DBLFLTB occupies locations 0-1112 of segment SEGB. The
unargumented DBLFLTB operations refer only to numbers stored i n segments SEGA or SEGB and

13

field control i s automatic. Most DBLFLTA instructions (ADDT, SUBT, MULT, DIVIDE,
FLOAT, FIX, TRANS, COMPAR, ABS1, COM1) may refer to DBLFLT numbers located in
any data field and i t i s the user program's responsibility to have the data field set pointing to
the referenced numbers before entering DBLFLT3. Memory field control i s different for
DBLFLTA routines than for DBLFLTB routines and each w i l l be described separately.

When executing a DBLFLTA operation (e.g., SUBT) the user program jumps to the SUBT entry
point in the copy of DBL3GO located i n the current instruction field.
control to the control program in segment SEGA. The control program determines what
instruction and data fields were established prior to the jump to DBL3G0. It then sets the
data field to the call ing program memory segment in order to obtain the return jump location
and the arguments which follow JMP SUBT in the user program. When this i s accomplished,
the data field i s restored to that set by the user program prior to the iump to DBL3GO. Now
a iump is made to the actual DBLFLTl subtract routine in segment SEGA. Note that during
subtraction, the data field i s that set by the user program and data field addresses listed as
arguments in the user program w i l l be correctly interpreted.
i s complete, control returns to the DBLFLTA control program which supervises the return jump
to the calling program. Upon returning to the user program, both data and instruction fields
w i l l be set as they were when the init ial jump was made to DBL3G0. If a DBLFLTA argument
specifies an index register (see below), the appropriate data field address (bit 1 = 1) must be
placed in the referenced index register of segment SEGA before entrance to DBL3GO. Note
that argumented DBLFLTA instructions may operate on numbers stored in any memory segment
either directly or via index registers 6-1 1 in segment SEGA. Obviously a l l data field
addresses referenced by a single argumented DBLFLTA operation (directly or via index registers)
must be i n the same data field.

DBL3GO transfers

When the mathematical operation

Entrance to DBLFLTB routines i s achieved by a iump to the desired entry point in DBL3GO.
DBL3GO effects a jump to the DBLFLTB control program which recovers and saves the instruction
and data fields set prior to entry and the return jump. It then sets the data field to SEGA.
Most DBLFLTB routines operate on specified locations (e. g. , FAC) i n DBLFLTA and these are
accessed as data field addresses. When the DBLFLTB operation is complete, the DBLFLTB
control program re-establishes the data and instruction fields set prior to entry to DBL3G0,
and executes a return jump to the user program.

If a DBLFLTB routine uses a DBLFLTA operation, control i s transferred through the modified
version of DBL3GO located at the end of DBLFLTB. In this case the DBLFLTA control program
i s altered (and later automatically restored) so that the DBLFLTA operation i s performed with
the data field pointing to DBLFLTB. When the DBLFLTA operation i s completed, control i s
returned to the calling DBLFLTB routine and ultimately to the user program. Note that the
data field set by the user program has no effect on DBLFLTB operations. The user may essentially
ignore field control when using DBLFLTB routines except i n the case of the power series routine.
The Table of Coistants for this routine must be placed in segment S E G B in order to be
accessible to the power series routine.

Floatina Point Format

A number X i s said to be expressed in binary floating point representation i f i t consists of
two parts: an integer exponent or characteristic c, and a mantissa or fractional part f such that

14

where O< - - If 1 < 1 .

I

The number i s normalized i f the inequality of f i s

1 /25 / I j (1 .

Any non-zero number can be written in what i s termed normalized binary floating point
representation.

Any number >< that i s manipulated (or generated) by DBLFLT must be (or is) in a normalized
binary double precision floating point format consisting of three consecutive words, a one
word signed exponent E , and two signed mantissa words as follows:

Exponent

Most significant portion
of mantissa

position I
of binary
point

total of
2210 bits

of precision

Least sign i f i cant port ion
of mantissa

,y + L \ coefficient . . . coefficient sign -(= sign . . I
of 2-1 2* -22. bit of 2"' 3. of 2

15

For f > 1/2 (i . e . for the number to be normalized) bit 1 of f must be different from the sign 1
of the mantissa (bit 0 of f and 11. of f). A normalized zero is defined to be E= 4000 =

-3777 (most negative exponent) and f = f = 0000. Negative exponents and mantissas are

ones complement numbers. The two sign bits in the mantissa must, of course, be equal.

-
1 2

1 2

For clarification, le t us look at a few examples of numbers in DBLFLT format.

1 . X = + l . O

0001
2000
0000

E = 1 and f = 2000 OOOO=O 10 000 000 . . . 0002

binary
point

E . 1 x = 2 f = 2 (1*c2-1+0*2-2+ . . .) = 2(1/2) = 1 .o

2. x=-100.0

0007
4677
7777

E = 7 and f = 4677 7777
f = - f = -(3100 0000) =-(0 11 001 000 . . . 0002) .

A

binary
point

3. X = + .125

7775
2000
0000

E = 7775 = 40002) and f = 2000 0000

= 0

binary
point

10 000 000 . . . ooo2

X = 2E f = 2-2(1 -2 - l + 0. 2-2 + . . .) = 1/4(1/2) = 1/8 = + .125
16

Precis ion

Two extra bits of precision, beyond the 2Zl0 bits in the double precision fraction, are

maintained by the DBLFLTl subroutines during their operation i n order to insure there always
being an extra bit on which to round.
absolute value i s obtained; this value i s normalized and then rounded to 22

addition of a 1 to the 23rd bit followed by truncation after the 22nd bit.
sign is restored.

