
DECUS NO.

TITLE

AUTHOR

COMPANY

DATE

SOURCE LANGUAGE

PROGRAM LIBRARY

8-527

XDDT8E

Kin cade N. Webb

Xenex Corporation

Waltham, Massachusetts

March 4, 1972

PAL 10

Although this program has been tested by the contributor, no warranty, express or implied, is made by the contributor.

Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the

program or related program material, and no responsibility is assumed by these parties in connection therewith.

?

XDDT8E

DECUS Program Library Write-up DECUS NO. 8-527

XDDT8-E is an octal-symbolic debugging program for a PDP8-E
with Extended Memory which preserves the status of the program
interrupt system at breakpoints. It is the result of updating
tne old XDDT (Decus 8-127) debugging program to make it operate
correctly on the PDP8-E.

The program occupies locations 4214 through 7577 of any
memory field. In addition, XDDT8-E has a symbol table which
extends from 4213 down towards 0000, where up to six-character
symbols are stored using four locations per symbol. XDDT8-E
distinguishes among the following four types of symbols:
Memory Reference Instructions, Operate-IOT instructions,
Location Names, and DEC-338 Commands. An initial symbol table
including the basic PDP-8 instructions and extended memory
instructions is provided, thus the highest location initially
available to the user is 3723 in the field where XDDT8-e is
running.

From the Teletype, the user can symbolically examine and
modify the contents of any memory location in a variety of
formats. Positive and negative block searches with a mask
may also be performed.

XDDT8-E includes an elaborate single-breakpoint facility
to help the user run sections of his program. When this
facility is used, the debugger also uses locations 0006 and
0007 of every memory field.

XDDT8-E allows for RIM and BIN punching of core on either
the ASR or high-speed punch.

XDDT8-E is not compatible with PDP8-L or 8-1 computers.

"CTRL" Characters

In this writeup, t directly preceding an alphabetic character
such as TE, indicates a special character which the user types by
holding down the special shift key labelled "CTRL" while striking
the corresponding alphabetic character key. When a user inputs
one of these special characters, XDDT echos an up-arrow followed
by the corresponding alphabetic character.

Loading, Starting, Restarting

XDDT8-E may be loaded into any memory field; it occupies
locations 3724 through 7577. This includes the initial symbol
table.

The STARTING ADDRESS of XDDT is 7000.

During the operation of XDDT8-E or during the execution of
a user's program, XDDT may be restarted at 7000. When XDDT is
restarted at a time when it was already in control, none of the
registers or indicators associated with program status at break¬
points are affected.

When XDDT8-E is started or restarted, the setting of the
Data Field is ignored.

Returning to the Monitor

For use with PDP-8 operating systems, typing TC causes XDDT
to return to the resident monitor by transferring control to loca¬
tion 07600 of the PDP-8.

Constituents of Octal-Symbolic Expressions

OCTAL DIGIT is one of the characters 0, 1, ...» 7

OCTAL NUMBER is one to six octal digits, evaluated modulo (10000)g

SYMBOL is one to six characters chosen from 0, 1, ..., 9, A, B, ..
and ".", but not an octal number.

TERM is SYMBOL or OCTAL NUMBER or * or #

EXPRESSION is one or more terms separated by either +, -, or SPACE

-3-

+ is two's complement plus

- is unary or binary two's complement minus

SPACE is inclusive OR, or separator between memory reference
instruction and address

* means indirect addressing when immediately following an
addressable instruction; when alone, it has the value of the
"current location".

when alone, has the value of the expression last typed in or out.
(Note that # is also used to set the field of attention.)

Type-in BCD - Typing a) following a symbol or octal number causes
the value of that term to be taken as the trimmed BCD codes of the
first two characters of the term. If the term is a single character,
it is assembled in bits 0-5, and bits 6-11 are set to 00.

Null Characters - XDDT ignores characters whose code is 000. This
corresponds to blank tape.

Illegal Characters - XDDT responds with a BELL, and the character
is ignored.

Undefined Symbols - XDDT responds with a ? , and the expression is
ignored.

RUB OUT or ?
ignored.

