DECUS

PROGRAM LIBRARY

DECUS NO. 8-639
TITLE 0OS/8 DISASM
AUTHOR John E. Curtis
COMPANY Curtis Institute
East Moriches, New York
DATE May 21, 1973
SOURCE LANGUAGE PAL-8

ATTENTION

This is a USER program. Other than requiring that it conform to submittal and review standards,
no quality control has been imposed upon this program by DECUS.

The DECUS Program Library is a clearing house only; it does not generate or test programs. No
warranty, express or implied, is made by the contributor, Digital Equipment Computer Users
Society or Digital Equipment Corporation as to the accuracy or functioning of the program or
related material, and no responsibility is assumed by these parties in connection therewith.

DECUS Program Library Write-up DECUS NO. 8-639
0S-8 DISASM

I Introduction:
EEETsEESaISTETEREw

DISASM {s a program to convert an absolute binary
file and a user symbol teble into listing type or source
type output. In producing a listing, emphasis {s placed
on making the 1isting as understandable as possidle. In
producing a source type output, emphasis {s placed on
duplicating as closely as possible the vay an sdvanced pro-
granmer would write the source.

DISASM vill recregte direct off-pasge references,
local end zero page l{tersls, symbolic address and dats
tables, and suppressed origins. These festures are
invoked by suitable symbol definitions. Displaced addresses
such as .+5 and SYMBOL-6 are a standard part of DISASM.

DISASM can easily be used to create a source file
wvhen the binary tape eand a listing are avai{lable. It is
81s0 designed for the disasseably of undocumented dinary
programs. The symbol table can be fully defined by inspection
of a 1isting or grasdually evolved from inspection of successive
disassembly listings.

Included with DISASM {s a program, SPLIT, for
splitting large binary files ({nto small segments for i{ndividual
di{ sassembly.

2. Loading and Calling DISASM:
----.I-I-.-II.I-.-IQ-.----I.I
DISASM {s loaded and called {in the usual msnner
with no specisl qualifications. A typicsl sequence of loading
fnstructions would sppear:

«R ABSLDR

*PTR:S

«SAVE SYS:DISASM

«R DISASM
*OUTPUT.PA<SYMTBL.PA,BINOI1,BIN02,BINOLI/T/D/E

The default output {s LPT: but the T option must be
used with most printers as, without {t, the output contains
tabulation codes. (The suthor has no line printer but uses
the handler FORMAT under the device name LPT: Tabs should be
set at the normal ei{ght column intervals.)

The first input must be a symbol table or null. The
Symbol table extension must be specified. The default
extension {s BN. Up to eight binery {nput f{les may be
specified. 2

The T option causes tabulation codes {n the output
to be converted to spaces. This increases file length about

2

0% for the l1isting and 100% in the source form outputse.
Form feeds are also converted to multiple line feeds (I T
{s specified. (This can be suppressed by @ patch mentioned
{n Appendix D.)

The D option specifies source type output. Line
numbers, addresses, {nstruction codes, sddress comments, and
l1iteral dumps are deleted.

The E option enables the EAE {nstruction di{ sassemDly.

DISASM output is paged at esch new origin. Under
certain circumstances pages with very little {nformation are
output and paper 1S vasted. However, pagination at each
origin permits removel of overlay and literel pages for
comparison with the affected code and sO aids interpretation
of the code.

3. Output Foras:
.--‘I---..-.-..

It {s sassumed that the reader is femilier with PALSB
source and 1isting formats. DISASM imitates these. In most
cases the DISASM source output is not {dentifiable from &n
original PALS source except for the occurence of certain
special neomonics used to makxe the output more easily under-
stood. These special symbols are 1isted {n Appendix A. The
1isting form sdds line numbers and sddress coaments to the
ususl PALS listing format. For easy editing, the line numbers
are reset at the start of each psge. The line nuabers of the
1{sting correspond to the positions in the source and may De
used in editing the source. Because of the deletion of 1iteral
dumps, the page numbers do not correspond.