After the mantissa of the result is calculated, i t s
bits by the

Finally the correct
10

The user is advised to note that many numbers which terminate i n the decimal system, e. g.
0.1, are periodically infinite when expressed in their binary representation. Thus truncation
error can become a problem where none i s normally expected; such error cannot be totally
eliminated, but can be minimized by careful programming, e.g., to calculate 0.1 'X'Y,
instead of multiplying 0.1 by X and that result by Y, divide the product X 'Y by 10.0.

For a thorough discussion of the errors associated with roundoff in both fixed and floating
point computations, i t i s recommended that the reader see J. H. Wilkinson's book, Rounding
Errors i n Algebraic Processes, Prentice-Hall, 1963.

ARGUMENTED OPERATIONS

Execution of: the DBLFLT3 operations ADDT, SUBT, MULT and DIVIDE i s accomplished by a
jump to the DBL3GO entry point for the specific routine followed in consecutive registers by
a l i s t of arguments. This argument l i s t may consist of 1 , 2, or 3 items. The method of
argumenting these instructions is described below. The DBLFLT3 operations FLOAT, FIX,
TRANS and COMPAR are also argumenfed but only with one OF two arguments. The procedure
for argument-ing these latter operations i s described in Appendix I for each operation indi-
vidual ly. All other DBLFLT3 operations are accomplished by ynargumented jumps.

The three argument calling sequence i s as follows:

General Form - Specific Examples

JMP SUBT JMP DIVIDE JMP Ml.ILT
TEMl DS1 2\ LOCI
DS1 FAC 2\ LOC2
DS2 -TEM2 FAC

return here

EP i s the DEIL3GO entry point. The arguments are the locations of the exponents of 3-word
DBLFLT numbers (A, B, and C). Letting R stand for one of the operations (+, -, X, +),
the action taken by the subroutine wi l l be:

A R B.-> L(C)

i.e., the operation R wi l l be performed on the floating point numbers A and B, in the order
indicated, and the floating point result w i l l be stored in L(C), L(C)-t-1, and L(C)+2.
i s returned to the main program at locafion .+4; A and B are unchanged. The minus sign i s

Control

17

optional in 3-argument entries and need not be present. (It may only be placed in front of
the third argument.) In the first example the DBLFLT format number in DS1 wi l l be subtracted
from that in TEMl and the result left in DS2. The FAC i s not effected by this operation, nor
are TEMl or DS1. In the second example the C(DS1) are divided by the C(FAC) and the 3-word
result i s left in TEM2.
LOCl i s multiplied by that in LOC2 and the result i s placed in the FAC. Both 2\ LOCl and
2\ LOC2 are data field locations and the data field must have been correctly set prior to the
JMP MULT operation. LOCl and LOC2 must be in the same memory segment.

DS1 and FAC are unchanged. In the third example, the number in

The same four DBLFLT operations may be followed by only two arguments. In this case the
three consecutive addresses in DBLFLT called the floating point accumulator (FAC) are assumed
to be the third argument and the result i s le f t in these locations.

General Form Specific Examples

JMP EP
L(A)

-L@)
returns here

JMP SUBT JMP DIVIDE

-2000- LOCl -TEM2
TEMl 2\ LOCl

These operations wil I perform:

A R B.-> L(FAC)

Note that the second item must be -L(B), the ones complement of L(B). Control i s returned
to the main program at location .+3; A and B are unchanged. In the first example C(LOC1)
in the data field are subtracted from C(TEM1) and the result i s left in the FAC. The second
example divides C(LOC1) by C(TEM2).

The one argument calling sequence i s as follows:

General Form

JMP EP
- L(A)

returns here

Specific Examples

JMP SUBT JMP ADDT
-TEMl -TEMl

The stated argument i s taken to be fhe second argument and the first and third arguments are
assumed to be the FAC. The action taken is:

C(FAC) R A -+ L(FAC)

i.e., the first argument i s the current contents of the FAC and the result i s stored into the
FAC.
to the main program at location .+2; A i s unchanged. The first example subtracts C(TEM1)
from C(FAC) leaving the result in the FAC. The second adds C(TEM1) to C(FAC) leaving
the result i n the FAC.

Note that the argument must be -L(A), a ones complement number. Control i s returned

The FAC i s always altered i f these operations (+, -, X, 5) have only one or two arguments.
However, the FAC i s not altered by operations with three arguments unless i t i s specifically
referenced. Many unargumented DBLFLT3 operations alter the FAC (see Appendix 1 1) .

18

An argument may be indirectly addressed by placing the address of i t s exponent in an index
register of segment SEGA and using the index register as an argument in the calling sequence.
Allowable index registers are 6-11. Registers 13-16 may also be used i f the routines TTYIN
and TTYOUT are not called. The location of the argument wi l l be indexed by 3 immediately
after i t s use by DBLFLTl. Consider the following instructions, where A i s at LOCl and B i s
at LOC1+3.

LDF SEGA
LDA I
2\LOCl
STA

LDF SEGC
JMP EP

10
-1 0

2 \ 10

returns here

/Data field to DBLFLT A
/Load IR.10 in SEGA

/Data field to LOC?

The operation R w i l l be performed on the numbers A and B, i n that order, and the result stored
in the FAC. When control i s returned to the main program, index register 10 in SEGA wi l l
contain LOC1+6. Note that when an index register i s used to reference a DBLFLT number,
i t i s set equal to the address of the exponent of the DBLFLT number, not one address ahead of
the exponent.

As another example, the following sequence w i l l add 100 DBLFLT numbers starting at address
1000 in segment ,d and leave the result in the FAC.

