DECUS NO.

TITLE

AUTHQR

CaMPANY

DATE

SQURCE LANGUAGE

PROGRAM LIBRARY

8-32

A Program to Relocate end Pack Progrems in
Binary Format

J. W. Bowman

Atomic Energy of Canada Ltd.

November 1965

PAL Il

Although this orogram has ceen testad Dy e canfricutor, o warranty, sxoress ar ‘mpliec, s mace 2y ‘re sontridytar,

5 ~s - - . ~ 3 & - - —~s P ) ok Sy
Digital Sauioment Computar Users Sociery or Digirai Zauioment Corporation cs Q " QCIurzcy 2r “unctioning of e

o}

3rogram or reigted orogram materici, and no resoensitility 'S Is5UMeC . 'mese agreiss A I2NNeCNion tmarew) e



TABELE OF CONTENTS

1.0 INTRODUCTION
2.0 DESCRIPTION
2.1 Relocation Format

2.1.1 Zero Page
2.1.2 Marker Tags

3.0 ASSOCIATED PROGRAMS
3.1 Clear Memory
3.2 Display Memory
3.3 Binary Punch

4.0 OPERATION

5.0 SUMMARY

APPENDICES

APPENDIX I
APPENDIX II



A PROGRAM TO RELOCATE AND PACK PROGRAMS IN
BINARY FORMAT

DECUS Program Library Write-up DECUS No. 5/8-32a

SYNOPSIS
A relocation package has been written to Provide a means to shuffle
machine language programs around in memory to make the most efficient
use of computer store. This report describes this relocation orogram,
the format required to make i1t possible and the operatlion of the pro-
gram itself, The program is now in use and has proved to be a most
effective tool, both in assembling a combination of existing pro-
grams, ard in amending and fault-finding new programs.



1.0 INTRODUCTION

Implicit in the concept of using a small computer to perform the
basic logic for a general purpose nuclear particle spectrometer 1is
the need to provide a library of program material. The computer
meémory can store only a given amount of this material a- one time.
To load the required programs into the computer 1t i1s necessary to
map out the available space in memory and change the starting ad-
dress of each program %o fit these memory locations, This can pe
done by changing the symbolic tapes and reassembling them with "2AL"
(the assembler for the PDP-5/8 computer). This is tedious, and in
keeping with the general purpose nature of the system a faster
method was evolved for recelving the programs and packing them into
memory.

This report describes a relocation program that allows immediate
transfer of a program in dlnary format to locations selected auto-
matically by this program or to locations described by the operator
from the keyboard. The main obstacle to relocation of programs rfor
the PDP-5/8 computer i1s "PAGE ADDRESSING." The memory 1is divided
into 32 pares of 128 registers each. Direct addressing is only
allowed wi:hin the limits of a page. To relocate a program on<o
two pages would require a program that set up indirect addressing
where required, to allow the relocated program to communicate be-
tween pages. This type of program would be very complicated and
would require a large area of memory. By keening the reloecation
Program small a larger area is available for the actual relocated
pbrograms., The restriction that is put on this program then is this:
"Do not attempt to relocate a program written to occupy one rage on
to two pages of memory."

Before proceeding any further, a brief explanation of the term
"Subroutine" may be in order. A subroutine is a program that be-
comes accessible from various areas of memory through a "JMs"
instruction. The subroutine will exlt and return to the JMS reg-
ister plus one. In this manner, a subroutine can be used repeatedly
from anywhere in memory. A non-subroutine on the other hand will
exlit to a fixed location only.

The system adopted for our library of kicksorter programs 1s sub-
routine oriented. The programs for each function such as plot or
printout are a collection of subroutines, ,each subroutine being

not greater than one page in length. These subroutines are modular

in nature and are placed into memory with the relocation program,

The relocation program, in the automatic mode of operation will search
memory, starting at page one, for enough consecutive registers on

one bage U0 contaln the sutroutine. The subroutine is then altered

0y the relocation program to operate in the new registers and relo-
cated to those registers.

