

DECUS NO.

TITLE

AUTHOR

COMPANY

DATE

SOURCELANGUAGE

8-171

Real-Time System for Behavioral Science Experiments

Robert H. Tedford

Digital Equipment Corporation Maynard, Massachusetts

September 1967

PAL III

Although this program has been tested by the contributor, no warranty, express or implied, is made by the contributor, Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the program or related program material, and no responsibility is assumed by these parties in connection therewith.

Constraint model of State States Carrier

1 m - 17 17

And the second s

5 11 6 S 1 1 1

REAL-TIME SYSTEM FOR BEHAVIORAL SCIENCE EXPERIMENTS

DECUS Program Library Write-up

DECUS No. 8-171

ABSTRACT

This program controls the operations of behavioral chambers using four classical experimental designs; Punishment Discrimination (PD), Non-discriminated Avoidance (NDA), Fixed Ratio (FR), and Differential Rate of Low Response (DRL). Besides controlling the experiments, certain statistics are accumulated during the experiments for printout at the end of each test run.

REQUIREMENTS

Storage

This system utilizes most of the available internal memory.

Equipment

This system uses the basic PDP-8 computer, 12-bit word length, 4096 words of core memory. The standard ASR-33 Teletype machine is used for input/output. The behavioral chambers are modified Foringer boxes, model number 3032. The interface which acts as an input-output buffer between the computer and the boxes was designed at the Sterling Forest Research Center, Union Carbide Corporation, Tuxedo, New York with the help of a local representative from Digital Equipment Corporation.

Miscellaneous

For a continuous record of each animals performance, we use Gerbrands cumulative recorders. These recorders are not mandatory equipment but we would strongly recommend them. Foringer Shock Producing Equipment was also used.

USAGE

Loader

The program is loaded by the Binary Loader, Digital-8-2-U. The Master Tape should be loaded first, followed by the system tapes.

Start Up and/or Entry

The program starting address is $\emptyset 2 \emptyset \emptyset$. Set $\emptyset 2 \emptyset \emptyset$ in the switch register and depress LOAD and START.

Individual experiments are initiated by the box calling sequence and the first lever press (simulated) after the animal is placed in the box.

Errors in Usage

Errors in keying in the box calls are the only external errors.

Recovery from Such Errors

If the first character struck by the operator is not a valid box code, A-J, the program will ignore it and the operator should rekey the correct character.

After the first character, errors in keying may be corrected by loading the correct information via the switch register before the first lever press. In any event, it is very important that the operator complete keying in all the necessary information for the box.

DESCRIPTION

The PD System utilizes the first three boxes, A, B and C. There are four schedules available under this system, which may be called by one or more of the boxes. The criterion schedule is made up of six 15 minute segments. Each segment contains a 12 minute VI2 phase and a 3 minute FR1 phase. A constant tone is introduced during the FR1 phase and a shock is delivered along with the liquid reinforcement for every lever press. The shock duration is fixed at 0.4 seconds, but the intensity may be varied for each animal. Three schedules are used for training the animals. The first level of training is a fixed ratio This is used to get the animal accustomed to the enviof one (FR1). ronment, the lever and the food trough. Next, the trainee is put on a variable interval schedule, VI2. Here, reinforcement is given only after an interval of time has elapsed and if a response was made in the last 0.5 second of the interval. Otherwise, the interval is suspended until the subject makes a response. On the average, a good worker will receive a reinforcement every two minutes. The final stage in training is the same schedule as the criterion schedule without the shock.

The basic NDA system comprises boxes D, E, F and G. However, we have alternate binary tapes which when loaded into memory will extend this system to all ten boxes. The schedule used in this system has three phases. The Response-to-Shock phase (RS), the Shock-to-Shock phase (SS), and the Shock-phase. The Shock phase is fixed at 0.5 second duration and it begins at the end of either of the other two phases. During the Shock phase, no lever presses are serviced. The RS phase duration may be varied from 1 to 99 seconds. This phase is entered at the start of the test and after each serviced lever press. The SS phase duration may be varied from 1 to 99 seconds. This phase is entered at the end of the Shock phase. If a lever press occurs in the RS or SS phase, the schedule jumps to the start of an RS phase. Again, the shock intensity may be varied for each animal.