JMP TRANS
DCB

2 \ 1000

-FAC
SET I 7

JMP IRLOAD
SET I7
-144

LDF 9
JMP ADDT
-7
XSK I .’
JMP .-3
continue here

/Set FAC = fl

/Set IR.7 in SEGA
/Points to DATA

/loo, data values

/Points to data
/Add one data value to FAC

/Added loo?
/No, do another

The coding of ones complement addresses for argumented instructions requires some comment.
For locatioris within DBLFLTA, a simple minus sign w i l l suffice (e.g., -FAC, -DSl). TO
assemble a ones complement data field address for LOC1, you must type -2000-LOCl . DIAL
does not assemble the correct code from the statement -2\ LOCl , nor from -2\ -LOC1

or ~\;---COCI.

Halts

There are two halts indigenous to DBLFLT1:

19

a)
by zero.

Location DfVIDA+7 - A halt in this location means that an attempt was made to divide

b) Location DF6-1 - A halt in this location indicates an overflow condition, i.e., that the
exponent of the result of some operation exceeds +3777.

If a halt occurs at one of these DBLFLTl locations, inspection of V4+4 and V4+5 in the
DBLFLTA control program and DT7 in DBLFLTl wi l l show from where the call originated.

If underflow occurs, i.e., the exponent of the result becomes more negative than -3777,
the result i s set equal to 0.0 and no halt occurs. N.5. Dividing 0.0 by a number with
exponent greater than zero or multiplying 0.0 by a number with exponent less than zero w i l l
result i n the correct result of 0.0, but this answer wi l l be obtained because of underflow.

There are also halts i n other DBLFLT3 routines. The listing indicates the meaning of each halt.

Storage Locations

Space for temporary storage of 6 DBLFLT numbers i s provided within DBLFLTA. These 18
memory locations are not used by D5LFLT3, unless listed as an argument. They are as follows:

S ym bo I i c Octa I

DS 1
DS2
DS3
DS4
DS5
DS6

1731
1734
1737
1742
1 745
1752

In addition user programs wi l l often want to refer to the following four DBLFLTA storage
I ocat ions:

FAC
TEMl
TEM2
TEM3

1763
1 766
1771
1774

Additional storage locations may be placed in any memory segment and referenced as data
field addresses. Be sure to correctly set the data f ield before executing DBLFLTA operations
referring to such locations.

Constants

DBLFLTA contains the following useful constants in DBLFLT format:

Symbolic Address
Number of Exponent

Octal Location
of Exponent

0.0 DC@
1 .o DC 1
2.0 DC2

1660
1663
1674

20

Symbolic Address Octal Location
Number of Exponent --
3.0 DC3
4.0 DC4

10.0 DCla

DC9$
DCRT2

log1 02 DCLOG2

I n - 2 DCLN2

y2 DCPID2
"/.4 DCPID4

I t DCPl -

of Exponent

1645
1666
1655

1642
1671
1652

1647
1701
1704
1676

Additional constants which are frequently used may be added to this l i s t at the sacrifice of
these constants or of temporary storage locations. Constants which are seldom used should be
located elsewhere in memory and accessed by using the appropriate data field address. The
constants for the expansions of sin X, arctan X, and arcsin X are stored in the memory bank
of DBLFLTB since they are not of general use. Many of the constants in DBLFLTA are used
by the routines in DBLFLT3.

ASS EM B LY

The DBLFL.T3 source practically fi l ls the working area so that user programs cannot be
added to it, and must be assembled separately. Typically DBLFLT3 wi l l be assembled first,
followed by the user program.

The source DBL3GO defines the locations in DBLFLT3 which the user m.ay have to access
Four versions of DBL3GO have been prepared with non-identical entry point symbols (c

ADDT, ADDTX, ADDTY, ADDTZ).

To illustrate the use of these sources, suppose the user program consists of two yources.
f i l l s segments 0 and 2.
DBLFLT3. DBL3GO may be located in segments 2 and 5 and DBL3GOX in segment ff.
Assemble DBLFLT3 first (it need not be removed from file). Then assemble segment 5. Assemble
segments 0 and 2 last.

One
The second fi l ls segment 5. A l l three segments require access to

MODIFYING DBLFLT3

The package DBLFLT3 i s designed to permit ready modification by user. Some advice in making
certain types of modifications i s mentioned in this section.

The simplest type of modification i s a change to a different memory field configuration. To
accomplish this change, it i s necessary only to modify the Memory Segment Assignment
equalities at the beginning of DBLFLT3 and in DBL3GO. The symbols SEGA and SEGB must
be set to the desired memory segments of DBLFLTA and DBLFLTB. Ordinarily, these symbols
wi l l have the same values i n every program segment in which they occur.

21

The DBLFLTB control program can easily be used to access additional routines placed in
locations 11 13-1 777 of segment SEGB. Additional entry points must be added to DBL3G i;
just ahead of location NEGFAC and the jump l i s t in SEGB must be expanded to show the
new entry points. New entry points to DBLFLTA can also be added i f desired.

DBL3GO may be shortened only by deleting unused entry points starting at the top of each
XSK I 17 series (i.e,, starting with NEGFAC and KBD). It i s not legal to delete entries
internal to the XSK I 17 series (i .e., SIGN) unless a l l entry points above the one to be
deleted have also been deleted.

If a wholesale reshuffling of DBL3GO i s attempted, i t i s necessary that the jump l i s t s in
SEGA and SEGB match the sequence of entry points in the copies of DBL3GO located i n
each segment of the user program (and at the end of DBLFLTB).
at locations V6+10 to V6+14 in the DBLFLTA control program.