in the absence of defined symbols, the 1isting form
might appeart

27 12451 4567 JMS 1 2567
28 12452 1257 TAD «*5
29 12453 5454 JMP 1 o+l

30 12484 1356 TAD 2556

By the definition of the appropriate symbols, the same code
might be 11sted:

27 12451 4567 JMsS 1 (QUTPUT

28 123%2 1257 RETURN, TAD SAVAC

29 12453 5454 JMP 1 o+l

.30 12454 1356 TAD 2556 /EXIT
or bettert

27 12451 4567 JMS OUTPUT

28 12452 1257 RETURN, TAD SAVAC

29 12453 5434 JMP 1 o+l

30 12454 1356 EXIT

———de

All symbol definitions for DISASM are made according
to the field {n wvhich they appear. Labels appearing {n the
label column and {n the gddress (operand) column
are only those defined for the current memory field. Addresses
are output sccording to the following priority: -

l. exact symbol labels.

2. current address with a displeacement up to 7
(0-7 to 0’7) -

3. symbols with displacement up to 7.

4. absolute octal addresses.

In the listing form only, {f a label has value equal
to the instruction, it {s added as 2 comment. If no label
in the current field has the correct value, but a symbol
defined in some other field does, it will be printed.

Di sassembly of {nstructions can be suppressed for one
or more locations by the use of special symbols. The {nstruc-
tion can then be interpreted as an address or data. If address
i{s specified, the symbol with smallest displacement Cup to 7
in any field 1{s entered {n the operator column. Priority goes
to the current field. If no symbol qualifies, an octal value
s output. In the last example, the special symbol /9S5=2454
caused "EDIT" to be printed; EDIT was defined as 1356.

4. DISASM Symbol Tables:
LA L L E R R L IRl AR R FIRT ET R T

DISASM contains ell the permanently defined symbols of
PALS with the exception of IOT and OPR. It also contains @
set of EAE symbols and the basic floating point symbols. The
former sre enabled by the E option and the latter by the
definition of FLPNT, the zero page location of the flosting
point routine entry address. FLPNT must be the first symbol
defined. The location and structure of the permanent tables
are specif{ed in Appendix C.

All of rield | except the top page {s devoted to user
symbols. Six words are used for esch symbol, s0 DISASM has
capacity for 661 symbols. Programs using more symbols are
disassembled in segments using only part of the total symbol
table at any given time. The author usually defines symbols
in several files. Separate files are used to define those
symbols which are clearly local to a segment of code. The
files required for several seaments are merged using PIP
before those sections of code are disassembl]ed.

The user must define symbols for all labels, litersls,
and dats or symbol {tems and tables. Special symbols are also
aveilable for introducing suppressed origins and altering
fnstructions. All these user symbols must be {nput {(n the
first {input file specification, {n one file.

4

The symbol file must start with a title. The first
character in the file must be a “/°". Up to 33 characters
are taken from the fi{rst line for the title. The rest of the
line {s.discarded.

If the floating point instructions are to be recognized,
the second line must contain the definition FLPNT=n wvhere
n i{s the floating point {ndirect entry address. This definiftion
serves only to define FINT=JMS I n. FLPNT should be redefined
in each field {n which {t {s used.

Labels must be defined by the field in which they occur.
All labels for the same field must be defined contiguously.
The field declaration has the form /FIELD=n where n {s an
octal digit. The declaration sets pointers to the first symbol
{n each field. Repetition of the same field declaration {s a
fatal error.

