
PROGRAM LIBRARY

DECUS NO. 8-569

TITLE
FLIT ASSEMBLER

AUTHOR Gary R. Smith

COMPANY
Submitted by: George E. Ott
University of Wisconsin
Madison, Wisconsin

DATE July 12, 1972

SOURCE LANGUAGE
MACRO

Although this program has been tested by the contributor, no warranty, express or implied, is made by the contributor.

Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the

program or related program material, and no responsibility is assumed by these parties in connection therewith.

The FLIT Assembler

TABLE OF CONTENTS

I. Introduction)

II. Source Language Differences 1

A. Character Set 1

B. Statements 2

C. Literals 2

D. Off-page Linkages 2

E. Direct Assignment Statements 2

F. The FIELD Statement 3

G. The PAGE Statement 3

H. The TEXT Statement 3

I. The BLOCK Statement 3

J. Other Source Language Differences 4

III. Other Processing Differences 4

IV, Symbol Table 5

A. Format of the Symbol Table 5

B. Contents of the Symbol Table 6

V. Operating Procedures 6

VI. Error Diagnostics 7

DECUS Program Library Write-up DECUS NO. 8-569

Abstract

The FLIT Assembler produces a binary object tape on a high¬

speed paper tape punch and a listing on a 33 A5R teletype

from PDP-8 assembly language source tape read on a high-speed

reader.

FLIT has the following major advantages over other assemblers:

1. Literals and off-page linkages are automatically generated.

2. The source tape is read rapidly and reliably, reducing

assembly time.

3. Line numbers appear on the listing, simplifying use of

the Symbolic Editor.

4. Tabulations become 8-space fields in the listing just

as with the Symbolic Editor.

5. The symbol table has room for at least 348^q user symbols.

FLIT does not recognize macros, floating-point or double-precision

numbers, or Boolean operators. A few other minor source language

differences exist between FLIT and other assemblers.

1

I. Introduction

The FLIT (for Fast Line-numbering Interrupting Tabulating) Assembler
reads from a high-speed paper tape reader a source tape containing
PDP-8 assembly language and punches on a high-speed paper tape punch
a binary object tape and types a listing and symbol table on a 33 ASR
teletype. The major advantages of the FLIT Assembler over PAL III and
MACRO-B are that literals and links are generated and the paper tape
is read rapidly and reliably.

During pass 1 the assembler reads the source tape and generates a
symbol table. During pass 2 the source tape is read again and a bin¬
ary tape punched and/or a listing typed.

The FLIT Assembler performs roughly the same task as the other PDP-8
assemblers. This document describes the differences between the FLIT
Assembler and the other assemblers. Information about the bther PDP-8
assemblers is contained in the Digital Equipment Corporation book
Programming Languages.

II. Source Language Differences

A. Character Set

Characters read by the FLIT Assembler are normally checked for val¬
idity. If an invalid character is read FLIT types an IC error mes¬
sage, then halts, displaying the bad character in the accumulator.
The operator must set the switch register to a valid character and
depress CONTINUE.

Characters which are not checked for validity are those in a com¬
ment (between a slash and a carriage return or semi-colon) and the
first character following a double quote.

The following characters are always ignored:
leader/trailer (code 0)
line feed (code 212)
rubout (code 377)

any character except the end characters beyond the 72nd
in a statement

The following characters always cause a statement to end:
carriage return (code 215, see note)
semi-colon (code 273)

The following characters are valid:

A-Z, 0-9, space, , $, (,), [,]f *, + , period, comma, /,
=, tab (code 211, see note), form (code 214, see note)

All other characters are invalid.

2

Note: Codes 215, 211, and 214 are changed to 336, 334, and 337,

respectively, after their validity is checked. This prevents their

confusion with codes 315, 311, and 314 in the 6-bit symbol table

format.

B. Statements

Statements representing machine instructions are written just as for

PAL III and MACRO-8, that is:

label, instruction operand /comment

Any one or more of these statement elements may constitute a state¬

ment. Spaces and/or tabs must separate the instruction and operand.