Note also the instructions

If a slight increase in speed w i l l help, the DECUS No. L-68 control program (along with
the program called DBLFLTGO) takes about half as long as that in DBLFLT3 and may be
modified for use with DBLFLT3. However, i t uses more locations in the main program in-
struction field than DBL3GO and, i n i t s present form, does not give the user control over
the data field established during DBLFLTl operations.

The subroutines SQROOT, FIX12, ARCSIN, and LOGS are presently set up to return to
location .+l i f the argument i s outside the interval normally expected for these routines.

, ' This configuration was designed to permit easy error recovery but i t necessitates the alloca-
tion of an extra memory location to each call to one of these routines. If the error recovery
option i s not needed and the programmer i s strapped for space, these routines can be readily
modified by replacing certain XSK and JMP instructions with NOP's and HLT's so that the
program halts in DBLFLTB under error conditions and returns to .+l as the normal exit. The
changes necessary are obvious from the program listings.

If you wish to delete substantial sections of DBLFLT3 it may be reassuring to know that a l l
memory references are symbolic except those within individual subroutines and the JMP 20
instruction in DBL3GO. Hence, i f assembly causes no error messages, the resulting binary
w i l l probably run. DBLFLTB, along with i t s half of DBL3G0, may be deleted entirely (or
overlaid) without affecting the operation of DBLFLTA.

Modifvina DBLFLT Proaram to Use DBLFLT3.

Programs written for use with the original DBLFLT can generally be used with DBLFLT3,
provided the following modifications are made:

1 . All jumps to locations in DBLFLT or i t s subroutines must be changed to become jumps to
DBL3GO. Some infrequently-used entry points to DBLFLT have not been included in DBL3GO.
These entries to DBLFLT are not possible without modifying DBL3GO.

2. Addresses relative to tags in DBLFLT, IFORL8(TTYIN) or OFORL8 (TTYOUT) should be
checked to determine whether the modifications in these routines necessitate modification of
the address calculation.

22

3. A l l references to locations in DBLFLT except those appearing as arguments of DBLFLT
instructions must be incremented by 2000 i.e., made into data field addresses. (This i s
most easily accomplished by typing 2kpr ior to the address in manuscripts to be assembled
by LAP6-DIAL.) Note that this precludes direct addressing of these locations.

8'

4. A l l references to locations in the main program which appear as arguments of DBLFLT
instructions must be incremented by 2000, i.e., made into data field addresses.

5. Data field control must be inserted so that DBLFLT3 references the appropriate arguments.

6. Instructions which set index registers for use as arguments of DBLFLT instructions must be
replaced by routines which set the equivalent SEGA register.

7. The manuscript of DBL3GO must be added to the main program source.

23

APPENDIX I - DBLFLT3 OPERATIONS

AI1 DBLFLT3 operations are performed by a JMP to the appropriate entry point in DBL3GO.
The C(AC) are used by a few operations and are ignored by the other routines. Upon return
the contents of most registers (Multiplier Quotient, FLO) are indeterminate. The accumulator
i s cleared in marly cases, indeterminate in others and in a few cases contains information
(KBDI, FIX1 2).

ABSl - Compute Absolute Value via I R . l

ABSl i s an unargumented operation which computes the absolute value of the number pointed
to by IR. 1 in segment SEGA. First set IR. 1 to the location of the exponent o f the number to
be operated on using IRLOAD. Then enter via JMP ABSl . Return i s to .+l with C(AC) = @
and the result le f t i n the same locations where the number was found. I R . l i s incremented
by 3. Note that I R . l must be set immediately before the JMP to ABSl as i t i s used by most
other DBLFLT3 operations.

ADDT - Add Two DBLFLT Numbers

Enter via JMP ADDT followed by 1, 2 or 3 arguments as described in the section on Argu-
mented Operations. Returns with C(AC)=@ to .t2, to .+3 or to .+4 as appropriate.

, In this routine the exponents of A and B are compared. The larger exponent becomes the
exponent of the result; and the fraction of the number with the smaller exponent i s shifted
right a number of places equal to the difference between the two exponents, i.e., the binary
points are aligned. The fractions are then added, the sum becoming the mantissa of the
resu It.

ARCSIN - Compute Arcsin X

ARCSIN calculates ARCSIN X for - l<X<l. I- The answer i s given in radians between - r/2
and T/2. To use ARCSIN, place X in the FAC and enter via a JMP ARCSIN. The program
returns to .+1 i f X I >l. Otherwise, return i s to .+2 with arcsin X in the FAC and
<-C(AC) # @ * I i

This subroutine uses the approximation, given by Hastings*:

I-..

Arcsin X = IT/^ -dl - X (X).

where:

"Hastings, Cecil, Jr., Approximations for Digital Computers, Princeton University Press

(1 955).

24

2 4 5 x) = A + A X + A2X + A3X3 + A4X + A5X y (0 1

A = 1.570795207 0

= -0.21 451 2362
A1

= 0.08787631 1
A2

= 0.01 9349939
A4

= -0.004337769
A5

and O<X<l. - -
For XCO, the subroutine uses the absolute value of X in the calculation and complements
the answer automatically.

’ ARCTAN - Compute Arctangent X

ARCTAN calculates the arctangent of X for any X. The answer i s given in radians between
- r/2 and r / 2 . To use ARCTAN, place X in the FAC and enter via a JMP ARCTAN.
Return i s to .+l with arctan X in the FAC and C(AC) # fl.