Boxes H, I and J are primarily assigned to the FR/FI system. Again, an alternate tape is available to extend this system to include boxes D, E, F and G. Two schedules are available. In the Fixed Ratio schedule (FR) the animal is reinforced after a fixed number of lever presses. The Fixed Ratio may be varied from 1 to 99 for each test run. The other schedule features an FR period alternating with an FI period. The FR period works the same as in the FR schedule. During the FI (Fixed Interval) period, no reinforcement is given until the end of the period; and then, only if the animal has responded in the last 10 seconds. The durations of these periods may be varied from 0 to 9 minutes in steps of 1 minute.

The DRL system utilizes boxes H, I and J. In this system, an animal is reinforced when the interval between responses satisfies the test criteria. From the input data, upper and lower limits are established for the response interval. The lower limit may be varied from 10 to 30 seconds in two second steps. The upper limit can set from two seconds above the lower limit to infinity (NO LIMITED HOLD). However, when a limited hold is specified, it should be such that the upper limit does not exceed 40 seconds.

Examples and/or Applications

With the programs available, we could run any of the above schedules in the following combinations:

Box	_1	2	3	_4	_5	6	7	8
A	PD	PD	PD	PD	NDA	NDA	NDA	NDA
В	PD	PD	PD	PD	NDA	NDA	NDA	NDA
C	PD	PD	PD	PD	NDA	NDA	NDA	NDA
D	NDA	NDA	FR/FI	FR/FI	NDA	NDA	FR/FI	FR/FI
Е	NDA	NDA	FR/FI	FR/FI	NDA	NDA	FR/FI	FR/FI
F	NDA	NDA	FR/FI	FR/FI	NDA	NDA	FR/FI	FR/FI
G	NDA	NDA	FR/FI	FR/FI	NDA	NDA	FR/FI	FR/FI
Н	FR/FI	NDA	FR/FI	NDA	FR/FI	NDA	FR/FI	NDA
I	FR/FI	NDA	FR/FI	NDA	FR/FI	NDA	FR/FI	NDA
J	FR/FI	NDA	FR/FI	NDA	FR/FI	NDA	FR/FI	NDA

Box	9	10	_11	_12
A	PD	PD	NDA	NDA
В	PD	PD	NDA	NDA
С	PD	PD	NDA	NDA
D	NDA	FR/FI	NDA	FR/FI
Е	NDA	FR/FI	NDA	FR/FI

Box	9	10		
F	NDA	FR/FI	NDA	FR/FI
G	NDA	FR/FI	NDA	FR/FI
н	DRL	DRL	DRL	DRL
I	DRL	DRL	DRL	DRL
J	DRL	DRL	DRL	DRL

Scaling

The "99" limits mentioned could be exceeded by selection of nonnumeric characters. The first character keyed in is subtracted by 260g and then multiplied by 12g. The second character is subtracted by 260g and then added to the product just calculated to obtain the desired time or ratio. Therefore, keying in 9: would yield a value of 144g or 100₁₀ and 9Z would produce 124_{10} .

METHODS

Discussion

For the NDA and FR/FI systems we calculate the following statistics, frequency, 'D' squared and the variance of the frequency.

Algorithms

The frequency (average responses per minute) is calculated by multiplying the total number of responses made by the reciprocal of the total time in minutes.

'D' squared is equal to the sum of the squares of the responses per minute minus the square of the total responses divided by the total time.

The variance is equal to 'D' squared divided by the total time - 1.

Accuracy

The statistics calculations are done in double precision.

Error Table for Functions

In converting the binary numbers to decimal numbers for printout, occassionally, we get a colon (:) in the last digit of either the integer or the fraction portions of the decimal number. This should be counted as being equal to 10 for that position. For example; 0.87: is equal to 0.880.

FORMAT

Input Data

Inputs to the program are the box calls to initiate a new schedule or test for a given box. These calls are as follows:

System	Schedule	Call *
PD	FRI	Any character whose octal code is less than 260, examples: /.,
	VI2	The number zero, Ø
PD	VI2 + FR1, W/T	The number one, 1
	VI2 + FR1, W/T + S	The number two, 2
NDA	RS40/SS20 One hour extention	Four numbers, example: 4020 Any alphabetic character, example: X
FR/FI	FR15 A 3 minute FR25, followed by a 1 minute FI	Two numbers, example: 15 Four numbers, example: 2531
DRL	DRL 20/LH 2 DRL 20/NLH	Four numbers, example: 2002 Four numbers, example: 2000

After the box call has been made, the animal is placed in the box and the first lever press is simulated by depressing the button on the top of the box. This action causes the house light to come on, starts the cumulative recorder, and initiates the test run.