Symbols

XDDT responds with a ? , and the expression is

XDDT distinguishes among four types of symbols:

Memory Reference Instructions

The six PDP-8 memory reference instructions, AND, TAD, ISZ,
DCA, JMS, JMP, are permanently defined within XDDT. These symbols
are typed out by XDDT only when examining or evaluating as an
instruction.

Operate-IOT Instructions

These symbols are normally those PDP-8 instructions whose
value is between 6000 and 7777. The initial table of XDDT
includes the most common IOT, OPR symbols (see the list in the
Appendix). Any number of additional Operate-IOT symbols may
be defined through user control. These symbols are typed out
by XDDT only when examining or evaluating as an instruction.
If an exact match occurs, the symbol is typed out. Otherwise,
the 12-bit instruction is typed. All valid micro instruction
combinations are typed out for groups 1 and 2.

Location Names

These symbols are used to refer to 12-bit addresses within
the PDP-8. The initial table of XDDT contains no symbols of
this type, but any number of them may be defined through user
control. These symbols are typed out by XDDT when examining
or evaluating as a name, or as the address of an addressable
instruction when examining or evaluating as an instruction,
or as the location name when XDDT is opening locations. When
typing a location name XDDT always type out a name symbol if
there is an exact match. If there is not an exact match,
XDDT normally types a relative address (nearest symbol + an
octal offset). There is an option in XDDT to type out name
symbols only on an exact match. A name symbol is the only
type of symbol which can be removed from the symbol table.

DEC-338 Commands

These symbols are distinguished from the other three
types for the purpose of selective type-out. This classifica¬
tion is provided especially for the symbols used for display
list commands of the DEC-338 Programmed Buffered Display.
A user may wish to define his own class of symbols for
special applications. The initial table of XDDT contains no
symbols of this type, but any number of them may be defined
through user control. These symbols are typed out by XDDT
only when examining or evaluating as a DEC-338 command.

Field of Attention

At any particular time, the attention of XDDT is directed
towards one memory field, and all specified locations refer to
that field.

When XDDT is waiting for type-in, the Data Field lights on
the PDP-8 console indicate the current field of attention.

When XDDT is first loaded, its field of attention is 0.

The user may change the field of attention by typing an
expression specifying the field number followed by # . When
this is done, XDDT sets its lower limit used for zeroing and
searching to 0000. If the specified field is the same one
as the field in which XDDT is running, the upper limit is
set to the highest available location which is not being used
for the XDDT sumbol table; otherwise, the upper limit is set
to 7577.

Bits 6-8 location 5400 within XDDT determine the highest
memory field with which XDDT is operating. The supplied binary
tape of XDDT has 0010 in this location, so that an 8-K memory is
assumed. This number may be changed in order to use XDDT on a
PDP-8 with more than two memory fields. The contents of loca¬
tion 5400 is used when XDDT is running a user's program with a
breakpoint assigned and also when a field specification is typed.

Examinations

One of the following characters typed after an expression
(typed in or out) causes XDDT to open the location specified by
the expression, and type out the contents of the location as
below. If no location was already open, the current mode of
examination is set to the mode associated with the character,
and the value of the current location (*) is set to the value
of the opened location.

Character

/

\ (Shift L)

[(Shift K)

] (Shift M)

Mode of Examination

Instruction

Name Symbol

DEC-338 Command

Octal number

BCD

Equivalences

One of the following characters typed after an expression (typed
in or out) causes XDDT to type that expression in the mode as below.

Character

«-

$

$

Mode of Equivalence

Instruction

Name Symbol

DEC-338 CommAND

Octal number

BCD

-6-

Current Location

* has the value of the location which was last opened when
no location was already open. Note that the value of * is
updated as locations are opened during searches.

Carriage Return

If a location is open, an expression typed in followed by a
CR causes XDDT to set the contents of that location to the value
of the expression.

Miscellaneous

LINEFEED First acts like a CR and then opens location
*+l in the current mode of examination.

First acts like CR and then opens location
*-l in the current mode of examination.

T (shift N)

If a location is open, an expression typed in C
followed by a (causes XDDT to set the contents
of that location to the value of the expression
and then immediately examine in octal the loca¬
tion addressed by the typed expression.