C. Literals

A current-page literal (indicated by a left parenthesis) or a zero-

page literal (indicated by a left bracket) may be used as the operand

in a statement. A literal may take the form of any expression con¬

sisting of constants (numerical and ASCII code generated by a M) and

variables combined by + and - signs. A literal may also take the

form of an instruction which may include a literal. Literals may be

nested in this way up to a level of four.

The FLIT Assembler forms the value of a literal and then searches

for that value in the zero-page literal buffer. If the value is

found its address is used in place of the literal even if a current-

page literal was specified. Otherwise the storing of literals and

the assignment of addresses proceeds as with MACRO-8 except that

FLIT will never dump out a literal buffer before the logical end of

a page. The zero-page literal and link buffer can store up to 641Q

words, the current-page buffer can store up to 84-|q words. FLIT

does not remember the address of the last literal stored on a page

after the literal buffer of that page has been output. Therefore

setting the location counter to a new page always causes FLIT to

assign the first literal to page address 177. Thus any literal

previously stored on that page would be overlaid.

D. Off-page Linkages

If the address of an operand is not on page zero or the current page

then an off-page linkage is required and FLIT sets the indirect bit.

The off-page address is then treated just like the value of a current-

page literal. All the statements about literals in the previous para¬

graph also apply to links since common buffers are used to store lit¬
erals and links.

E. Direct Assignment Statements

Any expression, but not an instruction with an indirect or non-zero

page address, may be used to the right of an equals sign provided

all symbols used have been defined. The following are valid state¬
ments :

3

A=3

B=A+1

MINU5C=-"C

EXIT=JMP+400

The following statements are invalid:
EXIT=JMP I 0

WAIT=JMP . (would generate WAIT=5000+current location counter)

The FIELD Statement

Upon encountering a FIELD statement FLIT outputs the current-page

than1^ % n rr^nr‘ ^ 8 Valid non-negative expression less
than 1De follows FIELD and the expression (the new field number) is

ifferent from the old field number, then FLIT outputs the zero-page

literal and link buffer, the field setting code, and an origin of
. In all other cases FLIT outputs only the origin of 200.

G. The PAGE Statement

A PAGE statement with a valid non-negative expression less than 40r

sets the location counter to 200g times the expression. A PAGE

statement without an expression sets the location counter to the

beginning of the next page following the one the location counter

was pointing to. In particular, the statements
*377
A, 0

PAGE

B,

will give B the value 600 because the location counter was incre-

mented to 400 at the end of processing the statement labeled A.

No PAGE statement is necessary if code is to continue onto a new

page and no literals or links were used on the old page.

H, The TEXT Statement

The TEXT statement causes characters between the delimiters to be

stripped to 6 bits and stored two to a word with a zero stop code

at the end, just as with MACRO-8. However, any number of spaces

and/or tabs may precede the first occurrence of the delimiter char¬

acter which may be any of the valid FLIT characters (not ignored or

end characters) given under II.A. Character Set. But if invalid

characters are to appear between delimiters of a TEXT statement

the delimiters must be slashes so that FLIT does not try to check

the characters for validity. Appearance of an end character (car-

riage return or semi-colon) before the second occurrence of the

delimiter is an error and the end character will be treated as if
it were the delimiter.

I. The BLOCK Statement

The BLOCK statement is used by FLIT to reserve several words of

placin9 2eros in them- This statement is similar to
e BLOCK statement in 5ABR. An expression following BLOCK is

4

treated as a positive number indicating how many zeros are to be out¬
put. If no expression or one with a zero value follows BLOCK, the
statement does not output any zeros but defines a label, if any, to
be equal to the current location counter. Examples of the use of the
BLOCK statement follow:

BLOCK /HAS NO EFFECT ON THE ASSEMBLY
A, BLOCK /DEFINES A=
B, BLOCK 0 /B=

c, /C=D

D, BLOCK 2 /ASSEMBLES 2 ZEROS WITH D
/ THE LABEL OF THE FIR5T ONE

Note: If many locations need to be reserved an asterisk should be
used to change the location counter. If these locations need to be
initialized to zero the program should contain a loop to do it.

