
DECUS NO. 8-504A

TITLE ESI (ENGINEERING AND SCIENTIFIC INTERPRETER)

AUTHOR David J. Waks

COMPANY

Submitted by: Robert M. Supnik
Applied Data Research
Cambridge, Massachusetts

DATE 1966

SOURCE LANGUAGE MACRO-8X

ATTENTION

This is a USER program. Other than requiring that it conform to submittal and review standards,

no quality control has been imposed upon this program by DECUS.

The DECUS Program Library is a clearing house only; it does not generate or test programs. No
warranty, express or implied, is made by the contributor, Digital Equipment Computer Users
Society or Digital Equipment Corporation as to the accuracy or functioning of the program or
related material, and no responsibility is assumed by these parties in connection therewith.

*

<

ESI (ENGINEERING AnD SCIENTIFIC INTERPRETER)

DECUS Program Library Write-up DECUS NO. 8-504A

INTRODUCTION

ESI is an interactive programming system which greatly enhances

the utility of the PDP-8, PDP-8/I or 8/S. It provides

the small computer user with the computational

language facilities normally found only on large

systems. But more importantly, ESI is entirely self-

contained. All tools for program creation, modification,

execution, etc., are built into the system itself; no

supporting systems are required. Because it

concentrates these mechanisms in the form of a

straightforward, "English”-like command language, ESI

is ideal for the moderate-sized numerical problems that

arise continually in engineering, science and

system design and which must be solved by people who

are not and may not wish to become programmers.

This document has two sections. The first is a guide

through an initial session with ESI. The second is a

short but rigorous exposition of the system. You

are encouraged to experiment freely as you read Section

I; ESI is self-protecting and it is unlikely that you

can "blow" it inadvertently (or deliberately).

Underscored text such as

DELETE ALL.(input this)

is input to ESI which you are to transcribe to the

JO

teletype. It is important to remember that all ESI

statements begin with a verb and end with a period.

The system will not "look" at an input line until

carriage return is typed; carriage return will not be

shown here. For recovery from typographical errors

(you probably will make many at first), strike rubout

to "erase" the most recently input character, or

question mark-carriage return to nullify the entire

line. If rubout is struck a number of times in

succession, then an equal number of characters is

"erased" from the right-hand end of the line.

2

The simplest level at which ESI can be used is that of

a desk calculator. ESI will accept arithmetic

expressions, evaluate them and return the result almost

immediately. For example, input the following (remember

to type carriage return):

TYPE 2 + 2.

Available arithmetic operators are:

+ addition

- subtraction

* multiplication

/ division

+ exponentiation

In ESI-B (the 4K system) exponents must be decimal

integers in the range 1-9. With ESI-x (8K),

exponents may be arbitrary arithmetic expressions. Both
«

systems depart slightly from conventional mathematical

notation in that implicit multiplication is not

recognized. Thus TYPE 2(7+3)♦ is unintelligible to

ESI (try it) and must be expressed as TYPE 2* (7+3)♦

Use of parentheses is encouraged in ambiguous expressions

like 1-2/B, which should be written as either (1-2)/B or

l-(2/B) according to intent.

Several often-used mathematical functions are built

into ESI-B. These ares

SQRT square root

SIN sine (argument interpreted as radians)

COS cosine (" " " ”)

ABS absolute value

SGN signum (returns +1 or -1 according to sign of
argument)

IP integer part

FP fraction part

In ESI-X, the list is extended to include:

LOG common logarithm

LN natural lorarithm

.——EXP exponential (e to a power)

ATN arctagent (returns angle in the range
«*u/2 to +tt/2 radians)

DP digit part

XP exponent part

Function arguments must be enclosed in parentheses, and

may be arbitrary arithmetic expressions. Thus

TYPE SIN(SQRT(5.17)/.283).

Invent a few examples yourself. When you feel comfortable

with the keyboard and the notation, proceed.

If you have had experience with other programming

systems you may already have seen that ESI does its

4

arithmetic in decimal.

TYPE 20*.1.

produces 2 rather than, say, 1.999999 because there is

no error of conversion to and reconversion from an

internal number base. Precise results therefore will

often be preserved during computation. ESI's

precision is, however, not infinite; normal roundoff

errors will occur as with any finite precision computa¬

tion tool. Internally, numbers and intermediate

results are represented with a precision of seven

decimal digits. Half-adjustment occurs at the eighth

significant figure during both input and computation.

