
DECUS NO.

TITLE

AUTHOR

COMPANY

DATE

SOURCE LANGUAGE

8-636

BEST - Binary to Symbolic Traductor

Michel Morel and Francoise Landre

Submitted by: J. A. Gaudron

E.N.S.E.E.C.
Caen, France

June 22, 1973

PAL III

ATTENTION

This is a USER program. Other than requiring that it conform to submittal and review standards,
no quality control has been imposed upon this program by DECUS.

The DECUS Program Library is a clearing house only; it does not generate or test programs. No
warranty, express or implied, is made by the contributor. Digital Equipment Computer Users
Society or Digital Equipment Corporation as to the accuracy or functioning of the program or
related material, and no responsibility is assumed by these parties in connection therewith.

♦

BEST - BINARY TO SYMBOLIC TRADUCTOR

DECUS Program Library Write-up DECUS NO. 8-636

Abstract:

The Binary to Symbolic Traductor accepts a paper tape

in a binary format, and produces either a printed listing

or a paper tape in ASCII format, acceptable to the PAL III

Assembler. It can disassemble 8K programs, with interrupts

and PPP instructions. It sorts out instructions from constants,

and automatically produces tags at the referenced addresses,

which helps the operator to understand quickly any program.

The operator can converse with BEST, indicate various starting

addresses, and options for outputs (Automatic paging, Pass 3

listing).'

INTRODUCTION

Binary to Symbolic Traductor (BEST) is a general utility

program. It will provide a symbolic listing /or punch from

a binary tape. PAL III mnemonics (but for EAE instructions)

and a symbolic name for the referenced addresses are typed out.

It is also conversational, the operator giving it indications

about the program, resulting from previous and partial disas¬

sembling. It is possible to ask BEST to list only small parts

of the program, or to search a word within the limits of this

program.

Its great advantage over other disassemblers is that it

can sort out instructions from constants in a program (which

we call the object program), and type out tags for every

referenced address , without being given any symbol table.

Nevertheless, the operator can give BEST some indications

for a more accurate disassembling. The output is such that

every translated instruction is actually executed when the

object program runs, and the comprehension of this program is

made far more easy.

In order to sort out instructions from constants, BEST

follows the running of the object program: it looks down

the object program from the starting address,(which the operator

has to give him) until it finds a JMS, JMP or Skip code.

We call the starting address of this routine or subroutine

a Branching. BEST "opens” this Branch and goes on looking

down (in case of Skips or JMS), or jumps to the referenced

address (for JMPs). This "opened" Branch will be explored

when the disassembler has ended the present Branch, or has

reached a part already explored. When the object program is

simple, BEST can find every actual branch, and never mistake

a constant for an actually executed instruction.

2

In a more complicated program, where brancnings could be

calculated, depending on the result of a test or of some

computing:

JPICOM,

TAB NBR

TAD JPICOM

DCA .+1

0
JMP I .+1

BR1

BR2

NBR may be the result of some computation ; if NBR = 0, an

effective JMP BR1 is executed ; if NBR = 1 , an effective JMP BR2

is executed.

BEST cannot guess what values NBR could take, tio it does

not open any branching, but issues a message warning the

operator that a program modification has occured, and at what

location. The operator, after examining this small part of

program (BEST will list it when requested), will give BEST

the actual Branchings.

When BEST has correctly sorted out all instructions from

constants, it gives names to the referenced addresses, and

is ready to type or punch out a complete and easy to read

listing, which enables the operator to draw the flowchart

and understand the object program as easily as if it had been

the real symbolic listing of this program.

3

I - REQUIREMENTS

1/ Equipment

PDP-8 with extended memory (at least Field 1), ASR 33

Teletype, and High-Speed Reader.

2/ Storage

BEST requires the whole Field 0 for itself. The object program

is stored in Field 1 by the Disassembler.

The Binary Loader should be placed in Field 1. If ever

the object program had overlapped the Bin Loader, replace the

latter in core memory, using the input routine of the Dis¬

assembler, at the end of processing.

II - LOADING PROCEDURE

1 - Place the BEST tape in the reader.

2- Set the Switch Register to 7777, and press LOAD ADD.

3- If using the High-speed reader, set Bit 0=0.

4- Press START.

Ill - USING THE PROGRAM

In short, BEST loads the object program, asks for indications,

§ives information about what it found in the program, gets

ready to list all or part of the translation} after invest¬

igation, the operator can restart BEST and give it further

indications to improve that translation.

1/ Starting procedure

The starting address of BEST is 0200 (Field 0).

a- Place the object program tape in the High-speed reader,

b- Set 0200 on the S.R.; press LOAD ADD.

4

c- The object program may be a 8K program. The Disassembler

will consider separately what had to be loaded in Field 0, and

in Field 1, and will load that in its real locations .