The labels or user symbols are usually strings of
printing characters (including spaces) followed by an “="
and an octal value or address of not more than four digits.
Note that the equal sign cannot be included {in a symbol.
The symbol “e" will be stored, dut will not print back.
Normally, each symbol {s defined on a different line. See
Appendix B for the technical description of symbol definition.
DISASM will accept up to ten characters for a symbol. It
{gnores any addi{tional characters. It will {gnore, not store,
any symbols with zero value. The comment slash {s a legal
character {n symbols, but {f {t immediately terminates a
value, {t {s recognized as a comment iniftiator and the rest of
the 1ine {s {gnored. If {t {s desired to temporari{ly delete a
symbol, this can be done by inserting “0/° following the “=",
With the exception of unusual user symbols and litersl symbols,
the file {s acceptable to PAL8. The symbols not acceptable
to PAL8 can be placed at the end of the file, separated
from the others by "$=0". PALB can then be used with the
N option to alphabetically list the symbols.

S. Svpecial Symbols:
SEESEESSEIESESEEaS
. It has been noted that FLPNT has special meaning
wvhen {t {s the first symbol and that /FIELD has special meaning.
DISASM recognizes &8 number of other special symbols.

All symbols starting with the character (are
considered to be zero page literals. Under the D option,
source type output, locations with labels starting with C
gnd origins preceeding them are deleted.

All symbols starting with < are recognized as local,
non-zero pade, litersls which may have been created by direct
off-page references. The character < never appears {n the
output. If these symbols are referenced directly, < {s changed

S

to ¢, but {f referenced {ndirectly, the I and the < are
deleted. Symbols starting with ¢ are also recognized as local
l{terals. These should be used where the value of the literal
corresponds to a local or zero page address. As {n the case

of zero page literals, they are deleted from source type
1{stings, but orieins preceeding local literals are replaced by
the pseudo-operator PAGE. '

The symbol definitions /8SS=n and /@S=n suppress
{fnstruction disassembly and cause DISASM to output symbols
{nstead. The definition /0S=n causes the {nstruction at
address n to be {nterpreted as an address or symbol and then
restores disassembly at the next location. The symbol /@SS
switches DISASM into symbol table mode. /@S can be used to
svwitch DISASM for one location only or to terminate a table.

The definitions /eNS=n and /e#N=n switch DISASM to
data mode in which the octal values are output in the operation
column. /ONS {s used to start a data table. /@N {s used to
insert a single value or to terminate a table. The /@S
svymbols take precedence and can be used to insert labels into
data tables.

At times {t {s desired to alter the value of an
{nstruction. I/0 errors can be corrected and code asltered.
The definition /el=m=n will cause disassembly of the code m
st location n. In the listing form output, the instruction
code {n the third column {s not changed, but the output in
sybsequent columns corresponds to the code m.

The definition 7e0=m=n causes output of a suppressed
origin of value m at eddress n. The current address {s also
reset. The new origin csuses output of & new page. See the
section on di{ sassembling overlays.

The special /@ symbols are executed as part of the

- symbol table look-up routine and the search continues

following their {dentificatinn. Location of other symbols

with the desired velue terminates the search. Thus {f a label

{s defined with the same value as a special symbol, the special
symbol must preceed the label. Also {f two labels are defined

with the same value Iin the same field, the second will never De
{dentified. It merely consumes table space and adds to

the search time.

6. Using DISASM with a Listing:
(ST s P s s 2 E R L E R R R R R R R 0 L 0 0 b B B 3

DISASM was originally written to create source files
for programs where source tapes acceptable to the system wvere
not available. (FOCAL source was available only on DECtape.)

The symbols are copied directly from the 1listing.
The symbol table {s of some value, but {t does not {ndicate
the field {n which the label belongs. The mcaning of the

L)

1iterels {s identified from the text and the dumps are
used as 8 check.

It i{s possible to copy & symbol file from the listing
and {mmediately output a finel source file. The probabdility’
of typing errors and the relative ease with which they can Dbe
detected from a 1isting type output make {t desireable to
first output the di{ sassembdbly as @ 1isting. The listing line
numbers can also be used {n editing the source output.