Limits

XDDT has a lower limit and upper limit used for zeroing, punching,
and searching. The user may find out the value of either of these
quantities:

Typing TL alone causes XDDT to type out in octal the value
of the Lower limit.

Typing TU alone causes XDDT to type out in octal the value
of the Upper limit.

The user may set either of the limits:

Typing an expression followed by tL causes XDDT to set the
Lower limit to the value of the expression.

Typing an expression followed by tU causes XDDT to set the
Upper limit to the value of the expression.

The limits are set by XDDT when a user specifies a field of
attention (by #). The lower limit is set to 0000. If the
specified field is the same one as the field in which XDDT is
running, the upper limit is set to the highest available location
which is not being used for the XDDT symbol table; otherwise,
the upper limit is set to 7577. (For special applications, the
user may wish to alter this default upper limit, which is stored
within XDDT at location 5125.)

XDDT may also change the upper limit when a user defines a
symbol.

Typing TH causes XDDT to type out in octal the Highest
available location which is not being used for the XDDT
symbol table.

Typing Mode for Locations

Locations typed out by XDDT prior to its typing one of the
examination characters are normally typed as name symbols. The
user is provided with an option to change this mode of type out:

Typing tO causes XDDT to type locations in Octal.

Typing TS causes XDDT to type locations as name Symbols.

Zeroing

Typing an expression followed by TZ causes XDDT to set the
contents of the locations between the lower and upper limits
inclusive to the value of the expression. If no expression is
typed preceding the Tz, a value of 0 is assumed.

Positive (Negative) Searching

.This command to XDDT is given by typing an expression followed
by > (<). When this format is used an assumed MASK of 7777 is
used for the search. The user may, however, specify a MASK as
part of the command by first typing an expression followed by a ;
as a separator.

Typing an expression followed by >(V) causes XDDT to search
locations between the lower and upper limits inclusive. All loca¬
tions whose contents do (not) match the value of the expression in
the bits specified by the MASK are typed out. During the course
of a search, the user may stop the search by striking any key.

Name Symbol Option

This option controls the typeout of name symbols by XDDT
when examining or evaluating as a name, or as the address of
an addressable instruction when examining or evaluating as an
instruction, or as the location name when XDDT is opening a
location. XDDT normally types out a name symbol plus an octal
number when there is not an exact match.

Typing tE causes XDDT to type name symbols only when an
Exact match occurs. Octal numbers are typed when there is
not an exact match.

Typing TR causes XDDT to type name symbols as Relative
addresses when necessary, i.e., as a name symbol plus an
octal number when there is not an exact match.

Symbol Definition

The table of six PDP-8 memory reference instructions is fixed,
but the user may define symbols of the other three types. The
definition of a symbol always causes the length of the XDDT symbol
table to increase by four PDP-8 locations, thereby decreasing the
available space for a user program in the field where XDDT is
running. If the field in which XDDT is running is the same as
the field of attention, XDDT will adjust the upper limit to not
exceed the highest available location which is not being used
for the XDDT symbol table. The upper limit will then be lowered
as each symbol is defined.

Operate-IOT Instructions

Typing an expression followed by followed by a symbol and
terminated by fP causes XDDT to define the symbol to have an
associated value equal to the value of the expression. The
symbol is defined as an OPerate-IOT Instruction.

Example: SZA CLA; SZACLAtP

-9-

Name Symbol

Typing an expression followed by ; followed by a symbol and
terminated by TN causes XDDT to define the symbol to have an
associated value equal to the value of the expression. The symbol
is defined as a Name symbol.

Examp1e: 200;START TN

An alternative method is available for defining a name symbol:
typing a symbol followed by , causes XDDT to define that symbol as
a name symbol with an associated value equal to the value of * .

DEC-338 Command

Typing an expression followed by ; followed by a symbol and
terminated by A causes XDDT to define the symbol to have an
associated value equal to the value of the expression. The symbol
is defined as a DEC-338 CommAnd.

Example: 3000;POPtA

Kill Name Symbol

Typing a name symbol followed by TK causes XDDT to Kill the
definition of that symbol. The symbol table remains the same
length since the table entry is merely cleared.