Set Bit 11 to 1 or 0, according to the part you want to be

loaded.

d- Press START

If no tape is in the HSR, BEST will disassemble what has been

read in a previous pass, and jump to the initial dialogue.

The tape is now read. If the program consists in several

tapes, place the next tape in the reader and press CONTINUE.

When the object program is read, remove all tape from the reader,

assume that content of AC = 0 (if not, start operation again

from the begginning).

e- If the object program is in 8K, and the part of the program

that has not been loaded has previously been disassembled, change

the value of Bit 11. Thus, if you change Bit 11, BEST will

disassemble the parts that are called from the other field, when

the object program runs.

If some floating point instructions may occur in the program,

set Bit 3 to 1 , to have these instructions translated.

(Be careful: some versions of PAL III do not accept FPP

mnemonics such as SQUARE, SQROOT, etc; you will have to define

them with SQUARE = 1 , for instance, before any assembling of the

paper tape provided by BEST)

f- Press CONTINUE.

2/ Initial dialogue

BEST will then issue the four following questions on ASR 33:

Branching, Instructions, Data, Arguments, which you shall answer

this way:

BRANCHING

Give the starting address of the branches (on first disassem¬

bling, give only the starting address of the object program),

each followed by a RETURN. BEST echoes a Carriage Return/Line

Feed. When all are given, press the SPACE key,

5

BEST wiJl then ask:

INSTRUCTIONS

Some constants are instructions bound to be used for modifying

one program. If you want them to be turned into symbolic mnemonics

to ease the comprehension of the object program, give their

addresses the same way as for the branchings.

This does not affect correct disassembling.

DATA

For some subroutines which want a variable number of arguments,

it is important t iat BEST should not mistake these arguments for

instructions, as placed after a JMS. You then have to place the

address of the first of these arguments in the DATA list, the

same v;ay as for the branchings. You should be careful as to "reopen"

the location corresponding to the actual return from the subrou¬

tine by placing it in BRANCHING.

ARGUMENTS

If a subroutine has a fixed number of arguments, you enter

first the starting address of the subroutine, then a RETURN (BEST

echoes a CR/LP), then the number of arguments. If other argumented

subroutines are to be found, press RETURN (echo CR/LP) and enter

the next. Then, press the SPACE key.

If any mistype has occured, press SHIFT/O, a back arrow («—)

will be echoed (no CR/LP), and the number ignored.

3/ Messages

Messages are issued by BEST when the object program is likely

to have been modified in a way BEST could not follow.

The operator will have to look down at the list of messages,

and interpret them in the order of output: if BEST made a mistake,

a message will keep track of this mistake, that can have

caused a misinterpretation of constants as instructions,

which in turn can cause some other messages to be issued.

These are of course nonsensical, and need not be considered.

6

Ihus, the operator must look up first the first messages, which

are likely to be right.

After all the messages are issued, the operator waits for

BEST to be in command mode (bell rings), and examines the

disassembled object program (See Commands). After that, he

can restart BEST and give it indications, in the initial

dialogue, according to the messages.

IR (Illegal Reference)

BEST has translated a 4- (JMS) or 5- (JMP) code, and

the referenced branch is not within the limits of the object

program.

For instance, if the object program is located in pages

0, 1, 2, and BEST finds:

*235
5767 /JMP I 367

*367
7402

the following message will be issued:

IR 7402 AT 235

There obviously is a mistake, for there is not any inst¬

ruction of the object program in location 7402. BEST does not

consider this false branching.

What to do

There are two reasons why BEST can issue the IR message:

- The object program was punched on several (two or more)

paper tapes and you forgot to load one.

(R.B.: if Bit 3 is set to 1 , the JMS I 7 entering FPP will not

be taken as an IR, even if FPP is not loaded.)

— More likely, there has been an argumented subroutine

(i.e.: the content of the location following the JMS SUBR is

a constant used in the subroutine, taken by a TAD I SUBR), and

you did not warn BEST, which understood the argument as an

instruction. In this case, there must be a SI message matching

this one (see below).

Ask BEST to type out a small part of the program before

7

the faulty location, and try to understand what misleaded BEST.

It is probable that you will have to put the faulty location in

DATA, when restarting BEST.

SI (Suspect Incrementation)

BEST found an ISZ, the operand of which was the return

address of a subroutine.

*230
4320 /JMS 320

*320
0

2320 /ISZ 320

5720 /JMP I 320

This shows you that the return address of the subroutine

is modified, then the content of the location following the JMS

is likely to be an argument.

What to do

Examine carefully the subroutine in order to know how many

times this return address is incremented.