Thus

TYPE 3.14159265.

and

TYPE 1/3, 2/3.

An important ESI construct is the FOR clause, used for

iteration. Its general form is FOR<index>= a(b)c, <operation>

in which a, b, and c may be arbitrary arithmetic

expressions. The index is assigned an initial value of

a. The operation is performed, b is added to the index

and if c has been attained or exceeded in value by the

index, the process ceases; otherwise, another iteration

/

i

i

is made. For example,

FOR I = 2(3)9, TYPE I.

or

FOR I » -3(-1)-7, TYPE I.

or even

FOR I = -SQRT(4)(2/4)6/2, TYPE I.

Using a variant of the TYPE statement, we can produce

"useful" output:

FOR I «= 0(1)5, TYPE "THE SQUARE OF "I" IS "I-j-2.

Incidentally, when textual and numerical output are

combined as above, ESI inserts no spaces; if you get

numbers and text crowded together or too far apart,

try again with appropriate spacing in the text

string itself.

Another important element of the ESI language is the

conditional- or IF clause. It has the general form

IF <relation>, <operation>; the operation is performed

conditionally, that is, if and only if the relation is

true. For instance,

IF 10>2, TYPE "TEN IS GREATER THAN TWO".

The relational operators are:

< less than

LG less than or equal

■ equal

P 6

GE greater than or equal

> greater than

NE not equal

The comparisons are of algebraic value. If magnitudes

only are to be compared, the absolute value function

must be used. As one would wish, both sides of a

relation may be arbitrary arithmetic expressions. As

another example of "useful" output we might execute

FOR I = 1(1)6, IF 1170429, TYPE I.

which examines the positive integers 1 through 6 and

types out those whose seventh power is less than 3429.

So far we have been using the direct or "desk calculator"

mode of ESI in which statements are executed upon

receipt and then discarded. In indirect mode ESI

functions as a true computer operating on a stored

program and its data.

Indirect statements, or steps, are required to have

decimal numeric labels in the range 1 through 9.999999.

Steps are filed in ESI memory according to a Dewey-

decimal scheme so that to insert one between, say,

steps 5.06 and 5.07 one need only tag the line with an

intermediate number like 5.062. ESI construes an

7

/

input line as an indirect statement if and only if the

line begins with a step number. Thus

TYPE "HELLO".

is direct and is executed at once, while

1.1 TYPE,"HELLO".

is indirect and produces no apparent activity. That

step 1.1 has in fact been stored is proven by

DO STEP 1.1.

or

TYPE STEP 1.1.

If we wish, we can modify a step by inputting a new

line bearing the same number to be modified (try it

with step 1.1). A given step can also be deleted, like

this:

DELETE STEP 1.1.

Its absence can be confirmed by again inputting, say,

DO STEP 1.1.

ESI's response indicates that no such step exists

presently.

The integer portion of a step number is termed a

part number. A part is comprised of all steps having

a given part number; it may be TYPEd, DELETEd and in

particular, DOne as though it were a single step.

8

All but the most trivial computer programs require

storage for intermediate computational results; in ESI,

such storage registers are called variables and are

designated by the letters A-Z. Values are stored into

variables by means of the SET statement, which takes

the general form SET <variable> = arithmetic expressions

The arithmetic expression is evaluated and the resulting

number stored in the indicated variable. What makes

variables useful is that they may appear in arithmetic

expressions as though they were numbers. Some

examples (don't type them) of SET statements are:

SET Y = M*X+B.

SET T = SIN(A)/COS (A).

SET X = (-B+SQRT (BI2-4*A*C))/(2*A).

The reason these examples should not be input is

that ESI will not evaluate an arithmetic expression

containing an undefined variable, i.e., a variable

which has not had a value stored into it. For instance,

Q presently has no value, so that

TYPE Q+Z.

produces an error message.

In addition to behaving as holders of single numbers

as above, ESI variables can also act as arrays of no

more than two dimensions. Subscripts can be arbitrary

9

arithmetic expressions, incorporating even subscripted

variables, but must, after truncation to integral value,

lie in the range -999 through +999. Subscript expressions

are delimited by left and right square bracket, which

are produced at the teletype by skift/K and shift/M

respectively. ESI does not use array size declarations;

instead, the dimensionality of a variable is indicated

by the first executed SET statement storing into that

variable. The array elements themselves are created

as values are to be stored into them. Thus

FOR I = 1(1)4, FOR J = 1(1)4, SET B[I,J] « jfl.

both establishes B as a two-dimensional array, and

creates the upper triangular elements of the 4x4

matrix [B]. That only these elements have been created

is shown by

TYPE ALL VALUES.