J. Other Source Language Differences
1. FLIT does not recognize macros.

2. FLIT does not generate double-precision or floating-point numbers.
3. FLIT does not have EXPUNGE or FIXTAB statements.
4. FLIT does not recognize the pseudo-op Z.
5. FLIT does not recognize ! or &. as operators.

III. Other Processing Differences

In addition to the differences in processing source language statements
mentioned above, the FLIT Assembler has the following processing differ¬
ences :

A. FLIT uses interrupts to switch efficiently between the three activities
of reading, assembling, and punching. During a pass 2 when a binary
tape but no listing is being output, FLIT is usually assembling a state¬
ment while reading the next one and while punching data from the pre¬
vious one. This use of interrupts allows much more efficient and re¬
liable use of the high-speed reader.

B. Tabulations in the source statements are expanded to 8-character fields
during listing of the statements (same format as the Symbolic Editor).

C. Form characters (code 214) are used just as in the Symbolic Editor to
delimit blocks of source statements. The FLIT Assembler uses these
characters in generating line numbers which are typed between the as¬
sembled code and the source statement on the listing. These line
numbers will be most helpful in using the Symbolic Editor if editing
operations (e.g., inserting, changing, deleting) are done from the
end of a block of statements towards the beginning.

D. A binary tape and a listing can be produced simultaneously during
pass 2. See V. Operating Procedures.

E. The format of the symbol table is different than that for PAL III or
MACRO-8. See IV. Symbol Table.

5

F. Many assembly errors cause a HLT (7402) to be assembled instead of

an erroneous instruction. Such an instruction will not then damage

the program if the operator forgets to patch in the correction.

G. A PAUSE statement in the middle of a source tape will usually not

cause the loss of any information on the tape, certainly not if

the blank tape associated with a form character follows the PAUSE.

Just depress CONTINUE to go on assembling after the PAUSE.

H. Different error messages are used by FLIT. See VI. Error Diagnostics.

IV. Symbol Table

A. Format of the Symbol Table ihi \£j

Each symbol or pseudo-op in the table requires L2J+2 words, where L2J

means the greatest integer in 2 and n is the number of characters in

the symbol or pseudo-op, but 6-character symbols require 4 words.

The characters of a symbol are stripped to 6 bits and words of 2 char¬

acters are formed by shifting the first character 6 bits to the left

and negating the whole word. The format of one- through six-charac¬

ter symbols is shown below.

Word 1 -(Cl X 10Dg) Word 1 -(Cl x 100e + C2)

Word 2 value of symbol Word 2 0

Word 3 value of symbol

Word 1 -(Cl X 1008 + C2) Word 1 -(Cl x 1000 + C2)

Word 2 — (C3 x 1008) Word 2 -(C3 X 100B + C4)

Word 3 value of symbol Word 3 0

Word 4 value of symbol

Word 1 -(Cl X 1008 + C2) Word 1 -(Cl x 1008 + C2)

Word 2 -(C3 x 1008 + C4) Word 2 -(C3 x 1008 + C2)

Word 3 -(C5 x 1008) Word 3 -(C5 x 100e + C6)

Word 4 value of symbol Word 4 value of symbol

The current end of the symbol table is indicated by a zero in the

word following the last symbol. No bits are needed for system flags

during assembly, but bit 0 of word 1 is complemented during symbol

table typeout to indicate that that symbol has not yet been typed.

(That bit is always one for user symbols since they must begin with

a letter.)

Pseudo-ops are indicated by their position at the beginning of the

table. Instead of a value pseudo-ops have in the last word the

address of the routine which processes the pseudo-op.