If the number of arguments is fixed, place the address of the

subroutine and the number of arguments in Arguments, the next

time you restart BEST. You need not reopen the actual return

address of the subroutine.

If the number of arguments is not fixed, see DATA.

MA (Modified Address)

±sEST found a DCA code, the operand of which was among the

instructions (i.e. in a branch). The program is likely to have

been modified (See example in the Introduction).

What to do

If an instruction is deposited in the program, for instance

a JMP, BEST will recognise it and open a new branching. But the

8

operand of this JRP might have been the result of a complex

computation, which BEST could not understand. The operator

will have to give BEST the branchings resulting from that

computation. If he wants the deposited instruction to be

translated, he will have to place its address in Instructions,

when restarting BEST.

TP (Table Pull)

When sorting instructions from constants, and giving

symbolic names to the referenced addresses, BEST builds

internal tables. One of these tables might overflow, then

BEaT will issue the following message:

TF nnnn

nnnn being the starting address of a table, which has been

overlapped by the precedent.

Here are the starting addresses of the various tables:

4200 (ARG) Subroutine addresses and number of arguments (filled

by operator)

4300 (SAVECH) Branchings caused by external field calling

(internal table)

4400 (OUVCH) Branching in the other field (internal table)

4500 (BRANCH) Limits of branches (internal table)

5200 (OUV) Branchings (filled partly by the operator and BEST)

5400 (BUFFER) Interrupt output buffer (internal table)

From 5440 to 7776, BEST builds tables, one after the other,

without a fixed starting address. They contain the symbolic

names of the referenced addresses. A TF 7776 may occur if

there are too many referenced addresses.

What to do

It is highly improbable that a table might overflow. If

you have to disassemble a very intricate program, we suggest

that, if a table overflows, you should separate the object program

in two relatively independent parts, the links between which

you know well, and disassemble them separately.

9

4/ Switch Register Options

0
Bit 0 1

0
Bit 1 „

0
Bit 2 .

Normal Output

BEST issues a listing similar to PAL III Pass 3 listing.

No effect

Automatic Paging, with a line of hyphens separating

each page, a full peal of hells warns operator that

the page is ended, and BEST waits 2 seconds for the

operator to tear out the page.

No effect

Stops output, BEST is ready to take new commands.

5/ Commands

BEST will echoe a CR/LP after each command letter. After a

command has been executed, wait for the bell to ring (command

mode) before giving another command.

L (List)

L: Lists the entire object program.

nL: BEST lists content of address n, with a tag if the

address is referenced.

Ex: 235L

BR235, CLA CLL 0235 7300 BR235, CLA CLL

(Bit 0=0) (Bit 0=1)

n,mL: BEST lists the contents of addresses between n and m,

included.

P (Punch)

The limits are given the same way as for L command.

BEST issues symbolic tape (Bit 0 and Bit 1 =0, if the tape is

to be assembled), with Leader—Trailer, PAUSE and CTRL/Form

at the end.

Give the limits of what you want to be punched out, press P,

and immediately turn ON the punch.

/ (slash) has the value of the upper location used by

the object program. It can be used in any command using

an address number.

10

RETURN

Causes BEST to list or punch out the content of next address.

<
Lists content of previous address.

W (Word Search)

nW: Best gives the number of the addresses the content

of which is n.

G (Go)

After listing part of the program, if the operator wants to

give further information to BEST (open new branchings, for inst¬

ance), he can restart BEST by typing G, Which causes an effective

JMP 200.

If any mistype occurs, press RUBOUT, a back arrow (<—) and

a CR/LF will be echoed, and the number ignored.

6/ Symbolic names

BEST gives symbolic names to the referenced addresses ,this

name is composed of a two letter code, and at most four numerals

giving the location of the referenced address. BEST choses the

names according to what instruction referenced the address, with

that order of priority:

instruction letter code signification

JMS SB Subroutine

JMP BR Branching

JMS I SL Subroutine link

JMP I BL Branching link

TAD n MD Modification

if n was placed in Instructions)

DCA m CH Change of program

(if m is the address of an instruction recognized by BEST)

All the other referenced addresses are called, according to

their content:

CT (constant) if content is ^ 0

VR (variable) if content is = 0

11

whenever a JMS I 8L or a JMP I BL occur,

SB or BR is given:
the effective

JMS I SL5330 /SB34?0

JMP I BL320 /BR5453

For any indirectly referenced address, the effective address,

with its symbolic name, is given after a slash.

For tine constants, the octal value of the constant id typed

out after a slash. The value of FPP constants is given by the

octal value of the three locations of the constant: exponent,

high and low order mantissa.

7/ Execution Time

Computing time (search of branches, attribution of symbolic

names) depends on the complexity of the object program. The

maximum computing time we have experienced is relative to the

FORTRAN Compiler (more than 4000 instructions). It took 35 mn

on a PDP-8/S, and would take 3 mn 30* * on a PDP-8/I, after

giving BEST several indications.