All lever presses made by the animal are inputs to the program and they cause a program interrupt.

Core Data

*

The Clock Flag Register contains one bit for each box that currently requires clock servicing. The bits are set by the program after the first lever press is detected. They are reset by the program when the test is completed. Bits 0 - 9 correspond to boxes A - J.

All calls shown would be preceded by the Box Letter. Example: Complete call for a schedule of FR15 in Box H would be "H15".

Miscellaneous

The Lever Buffer Register of 12-bits is located in the interface. It contains one bit for each box that currently requires lever servicing. The bits are set automatically when the animal makes a complete response. They are reset automatically when the register is read into the accumulator. Bits 0 - 9 correspond to boxes A - J.

There are five Output Buffer Registers. Two boxes are serviced simultaneously by each register. The bit assignment is as follows:

Bits 0 and 6 control the shock scramblers
Bits 1 and 7 control the box speakers
Bits 2 and 8 control the stimulus lamps
Bits 3 and 9 control the house lights
Bits 4 and 10 control the solid reinforcements
Bits 5 and 11 control the liquid reinforcements

Bits 0 - 5 control boxes A, C, E, G, and I through their respective buffers. Bits 6 - 11 control boxes B, D, F, H, and J through their respective buffers. The bits are set and reset under program control. The buffer settings are executed under program control.

EXECUTION TIME

The execution time depends on the schedules called for in each box. In the PD system, the FR1 and VI2 schedules have 60 minutes durations. The criterion schedules run for 90 minutes.

In the NDA system, the first run is for 3 1/2 hours. If desired, this may be extended for additional runs of one hour intervals.

All FR/FI schedules have 60 minutes durations.

DRL schedules run for two hours.

PROGRAM

Core Map

Page	Contents *
0	Temporary Buffer Registers, short subroutines, constants and statistic dump area.
1	Interrupt Servicing Routines
2	FR/FI System - FR/FI Keyboard
3-14	Box Schedules

Page	Contents *
15	FR/FI System - FI Clock
16	Data Storage for boxes H, I and J and FR/FI System Subroutines
17	Data Storage for boxes A, B, C and PD System Keyboard
20	NDA and DRL Systems Keyboard
21	Data Storage for boxes D, E, F and G.
22	NDA System - Clock
23	NDA and DRL Systems Printout
24	FR/FI System - FI Lever
25	PD System - VI2 Clock, FRl Clock and Lever
26	PD System - VI2 phase of Criterion Schedule Clock and Lever, VI2 Lever
27	PD System - FRl phase of Criterion Schedule Clock and Lever
30	PD System - Printout and Calculations
31	FR/FI System - FR Clock and Lever
32	FR/FI System - Printout and Calculations
33	Printout and Calculation Subroutines
34	Print Subroutines
35	Multiplication Subroutines
36	Printout and Calculation Subroutines
37	Binary and RIM Loaders

* These are the primary contents of each page. There may be some small subroutines on any given page that are used by other systems. The box schedule pages and pages 16, 17 and 21 will vary depending upon which systems are currently in use.

The NDA System Lever, DRL System Clock and Lever Routines are located within their respective box schedule pages.

Additional Instructions

CCF (6112) - Clear clock flag - The internal clock interrupt flag is cleared.

CSF (6111) - Skip on clock flag - The clock flag is sensed, and if it contains a binary 1 the contents of the PC is incremented by one so that the next sequential instruction is skipped.

LASF (6121) - Skip on lever flag - The lever flag is sensed, and if it contains a binary 1 the content of the PC is incremented by one so that the next sequential instruction is skipped.

LARB (6126) - Read lever buffer register - The contents of the lever buffer is read into the accumulator. The lever buffer register and the lever flag are both cleared.

STATIC - Read Output Buffer Register - The content of the output buffer register is sent to its boxes and the status of the boxes is altered accordingly. The output buffer register is cleared.

BAF (6142). Read Output Buffer Register (STATIC) for Boxes A and B BBF (6152). Read Output Buffer Register (STATIC) for Boxes C and D BCF (6162). Read Output Buffer Register (STATIC) for Boxes E and F BDF (6172). Read Output Buffer Register (STATIC) for Boxes G and H BEF (6302). Read Output Buffer Register (STATIC) for Boxes I and J

DYNAMIC - Read Output Buffer Register - The content of the accumulator is read into the selected output buffer register and then it is sent to the boxes and the status of the boxes is altered accordingly. The output buffer register is cleared. The accumulator is unchanged.