The following approximation from Hastings i s used:
3 5 9

Arctcrn Y = f l /4 + C,Z + CgZ + C5Z + C7Z7 + CgZ

where:

C1 = 0.9998660

= -0.3302995
c3

c5

c7

c9

= 0.1801410

= -0.0851330

= 0.0208351

25

If XCO, the calculation i s performed with X and the result i s complemented automatically
before exiting ARCTAN. I I
COMl - Compute Negative via I R . l

COMl i s an argumented operation which computes the negative of the number pointed to
by IR. 1 in segment SEGA. First set IR . 1 to the location of the exponent of the number using
IRLOAD. Then enter via JMP COMl. Returns to .+l with C(AC) =fl and the result left
in the same location where the number was found.
must be set immediately before JMP COMl CIS most other DBLFLTl operations wi l l alter i t s
contents.

I R . l in SEGA i s incremented by 3. I R . l

COMPAR - Compare Two Numbers

Compare i s argumented instruction which looks at any two DBLFLT numbers and determines
whether A=B, A>B or A<B.
arguments (the last argument i s negative).

The entry jump to COMPAR must be followed by one or two

JMP COMPAR

. +2

.+3

. +4

- L(A)
JMP COMPAR
L(A)
- L(B) . +3
. +4
. +5

If a single argument i s used, the routine compares the FAC with the number A at location
L(A). Return i s to .+2 i f FAC=A, to .+3 i f FAC>A, and to .+4 i f F A C G . If two arguments
are used, A and B are compared. Return i s to .+3 i f A=B, to .+4 i f A>B, and to .+5 i f
A<B. C(AC) # fl upon exit. The numbers referenced by the arguments are not changed by
COMPAR . Express ones complement data fie Id arguments as-2000- L(AJ.

COSINE- See SIN COS

DIVIDE- Divide One DBLFLT Number By Another

Enter via JMP DIVIDE followed by 1, 2 or 3 arguments as described in the section on
Argumented Operations. Returns to .+2, to .+3, or to .+4 as appropriate, with C(AC) =$,

In this routine the exponent of the result i s set equal to C(L(A)) - C(L(6)). The mantissa
of A i s then divided by the mantissa of B, the quotient becoming the mantissa of the result.

EXPON - Computes e X

To use EXPONENTIAL, place th
EXPON. Return i s to .+l with e

DBLFLT number X in the FAC. Then enter via JMP %
left in the FAC and C(AC) =$.

FIX - Fix a DBLFLT Number

This routine wi l l convert a DBLFLT Format number into a signed 23
Enter via a JMP FIX followed by a single (negative) argument. The argument specifies the
location of the DBLFLT number which is to be fixed and the resulting fixed number is stored

26

bit fixed point number.
10

i n the mantissa words of the same location. Return i s to .+2 with the accumulator cleared
unless the iiumber was too big to fix in 23 bits in which case the accumulator i s non-zero 10

LDF SEGA
LDA I
-1 3
STA
2\ FIXA+7
JMP FIX
- DS1
AZE
H LT
LDA I

STA
2 \ FIXA+ 7

- 27

(and shows how many bits too big the number was). The (negative) number at location
FIXA+7determines the number of bits to the right of the most significant sign bit that the binary point
i s located. It i s presently equal to -27 (=23). The FAC is unaffected unless i t i s explicit ly

referenced. Express ones complement data field arguments as -2000-L(A).

The following example wi l l f ix a DBLFLT number in DS1 placing sign plus 11 bits to the
left of the decimal point and a 12 bit fractional part to the right of the decimal point.

10

/Data f ield to DBLFLTA

/Modify FIX routine for
/11 bits before decimal. point

/Restore FIX routine

The signed .iteger portion of the result i s left 1 DS1+1; the 12-bit fractional portion in
DS1+2.

FIX12 - Fix DBLFLT Number Into 12 B i t s

Enter via .JMP FIX12. Th is routine takes the DBLFLT number in the FAC and attempts t:
make i t into a signed 12 bitinterger. If successful, return i s to .+2 with the 12 bit ni”
in the accumulator. If the number i s too big to fit in 11 bits plus sign (1x1 >2047),
return is to .+l with C(AC) equal to the number of bits by which the DBLFLT number ex-
ceeded 11 bits,
point i s rounded into the integer to minimize truncation error.

In either case, FAC i s altered, The fraction to the right of the decimal

FLOAT - Float a 24-bit Fixed Point Number

This arguniented operation wi l l convert a fixed point integer of up to 23 bits plus sign into
the equivcilent DBLFLT number. The float routine expects to find the fixed point number
already stored in the mantissa words (.+l and .+2) of the argument location. The contents
of the exponent location are ignored. The sign bit must be placed in the most significant
bit o f the most significant mantissa word. Enter via JMP FLOAT followed by a single
(negative) argument. Return i s to .+2 with C(AC) = ,@ and the DBLFLT format floated number
stored in the 3 core locations referenced by the argument. The Float subroutine assumes
that the decimal point follows the least significant bit, If not, the contents of location
FLOATA+7 must be changed to 27 -b where b i s the number of bits which follow the decimal

point.

field locations as -2000-L(A).

8
The FAC i s unaffected unless explicit ly referenced. Express ones complement data

27

Consider the following examples:

Float a single precision signed number into locations ABC, ABC+l, and ABC+2 in the call ing
program instruction field.

LDF SEGC
LDA I /Load the number
xxx
STA /Put i t i n ABC+2
ABC+2
SCR 13

STC ABC+1
JMP FLOAT /Float number
- 2000-A BC
returns here with DBLFLT number L(ABC).

/Set data f ie ld to calling program

/Get r id of number but keep the sign
/by scaling right 11 places
/Put sign in B i t $ o f l o ABC+l

/in data field register

Float a signed double precision number in which the decimal point i s to the left of the least
significant 12 bits. Get from 451-452 and leave the result in DS1.

