
DECUS NO. 

TITLE 

8-558 

CORREL CORRELATION PROGRAM and 
PCOMP-VARMX FACTOR ANALYSIS PROGRAM 

AUTHOR Marjorie H. Kleinman 

COMPANY Center for Community Research 

New York, New York 

DATE June 19, 1972 

SOURCE LANGUAGE FORTRAN 

ATTENTION 

This is a USER program. Other than requiring that it conform to submittal and review standards, 
no quality control has been imposed upon this program by DECUS. 

The DECUS Program Library is a clearing house only; it does not generate or test programs. No 
warranty, express or implied, is made by the contributor. Digital Equipment Computer Users 
Society or Digital Equipment Corporation as to the accuracy or functioning of the program or 
related material, and no responsibility is assumed by these parties in connection therewith. 





DECUS Program Library Writeup DECUS NO. 8-558 

CuRREL Correlation Program 

,'u> irRAci* 

iiiis program will compute Pearson product moment correlations 

on a m arix as large as 80 by 80 variables. Missing data are 

permitted. The program first computes means and standard 

deviations for all variables, and if there is any missing 

data, the appropriate means are substituted before correlations 

are computed. Output from this program can be used as input to 

PCOkiP-ViRkA lac tor analysis program (see accompanying write-up). 

ivi-Li'iljViUlVi H ARl> iRE 

hP—8/1 with sk of core, teletype, printer and 1 tape or 

disk drive. 

OihixR PROGRAMS i\Ei,ilED 

Pd/8 Operating System with Fortran Compiler 

rtj'.STKIOi'iuhd 

Maximum no. of variables is 80. Maximum no. of subjects is 2048. 

ROTE: 

Intermediate data are stored either on disk or tape. The 

xctual device used is ASSIGNed at execution time. 

The program consists of 4 chained segments named CORREL,CALC, 

ECLLO, and OIJTC, respectively. Each must be compiled, loaded, 

and saved separately on the system device. Specify I and 0 

options to the loader for each. 

io allow for execution-time formatting of input data, load 

CORREL and change location 3300 from 3334 to 2544, and then 

Sa/i. on the system device. For an explanation of execution 

time lormatting, see the accompanying write-up. 



CORREL Correlation Program 

u : program works as follows: first the data are read in 

from tne specified input device and stored on magnetic tape 

(unit 0) or disk. If input is from magnetic tape, the file must 

reside on unit 1 with the file name 'RAWDAT.DA'. Means and 

standard deviations are computed and printed out, along with 

the number of subjects for each variable. Next the program checks 

for any missing data, and substitutes the appropriates means. 

Hext the program computes as much of the correlation matrix as 

possible, due to space limitations in core, and prints this out. 

!Ehen the data are read in again from tape or disk, and the next 

portion of the matrix is computed and printed out, and so on, 

until all correlations have been computed. Correlations on 40 

variables will require 2 passes of the data; on 80 variables, 

8 passes are needed. 

If so optioned, the program will also store the correlation 

matrix on tape, and will automatically call PCOMP-VARMX factor 

analysis program. 



mow to run GORREL correlation program: 

. S31GN (device) IN 

.R GORREL 

A? lor being loaded into core, the program will pause with a 1 

in the accumulator. Ready the input data. Be sure to mount a 

scratch tape on DTAl if that unit has been assigned as device 

IN or if a factor analysis is wanted. If input is from magnetic 

tape, the file must be on unit 0 with the file name *RAWDAT.DA' . 

Press continue. The program will request a format statement. 

All data is read in F format (no identifying information is 

read in). Next appears a request to tupe in a heading for the 

job. -&oth the heading and format may be as long as 72 characters. 

After this, the program will request no. of cases, no. of 

variables, the input device (1,2,3, or 4) and Factor .Analysis 

option (1 or 0). Then the program will begin to read in the data. 

No further operator intervention should be required. 