BAL (6146). Read Output Buffer Register (DYNAMIC) for Boxes A and B BBL (6156). Read Output Buffer Register (DYNAMIC) for Boxes C and D BCL (6166). Read Output Buffer Register (DYNAMIC) for Boxes E and F BDL (6176). Read Output Buffer Register (DYNAMIC) for Boxes G and H BEL (6306). Read Output Buffer Register (DYNAMIC) for Boxes I and J EXPERIMENT SEQUENCE

- 1. Called via the Keyboard.
 - a. Establishes the schedule and the box.
 - b. Activates the box to lever interrupts.

2. First Lever Press.

- a. Activates the box to clock interrupts.
- b. Turns on the box house lights.
- c. Recorder starts when the light goes on.

- 3. Clock and Lever Interrupts.
 - a. Serviced according to the particular schedule until the end of the experiment is determined.
 - b. When the experiment duration time has elapsed, the following events take place.
 - (1.) The box is inactivated to clock and lever interrupts.
 - (2.) House light and all other components in the box are turned off.
 - (3.) The cumulative recorder is stopped.
 - (4.) The printout interrupt is initiated.
- 4. Printout
 - a. The data is dumped into a reserved area in page zero.
 - b. Printout proceeds with interruptions by clock and levers from other boxes taking priority over the printout.

PRINTOUT NOMENCLATURE

- 1. PD System (see figure 1)
 - SG Segment; each segment is for 15 minutes.
 - RT Number of Responses made during each segment
 - SR Number of reinforcements given during each segment
- 2. NDA System (see figure 2)

SG - Segment; each segment is for 30 minutes RT - Number of responses made during each segment SH - Number of shocks received during each segment FREQ - Frequency of responses per minute D SQ - The statistic D squared S SQ - The variance or standard deviation squared

- Note: The above statistics are not calculated for the first 30 minute segment. Therefore, the times under the CUM DATA heading refer to the 1st, 2nd,
- and 3rd hours after the initial 30 minute warm-up period.
- 3. FR/FI System (see figure 3)
 - FI Time-in minutes, the first digit denotes the FR interval and the second digit denotes the FI interval.
 - FR Fixed Ratio; number of responses per reinforcement
 - SG Segment; each segment is for 15 minutes
 - RT Number of responses made during each segment

SR - Number of reinforcement received during each segment

CUM DATA - Same as for the NDA system, except the first line refers to the performance during the first 30 minutes and the second line is a summary of the performance during the second 30 minutes.

Note: Blank fields under any of the headings indicate that the animal did not work at all in that interval.

- 4. DRL System (see figure 4)
 - DRL Minimum time between responses in seconds for reinforcement eligibility
 - LH Limited hold in seconds above the minimum time. If blank, there is no limited hold for this experiment.
 - SG Segment; each segment represents a two second interval of the time axis.
 - 14 This row contains the number of responses made at intervals of 0 to 14 seconds.
 - 28 This row contains the number of responses made at intervals of 14 to 28 seconds.
 - 42 This row contains the number of responses made at intervals greater than 28 seconds. The first six segments represent the intervals from 28 to 40 seconds and the last segment is for all response intervals over 40 seconds.
 - RT Number of responses made during the experiment.
 - SR Number of reinforcements received during the experiment.

PD SYSTEM SAMPLE PRINTOUTS

Call: A/							
FR1, BOX	A						
SG RT SR	1 125 125	2 132 132	3 47 47	4 23 23	5	6	
327	327						PLE LA
Call: A	ø						
VI2, BOX	A						
SG RT SR	1 253 7	2 264 8	3 219 7	4 188 7	5	6	
924	29						
Call: A	1						
VI2+FR1+	г вох	A					
SG VI/RT VI/SR FR/RT	1 165 6 23	2 156 5 25	3 172 7 9	4 147 6 15	5 161 7 11	6 152 5 8	
953	36	91					
Call: A	2						
VI2+FR1+	r,s B	OX A					
SG VI/RT VI/SR FR/RT	1 149 6 4	2 126 5 2	3 135 6 1	4 142 7 3	5 156 5 2	6 175 6 2	
883	35	14					

Note: The numbers under each box summary are the totals of the first, second and third rows in that order.

Figure 1.