Typing TK alone causes XDDT to kill the definition of all
current name symbols. The highest available location available
for the user in the field where XDDT is running is then appropriately
adjusted. However, the upper limit is not changed.

Reading a Symbol Table into XDDT

Two special characters are recognized by XDDT for the purpose
of reading symbol table tapes. A symbol table tape begins with
blank leader followed by the special character Ctrl shift N, which
causes XDDT to cease typing out while a symbol table tape is being
read. The body of the tape is signalled by the special character
Ctrl shift 0, followed by blank trailer.

When the end of a symbol table tape is recognized, XDDT stops
reading tape. It then waits for the user to turn off the paper
tape reader. In order to continue, the user must then strike
any key. XDDT responds by typing out in octal the highest available
location which is not being used for the XDDT symbol table.

t

Punching a Symbol Table

After a user has been using XDDT for a while, he may wish
to punch a binary tape of the section of memory containing the
user-defined symbols in order to save these definitions. Such
a binary tape could then be reloaded for use with XDDT at a
later date. Before punching, the user should use the tH command
to determine the highest available location which is not being
used for the XDDT symbol table. Let x be the number which XDDT
types out. The locations to be punched are:

x+1 through 3723 , and

6400 through 6402.

Locations 6400 through 6402 contain pointers to three of the
subtables of the XDDT symbol table.

Adjusting the XDDT Symbol Table

The user may restore the XDDT symbol table to its initial state
by setting the contents of locations 6400, 6401, and 6402 to 3724.
The upper limit is not affected by these changes.

The user may remove all symbols from the XDDT table except for
the eight basic PDP-8 instructions in order to have a maximum amount
of available space for his program. This is accomplished by setting
the contents of locations 6400, 6401, and 6402 to 4214. DO NOT then
use mneumonic accessing.

Reading a Binary Tape

In order to read a binary tape on the Teletype reader, place
the tape in reader in the leader area and START the reader. XDDT
immediately transfers control to PDP-8 location 17777, where there
is presumably some type of binary loader which then reads in the
tape. After reading is finished, XDDT may be restarted at its
starting address.

Program Execution and Breakpoints

XDDT aids the user in program debugging by giving him an
elaborate single breakpoint facility. The user may command XDDT
to assign a breakpoint at any location of any field. This assign¬
ment has no immediate effect, but is important when the user
commands XDDT to start running his program. When he does this,
XDDT saves the contents of the location where the breakpoint
was assigned and replaces it by a special breakpoint instruction
(5006). XDDT also plants special instructions into locations
0006 and 0007 of every memory field (without saving their contents).
It then appropriately sets the Accumulator, Link, Data Field, MQ,
Teletype output flag and program interrupt status and transfers
control to the user's program.

The user's program will then execute normally unless control
passes to the breakpoint location. In this event, a "breakpoint
trap" occurs, which consists of a jump back to XDDT. When XDDT
is re-entered the location of the trap, Accumulator, Link, MQ, Data
Field, Teletype output flag, and program interrupt status are
all saved. At this time XDDT types out the location of the
breakpoint trap (including the field) followed by a right
parenthesis followed by the values of the saved Link and Accumulator.

The user may then use the facilities of XDDT for examination
and modification of any memory location. He may also remove the
breakpoint assignment or reassign it to some other location. There
are special facilities for examination and modification of those
flags and registers saved at a breakpoint.

When XDDT is restarted at a time when it was already in control,
none of the registers or indicators associated with program status
at breakpoints are affected.

If the user wishes to resume his program where it left off, he
may command XDDT to "proceed". The proceed command causes XDDT to
restore the saved status, perform the instruction which is at the
location of the last breakpoint trap, and to continue to run the
user's program.

If a user's program doesn't return to XDDT through a breakpoint
trap, the user may restart XDDT at its starting address. When this
is done, the contents of the breakpoint location are restored and the
saved Accumulator, Link, and Teletype flag are all cleared. XDDT
will not allow the user to perform a proceed command until after
the next breakpoint trap.

-12-

The breakpoint instruction must not be inserted into a user’s
program as an instruction by location modification.