PCOMP-VARMX Pactor Analysis Program 

abstract 

This program uses the principal components method of 

r_ cr acting roots and vectors, and then performs varimax 

rotation on the factor loading matrix* Input is in the form 

of a square correlation matrix, and can he read from any 

input device. Output from CORREL correlation program may 

be used directly as input. 

MINIMI) ivt HARDWARE 
PI)P-8/I with tele type, printer, 1 DF32 disk and 1 magnetic 

tape drive. 

OTHER PROGRAMS HEEDED 

PS/8 operating system with Fortran compiler 

RESTRICTIONS 
Maximum no. of variables is 80. Maximum no. of roots extracted 

is 12. 

NOTE: 
Intermediate data are stored on 2 devices, disk and tape. 

It is also possible to run this program if there are 2 £ 

tape drives and no disk by using the ASSIGN feature of PS/8.. 

This program consists of 5 chained segments named FAMATR, 

PCOMP,EIGl,EIG2, and VARMX, tespectively. Each must be 

compiled, loaded, and saved separately on the system device. 

Specify I and 0 options to the loader for each. 

4 



iCOMP-Varmx Factor Analysis Program 

This program is designed for maximum flexibility. It can 

either be called automatically by the correlation program,CORREL, 

or run independently. The Varimax portion can be called automatically 

or run independently, as well. Since a sizeable factor analysis 

on a small machine can take a long time, it is especially useful 

to be able to run such a job in 3 separate segments at 3 separate 

times.(If the program is called by CORREL, there is a special 

routine, PAMATR, which squares the triangular output matrix and 

stores it in proper form for PCOMP-VARMX.) Since a job can be 

run in separate segments, maximum use of the disk is possible. 

It can be assigned as a device at the execution time of any or 

all segments, depending on the size of the files involved. Also, 

its contents can be erased between segments once they are no 

longer of use. 

The principal components portion of the program will 

extract up to 12 roots, one at a time. The maximum number of 

iterations for extracting each root is set by the operato-*, 

rKpniing or the degree of accuracy required (maximum is 999). 

Alter the extraction of each root, a print-out of all factor 

loadings plus communali ties appears. When a root with a value of 

less than 1.00 is found, the extraction process ceases. At this 

point V-\RlviX will automatically be called. However, if fewer roots 

are wanted, one can return control to the monitor whenever 

sufficient roots have been extracted, and then call V4RMX.A11 

5 



factor loadings and communalities will have been saved on 

device OUT. 

'fhe Varimax routine will go through as many cycles of 

rotat. s as requested by the user. (A cycle is defined as one 

complete pass through all possible combinations of pairs of 

factor vectors.) After each cycle, the resulting normalized 

fa.tor loadings are printed out. After all cycles are compleited, 

the final unnormalized factor matrix, with communali ties, 

appears. 

<L 

6 



iiow to run iJ(JOi.»P-/ARMX Factor Analysis Program: 

1.) Aa.JIUN (device) IN 

. US1GN (device) OUT 

2) .R PGOMP 

Device IN contains the square correlation matrix, and device 

O'JT contains the factor loading matrix. Since the file on device 

IN is read and re-written most frequently, it is preferable to 

assign a disk as device IN, if it is available and if there is 

sufficient room on it for this file. If only 1 DF32 disk is 

available, the maximum correlation matrix that can be stored on 

it is 49 by 49. 

rfhen PCOfaP has been called, it will request input device and no. 

of variables. Type each on a separate line. Input must be a 

squared correlation matrix with the format (80A6) if input device 

is 4, and must reside on DTA1 with the file name 'CORMAT.DA'. If 

the input device is not 4, the format must be (12F6.4). Also, 

type inr;the maximum no. of iterations for extracting each root. The 

maximum is 999. 

After the extraction of each root, the program will print out 

all factor loadings up to that point. The program will continue 

extracting roots until it has found one with a value less than 

1.00, or until it has extracted 12 roots. V.4RMX, the varimax 

rotation routine, will automatically be called at this point. 