We are now ready to write a first ESI program — a

square root extractor. An equivalent program is built

into ESI itself, but using ESI to create one will be

instructive in learning the system and for seeing the

value of "conversational" programming. Our program

will require one input (the argument) and will produce

one output (the square root) for which we shall use

10

the variables A and X respectively. Before thinking at

all about how actually to take square roots, we can

write a "supervisory" part to handle the clerical chores

of input/output:

1.1 DEMAND A.

1.2 DO PART 5.

1.3 TYPE "THE SQUARE ROOT OF "A" IS "X.

1.4 TO STEP 1.1.

When executed, step 1.1 will cause ESI to request that

you type in a value for A. Step 1.2 will then invoke

the root-finding procedure, which will leave its result

in X. Step 1.3 will output both A and X. Finally,

step 1.4 will shunt "control" back to step 1.1 so that

another square root can be taken without our having

explicitly to restart the program.

We are now left with the problem of writing part 5.

Since square root is a transcendental function we must

employ an iterative technique, say, Newton-Raphson.

The iterative formula for this is

Xi+1 = 1/2<v£.>

in which A is the argument, X^ is one approximation to

the root and is the next. We shall use A itself

11

*

as an initial approximation. will go to Va so that

in the limit, X^+^ = ~ fk; the process can be

terminated when successive approximations produce no

change in X^. The code embodying these thoughts is

shown below:

5.1 SET Y = A.

5.2 SET X = (Y+A/YJ/2.

5.3 IF X = Y, END.

5.4 SET Y = X.

5.5 TO STEP 5.2.

A, Y, and X respectively correspond to A, X^ and X^+^.

The operation END in step 5.3 causes control to leave

part 5 and return to part 1.

To run the program, DO PART 1.; take the square root of

several numbers and ascertain that the algorithm in fact works.

When you have tired of this, strike altmode once to

suspend execution (resumption can be effected by

typing GO.) and once again to cancel the run.

We can rather easily modify the program so that it

extracts cube roots. The iterative formula is

Xitl = l/3(2Xi+5*j)

Appropriate modifications to the program are:

1.3 TYPE "THE CUBE ROOT OF "A" IS "X.

5.2 SET X ■ (2*Y+A/(Y*2))/3.

12

Try taking the cube roots of 8, 27 and 81. Now try

.999999 (six nines) and when you feel sure that something

is wrong, cancel the run.

The program has been "looping"; and yet, if we examine

X (type it out) we see that its value is quite close to

V .999999. One way to get a feel for the problem is

to monitor the computation by typing each approximation

as it is generated. This we can do by inputting

5.25 TYPE X.

Now restart the program with the same argument; when you

have detected a pattern in the output, cancel the run.

As you see, the program has been repetitively generating

two particular approximations to the root. The

condition of equality of successive approximations is

therefore not met; however, note that each number agrees

with the actual root to within a few parts (five ought

to be safe generally) in the seventh significant

figure. Incorporating this convergence criterion into

the program,

5,3 IF ABS((Y-X)/X)<5E-7, END.

The program now will never "hang up", and will compute all

cube roots with a precision of ±5 in the seventh signifi¬

cant figure.

t;
i i

13

You might enjoy generalizing the program so that it takes

n
th roots. The iterative formula is

xi+i - K(ln-1))ti+iHL>

If you are working with ESI-B, remember that an expression

like N-l is not a legal exponent.

14

PERMJSSAMLE FORMS IN 6SI-8 IVERSIUN 3 1 1/ 3/C7 >:

DIRECI OR INDIRECT:

SET C = A * B♦C *D .
SET CN.J] r B t I - 1, J72I-CII *1 ,J/2 J.
SET r - IPCX/IJ.
FOR I = 1 (1)N, SET All] = Bit J*CU1.

00 PART 3.

FOR R = 0(0. 1) 1 . 5. 00 PART 2 .
DO S11P 3.7.
FOR 4 : N(-l)l. i)0 STEP 7.3 52.
FOR i - 1 .1 (. 1) i. 9, 00 STEP I + ! .