In order to use a subroutine whose starting address 13 not fixed
1T 13 necessary to store the new starting address. Page zerc is
used for this purpose. An explanation is given under +the neading



"Description." The relocation program will store the new starting
address in a specific location on Page zero. This subroutine will
always be referenced indirectly through 1ts zero page address.

A punch program has been included in this package to retrieve the
relocated program.

A special format is required to make relocation in the above de-
Sc¢ribed maner possible. This format is quite simple and easily
adopted to existing programs,.

2.0 DESCRIPTION

Before explaining in detail the description of the program and
how it operates a brief ocutline of the organization of the System-
might be helpful,

All binary tapes for our kicksorter functions are punched on one

long library tape. Aan eéxperimenter, upon determining which sub-
routines are requ..red for his particular experiment will read this
tape with the relocation program and accept or reject the subroutines
as they c:cur. The detailed use of each Subroutine will be listed

in a catalogue for this purpose, :

2.1 Relocation Format

A special format must be followed when writing programs to be suc-
cessfully relocated with this program.

2.1.1 Zero Page

Zero page plays an important role in the organization of this system.,
Since the location of subroutines are not fixed it is necessary to
know how to get to these subroutines and how to extract information
from them. Zero page i3 used for this purpose. A zero page location
is allotted each sSubroutine. The relocation program will insert the
new starting address into the allotted zero page register, providing

the zero Page register 1s mentioned on the tape in the following
manner,

Example, *33 /Page zero location
3000
*3000 /Current page starting address
PRT, 0
CLA CLL
ETC.

Notice that this Program can be read into memory with a binary loader
and the starting address (3000) willl appear in zero page register 33,

Tapes written in this format are completely compatible with the binary
loader,

A program is Sucessfully entered by Jumping (or JMS) indirect to the
Zero page registar,



A map of zero page 1s required to keep track of allotted

1 zZero page
registers. A suggested division is outlined below. '

0=-7 INTERRUPT routine instructions -
10=-17 AUTO-INDEX Channels

20=157 STARTING ADDRESSES of subroutines
160-177 TEMPORARY DATA that 1s required repeatedly

by more than one subroutine.

Note that the last 16 registers are referred to as temporary data
nolding registers. When a subroutine accumulates information
required by one or more other subroutines it is convenient -=o
Store it in these registers. When the information 1is no longer
required that particular register may be used to hold other
simllar data. Zero page is conserved by sharing registers in
this manner.

Programs that are not subroutines may be relocated in the same
manner as described above, The program must follow the same
format rules, but the zero page register 1is deleted.

Subroutin:s that are never used together can be allocated the same
zero page location., For example, the linear display employing a
2L-pit word and a similar display program using an 18-bit word
cannot te used together, therefore, they may use the same zero
page register,

The baslc rule to remember is, not to refer to fixed addresses =
in programs on other pages because the location of a vrogram is

not fixed. Always get into the program through its zero page
register.

2.1.2 Marker Tags

The actual program to be relocated consists of the following materials.
(a) Memory reference instructions
(b) Micro instructions
(e¢) IOT instructions
(d) Fixed constants
(e) Registers containing the addresses of registers.

All micro, IOT, and memory reference instructions that refer to
zZero page are relocated unaltered., All other memory reference
instructions are adjusted to suit their new iocations. The fixed
constants listed at the end of the page may look like memory ref-
erence instructions, but must not be altered. A marker is inserted
in the program to inform the relocation program that the list of
flxed constants begins here. The marker is 6670 and 1s used as
follows:



Example, HLT
STORE,
coM1,
ETC.

/End of memory buffer inst,
6670 /marker
7214 /Beginning of tags

Note that the marker is tagged "STORE." In the actual program
"STORE" 13 a location that will normallg contain zero. By using

"STORE" 1in this manner the marker
additional address and does not in

(6670
crease the length of the program,

does not occupy an

It 1is necessary to store the markers to make the programs. compatible
with the exlisting binary loader, and also to assemble programs in
Chis format with the "PAL" assembler,

Registers containing the address

es of other registers are dealt

with in a special manner. For this reason they are put at the
end of the program and are preceded by the marker (6670) 1in the

following manner,
Exampl ., STORE,
HOME,

LOCATE,
ADR,

Tags containing m2mory reference ins

6670

0132 /Fixed constants

421y

4us56 j

6770 /Marker No. 2

HOME /Contains address "HOME"
$ /On current page.

tructions are dealt with in

the same manner as the memory reference instructions in the program
proper, therefore these fags are put ahead of the marker 5670,

- Example, HLT,
MCOD1,
MOD2,
STORE,
ETC.