7. Using DISASM with a Symbol Table:
T 11ttt it bR R R R R R 0 2})

Vvhen a symbol table {s available, Dut no listing, and
{t {s desired to create a 1isting or source, it {s usually
easiest to first obtain a disasseably with no symbol table or
better with one that contains only a title and & dummy field
setting. This listing can be used to identify the fields (n
which the symbols are defined and to define the literal symbols.
Some data and symbol tables can be identified from the rfirst
pass. The existence of zero page literals {s indicated Dy =
dymp_at the end of the code for a given field. The local or
non-zero page literals are {dentified by an origin near the
top of the page, code in every location to the top of the page,
and normally another origin following the literal dump.
The tdentification of the dump can only be confirmed by checking
the sequence of references to the dump, but this {s rarely
needed. In the first disassembly, the dump might appear:

3 *37S

4 00S75 1426 TAD 1 26
5 00576 04S3 AND I 53
6 00577 0215 AND 415

The next page would start with an origin. The followving
definitions would then be added to the symbol table:

/955=575
/e5=577
<1426=575
(4S53=576
<215=577

Suppressing di sassembly and outputting symbols concesls the
rare ocassions when literals consist of instructions

such as (JMS OQUTPUT, but contribute more to {dentifying their
meaning. On the second listing, the dump might appeasar:

3 *S57S

a4 00575 1426 <1426, ERROR+2
S 00576 0453 (453, OUTPUT
6 00577 0215 <215, 215

<1426 can now be redefined as <ERROR+2 and (453 as (OUTPUT.
Note that the character < was used oxcept in the case of (453.

7

453 Is a current page address. Literals corresponding to
current page or zero page addresses should be defined using (.
If the data field {s not current, TAD OUTPUT, obtained using
<OUTPUT, {s not executed {n the same manner as TAD I (OUTPUT
obtained by defining (QUTPUT.

7. Disassembling Undocumented Tapes:
EE R L L LR PRI R P R T T EIETIT

In disassembling all but the shortest undocumented tapes,
it is very valuable to use SPLIT. Frequent disassembly of short
segments of the program with the symbol table freshly revised
greatly assists i{nterpretation of the code.

Following the first disassembly, using a symbol table
which contains only a title and a dummy field setting, all
literal symbols should be defined as above. DISASM cannot
tell the user what the code does, so there {s no alternative
to tracing out the operation of the instructions. A aquick
scan of the first dump may reveal familiar 1/0 routines, USR
calls, and similar routines which can quickly be labeled. 1In
inventing new labels, rit {s {mportant to avoid duplication.

It 1s usually simplest to build the symbol table {n segments.
Segregate literals at the end. Editing and correcting the table
will be easiest {f the symbols are entered {n order of increasing
value within each segment. Use PAL8 with the N opticn to
frequently li{st the symbols {n alphabetical order.

8. Overlays and Patches:
EL b b RS ETFTTT

Overlays and patches can be extremely difficult to
interpret {n their original location. If {t {s found that
a section of code from 543 to 602 {s to be moved to 200 to
237, 1t is very difficult to recognize the signifigance
of an instruction such as JMP I 430 as meaning Jjump to the
address specified In 573. Interpretation can be greatly
simplified by inserting a suppressed origin using the definition
/90=200=S43. The. address will then appear at 230 and the
fnstruction will be disassembled as JMP 1 230. Labels
for the overlay can then be defined using the translated
values, in the {nterval 200-237.

There are no special precautions required {n {nserting
suppressed orfgins {n DISASM listings. References to labels
outside the ovelay, even to litersls, will be correct. However,
PAL8 {mposes severe restrictions on the use of literals {n
cocde displaced by suppressed origins and {n code on the
same pagde but preceeding the suppressed origin. After
interpretation of the overlay, {t may be necesary to delete the
suppressed or{gin and define logical expressions to translate
the address references. These can later be edited into the
source output.

8

9. Floating Point Disassemblies:
T f ittt a3 A b b b b b b b b))

As noted previously, {f the first symbol {s FLPNT=n,
then JMS I n will be regarded as a command to enter floating
point disassembly mode. If n=7, as {s common, then on every
occurance of 5407, DISASM will enter this mode. If the entry
{s data, then gall code until the next zero will be {ncorrectly
disassembl ed. Once this has been spotted, {t can be suppressed
by using g8 /0S or /eN symbol to suppress the disassembly of
the S407 data {tem.