TYPE 2*3*5.
TYPE X-
TYPE X , IP IX), SCN (X), ABS(X).
FOR J = I (1 >N, TYPE AIM.
TYPE 'THIS IS A STRING'.
TYPE 'THE S0U4RE OF ’X' IS "X72.
TYPE “ROW “I”, COL. “J“, VALOE IS “All
TYPE STEP 2. 3.
TYPE PART 6.
TYPE ALL PARTS.
TYPE ALL VALUES.
TYPE ALL.

DELE IE X.
DEIEIE All ,3 1. 8 i I . J T. C. D.
delete all values. . .
FOR I = 1 (1)N, DELETE All].

DIRECT ONL Y:

DELETE STEP 1.1.
DELETE PART 2 .
DELETE ALL PARTS.
DELETE ALL .

*

ti X
 AB S(A-B)

Y = Z*R
2 = 1 A
At 1 J - 1 . 3E-6
B1999J=AE-999J
At-43] = 1 .414E02
A t 2 I = 317 5* I

INDIRECT ONLY:

J). 1.1 TO STEP 1.7.
1. 63 A 2 97 TO STEP 3*. 1*1.
1.7 TO PAR T A.

2.3 END.

A. 1 STOP.

6. 1 DEMAND X .
7.35 DEMAND AtUJl.
8.1 DEMAND At A5 3.

LI NE.
NO LINE.

CONDITIONAL CLAUSES: NUMBERS: OPERATIONS:

IF A = 9. . . 2 ♦ — * /
IF Art S ((N-0)/N) < IE- 6. 3.1A 159 3
IF IP(X) GE IP(Y>, .003
IF SGN(X) NE 1, 0.01
IF (A-B)/C LE D-XT2, -3.7E5 RELATIONS:

4.3GE-7
- 2. 27 3E ■*■*! 7 < > = CE LE

FUNCT 1 ONS:
INTERRUPTED OR STOPPED:

I P t X » INTEGER PART
F P(X) FRACTION PART ANY “TYPE' STATEMENT.
SGN(X) SIGN PART GC.
ABS(X) ABSOLUTE VALUE
SORI(X) SQUARE ROOT
SI NIX) SINE
COS(X) COSINE

CANCEL.

15

NOTES:

<- IS TYPED AND THE DELL RINGS WHENEVER A LSER TYPE-IN IS REQUESTED.
I AND) ARE USED TO DENOTE SUBSCRIPTS.
? TYPED AT THE END OF ANY LINE CAUSES IT TO BE DISREGARDED.
*R UBOOT" DELETES THE PRECEDING CHARACTER AND TYPES <- TO SO INDICATE.
STEP NUMBERS ARE IN THE RANGE 1 TO 9.999999.
VARIABLES ARE THE SINGLE LETTERS A THROUGH 2.
•ALT MODE- INTERRUPTS EXECUTION UF A PROGRAM AT THE COMPLETION OF THE

CURRENT STEP; ON A “DEMAND". “ALT MODE “ CANCELS EXECUTION.

16

ESI-B OPERATING INSTRUCTIONS

I. Loading ESI info Memory

ESI is ordinarily loaded once and then only has to be reloaded if the computer has been used

for programs other than ESI. ESI is completely protected from the effects of "bugs" in user

programs and cannot be accidentally destroyed. The following procedure is used to load

ESI-B:

A. If the RIM loader is not already i‘n memory (and it usually is), insert it into memory through

the switches. See the detailed instructions for this in the PDP-8 or PDP-8/S User's Handbooks.

B. Use the RIM loader to load the BIN loader through the ASR-33; directions for this are also

contained in the PDP-8 or PDP-8/S User's Handbooks.

C. Use the BIN loader to load the paper tape labelled "ESI-B-MAIn-BIn" with either the

ASR-33 or the high speed reader, if available. The AC should contain all zeroes after loading;

if it is non-zero, the tape must be loaded again .

II. Adding and Deleting the Optional Functions

The ESI system is supplied as three paper tapes called "MAIN, " "FUNCTION ADD, " and

"FUNCTION DELETE. " In order to use the system, the MAIN tape is always loaded first as

described above. The MAIN tape does not include the SIN, COS, or SORT functions. These

functions are added to memory by loading the separate FUNCTION ADD tape, which also

reduces the amount of available user core from 800 to 600 words. The functions can be deleted,

and the 200 words of user core regained, by loading the FUNCTION DELETE tape. Loading of

these two tapes can be done at any time after loading ESI MAIN; they are loaded in the same way

as ESI MAIN, as described in Step C above. Unless ESI has been run after loading ESI MAIN,

Steps A and B are unnecessary; if ESI has been run, it is necessary to go through Step B as

well as Step C. (That is, ESI clobbers the BIN loader.)