JMP OVER

TAD MORE

6670 /Beginning of
/Fixed Constants,

The following is an example of how all three types of tags are

used:

Example,
MOD1,
MOD2,
STORE,
CoM1,
COM2,
HOME,

LOCATE,
ADR,

HLT /End of memory buffer
JMP OVER /Instructions
TAD MORE

6670 /Marker No, 1
7315

7317

0132

4215

3317

2111

770 /Marker No. 2
gOME



3.0 ASSOCIATED PROGRAMS

Three programs have been included in this package to aid in
relocating and retrieving subroutines.

3.1 Clear.Memggx

A clear memory routine has been included to zero registers from
2008 to 637745. This area in our system is for programs. fince
the relocatign Program recognizes unused registers only if cthey
contaln zero, a means of zeroing these reglsters was neces:zary.
This area can be readily changed by altering the program. The
starting address of this program is 66718. The program is 12
registers in length.

3.2 Display Memory

A programmed display routine has been included to display the
entire memory. Empty registers will appear on the base lire

whille occupied addresses appear as 4096 counts. The starting
adaress .s 6527 and its length 13 15 registers.

3.3 Binary Punch

Often it is necessary to retrieve the relocated programs on paper
tape. This punch routine will punch only those areas of memory
containing program material. This program senses and deletes the
gaps 1in memory that contain nocthing. A great deal of time is
saved because start and end addresses of each program need not

be entered as with other binary punch programs.

The tape produced is complete with checksum. The starting ad-
dress of this program is 6&008 and is 90 registers in length.

The relocation program and associatad programs are themselves
relocatable. If the registers 6400, to 7h008 are not conveniens
the entire relocation program or an§ part ¢f it can be relocated
fo another part of memory. It must be remembered that in so doi
the starting addresses mentioned above will change accordingly.

4.0 OPERATION

Steps followed by the operator in putting this program into oper-
ation are as follows:

(a) Load the relocation program into the éomputer with
cinary loader., The starting address of the olnary
loader is 77778,

The relocation program and associated programs occupy
memory from 6400g to 7&008.

(p) The relocation program in the automatic mode assumes
that registers not being used contain 0000g. For
this reason it 1s important to zero all registers
that will ve used to contain program material., The



'Clear Memory" routine'previously described is used
for this purpose. The starting address of this rou-
tine 1s 6671g.

(¢c) Set the 9inary tape of the program to be relocated
into the reader. Load the Starting address of the
relocation program (SA 7200g) on the switch register
and start, The binary tape will be read into a buf-
fer page in memory

The zero Page address is printed out on the teleprinter
along with the total number of "egisters required for
that program in octal. If a ze~o page address is not
Specified on the binary tape, the relocation program
will print 0000 for this address.

At this point the relocation program will make a
decision based on the contents of the switech register,

(d) Switeh register bits "0" and "1" are interpreted as
follows.

Blt 0 =0 Bit 1 =0

Whenever bit 1 is set to zero the present Program is rejected.
The relocation program returns to the reader to read the next
program into the buffer page. If bit 1 is still a zero that
subroutine will also be rejected, and so on.

81t 0 = 0, Bit 1 =1

This combination of the 8wltch register 1is an instruction to

read the present subroutine into memory using the automatic

mode of operation. In this mode the program will search memory
starting at register 200 for enough consecutive empty registers
on one page to contain tge program to be relocated. In this
manner the various sized programs are packec together, the smaller
programs f1lling up the gaps at the ends of e=ach page,

When the search finds suitable accommodations for the program,
the new starting address is printed on the teleprinter in octal.