Certain programs, such as FOCAL use non-standard floating
point operation codes. With these programs, redefinition of
the codes requires modification of the floating point table
at 2054. If FEXT {s not zero, a major patch will be required
since exit requires cslling a special routine. See Appendix c
for the structure of the tables.

Special commands with the zero operation code such as
square root have not been defined. They are not uniform {(n
usage.

10. DISASM Error Routines and Codes:
SN EEEN AN EIESEEEIERED

If the output file becomes full, DISASM prints “FULL"
and calls the command decoder. The user should {nput only an
output file. Input files will be ignored. The first output
file ends in an incomplete 1ine. 1If merged using EDIT, no
{information {s l1ost. If the first file {is moved in anything
except image mode, there is risk that the partial line will Dbe
lost.

All other detected errors are fatal and output files
are lost. The codes for the errors are:

Output handler error: 0

Input handler error: |

Output open error: 2

Qutput close error: 3

Defagult LPT: not available: 4
Symbol table error: S

ISASM attempts to recover from most symbol table
errors. The only errors causing error exits are:

Fallure to start with a /7 (no title.

Initial field not specified.

Fleld specification repeated for the same field.
Symbol table overflow.

11. SPL!T’
SEassssa=

SPLIT is a simple, not very elegant, file splitting
program. Loaded and called in the usual manner, {t expects
a8 four character output name and & single {nput file. If only
an output device {s speci{fied, {t will supply the name SPLT.

SPLIT scans the input file and outputs {t to =@
sequence of f{les sequentially numbered, eg. SPLTO!l.BN,
SPLT02.BN, ««., SPLT99.BN. Whatever the output name the user
specifies, SPLIT supplies the fifth and sixth characters and
the BN extension.

Each time that SPLIT encounters an origin that {s on
a different memory page than the last, {t closes the last file
and {nserts the nev origin {n a new file. If SPLIT has not
seen any field setting, it does not insert any field setting.
On the other hand, {f {t has seen a field setting, {t starts
every file with a field setting.

Since SPLIT will have closed a number of output
files before {t can detect a check sum error, it finishes
all output and then reports the error. Other errors are
immediately fatal. They include the same codes 0-3 as DI SASM
but 4 represents an {mproper end of file.

10

APPENDIX A
Symbols not {n PALS

In addition to the symbols defined {n PAL8, DISASM
uses the following symbols which may have to be defined
before the DISASM output can be reassembled.

Micro Instructions, always available:

STM2=T7344 STP3=7325 ST2K=7332
STM3=7346 STP4=7307 ST4K=7330
STP2=7305 STP6=7327 ST6K=7333

EAE Instruction, available with the E option:

MUY=740S ASR=7415 SCL=7403
DVI=7507 LSR=7417 SCA=T44]
NMI=7411 MQL=7421 MQA=7501
SHL=7413

Floating Point Instructions, when FLPNT (s the first symbol:
Regular: FINT=JMS 1 FLPNT FEXT=0
MRI Instructions:

FADD=1000 FMPY=3000 FGET=5000
FSUB=2000 FDIV=4000 FPUT=6000
FNOR=7000

11
APPENDIX B
User Symbol Input

Considerable powver has been introduced into DI SASM
gas {t evolved by manipulation of symbols. Many such
opportunities have already been formalized, but the
user who understands the symbol input galgorithms can still
{nvent new tricks. The format of the input is much more
flexible than indicated. The PAL8 symbol table can be used
as {nput {f a field setting is inserted and all spaces in the
table are converted to tabs. The {nput routine first tests
for @ /. If this is found, the first line is accepted as @
title Celse fatal error). The input routine then requests
the first definition and tests for FLPNT. If present, it is
processed, and another definition requested. In either case, the
routine then enters a loop to accept a definition, test for a
/FIELD symbol, if recognized, set the pointers and go back
for another definition, else test the value for zero. If zero,
go back for another, else store {t.