NDA SYSTEM SAMPLE PRINTOUTS

Call: D4Ø2Ø NDA 4Ø/2Ø	BOX D					
SG 1 RT 3Ø SH 75	2 4ø 75	3 4ø 75	4 4Ø 76	5 4ø 76	6 4Ø 76	7 74 68
CUM DATA Ø3Ø-Ø9Ø Ø9Ø-15Ø 15Ø-21Ø	FREQ 1.333 1.333 1.899	D SQ 393.339 393.339 851.41Ø		S SQ 6.66Ø 6.66Ø 14.423		
Call: E4Ø2Ø						
NDA 4Ø/2Ø	BOX E					
SG 1 RT 3Ø SH 76	2 4ø 75	3 4Ø 75	4 4ø 76	5 4ø 76	6 4ø 75	7 51 7Ø
CUM DATA Ø3Ø-Ø9Ø Ø9Ø-15Ø 15Ø-21Ø	FREQ 1.333 1.333 1.516	D SQ 393.339 337.339 466.988		S SQ 6.66Ø 5.711 7.897		
<u>Call: DD</u> (c NDA 40/20	one hour exten BOX D	sion of prev	vious	run)		
SG 1 RT SR	. 2	3	4	5	6 4ø 78	7 4ø 78
CUM DATA Ø3Ø-Ø9Ø Ø9Ø-15Ø 15Ø-21Ø	FREQ .ØØØ .ØØØ 1.333	D SQ .ØØØ .ØØØ 693.339		S SQ .ØØØ .ØØØ 11.745		
Call: EE	(one hour exte	ension of pr	evious	run)		
NDA 4Ø/2	Ø BOX E					
SG 1 RT SH	2	3	4	5	6 4Ø 78	7 4ø 78
CUM DATA Ø3Ø-Ø9Ø Ø9Ø-15Ø 15Ø-21Ø	FREQ .ØØØ .ØØØ 1.333	D SQ .ØØØ .ØØØ 693.339		S SQ .ØØØ .ØØØ 11.745		

Figure 2

FR/FI SYSTEM SAMPLE PRINTOUTS

Call: Hl	5						
FR 1	5, BOX H						
SG	1 2	2	-				
RT 2	5 25	25	4 25				
SR .	1 2	2	1			r.	
CUM DATA	FREO	D SO		5 50			
ØØØ-Ø3Ø	1.666	166.674		5.723			
Ø3Ø-Ø6Ø	1.666	166.674		5.723			
Call: HØS	5 ₂ 1						1.11
FR/FT							
FR 5	, BOX H						
SG 1	. 2	3	4				
RT 25	25	25	25				
SR 5	5	5	5				
CUM DATA	FREQ	D SQ		S SQ			
ØØØ-Ø3Ø Ø3Ø-Ø6Ø	2.5ØØ 2.5ØØ	125.ØØØ		6.579	10.0		
	2.500	444.521		0.579			
FI 21,	BOX H						
SG 1	2	3	4				
RT 25	25	25	25				
SK I	T	T	T				
CUM DATA							
Ø3Ø-Ø6Ø	FREQ 5 ØØØ	D SQ	ſ	S SQ			
	5.ØØØ	.000		. ØØØ			

Figure 3

DRL SYSTEM SAMPLE PRINTOUTS

Call:	H2ØØ2						
DRL	2Ø / LH	I	2, BOX	Н			
SG 14 28 42	1 18 4 2	2 9 8 1	3 2 1Ø 2	4 1 15 Ø	5 2 15 Ø	6 3 9 Ø	7 5 2 Ø
RT SR	1Ø8 15						
DRL	2ø /LH		lø, box i				
SG 14 28 42	1 29 1ø 2	2 3 1Ø 1	3 3 9 2	4 2 8 2	5 2 7 1	6 5 3 1	7 4 3 1
RT SR	1Ø8 23						
Call:	J2ØØØ						
DRL	2Ø /LH		, BOX	J			
SG 14 28 42	1 1ø 6 3	2 1 1Ø 5	3 1 1ø 4	4 2 12 4	5 2 11 3	6 3 7 2	7 4 4 4
RT SR	1ø8 59						

Note: Blocked in areas represent the pay-off regions.