LDF SEGA
LDA I
13

STA
2\ FLOATA+7
SET I1
2\ DS1
SET I 2
45 1

LDA 2
STA I 1
LDA I 2
STA I 1
JMP FLOAT
-DSl
LDA I
27

STA
2\ FLOATA+7
continue here

/LDF to DBLFLTA

/Modify FLOATA+7 for fixing
/with 11 bits prior to decimal point

/Get sign and mod significant 11 bits
/Save in DSl+l
/Get least significant 12 bits
/Save in DS1+2

/Restore float routine
/to i t s normal condition

FLOTl2 - Float Contents of Accumulator

This subroutine wi l l float a signed single precision (12-bit) fixed point number. Enter via
JMP FLOTl2 with the number to be floated in the accumulator. Return i s to .+l with the
number left in the FAC in DBLFLT format and C(AC) = fl. This entry i s not argumented.

IRLOAD - Load Index Registers in DBLFLT3

Enter this routine via JMP IRLOAD. Return i s to .+l with C(AC) +$. The routine transfers

28

the contents of locations 1-1 1 and 13-16 from the calling program field into the corresponding
locations in segments SEGA and SEGB. This allows the programmer to use SET and STC
commands followed by JMP IRLOAD to set index registers i n DBLFLT3. Registers 12 and 17
are specifically excluded from transfer as these are used by the control program and must not
be disturbesd. Not a l l of the 14 registers transferred are available for use. In DBLFLTA
registers 6-11 are free and 13-16 may also be used i f TTYIN and TTYOUT are not called.
In DBLFLTB, registers 10, 11, and 13-16 are free.

KBD - Read ASR33 Keyboard -
Enter with JMP KBD. Returns at .+l with 8-bit ASCII code in accumulator i f a character
was waiting. Otherwise returns immediately to ,+1 with CCAC) =#.

KBDI - Read ASR33 Keyboard

Enter with JMP KBDI.
Refurn i s to .+l with the 8-bit ASCII code in the accumulator.

If no character has been struck the routine waits unti l one i s struck.

LFCR - Type Line Feed and Carriage Return

Enter with JMP LFCR. Returns to .+l with C(AC) =$. Typing can be speeded up by
changing JMP TYP8B to NOP at location TLFCR+S.

LOGS- Compute LOG X

LOGS calculates log X, log X, or log X depending on the entry point. To use LOGS,

place the DBLFLT number X in the FAC. Then enter via a JMP LOG2 i f log X i s desired

(mostly for logarithmic scaling of data), JMP LOG10 for loglo X, or a JMP LOGN for t '

natural logarithm, log X. LOGS returns to .+l i f X < 0 with the FAC unchanged. If k' I

return i s to .+2 with the appropriate logarithm in the FAC. The accumulator i s cleared
turn i s to :t2 but not cleared i f return i s to . +1 .

2 10 e

2

- e
? -

The basic calculation in this subroutine yields log X; the other logarithms are derived

from this one by multiplying by the appropriate constants. The algorithm makes use of the
special forrnat of DBLFLT numbers:

2

L 1) x = 2 (Y,)

where 1/2 .- < fy1 I 4.

Taking the logarithm of eq. 1 ,

log x = L + log Y 2 2 1 ' 2)

and L i s the first approximation to log X.
then L = 0 and we have no significantsits yet for the log calculation. On the o&er hand,
i f X lies outside this interval, then we have already obtained some bits (at most 11) of log2 X.

If X itself satisfies the inequality 1/2 < X 4,

29

1 To get the remaining bits, we must get an approximation for log Y As it stands, Y 2 1 '
would have zero in the exponent register, and so the above scheme would not give us a
useful approximation to log Y

Q wi l l result in a non-zero, negative number in the exponent register, and this number
can be used to derive an approximation of log Y from the relation:

Since Y i s less than 1, raising i t to some positive power 2 1 ' 1

2 1

3)
-1 Q

log Y = Q log Y

The higher the power Q, the more significant bits in the approximation, so Q should be as
large as possible without producing overflow. The value of Y for which the exponent 1
register increases fastest i s the smallest value, namely 1/2. In this case,

4)

where the far right term of the equality represents the DBLFLT format number.
that the most bits be obtained without the exponent register overflowing,
chosen so that Q-1 i s equal to the capacity of the exponent register or 2
format, we then have:

In order

-1. In DBLFLT
should be lP

5)

. and

6)

From this we get a better approximation to log X, namely 2

7)
-1 1

l o g 2 X = L + 2 M.

If we now treat Y as we did Y , we get 2 1

-1 1
log2 X = L + 2 M + 2-22 N,

11th
where N i s the exponent which results from raising Y to the 2

Since the original uncertainty in Y was at least equal to the least significant bit or *2 1
and the uncertainty of a number raised to a power Q i s Q times the uncertainty or the
original number, we can extract no more significant bits by continuing this process. The
subroutine LOGS, therefore, uses eq. 8 to determine log X.

power. 2
-22 ,

2

MAGTST - Magnitude Test

This subroutine determines whether IX I I 1 or 1 X I > 1. Place X in the FAC. Then enter
via JMP MAGTST. Return i s to .+1 i f >1 or to .+2 i f X < 1 with C(AC) # P I . I l -

30

MULT - Multiply Two DBLFLT Numbers

Enter via .IMP MULT followed by 1, 2 or 3 arguments as described in the section on Argu-
mented Operations. Returns to .+2, to .+3, or to .+4 as appropriate with C(AC) =$.

