
DECUS NO.

TITLE

AUTHOR

COMPANY

DATE

SOURCE LANGUAGE

8-144

FFTS-C - A FAST FOURIER TRANSFORM SUBROUTINE
FOR COMPLEX DATA

James Rothman

August 7, 1968

ATTENTION

This is a USER program. Other than requiring that it conform to submittal and review standards/
no quality control has been imposed upon this program by DECUS.

The DECUS Program Library is a clearing house only; it does not generate or test programs. No
warranty, express or implied, is made by the contributor. Digital Equipment Computer Users
Society or Digital Equipment Corporation as to the accuracy or functioning of the program or
related material, and no responsibility is assumed by these parties in connection therewith.

FFTS-C - A FAST FOURIER TRANSFORM SUBROUTINE

FOR COMPLEX DATA

DECUS Program Library Write-up DECUS No. 8-144

1. ABSTRACT

The Fast Fourier Transformation enables computation
of the power spectrum of a time series in a minimum of
time. Specifically, it reduces the number of computations
required to calculate the Discrete Fourier Transformation

of a series of N equally time spaced samples
XN_i where N is a power of 2(N=2n). In fact, for 1024
time samples, computation time is reduced by over 99%.

FFTS-C (for Fast Fourier Transformation Subroutine)
will transform up to 1024 complex points. It is written
as a subroutine, and is I/O independent. The user must
tailor his own input-output procedure to his particular
environment.

2. REQUIREMENTS

2.1 Hardware

A 4K PDP-8 with Extended Arithmetic Element Type 182
or a PDP-8/I with EAE Type KE-8/I option is the
minimum necessary hardware.

2.2 Storage

FFTS requires locations 3 to 12, 20 to 55, 400 to
1577+N, and 3600 to 3577+N, where N is the octal
number of points being transformed.

3. LOADING PROCEDURE

Make sure the BIN Loader is in core. If not, load it.
Put 7777 in the SR. Press Load Address. Place FFTS on the
reader and turn the reader on. Press start, and FFTS will
load. Then load the user's program the same way as above
and start it.

4. USAGE

4.1 Calling Sequences

FFTS enables the user to take either the Fast Fourier
Transform, (FFT) or its inverse (IFFT) of a complex
time series. The subroutine FFT, which begins at 0400,

calculates the FFT. Register DOFFT (normal location 0043),
points to FFT, so a JMS I DOFFT (=4443) will call FFT.
The subroutine \IFFT beginning at 0756 takes the inverse
FFT. Since location DOIFFT (normally 0044) points to
IFFT, IFFT can be executed simply by writing JMS I DOIFFT
(=4444). Both FFT and IFFT assume that the complex data

to be handled has already been stored in memory
(see sections 5 and 6.2). After the operation
is complete, the results will be stored in
memory in bit inverted order (see section 5.1).
For FFT, the results are the complex co-efficients
Sj (with the appropriate scale factors, as described
in section 5.2) given by the equation in section
1 (j=0, 1,...,N-1). For IFFT the results consist of
a time sequence Xj (j=0,1,....,N-1).

An example of a program that will transform a time
series and then resynthesize the series from its
spectrum is as follows; (see sections 5 and 6).

*200
/INPUT DATA AND ZERO IMAGINARY PARTS
BEGIN,

•

/SERIES STORED AWAY
JMS I DOFFT
TAD SCALE
DCA SCALT
JMS I SORT
JMS I DOIFFT
TAD SCALE
TAD SCALT
DCA SCALE

/TAKE FFT ~~—
/GET SCALE FOR TRANSFORM-"

/RE-ORDER THE TRANSFORMS
/TAKE THE INVERSE
/GET SCALE ON INVERSE

/RESULTS =1 ORIGINAL DATA)*2 +(SCALE^

/OUTPUT RESULTS (NOW STORED IN BIT REVERSED ORDER)

END, JMP BEGIN /START AGAIN
SCALT, 0

DOFFT = 43
SORT = 37
DOIFFT= 44
SCALE = 50
$

N0TE: THE REMARKS in THE FOLLOWING SECTIONS APPLY TO
I FFT AS WELL AS FFTl -

4.2 Execution Times

The following is a table of execution times for the
subroutine.

Number of points transformed Time (seconds)

1024 4.47

Number of points transformed Time (Seconds)

512
256
128

5. DETAILS OF STORAGE

5.1 Data Storage

A JMS I DOFFT causes a complex time series to be Fourier
Transformed. That series is stored in sequential order in
memory. More explicitly, the real parts of the data
are stored sequentially after location XRTAB (=1600)
and the imaginary parts are placed after location XITAB
(=3600). For example, the storage scheme for a N=4
point transform would look as follows?