Running a Program

Typing an expression followed by ’ causes XDDT to:

1) if a breakpoint is assigned, set it up and also set up
locations 0006 and 0007 of every memory field.

2) set the Data Field to the field of attention.

3) have program interrupt off.

4) restore the saved Accumulator, MQ, Link, and Teletype output flag,

5) Jump to the location (in the field of attention) specified by
the value of the expression preceding the ' .

Breakpoint Assignment

Typing an expression followed by " causes XDDT to assign a
breakpoint at the location (in the current field of attention)
specified by the value of the expression. If no expression pre¬
cedes the " , any breakpoint assignment is removed. Only one
breakpoint may be assigned at a time, but it may be changed,
even before proceeding back to the user's program.

A breakpoint should not be assigned at a location which is
either modified or whose contents are used as data. Otherwise,
there are no restrictions on breakpoint placement, as far as the
breakpoint trap occurring. There are, however, three restrictions
on the breakpoint assignment if the user wishes to proceed back
to his program:

1) A breakpoint must not be assigned at any CIF instruction, nor
at any instruction which follows a CIF instruction until after
the next JMP or JMS instruction. More precisely, the restric¬
tion exists at locations where the contents of the Instruction
Field register differ from the contents of the Instruction
Buffer register.

2) A breakpoint must not be assigned at a location where the
interrupt system could be on and where the programs depends
upon the preservation of the contents of the Save Field register.

3) A breakpoint must not be assigned at any of the following
EAE instructions: MUY, DVI, SHL, ASR, LSR.

Proceeding

Typing a ! causes XDDT to:

1) if a breakpoint is assigned, set it up and also set up
locations 0006 and 0007 of every memory field.

2) restore the saved Accumulator, MQ, Link, Data Field, Teletyp
output flag, and program interrupt status.

3) perform the instruction which is at the location of the last
breakpoint trap, and proceed from there.

If an expression is typed preceding the ! XDDT generates
automatic multiple proceeds until it has been re-entered for
the number of times equal to the value of the expression.
Then, a normal breakpoint trap occurs, allowing the user to
use the facilities of XDDT.

Program Interrupt

When a breakpoint trap occurs, XDDT determines the status
of the program interrupt system and then the interrupt system is
kept off during XDDT operations.

When a breakpoint trap occurs, further program interrupts
are disabled within a couple of memory cycles by the execution
of a GIF instruction. Thus if a user wishes to use XDDT on a
4-K PDP-8 to debug a program using the interrupt system, he
must have an interrupt service routine which works.

If XDDT is being used to debug a program occupying only
memory field zero and using the program interrupt system, and
if XDDT is in another memory field, it is advisable to include
an RMF instruction in the interrupt service routine. The
chances of an interrupt occurring during one of the critical
two machine cycles are rather small. However, if the user
performs multiple proceeds, then there are many cycles during
which the interrupt system is not disabled while control is
within XDDT. This necessitates a working interrupt service
routine which includes an RMF instruction and preserves the
Accumulator and Link.

Saved Program Status

Whenever XDDT is in control, the user may examine and
modify the flags and registers which are saved at breakpoints.

Link and Accumulator

At the time of a breakpoint trap, XDDT types out the values
of the saved Link and Accumulator. Typing § alone also causes
XDDT to type out the saved Link and Accumulator.

Typing an expression followed by @ causes XDDT to set the
value of the saved Accumulator to the value of the expression.

Typing an expression whose value is (non-) zero followed by
; @ causes XDDT to (set) clear the saved Link.

Typing an expression whose value is (non-) zero followed by ;
followed by a second expression followed by @ causes XDDT to both
(set) clear the saved Link and also set the value of the saved
Accumulator to the value of the second expression.

The MQ is saved and restored at breakpoint and go time.
Typing t Q above causes XDDT to type out the octal value of the
saved MQ. Typing an expression followed by f Q causes XDDT to
set the saved MQ to the value of the expression.

Data Field

TypingfD alone causes XDDT to type out in octal the value of
the saved Data Field.

Typing an expression followed by TD causes XDDT to set the
value of the saved Data Field to the value of the expression,
which cannot be greater than 7.