III. Starting ESI

ESI is started at location 5400, and should be restarted there after any halts. Note that

stopping ESI and restarting at location 5400 does not do any damage to a user program currently

in memory; it does, however, restart ESI in "direct mode" waiting for a direct command from
the user.

IV. Punching an ESI-language Program on Paper Tape

A. To prepare leader-trailer:

1. Push punch "OFF" button.

2. Turn switch on front of ASR-33 to "LOCAL. "

17

3. Push punch "ON" button.

4. Push and hold down in this order: SHIFT, CONTROL, REPEAT, and @ (shift of "P").

5. Hold all four buttons down for about 5 seconds.

6. Release buttons in the reverse order of pushing them.

7. Push punch "OFF" button.

8. Turn switch in front of ASR-33 to "LINE. "

B. To dump a program:

1 . Produce leader trailer as in A.

2. With punch "OFF, " type "TYPE ALL. " (Or "TYPE ALL PARTS. " or "TYPE ALL VALUES.

Do not type the carriage return.

3. Push punch "ON" button.

4. Now type the carriage return.

5. When type-out is complete (when 4— is typed), push punch "OFF" button.

6. Again produce leader trailer as in A.

V. Reading a Previously-Punched ESI-language Program

A. Place paper tape in ASR-33 reader.

B. Make sure ESI is in direct mode (back arrow 4— typed at beginning of current line).

C. Push reader switch to "START. "

D. At end of read-in, push reader switch to "STOP FREE. "

VI. What to Do if You Run Out of Memory

A single block of memory is used by ESI to store user-program steps and subscripted array

elements, as well as work space for ESI itself in the course of execution of programs. The

single error message "STORAGE" is used to describe all three possible ways of running out of

memory:

A. Not enough room to store the step just typed.

B. Not enough room to store another element of a subscripted array.

C. No room left for ESI work space.

")

18

The single block of memory used by ESI is continuously optimised so that running out of

memory for one purpose leaves none for any other. In this way, all of user storage (less work

space) is available for step storage if no subscripted arrays are used, or for subscripted arrays
if no steps are stored.

One problem caused by this sharing of memory is that it is possible for ESI to be unable to

interpret a direct command to delete some unwanted or unnecessarily-long step in order to

gain additional space. In the same way, running out of memory while entering steps can

leave ESI unable to interpret a "TYPE ALL PARTS" command. A method is available to

permit the user to circumvent this problem, at the expense of destroying any subscripted

variable elements the user may have stored, and possibly also destroying the RIM loader, which
is normally protected by ESI.

The method is very simple, and involves the manual modification of location 0063 in memory.

After halting the machine, examine location 0063. If it is greater than 7730, set it to 7777

(this will result in destroying the RIM loader). If it is less than 7730, set it to 7750 (which

will not destroy the RIM loader). Then restart ESI at location 5400; ESI will now have

sufficient work space for the analysis of any TYPE or DELETE command. No attempt should

be made to enter, type out, or modify subscripted variables until the next DELETE ALL or

DELETE ALL VALUES is given; either of these commands will initialise location 0063 to 7750

which is its normal value when no subscripted variable elements are being used.

The user should bear in mind that while ESI pays no attention to the presence or absence of

spaces in any context except text strings (enclosed in quotes), spaces do occupy space in

user storage which might be better employed in storing more user statements. Thus the user

is encouraged to use spaces liberally to improve the readability of short programs, but is

advised to discard readability for feasibility if space is going to be a problem.

19

PERMISSABLE FORMS IN ESI-B*

DIRECT OR INDIRECT: DIRECT ONLY:

SET C = A*B+C*D DELETE STEP 1.1.
SET C C I, J 1 = B i: 1-1, J T 2 3 -C CH-1, J/2 3 DELETE PART 2.

SET Y = IP(X/D. DELETE ALL PARTS*
FOR I = 1(1)N, SET A C I □ = B C I 3 *C M3. DELETE ALL. . \ ■ f-— — —

DO PART 3. X = 3*ABS(A-B)

FOR R = 0(0.1)1.5, DO PART 2. Y=Z+B

DO STEP 3.7. Z = 14

FOR J = N(-l)1, DO STEP 7.352. A C 1 .3 =1.3E-6

TYPE 2+3+5.

A C43 1 = 1.414E+32

A r 2 3 =3175*1

TYPE X.