Upon relocation this program will return to the reader to accept
Oor reject the next program,

Blt 0 =1, Bit 1 =0

Since Bit 1 = 0 the present program i1s rejected, Operation is
the same as Bit 0 = O, Bit 1 =0

Bit 0 =1, Bit 1 = 1

The relocation Program will wait for the operator to decide whether
to accept or reject the present bregram,. If a number of programs
are to be selected from a library tape of subroutines this mode of
operation 1s desired. The relocation program will wait for the
operator to set bit Q or blt 1 to a zero %o accept or reject the
program, as outlined above.



This mode of operation will also allow the operator to select

a starting address from the keyboard. If specific registers

are required, into which this program will be relocated, the -
starting address can be entered through the keyboard in octal.

Be sure the starting address used does not permit the relocated
program to write over the end of a page. For example, if t¢qe
number of reglsters required as described in (c) of this se:tion,
is 17045 and a start address of 3620 were chosen, the end adiress
would De 40108. Since the end of the program 1s on another page,
the program was not correctly relocated and will not operate cor-
rectly.

Upon successful relocation of the program in either mode of oper-
ation the end address is printed out and the program returns to
the reader to receive the next program. A selection of programs -
from a library tape 1s shown in Table 1. Notice that programs
selected have a start and end address whereas the rejected pro-
grams do not,

If the program 1s not read properly and the checksum is wrong
the orogram will halt, If this happens reload the binary tape
of the sibroutine to be relocated and restart the relocation
program again,

Occasionally it 1s desired to use a fixed program, a. program
that 1s not written in relocatable format. This can be done
quite easily by loading the fixed program with the binary loader
and then proceedlng at (c) of this section. The relocatable
drograms will fit themselves around the existing program.

5.0 SUMMARY

Satifactory results have been obtained from this program for
our use, Our library of subroutines 1s now easily accessible
and it takes a relatively short time to pack programs into
memory for a specific combination of functions for spectrum
analysis. Subroutines can now be compared to plug in modules
for ease of accessibility.

Although this program was conceived to increase the apprarent
sorting power of a PDP-5/8 as a nuclear particle spectrometer
there is no reason why it cannot be used to increase the storing
capabillity of this computer in other fields.



/Relocation program
*173

7200

*7200

START, 6046
JMS CRLF

DCA Z 170

DOCA ONELES

DCA CKSM

RELY, JMS KBD
SNA

JMP REDY

AND LEADER

SZA CLA

JMP REDY

HERE, TAD STOR
JMS ASSEMB

SNL

JMP RE DY
DCA S%0R
TAD STOR
TAD CON1
SNL CLA
JMP . +4

TAD STOR
DCA Z 170
JMP REDY
TAD STOR
AND MSK?2
DCA CHG

TAD CHG

TAD CON3
DCA Z 14
DCA Z 12
JMS XBD

JMP UP+1
STAR, JMS KBD
AND LEADER
SZA CLA

JMP ON

TAD HOLD
DCA I z 14
ISZ Z 12
UP, TAD STOR
AND ORIGIN
SZA CLA

JMP HERE
TAD STOR
JMS ASSEMB
DCA HOLD
JMP STAR
ON, TAD Z 170
JMS I Z 175

APPENDIX I

Modes 1 and 2

/BLANK

/ORIGIN SET?

/ZERO PAGE?

SA OF BUFFER
STORE IN BUFFER,

/PRINT ZERQ PAGE LOCATION



TAD Z 12
JMS I Z 175
TAD HOLD
CMA IAC
TAD CKSM
SZA CLA
HLT

IMS I Z 4
DCA Z 16
IAC

DCA Z 171

RETURN, TAD Z 12

TAD Z 14
DCA Z 17
TAD Z 16
IAC

AND MSK?2
DCA STOR
JAC

TAD Z 17
AND MSK2
CMA IA
TAD STJR
JMP I Z 172
NOP

KBD, O
6014

6011

JMP .-1
CLA

6012

DCA STOR
TAD STOR
JMP I KBD
ASSEMB, O
DCA FIRST
TAD ONELES
TAD CKSM
DCA CKSM
TAD FIRST
RTL CLL
RTL CLL
R, CLL
DCA TEMP
JMS KBD
TAD PIRST
DCA ONELES
TAD STCR
TAD TEMP
JMP I ASSEME
CRLF, 0O
LA CLL