The output time is limited by the teletype, to 10 characters/
second.

8/ Restrictions

Restrictions could be made on account of the size and degree

of intrication of the object program, that could cause a table
to overflow.

V,e have experienced disassembling of several programs, the

biggest of which was the FORTRAN Compiler, and no table did

ever overflow.

9/ Additionnal facilities

- oome users of BEST have pointed out to us a drawback in

our method for giving indications: the operator has to type all

of them, every time he restarts BEST.

12

In order to remedy that, the operator can give all the indi¬

cations with the Low-Speed hunch ON. (Turn .it ON before starting

or restarting BLOT). When Best is restarted again, put tne tape

m tne LSR, wait for BK.f to ask for BRANCHING, type the new ones,

and read the old ones from the L3K. When BEST asks for LATA, turn

the reader OFF, give the new ones and restart the reader, and so

on until all indentions are given.

If you want to erase one indication, correct the indication

tape with the Symbolic Tape Editor, which you can place in Field 1 .

You will then have to read again the object program.

- When disassembling is through, and you want to puncn the

symbolic tape out on a High-Speed Punch, Stop the computer, load

the High-Speed Punch Patch with the Binary Loader and restart

BnST m 200. BEST will then be in command mode and you can ask
for a punch out.

(N.B.: Commands will have no echo on the Teletype.)

13

1$/ Example

*200
0200 6046 TLS
0201 4216 JMS CRLF
0202 1213 TAD Ml$
0203 3214 DCA CNTR
0204 4615 JMS 1 PRINTL
0205 $255 255
0206 2214 ISZ CNTR
0207 52$4 JMP .-3
0210 4216 JMS CRLF
0211 74$2 HLT
0212 5211 JMP .-1

r 0213
W $214

777$ Ml$, -10

0000 CNTR, $
$215 0400 PRINTL, PRINT
$216 0000 CRLF, $
$217 4615 JMS 1 PRINTL
22 $215 215
$221 4615 JMS 1 PRINTL
$222 $212 212
$223 5616

*400
JMP 1 CRLF

$4$$ $$$$ PRINT, $
$4$1 16$$ TAD 1 PRINT
$4$2 22$$ ISZ PRINT
$4$3 6$41 TSF
$4$4 52$3 JMP .-1
$4$5 6046 TLS

A $4$6
C 0407

7200 CLA
5600 JMP 1 PRINT

This program causes a CR/LF, ten hyphens, and a CR/LF to be typed out on the Teletype.
It shows an example of argumented subroutine.

14

200 was put in BRANCHING. Here is what BEST issued:

SI 0400 AT 0402

*200
TLS
JMS SB216
TAD CT213 07770

BR2J04,
DCA VR214

JMS 1 SL215 /SB400

CT212,

AND 255
ISZ VR214
JMP BR204

JMS SB216
HLT
JMP .-1

CT213, 7770
VR214, 0
SL215, SB40O
SB216, 0

JMS 1 SL215 /SB400
AND SL215 /400
JMS 1 SL215 /SB400
AND CT212 /5211
JMP 1 SB216

*400
SB400, 0

TAD I .-1

IS Z SB400
TSF
JMP .-1
TLS
CLA

JMP I SB400

There is a suspect incrementation at 402. The subroutine uses one and only one argument.
The operator will then put 400, and 1, in ARGUMENTS.

Heie is the final issue, in the Pass 3 listing form. One can compare it with the original
symbolic text, to realize how clear it is

ARGUMENTS:

400
I

SI 0400 AT $402

L

*200
0200 6046 TLS

M 0201 4216 JMS SB216
W $?02 1213 TAD CT213 07770

$303 3214 DCA VR214
$304 4615 BR2$4, JMS 1 SL215 /SB4$$
0205 0255 255
0206 2214 ISZ VR214
0207 52$4 JMP BR2$4
0210 4216 JMS SB216
0211 7402 HLT
0212 5211 JMP .-1
0213 777$ CT213, 777$
0214 $$$$ VR214, $
0215 0400 SL215, SB4$$
0216 0000 SB216, $
0217 4615 JMS 1 SL215 /SB4$$
0220 $215 215
$221 4615 JMS 1 SL215 /SB4$$

©$222 $212 212
$223 5616 JMP 1 SB216

*40$
$4$$ $$$$ SB400, $
$4$1 16$$ TAD 1 .-1
$4$2 22$$ ISZ SB4$$
$4$3 6$41 TSF
$4$4 52$3 JMP .-1
$4$5 6$46 TLS
$4$6 730$ CLA
0407 56$$ JMP 1 SB4$$

16