/RE() DENOTES REAL PART.

/IM() DENOTES IMAGINARY PART

*1600
XRTAB, RE(Xn)

RE(XX)

re(x2)
re(x3)

*3600
XITAB, IM(X0)

IM(Xi)

IM(X2)
im(x3)

1.96
.845
.357

On exit the results of the transformation will be in
core. The real parts of the transforms (Fourier co¬
efficients) are stored in the registers following XRTAB,
and the imaginary parts are stored in the locations
following XITAB. But the transforms are stored in bit
reversed order. This means that to find S say, the
order of the bits of j, written in binary,Jmust be
reversed. For example, to locate Sj in memory after a
16 point (N=16, n=4) transformation has been completed,
first write j=5 as a binary number of n=4 bits? j=01012
and then reverse the order of the bits, giving 10102, *
which is This means the real part S5 is stored
in the position where X^ was originally placed. In
memory this is location'XRTAB+'S . Because the user can
save time by fetching the transforms for output from bit
reversed order, the subroutine does not bother to re¬
shuffle them in memory before exiting. However, a
subroutine SORT that reshuffles the co-efficients is
provided, and may be called by a JMS I SORT (SORT=37).

5.2 Data Scaling

All calculations in FFTS are done with single precision
fixed point signed binary fractions. The binary point
is located between bit 0 and bit 1, leaving an 11 bit
signed mantissa. Bit 0 is used as a sign bit. Negative
numbers are formed by taking the two's complement of
the positive binary fraction. So all inputs must be
scaled in magnitude to less than one. The outputs are

3

also formatted as above. There is also a more
subtle scale factor involved, in order to utilize
the maximum number of bits in the transformation
it is sometimesnecessary to divide by 2 in a com¬
putation. As a result of this
a pseudo floating point format has been adopted in
which a variable scale factor (or exponent) is im¬
posed on all the Fourier co-efficients. This scale
factor or pseudo exponents is found in register
SCALE (=50) after each transform has been completed.
The numbers stored in memory are the Fourier co¬
efficients multiplied by 2 raised to the contents of
SCALE. So to retrieve the co-efficients themselves,
merely shift each number C(SCALE) places right. If
any further computations are to be done, better
accuracy will be obtained by retaining the pseudo
exponent and leaving the co-efficients in “normalized
form." in the case of the inverse transform, the
desired results (here time samples) are the numbers
stored in memory times 2f(-C(SCALE)) . In the
program example of section 4.1 the scale factors
after the transform and the inverse are saved, and later
added. This is necessary because the inverse routine
calls the transform routine, which adopts a “floating"
point format. Hence the results of the inverse of
the transform have to be scaled by the sums of the
separate scaling factors.

6. RESTRICTIONS

6.1 Program Initialization

Because FFT is a subroutine certain registers must
be primed before the first entry in order to insure
proper operation. Specifically, register N (location
0003) must contain the number of points being trans¬
formed (in octal, of course) and register NU (location
0004) must contain the power of two which N is, that
is, C(N)=2t'C (NU) .C(NU) must be at least 2 and no more
than 12g, due to memory limitations.

6.2 Data Storage

FFT assumes that the complex time series has been
stored in memory. So the locations after XRTAB must
contain these time samples (actually, their real parts).
If the time series is complex valued, the imaginary
parts must be stored in the registers after XITAB. If
the series is only real valued, then the N-l registers
after XITAB must be set to zero. The reason FFT does not
do this itself is simply because that would not allow
for the possibility of a complex transformation.

4

6.3 Input Restrictions

So as to prevent overflow of the single precision
storage, it is absolutely necessary that all data be
less than 1 in magnitude, subject to the format

described in section 5.2. (The binary point is to the
right of bit 0).

7. METHODS

7.1 Algorithm

FFTS uses the algorithm discovered by Cooley and Tukey
for the rapid computation of a spectrum. This al¬
gorithm, called the Fast Fourier Transformation (or FFT),
permits transformation of N (which must be an integer
power of 2) equally spaced time samples in a time
proportional to Nlog2lf7~whereas previous methods"re¬
quired times proportional to N . This gives a reduc¬
tion of l-log2N/&. For N=1024, this is over 99%. In
essence, the algorithm makes use of the fact that

vk_wCKm«aiO
-2ni/n

(where W=e) to reduce the number of multiplications
necessary for a transformation. A complete description
and proof of the algorithm used and its implementation
can be found in an article by James Rothman which appears
in DECUSCOPE, Volume 7, Number 3.

8. DETAILS OF OPERATION

The following is a list of useful subroutines and
their operations: (values of the symbols may be found in
the symbol table included in this document).