In this routine the exponent of the result i s set equal to the sum of the exponents of A and
B. The least significant portion of the mantissas of A and B are rotated right one place in
order to restore the sign bit to i t s normal position for use by the MUL command. The result
fraction i s calculated by forming the proper sums of the most and least significant products
of the most and least significant parts of the fractions of A and B.

NEGFAC a- Complement FAC

This subroutine computes the negative of the number in the FAC. First place X in the FAC.
Then enter via: JMP NEGFAC. Return i s to .+l with -X left i n the FAC with C(AC) # 9.
POWSER -a Power Series

For any reasonable number of terms, this program calculates the power series:

0
c x n + c xn-l + ... + C1X+ c

n n-1

. I The table of constants must be placed in segment SEGB (in DBLFLT format) ordered sequen-
t ial ly beginning with C in the lowest 3 addresses and ending with Co. Before entering the

routine plcice X in TEM2 in DBLFLT format and set C(IR.4) = -n in segment SEGB (n =
number of terms - 1).
(as a data f ield address). Then enter via JMP POWSER .
left in the FAC and C(AC) = fl. A sample calling sequence follows:

n

Put the starting address of the table of constants in the accumulator
Return i s to .+l with the result

3 2
to complJte C n + C n + C n + C 3 2 1

LDF SEGB
LDA I

STA

JMP TRANS

-TEM2

1-4

2\ 4

L(X)

LDA I

JMP POWSER
returns here

/If necessary
/Put -n in IR.4

/Put X in TEM2

SIGN - Sign Test

SIGN TEST determines whether X = 0, X X , or XCO. Place the DBLFLT number X in the

31

FAC. Then enter via: JMP SIGN. Return is to .+l i f X = 0, to .+2 i f Xx), or to .+3
if XCO with C(AC) # P I .
SIN COS - Compute Sine or Cosine

To use SIN COS, place X in the FAC. Then enter via one of the following jumps:

To compute sin X:

JMP SINDEG i f X i s expressed in degrees
JMP SINRAD i f X i s expressed in radians
JMP SINP12 i f X i s expressed in r/2 radians

To compute cos X:

JMP COSDEG i f X i s expressed in degrees
JMP COSRAD i f X i s expressed in radians
JMP COSP12 if X i s expressed in r/2 radians

Return i s to .+l with the answer left in the FAC and C(AC) + P I .
SIN COS calculates sin r/2 X according to the following approximatioh from Hastings:

~ ~ ~ ? / ~ X = C , X + C X 3 + C X 5 + c x 7
3 5 7

. where
= 1,570794852

C3 = -0.645820978

C = 0.079487663

C7 = -0.00436246

c1

5

SIN COS calculates the sine or cosine of any argumen , Internal prescaling permits the
direct calculation o f sin x for either radian or degree arguments. Cosines are calculated
by increasing the argument by T/2 radians and then calculating the sine of the resultant.
An internal normalization routine automatically shifts the argument to the interval between
- r/2 and r/2 radians, thus allowing solutions for any value of the argument. The (r/2
radians) measure equals 1 for 90’ angle, 2 for 180°, etc.

SQROOT - Square Root

This program calculates square root X. Place X as a DBLFLT number. Then JMP
SQROOT. The program returns with square root the FAC. Return i s to .+l i f XCj8
and to .+2 otherwise with C(AC)# 8.
SUBT - Subtract One DBLFLT Number From Another -
Enter via JMP SUBT followed by 1, 2 or 3 arguments as described in the section on Argu-
mented Operations. Returns with accumulator cleared to .+2, to .+3 or to .+4 as appro-
priate.
i s transferred to the add subroutines.

In this routine the mantissa of the second argument i s complemented and control

32

N TEN2N- Compute 10

This routine wi l l
must be a signed

N in the accumu

raise 10 to the power N where N i s a positive or negative integer. N
12 bit fixed point number with IN (<10008. Enter via JMP TENZN with

lator. Return i s to .+l with l o N left in TEMl as a DBLFLT number and
An overflow halt wi l l occur in C(AC) # 8.

DBLFLTl i f IN1 >7778.
his routine alters FAC, TEMl, and TEM2.

TRANS - Move a DBLFLT Number

Enter with JMP TRANS fallowed by one or two arguments. The last argument must be
negative. R,eturn is to .+2 or .+3 with C(AC) a$.

JMP TRANS

-DS2
return here

2\ LOCI
JMP TRANS

return here
-2000- LOCl

In the first example, C(LOC1) are moved into (DS2). FAC and LOCl are unchanged. In
the second example, C(FAC) are moved into (LOCI). The FAC i s unchanged by TRANS unless
it i s listed as the second argument. Express ones complement data field addresses as
-2000-L(A).

TTYIN - Eriter Numbers via Teletype. Make a DBLFLT Number.

This subroutine allows the user to enter decimal numbers via the ASR-33 teletype.
number may be entered in any allowable FORTRAN I, F, or E format. e.g., the number
497 may be entered in any of the following ways:

A

497
497.
497.0
49.7000 E+1
.497 E3.0
4970 E-1

To use this routine enter via JMP TTYIN with the accumulator either cleared or with the
first 8-bit ASCII character in the accumulator. The routine then interrogates the teletype
and enters decimal digits and characters unti l RETURN i s struck. Each character except
RETURN i s echoed on the printer as i t i s struck. Normal return i s to .+2 with the number
le f t in the FAC in DBLFLT format, and C(AC) =$.
return to .+l (in this case the contents of FAC are meaningless). The minus sign may be
entered at any point in the number. The decimal point (.) i s sensed and interpreted.
Commas, spaces, and illegal characters are ignored. This routine alters FAC, TEM1, TEM2,
and TEM3.