/PRINT TOTAL NUMBER OF LOCATIONS REQUIRED

/FIND NEW LOCATION

/CORRECT CHECXSUM?
/FIND

/DIFFERENCE NEW SA AND OLD SA

TAD CR

JMS PRT
TAD LF

JMS PRT
JMP I CRLF
PRT, O

TSF

JMP -1

TLS

LA

JMP I PRT
CKSM, 6670
CR, 215

LF, 212
STOR, O
LEADER, 200
ORIGIN, 100
CONL, 7600
MSK2, 177
CHG, O
CON3, 7377
3OLD, O
TEMP, O
ONELES, O
gIRST, 7777



/RELOCATION PROGRAM PART TWO

*172
7000

*7000

/ALTER INSTR

DCA TWOO

AGNN, TAD I Z 17

DCA Z 11

TAD Z 11

TAD SEN3

SNA CLA /CODE 6670 2

JMP TAGG

TAD Z 11

AND MSK6

TAD CON6

SNA /TAG ?

JMP STRR

TAD CON6

SNA CLA /IOT 2

JMP STRR

mAD Z 11 TAD TEMP
IND TWO AND MSK2
SNA CLA /ZERO PAGE 9 DCA TEMP
JMP STRR TAD Z 15
TAD Z 11 AND MSKS
TAD TWOO TAD TEMP
DCA Z 11 TAD TWOO
JMP STRR DCA I Z 16
NOP /STORAGE ON NEW PAGE ISZ Z 12
STRR, CLA JMP SOM
TAD Z 11 JMP END
DCA I Z 16 END, CLA CLL
ISZ Z 12 TAD Z 16
JMP AGNN JMS I Z 175 /PRINT
JMP END TAD Z 170
NOP : SNA CLA
TAGG, CLA JMP I Z 173
TAD Z 11 TAD Z 171
DCA I Z 16 DCA I Z 170
ISZ Z 12 JMP I Z 173 /READY
SKP NOP

JMP END TWOO, 6670
TAD I Z 17 SEN3, 1110
DCA Z 11 MSK6, 7000
TAD Z 11 CON6, 1000
TAD SEN4 TWO, 200
SZA CLA SENL, 1010
JMP TAGG+1 TEMP, O

TAD Z 11 MSK2, 177
DCA I Z 16 MSKS5, 7500
ISZ Z 13 $

SOM, TAD I Z 17
DCA TEMP

10



/iELOCATION PROGRAM PART 3
* !