Teletype Output Flag

Typing TT alone causes XDDT to type out the status of the
saved Teletype output flag. "0" indicates a clear flag, and "1"
(or non-zero) indicates a set flag.

Typing an expression whose value is (non-) zero followed by
TT causes XDDT to (set) clear the saved Teletype output flag.

Interrupt Status

Typing TI alone causes XDDT to type out the saved interrupt
status. "0" indicates Interrupt is off, and "1" (or non-zero)
indicates interrupt is on.

Typing an expression whose value is (non-) zero followed by
TI causes XDDT to turn (on) off the saved Interrupt status.

Using XDDT with the SEETXT Subroutine

The SEETXT subroutine may be used with XDDT on a DEC-338
in order to display output on the screen rather than (or in
addition to) printing on the Teletype. If SEETXT is occupying
memory field n then the following patch to XDDT can be made
through the switches. Do not attempt to use XDDT to modify
itself in this area.

Location
5l’4~4".
5145
5146

Punching

There are 6 control letters associated with punching.
These are:

TB - do a BIN punch from TL to TU from current data field.

TF - select field punching on BIN tapes:

OtF means do NOT punch field bits
ltF means DO punch field bits

TG - punch leader/trailer and clear checksum

TV - do a RIM punch from TL to TU from current data field.

TW - select low/high speed punch:

OTW means low speed (ASR) punch
lTW means high speed punch.

When the low speed punch (ASR) is selected, XDDT will
halt to allow the punch to be turned off and on. For
the high speed punch, no halts are done. See below
for exactly when halting is done.

fX - punch checksum, trailer, and clear checksum.
(implicit TG)

Contents
62 nl
JMS*
0200

ess.
* AC displays the current punching addr

-16-

Select Commands

Two commands set states.for the punching. Neither actually
cause punching.

Field

tF allows the user to decide if he wants or does not want
a field punch (Channel 8-7 and field) on his BIN tape. (N.A.
for RIM punching). "Zero tF" means no field punch will be put
on the tape. "Non-Zero tF" requests a field punch each time
BIN punching is requested.

tF alone displays the state in octal. It is set to 0
(no field punch) upon loading.

Device Select

tW allows the user to decide between the ASR punch (low
speed) or the high-speed punch. "Zero tW" selects the ASR.
"Non-Zero tW" selects the high-speed punch. tW alone displays
the state in octal. It is set to 0 (ASR) upon loading.

Three other regular XDDT commands are used to select the
field and the lower and upper addresses of punching. "Expr #"
selects the field from which the data will be obtained. If

TF/0, then the BIN tape will have the selected field punched
on the tape.

TL and TU set the lower and upper limits of the punching.

Punching Commands

Leader/Trailer

TG punches leader and/or trailer and clears the checksum
count. Therefore, always begin a BIN punch sequence with TG
and then do NOT use it until the BIN punch is done. If

tW=0=ASR, XDDT halts right after echoing " TG". Turn punch
on and hit CONT. At the end, XDDT halts. Turn punch off and
hit CONT. XDDT is now ready for any valid input.

Checksum

TX punches the checksum and trailer and clears the checksum
cell. Perform TX after all the BIN punching is done. If

TW=0=ASR, XDDT halts right after echoing " TX". Turn punch on
and hit CONT. At the end, XDDT halts. Turn punch off and hit
CONT. XDDT is now ready for an valid input.

-17-

Bin Punching

tB punches a BIN tape from the low address (T L) to the
upper address (Tu) from the data field selected (#). It
also keeps a running checksum value of what it has punched.
If W=0=ASR, XDDT halts right after echoing " tB". Turn
punch on and hit CONT. At the end, XDDT halts. Turn punch
off and hit CONT., XDDT is now ready for any valid input.

Example: Punch locations: 00000-00177
10200-10377

with field punches. Here is the sequence of typing necessary.

0#
1 TF

n TW

0000 | L
0177 fU

(the following w
n

TG (n=0=turn punch
(done) (n=0=turn punch

tB (n=0=turn punch
(done)

1#
200 TL
377 TU

(n=0=turn punch

tB (n=0=turn punch
(done) (n=0=turn punch

tx (n=0=turn punch
(done)

Tape is done.