Striking RUBOUT causes an immediate

33

TTYOUT- Type a DBLFLT Number in Exponential Format

This routine w i l l print out a DBLFLT number on an ASR33 teletype.
i s printed by TTYOUT; any desired formatting (including line feed or carriage return) must
be done by the user. The printed number w i l l be in the format:

Only the number itself

ztx , xxxxxx Ekyyy

Enter via JMP TTYOUT with the number to be printed in the FAC.
C(AC) = 8. This routine alters FAC, TEMl, TEM2, and TEM3.

Return i s to .+l with

TYP6- Type &bit ASCII Character

Enter v ia JMP TYP6 with &bit ASCII code in bits 6-1 1 of accumulator and bits 0-5 set to
zero. Returns to .+l with C(AC) =$. Typing may be speeded up i f the present instructions
are replaced with those on the right below. However, the user program must then issue a
TLS command before the first use of the teletype routine.

Faster - Present

TTYP8, SET 4

IOB
6046/T LS
I OB
6 041 /T S F
JMP. -2

fi

- TYP8- Type 8-bit ASCII Character

TTYP8, S E T 4

IOB
6041 /T S F
JMP. -2
I OB
6046/T LS

PI

Enter via JMP TYP8 with 8-bit ASCII code in bits 4-11 of the accumulator. Return i s to
.+l with C(AC) =$.

34

r.
N

N

2-
3
Fr

a
3-

rl

Fr

2

a

0
w a
En

8

n

a
k
M
a, a

3t
v1
0
U

z

U

n
2
n
M
d
7-4
U
n
(d
3
0
C
H
H
U
(A c
u
rl

Q)

P
a

v

9

fi
N

N
1
rl

w
€-!

crc

c
.)

a
-ti.

rl

Frc

2

a

3
rn
8

n

a
d
TI
(d
t-l

x
rn
0
V

2

v

0

8 " 0 1
m f i 4 ' .
m ' -

I O
\o

I
M
t-l
crt

$4
0
L.l

tJ ..
a w-

N

(d
&
U

:

rl

x
H
Frc

m
c)
TI
P
U
N

0 ,
U
k
4

x
rl
Frc

I-

O

Q)
C
0
C

a
'K-

rl

2

0
F:

T s

9
2
H

\o
rl
I
n
?I

4

rl
rl
I
ri

H

a
cd
0
Gl

P i

m
0

a,

C

::
2
V

rl

z

2

H
H u
rn c
a

.)

rl

2

2

t 3

H n
R
sr,

n u
d
a
5
H
H u
m
-4
u
d
P
I
a3

'd
(d

W

2

35

H w
w
PI
0
m
B

2

L!
Ed
R
Frc
0
w
IJ

3
I

H
H

x z
El

0
rn

m
I

2 -a
Frc
n

a
m

Q
I C

N

a
rl

n

Frc

2

a

N
c3
0
4

x
w
0

N

a

P
eo
:
3 .

0 rn

m
I

W

P4

2

a
a m
n

CJ

a
1

*

Fr

2

a

i3
0
4

x
w
0
Q)

a
v)
5
P

M

3

hl

0

Q)

c

a x

N

rl
m

Bi

0 a

a

B
m
&

3

a
3
rl

$
a, u
7
rl
0
m
%
U
cn
a,

E+

36

e4

0

a,

c

Q w-

m
N

r(

n

n

P4

2

a

Z
3
m

V
d

FIl

w
0

rl
m
u
m
a,

E-r

h
hl

N

i w
E-c
Frc

m

a
'H-

rl

Fr

2

t3

c3
3 w
m

n
10 a a '
k
M
a,
TJ

x
r(
Ell

v

.
f i
CJ

N
I

n
Frc

r-
N

0
rl
rl

cr)
I

N z
W
H
Fr
n

a
'H-

N

rl

m

Fr

0 c

a

€4
0

0
m
3

3
u-l
0
u
0
0
k
a
k
(d
3 v
[13

t

0
3
I
0

N
I

W
E-c
c4

5!
m

Q m

rl

:

m a
h

a

2
hl
'k w
E-r

z
k
01

a
a

8

5
0 c,
0
4

a,
v)
*ri a
&

I
I
I

m
I

2
E-1
Er

L

a

hl

rl

a
a,

2

H
t-l
V
2

a

Fi
E
t3

k
a,

El
E
(d

C
rl

aJ

0
0
U
rl

m
I

w
t3
Er

2
.)

a

rl’

Er

2

a

E
E
0

t3

k a

Q
E
(d

u
3
0

‘ u

0
0
4

a,
F z

a

rl

0
d

01
a,
h

‘8

9
PC E

H
H u
2
u
d

9

u
F
d
k

..
0
0
4

a,

C

a

rl

0
F

rn
a,
?.

a

03

I2

H
H
V
m

U
1-I
P
I

03

u a
d
M
PC

4

m u c
i!
M
k a
E a
k
M
0
k a
k
a
m
1
a
5
h
P
a
a,
d w
.rl
0
a
PI rn
rn
a

I:
a
u
m
.r(
bo
a,
k

9
I4
k

FI
I.I
a,
U
d
(d

m

d u
a
k
a a
0

a
m
a

h
M
k a

37

s
%

3
%
U

a,
m
d
d

n
a

k
a
P

G
rl a
M a
d
rl
d

H
0

!3

F
d w a
0
rl
k
a,

.L

a
d

N
0
k
M
Q)

m a
&
a
c)
rl w
G
d

a

do
d
& a
0
0
rl

rn
d

5

Et
0
L,

I u
a, M

n
al

V
2
w
0
rn u
9
s
I:

+J

F

a
c,
l-i a
k
0
m
a
3
n
k