6600

*5600

FIND, O

TAD Z 12

CMA IAC

DCA Z 12

DCA NUM

CLA OSR

CLL RAL

SMA CLA

JMP I Z 173 /REJECT
SZL

JMP MANUAL
TAD MSK2

DCA Z 16

0SC, TAD CON1
DCA TIMES
TAD Z 12

DCA TALY

ISZ TIMES

JMP 0SC
TAD I Z 16

SZA CLA

JMP -7

ISZ TAL

JMP -7

TAD Z 12

TAD Z 16

DCA Z 16

TAD Z 16

TAC

JMS I Z 175 /PRINT SA
TAD Z 16

JMP I FIND

NOP

MANUAL, NOP

KSF

JMP FIND+5

KRB

TLS

DCA STORE

TAD STORE

TAD SEN1 /COMMA
SNA CLA

JMP DWN

TAD STORE

AND MASK

DCA STORE

TAD NUM

RAL CLL

11

RTL CLL
TAD STORE
DCA NUM

JMP MANUAL+1
DWN, CLA CMA
TAD NUM

JMP I FIND
NOP |
/CLEAR MEMORY
CLA

TAD FOUTH
DCA FORTH
TAD STRT

DCA Z 10

DCA I Z 10
ISZ FORTH

JMP -2

HLT

NOP )
TIMES, 5670
MSK2, 177
CON1, 7577
TALY, O

HOLD, 7777
NUM, 7777
STORE, O
SEN1, 752u
FOUTH, 0-6377
FORTH, O
STRT, 177
gAsx, 7



CONNN, 100
HOLD, 0
TIME, 7677
TIM, 7600
LDR, 200
FORT, 4000
gINI, 0-6377

/PRINT AN OCTAL NUMBER
*175

7140

*7140
OCTOUT, O
DCA THIS
TAD SPACE
JMS PRT
TAD FOUR
DCA FOR
TAD THIS
RAL

RAL

RTL

DCA THIS
TAD THIS
AND MSKX
TAD CON
JMS PRT
TAD THIS
ISZ FOR
JMP ,-11
CLA CLL
JMP I OCTOUT
PRT, O

TSP

JMP -1
TLS

CLA

JMP I PRT
THIS, 6670
SPACE, 240
FOUR, 7774
FOR, O
MSKX, 7
§0N, 260

12



/PUNCE ONLY INFO IN MEMORY
*6400

CLA

DCA SCORE

JMS TRAL

DCA Z 10

UP, TAD I Z 10

SNA

JMP ,-2

DCA HOLD

TAD Z 10

CLL

TAD FINI

SZI, CLA

JMP FINISH

TAD Z 10

RTR

RTR

RTR

AND MSK100 /0077
TAD CONNN /0100 ORIGIN
JMS ‘[RITE

TAD Z 10

AND MSK100 /0077
JMS WRITE

TAD HOLD

JMP TO

IALF, TAD Z.10

TAD FINI

SZL CLA /REACHED LIMIT ?

vMP FINISH
TAD I Z 10
SNA

JMP STRZRO
CLIMB, DCA HOLD
TAD HOLD
TC, RTR
RTR

RTR

AND MSK100
JMS WRITE
TAD HOLD
AND MSX100
JMS WRITE
JMP HALF
FINISH, CLA CLL
TAD SCORE
NOP

DCA EOLD
TAD HCLD
RTR

RTR

RTR

13

AND MSK100
JMS WRITE
TAD HOLD
AND MSX1C0
JMS WRITE
JMS TRAL
HLT

NOP

WRITE, O
DCA CKSM
TAD SCORE
TAD CKSM
DCA SCORE
TAD CKSM
6026

6021

JMP ,-1
CLA CLL,
JMP I WRITE
TRAL, O
CLA CLL
TAD TIM
DCA TIME
TAD LDR
6026

6021

JMP ,-1
CLA CLL

ISZ TIME
JMP ,-6
JMP I TRAL
STRZRO, CLA
JMS WIRTE
JMS WRITE
TAD I Z 10
SNA

JMP UP

JMP CLIMB
NOP

DSPY, CLA CLL
6051

DCA Z 10
TAD I Z 10
SZA CLA
CMA

6067

ISZ FORT
JMP .-5

JMP DSPY
NOP

SCORE, 6670
CKSM, O
MSK100, 77

/DISPLAY



ZP

0037
0065
0022
0031
0054
0034
0026
0026
0067
0066
0057
0060
0050
0055
0020
0064
0044
0032
0025
o021
0062
0000
0035
0053
0023
0027
0030
0033
0040
0041
oo42
00/:5
0043
0047
0051
0056
0063

REGS

o047
0066
0140
0200
0161
0125
0117
0124
0062
0013
0173
0200
0156
0041
0027
0065
0067
0040
150
0063
0033
0c21
0146
0056
0015
0l22
0164
0200
0051
0035
0163
0013
0012
0134
0072
ol4y
0052

SA
0200

0400
0600
1000
o247

0540
1200
1400
1600
2000
0553
2041
2200
2126

2267
2400
1756
2600
2433
1161
3000
3200
3400
2511
3122
3600
2352
2166
4000

4200

0246

0537
o777
1160

0373

0552
1372
1577
1755
2040
0575
2125
2266
2165

2351
2432
1776
2745
2510
1175
3121
3363
3577
2561
3156
3762
2364
2177
4133

4343

APPENDIX II

TAELE I

14