Rim Punching

(n=0=turn punch

tV punches a RIM tape from the low address (t L)
to the upper address (tU) from the data field selected (#).
Since RIM format has no provision for field information,
no field punches can be done. The user may RIM punch from
any field. Be careful not to mix up fields.

If tW=0=ASR, XDDT halts right after echoing " tV".
Turn punch on and hit CONT. At the end, XDDT halts. Turn
punch off and hit CONT. XDDT is now ready for any valid input.

Example: Punch a RIM tape of XDDT with extra user symbols,
(assume XDDT is in field 1):

1#
t H 2777
3000T L (2777+1 for bottom of XDDT)
7577T U
n tW (select low/high speed punch)

tG (n=OssASR. Turn punch ON, hit CONT)
(done) (n=0=ASR. Turn punch OFF, hit CONT)

TV (n=0=ASR. Turn punch ON, hit CONT)
(done) (n=0=ASR. Turn punch OFF, hit CONT)

TG (n=0=ASR. Turn punch ON, hit CONT)
(done) (n=0=ASR. Turn punch OFF, hit CONT)

Tape is done. Note: do not use TX.

At any time, either mode of punching may be killed
by striking any key. When this is done, NO HALT occurs.

APPENDIX

The initial XDDT symbol table includes the eight basic PDP-8
instructions: AND, TAD, ISZ, DCA,
following Operate-IOT symbols:

JMS, JMP, IOT, OPR plus the

Symbol Value (octal) Symbol Value (octal)

HLT 7402 RTF 6005

RIB 6234 SGT 6006

RMF 6244 CAF 6007

RIF 6224 IOF 6002

RDF 6214 ION 6001

CIF 6202 OSR 7404

CDF 6201 SZL 7430

SKP 7410 SNL 7420

GLK 7204 SNA 7450

STL 7120 SPA 7510

LAS 7604 SZA 7440

CIA 7041 SMA 7500

STA 7240 IAC 7001

BSW 7002 RTL 7006

MQL 7421 RTR 7012

SWP 7521 RAL 7004

ACL 7701 RAR 7010

CSWP (CLA,SWP) 7721 CML 7020

CAM 7621 CMA 7040

SKON 6000 CLL 7100

SRQ 6003 CLA 7200

GTF 6004 NOP 7000

MQA 7501 CLA2* 7600

* used when typing out group 2 micro instructions

XDDT QUICK REFERENCE

SPACE
+

)
*

NULL
Leader (200)
RUBOUT,?
Illegal Character

Inclusive OR, instruction separator
Two’s complement PLUS
Two’s complement MINUS
Symbol constituent
Take as BCD
Current location and Indirect Addressing
Last expression and Field Setting
Separator for searches, symbol definitions, and
setting L and AC

Define name symbol as *
Negative search between limits
Positive search between limits
Ignored
Read binary tape
Ignore current expression
Bell rings, ignore character

Mode Equivalence Examination

Instruction
Name Symbol
DEC-338 Command
Octal
BCD

/
•

\ (Shift L)
[(Shift K)
] (Shift M)

CR
t
LF
(

Modify open location (if one)
Like CR, then open *-1
Like CR, then open *+l
Modify open location, then [

AA
ab
'‘C

AD
AE
/k F
AG
AH
A I
AR

AL
an
AO
AP
AQ
AR

AS
AT
AU
AV
AW
AX

-fz
tt

I
@

Define DEC-338 Command
Bin Punch
Return to Monitor
Examine or modify saved Data Field
Type name symbols on exact match
examine or modify Field Flag
Punch leader/trailer
Type highest available location
Examine or modify saved Interrupt
Kill name symbol or all name symbols
Examine or modify lower limit
Define name symbol
Type all locations in octal
Define Operate-IOT instruction
Examine or modify MQ
Type name symbols as relative addresses
Type all locations as name symbols
Examine or modify saved Teletype output flag
Examine or modify upper limit
RIM Punch
Examine or modify punch device
Punch Checksum 8 Trailer
Zero or set memory between limits
Go to user's program
Set or remove breakpoint
Proceed back to user's program

Examine or modify Link and Accumulator