Name Call By

FFT JMS I DO FFT

IFFT JMS I DOIFFT

SORTX JMS I SORT

Function

Takes the Fourier Transformation
of the data buffer. Results in
bit reversed order.

Takes the Inverse Fourier Trans¬
formation of the data buffer.
Results in bit reversed order.

Sort the data buffer so that it
is in normal sequence.

5

Name Function Call by

TRIGET JMS I GETRIG

INVRT JMS I INVERT

MULTIP JMS I MULT

9. SYMBOL TABLE:

A symbol table follows:

Fetches sine and cosine values.
Specifically, if the AC=K on entry,
the values of sin (2jtk/!j) and cos
(2;rK/to) are fetched from an in¬
ternal trig table, k must be
<or=N/2. A register COSINE contains
the cosine value and the AC contains
the sine value on exit.

Number in AC is bit reversed and
the result is in the AC on exit.

Rounded single precision signed
multiply, uses EAE. AC=multiplier.
C(Call address + l)=address of
multiplicand. Result in AC on exit.

6

\

symbol 1 Ad„t SYMBOL T ABLE

a joer 0036 g 0024
AUDR 1134 Ul 0021
AUOrtOS 1136 Ur 0020
AUDI 1173 UUAOl 1110
AuD2 0030 JUAU2 1072
aujsgn 0567 RdUlLU 0700
AHG2 1017 KLCH6 3702
asr 7415 RtSETC 3701
6IGSNU 0012 RtVERS 0707
BUILO 0543 S 0006
c 0027 SU A 7441
GAM 7621 SUALE 3050
CC I A 0767 SoL 7403
CrtKPT 0514 StTC 0541
CMOP 0770 SGNAOJ 0766
C !M 0 T S 0676 SHFCHK 0052
GOSIML 0033 shflag 0051
OATAHI 5600 smfti 1077
GUFF T 0043 SmF T2 1114
UUIF FT 0044 SHFT3 1125
U V I 7407 SB IF Cl 3561
F 0007 SHIFT1 0053
FFT 0400 SrilF T2 3054
FLIP 1044 Sh IF T 3 0055
FLIPCT 1060 Sml 7413
GtyKIG 0042 sign 1035

3035 SINL 0332
GH 0034 S1NL0C 0045
IF FT 0756 S1NRET 1122
1MDEX 1133 sintab 1175
1MVERT 0040 SURT 0037
IMVRT 1036 SORT X 0/03
K 0026 SHAPED 0747
L 0005 TfcMPR 0031
LUOP1 0440 IRI GET 1061
LSR 7417 RURG 1056
MAXnU 0011 WURJP 1^57
MMQVR2 0012 XiTAB 3630
Mg a 7501 xlocdf 0047
mul 7421 XrtLUC 0046
mult 0041 XRTA3 1600
mult IP 1000 XBUtv) 1174
muy 7405
M 0003
MM I 7411
MUROT 3563
MUTNOR 1171
MUVER4 0010
NU4MIK 1132
MU 00 Z 4
P 0025
PI 0023
PR 0022

7

ADDENDUM TO 8-143 and 8-144

The program was structured so to make the change of eliminating
the EAE requirement with a minimum of effort.

All that need be done is replace each EAE instruction with a
subroutine that performs the given operation using a pseudo
multiplier-quotient. For this purpose the EAE simulator may be
used. This does not allow certain microcodes, and where these
occur in the FFT program, they can be separated into groups of
EAE instructions, all of which together perform the designated
function.

For example CLA MQL MUY (microcoed) could become the three
instructions:

CLA
MQL
MQA.

8

CORRECTION TO DECUS NO. 8-143 AND 8-144

ORIGINAL
*1000

MULTIP, 0

RAL

DCA SIGN

MUY
ARG2, HLT ARG2

SHL

0
DCA ARG2

SHL

0
MQL

TAD SIGN
CLL RAR

TAD ARG2
MQA
SZL
CMA IAC
JMP I MULTIP

SIGN, 0 SIGN,

CORRECTED CHANGE
*1000
MULTIP, 0

RAR

DCA SIGN

MUY
HLT
SHL

0
DCA ARG2

*

TAD SIGN *

SHL ★

0 *

TAD ARG2 *

SPA *

CLA CLL CMA RAR *

NOP
SZL
CMA IAC

JMP 1 MULTIP

0

*

The error was in the way in which rounding was accomplished. This fix was tested by performing a

DOFFT, SORT, DOIFFT, SORT sequence on a 512 point real valued time series with 8-144 and then
summing the absolute value of the imaginary residuals. The fix above reduced the sum by 40 percent.