6

B. Contents of the Symbol Table

The pseudo-ops are stored in the following order in the symbol table
(read down columns and from left to right):

tab +

space -

carriage return [

/ ;
t form
I PAGE
(TEXT

The permanent symbols are stored

tad spa hlt
DCA SMA RAL
CLA CLL RAR
CMA CML RTL
JMP SZL • RTR
ISZ SNL IAC
JMS STL AND
5ZA STA SKP
5NA CIA LAS

" FIELD
BLOCK PAUSE

* $

)
]

DECIMAL
OCTAL

in the following order:

OSR TSF PPC
GLK TCF PL5
NOP TPC CDF
ION TLS CIF
IOF R5F RDF
KSF RRB RIF
KCC RFC RIB
KRS P5F RMF
KRB PCF

V. Operating Procedures

To assemble a program using the FLIT Assembler follow the instructions
below:

1 .
2.
3.
4.
5.

6.
7.
8.

Load FLIT (into field 0 only) with the Binary Loader.
Set the switch register to 0200.
Depress LOAD ADDRESS.

Put the source tape in the high-speed reader.

Set switches 0 and 1 to select the pass and output desired:
switch 0 switch 1

down down
up down

down up

up up
Depress START.

action
pass 1

pass 2 with binary tape punched on high¬
speed punch (turn this device on)

pass 2 with listing typed on 33 A5R
teletype

pass 2 with both binary tape and listing

When FLIT halts (after reading a PAUSE statement), place the next
tape in the reader and depress CONTINUE.

When FLIT halts at the end of a pass, proceed to the next pass by
beginning at step 4 above (or equivalently, at step 2).

The alphabetized symbol table is typed at the end of the listing.

A binary tape and a listing can be made in any order or simultaneously.
Pass 2 may be entered as many times as necessary after pass 1 has been
completed once.

7

VI.

Another program may be assembled after one has been completed by putting

the other source tape in the reader, setting switches 0 and 1 to O(down)
and depressing START.

Any pass may be restarted at any time by returning to step 2 above.

Error Diagnostics

The format of error messages is:

EC AT SYMBOL + D5PL

where EC is the error code (see below), SYMBOL is the last label before

the error, and D5PL is the octal displacement from that label to the

value of the location counter when the error message was typed.

Processing continues after all error messages except after an IC (illegal

character) error when a valid character can be entered and after an ST

vsymbol table) error when a halt occurs and the source tape must be modi-
Tied and the FLIT Assembler restarted.

Error

——Meaning

IC Illegal character: set the switch register to a valid character
and depress CUf\JTII\IUE.

symbol table overflow: the program must be modified or divided

so there are fewer or shorter symbols.

Reader or confusing statement or redefinition error. In pass 2

a symbol is redefined to have a value different from its pre¬

ceding definition. The new definition replaces the old one.

This error could be caused by improper loading or reading of a

paper tape or by a confusing statement which caused the FLIT

Assembler to adjust the location counter differently in passes

1 and 2. This message could also be caused by using an equals

sign to set a symbol to two or more values during one assembly;

this message should then be viewed as a warning.

Zero page exceeded. An attempt was made to overlay an instruc¬
tion on page 0 with a literal or vice versa.

Current, non-zero page exceeded. Same as ZE except for a non¬
zero page.

Illegal indirect. An I was given in an instruction which had
an off-page address.

Duplicate tag. In pass 1 a tag was already in the symbol table;

the symbol retains its old value. In pass 2 an RD error would

be generated and the symbol would be set to the new value.

8

Syntax error. A statement had an improper format: missing or
extra operands or spaces or tabs or in a TEXT statement an end
character preceded the second occurrence of the delimiter.

Undefined symbol. In pass 2 a symbol was encountered which
was not defined during pass 1.

Illegal operand. The operand n of a PAGE statement was not in
the range 05 n<40Q , or of a FIELD statement not in the ranqe
0 £ n < 108 .

Invalid number. An 8 or 9 was given in an octal number or a
number would have required more than 12 bits.

9