TYPEX, IP(X), SGN(X), ABS(X).

FOR 1= 1(1)N, TYPE A L* U .

TYPE "THIS IS A STRING". INDIRECT ONLY:

TYPE "THE SQUARE OF " X "IS" X t 2.

TYPE STEP 2.3. 1.1 TO STEP 1.7.

TYPE PART 6. 1.7 TO PART 4.

TYPE ALL PARTS.

TYPE ALL VALUES. 2.3 END.

TYPE ALL.

DELETE X.

DELETE A C 1,3 2 ,.B C 1, J 2 , C, D.

4.1 STOP.

6.1 DEMAND X.

DELETE ALL VALUES. 7.35 DEMAND A C 1, J

FOR 1 = 1(1)N, DELETE A N J • 8.1 DEMAND A C 45 'J

LINE.

CONDITIONAL CLAUSES: NUMBERS: OPERATIONS:

IF A= B, 2 + -*/() I*

IF ABS((N-0)/N) < IE-6, 3.141593

IF IP(X) GE IP(Y), .003
IF SGN(X) NE 1, 0.01
IF (A-B)/C LE D-X T 2. -3.7E5 RELATIONS:

4.36E-7

-3.273E+17 < > = GE LE NE

FUNCTIONS:

IP(X) INTEGER PART

FP(X) FRACTION PART

INTERRUPTED OR STOPPED:

ANY "TYPE" STATEMENT.

SGN(X) SIGN PART GO.

ABS(X) ABSOLUTE VALUE CANCEL.

*

4— IS TYPED AND THE BELL RINGS WHENEVER A USER TYPE-IN IS REQUESTED.

CAND 3 ARE USED TO DENOTE SUBSCRIPTS.

? TYPED AT THE END OF ANY LINE CAUSES IT TO BE DISREGARDED.

"RUBOUT" DELETES THE PRECEDING CHARACTER AND TYPES 4— TO SO INDICATE.

STEP NUMBERS ARE IN THE RANGE 1 TO 9.999999.

VARIABLES ARE THE SINGLE LETTERS A THROUGH Z.

* COPYRIGHT 1966 APPLIED DATA RESEARCH, INC.

21

ESI-B OPERATING INSTRUCTIONS -- PRELIMINARY

DATE: 11/3/66

I. LOADING ESI-B

1. LOAD RIM LOADER MANUALLY (SEE PDP-8 MANUAL).

2. LOAD BIN LOADER THROUGH RIM LOADER.

3. LOAD ESI-B WITH BIN LOADER.

II. LOADING A PROGRAM PUNCHED BY ESI-B.

1. PLACE PAPER TAPE IN ASR-33 READER. J

2. MAKE SURE ESI IS IN DIRECT MODE (BACK ARROW 4— TYPED AT

BEGINNING OF CURRENT LINE).

3. PUSH READER SWITCH TO "START".

4. AT END OF READ-IN, PUSH READER SWITCH TO "STOP FREE".

III. DUMPING AN ESI-LANGUAGE PROGRAM.

A. TO PREPARE LEADER-TRAILER:

1. PUSH PUNCH "OFF" BUTTON.

2. TURN SWITCH ON FRONT OF ASR-33 TO "LOCAL".

3. PUSH PUNCH "ON" BUTTON.

4. PUSH AND HOLD DOWN IN THIS ORDER: SHIFT, CONTROL, REPEAT,

AND 9 (SHIFT OF "P").

5. HOLD ALL FOUR BUTTONS DOWN FOR ABOUT 5 SECONDS.

6. RELEASE BUTTONS IN THE REVERSE ORDER OF PUSHING THEM. _

7. PUSH PUNCH "OFF" BUTTON. J

8. TURN SWITCH IN FRONT OF ASR-33 TO "LINE".

B. TO DUMP A PROGRAM:

1. PRODUCE LEADER TRAILER AS IN A.

2. WITH PUNCH "OFF", TYPE 'TYPE ALL." (OR "TYPE ALL PARTS."

OR "TYPE ALL VALUES."). DO NOT TYPE THE CARRIAGE RETURN .

3. PUSH PUNCH "ON" BUTTON.

4. N OW TYPE THE CARRIAGE RETURN .

5. WHEN TYPE-OUT IS COMPLETE (WHEN <— IS TYPED), PUSH

PUNCH "OFF" BUTTON.

6. AGAIN PRODUCE LEADER TRAILER AS IN A.

22