Figure 4

Recovery from Keying Errors

Here are the locations of parameters that are set by the box calling routines. In the event of a miskey operation, the applicable parameters would have to be reset to their proper values manually via the switch register as follows:

- 1. Depress the STOP key.
- 2. Write down the content of the PC.
- 3. Toggle the parameter location into the switch register.
- 4. Depress the LOAD key.
- 5. Toggle the correct value of the parameter into the switch register.
- 6. Raise the DEPOSIT key.
- 7. Repeat steps 3 through 6 for each parameter.
- 8. Toggle the contents of the PC from step 2 into the switch register.
- 9. Depress LOAD key.
- 10. Depress START key.

PD System Parameters

Symbol	Correc	t Setti	ng For	Location				
	FRL	VI2	C W/OS	C W/S	Box	A	В	С
TSBIT	ø	ø	1	2		36Ø1	3626	3653
SHKBT	ø	ø	ø	1		Ø717	1117	1317
GE 3Ø	7774	7774	7772	7772		Ø723	1123	1323
GEØ6	7761	7761	7764	7764		Ø731	1131	1331
GEØ7	ø	1	1	1		Ø732	1132	1332

NDA System Parameters

Symbol		Corre	ct Sett	ing For	11 10-	Location							
	_	4ø/2ø	Est.	Box A	B	<u>C</u> .	D	E	F	G	H	ī	<u>J</u>
NRST	(-RS)	716Ø	716Ø	ø75	4 1154	1354	1554	1754	2154	2354	2554	2754	3154
NSST	(-SS)	747Ø	747Ø	Ø75	5 1155	1355	1555	1755	2155	2355	2555	2755	3155
NPHT	(-RS)	716Ø	716Ø	Ø75	56 1156	1356	1556	1756	2156	2356	2556	2756	3156

(Below listed parameters would be effected only by an error in second character)

NFSFLG	ø	1	Ø757	1157	1357	1557	1757	2157	2357	2557	2757	3157
NTEST	7771	7776	Ø762	1162	1362	1562	1762	2162	2362	2562	2762	3162
NSHØ8	SHC1	SHC6	Ø763	1163	1363	1563	1763	2163	2363	2563	2763	3163
NRTØ4	SHC7	HSXQ3	Ø764	1164	1364	1564	1764	2164	2364	2564	2764	3164
NRTØ5	HSXQ3	LSXQ3	Ø765	1165	1365	1565	1765	2165	2365	2565	2765	3165
NRTØ6	LSXQ3	HSX3	Ø766	1166	1366	1566	1766	2166	2366	2566	2766	3166
NRTØ7	HSX3	LSX3	Ø767	1167	1367	1567	1767	2167	2367	2567	2767	3167
NRTØ8	RTC1	RTC6	Ø77Ø	117Ø	137Ø	157Ø	177Ø	217Ø	237Ø	257Ø	277Ø	3179

FR/FI System Parameters

Correct Setting For	FR/FI	Boxes	D	E	<u>F</u>	G	H	ī	Ţ
Fixed Ratio	-FR	1	532	1732	2132	2332	2532	2732	3132
Timer	-FR Time	1	545	1745	2145	2345	2545	2745	3145
FR Time	-FR Time	1.	546	1746	2146	2346	2546	2746	3146
FI Time	-FI Time	1	.547	1747	2147	2347	2547	2747	3147
Fixed Ratio	FR -FR	1	.54Ø	174Ø	214ø	234ø	254ø	274Ø	314Ø

DRL System Parameters

Correct Setting					
For	DRL 2Ø	Boxes	<u> </u>	I	J
DRL	747Ø		255Ø	275ø	315ø
Lower Limit	7767		2556	2756	3156
	LHØ2				
LH	7754		2551	2751	3151
Upper Limit	7765		2552	2752	3152

ACKNOWLEDGEMENTS

I would like to express my appreciation to the following people who assisted me on this program with their experience, knowledge and patience.

Dr. Morton E. Goldberg, Union Carbide Corporation Mr. Vincent B. Ciofalo, Union Carbide Corporation Mr. David Dodge, Digital Equipment Corporation

Interrupt Service Routines

.

FR/FI System: FR/FI Keyboard

PD System Keyboard

NDA System Keyboard

NDA System Lever (in each individual box schedule page)

NDA System Clock

PD System: VI2 Clock, FR1 Clock and Lever

PD System: VI2 Lever, Criterion Schedule V12 Phase Clock and Lever

PD System: FRI Phase of Criterion Schedule Clock and Lever

FR/FI System: FR/FI Lever

DRL System:

Clock and Lever (in each individual schedule page)

.....

DRL System: Keyboard