(However, if fewer roots are wanted, type CTRL C at the appropriate 

point, .and control will return to the monitor. Then call V4RMX.) 

Program VARMX will request the following information to be typed 

in, each on a separate line: Input device (usually 4), no. of 



variables, no. of factors that have been extracted, and the no. 

of cycles of rotations desired. Usually, 4 cycles is sufficient. 

(A cycle consists of all possible pairs of factor vectors being 

rotai '.) After each cycle the program will print out the normal¬ 

ized factor loadings. Wien all cycles are completed, the final 

loadings and communalities will be printed out. 



How to run CORREL, then PCOMP-VARMX 

1) .,ASSIGN (device) IN 

.ASSIGN (device) OUT 

2) .R CORREL (F. A. option is 1) 

When the correlation matrix is completed, FAMATR, the matrix 

squaring program, will be called automatically, and will request 

that the no. of variables be typed in. When the correlation 

matrix has been squared, the program will automatically call 

PCOMP. Continue as described above. 

Please note that if CORREL and PCOMP-VARMX are run together as 

one job, Device IN will contain the input file to CORREL as 

well as the square correlation matrix input to PCOMP-VARMX. 

If there are space limitations, the assignment of this device IN 

can be changed before calling FAMATR. Also, the input file to 

CORREL can be erased by calling PIP before calling FAMATR. 



Execution-time format Statements 

i xecution-time format statements are not permitted by 

the compiler. However, by changing one location in the program 

after it is in core, it is possible to read in a format 

s^cment (from the teletype only), and use it for reading the 

input. Set up the program (or subprogram) as follows: 

DIMENSION FMT (12) 

C 

C 

15 

C 

C 

20 

C 

25 

C 

This is the array where the format statement will 

be stored. 

READ (1,15) FMT 

FORMAT (12A6) 

A format statement as long as 72 characters can 

be read in here* 

READ (IN,25) DATAl,DATA2 

Input data is read in from device IN 

FORMAT (F3.0) 

This is a dummy format that will not be used. 

END 



Be sure to obtain an assembly listing of the program, 

and also a map at execution time, so that the precise location 

to be changed can be determined. 

load the program and all subroutines, and begin execution. 

When the program pauses or waits to accept data, the appropriate 

location can be changed. 

Now look at the assembly listing. Determine the actual 

address of the first word of array HIT. (See page C-4 of 8K 

IABR Assembler manual or PS/8 manual for computing actual 

addresses.) Now look through the listing for the Fortran statement 

where the reading of the data is done, in this case, statement 

20. You will notice that in the assembled code will appear 

the following: 

4033 CALL 2, READ (call to subroutine READ 

with 2 arguments) 

(n is the device number) 

(DDDD is the address where 

the device number is stored.) 

(fa is the format number, in 

this case, 25) 

(FFFF is the address of the 

beginning of the format 

statement.) 

In our example, FFFF is the address of the first word 

of format statement 25. This is the location to be changed, 

so that it contains the address of the first word of array 

FMT. Therefore, compute the address where FFFF appears and change 

6201 ARG (n 

DDDD 

6201 ARG /fa 

FFFF 



its contents accordingly. (As a check on your computations, 

first compute the actual value 7PFF,then load the address 

where FFPP appears, and see if the contents agree with your 

computation of PPPP. Then reload the address and deposit the 

address for the first word of FAIT.) 

Once this one location has been changed, save the core 

image on tape. 

Altering Pormat Statements Already in Core % 

Format statements are stored 2 characters per word in 

packed, 6-bit ASCII code. Ihus, the first half of the first 

word of a format statement is always a 50, the stripped ASCII 

code for open parenthesis. F2.0 takes 2 locations in storage, 

and appears as 0662 for 72, and 5660 for .0. Therefore, one can 

change all or any part of a format statement in core by 

determining its exact location and substituting the codes for 

the desired format. For any format statement that is likely to 

be changed in this manner, it is advisable to leave plenty of 

extra spaces when writing the program. 

12 