The definition fetching routine calls a symbol fetching
routine. If the symbol {s & /e special symbol, & special routine
{s called to assemble the values for the special symbol.

(Special symbols are.flagged Dy the first word being zero.

As they are {dentiffed, a check is also made for symbols starting
#9 and they are converted to #A to avoid conflict.) The
definition fetching routine then calls @ subroutine to fetch the
velue. The special symbols are stored as & Zero, then

a negative symbol numbder, and then a special value {f needed.

The symbol fetching routine recogizes 275 (=) and all
codes below 240 as terminators. When first called, the routine
skips terminstors. The first non-terminator starts the character
scgn. The first ten characters are packed as 6-dDit chopped ASC I1I
Addi{tional characters are scanned and di{scarded until @ termin-
ator {s found, If & terminator is found pefore the tenth char-
acter, the storage {s filled out with zZeroes (#). 1In printing
back symbols, DISASM ignores zeroes and so does not print back
the character @. The normally available terminators are hori-
zontal tad, line feed, vertical tab, form feed, carriage return,
and equals.

The value accepting routine skips symbol terminators.

The first non-sysmbol-terminator initiates value acceptance.
Only octal digits are accepted. Up to four of these are con-
verted to a binary value. Any other character terminates the
velue. In case there are four octal digits, the next character
{s fetched ror use as a terminator. The terminator {s tested
for 7/, and {f found, the text to the next carriage return is
dunmped.

The definition “SyM=1" followed by a carriage return
will pack 2431,1600,0,0,0 for the symbol and 0001 for the value.

20

12

The definition "SYyM=AB" will cause the input value to be started
and terminated by the "A". The value will be zero and SYM

will not be stored. The {nput routine will then try to fetch a
value for the symbol "B".. Thus:

SYM=AB
NEXT=S

will store only “EXT" with a value of S. The "A" and the “N" are
l1o0st as value terminators. This {s the result of the routine
to recognize the comment slash.

13

APPENDIX C
DISASM Permanent Tables

Two different types of tables are used in DISASM.
The first contains {nstruction codes each followed by the
two vord (4 chopped charecter) neomonic. Padding (s done with
Spaces In the permanent tables. The first contains entries in
&n order such that combdined micro-instructions precede their
components. They are searched under s mask and matching
Pits are deleted under the mask. These tables are terminated by
zero entries. The second type is @ccessed by displacement into
the tadle and contains only the neomonic.

I/0 Tables: These are sccessed indirectly using a displacement
address table. The device number (bits 3-8) {s used as @
displacement into e table at 2400. Zero entries indicate that
the device {s not defined. Non-zero entries are addresses of
tables of the first type containing the micro instructions for
the device. The device tables extend from 3263 to 3466. 3467
to 3577 {s available for expansion. If more space {s required,
the user might consider disabling the EAE or floating point
commands to obtain more space. Provided that the table at 2400
{s properly maintained, resarrangement of the 1/0 table ares {s
simple.

Micro Instructions: The tables for Grouwp 2 (3033), Group 1
(3160) and the EAE (3116) instructions are of the same formet
&8s the 1/0 tables. The EAE instruction table {s easily
altered. The Group 2 table has s special rirst entry wich must
be preserved.

Operands: The regular operands (AND, TAD, 1SZ, DCA, JMS, and
JMP) are In @ displacement table at 3102. The flosting point
operands are in e displacement table at 2054. Since this table
does not contain a zero entry, {ts base (s 20S2.

14

APPENDIX D
Possible Patches

A fe& hints are provided on patching DISASM for special
applications.

OQutput control: Output is designed for the 0S-8 handler FORMAT.
This handler {s used under the device name LPT: on the system
under which DISASM was developed. It may desired to complement
the T option or to change the relation of the expansion of

tabs and form feeds. As loaded, DISASM {s set for both tabd

and form feed conversion. The T option patches the code to
suppress conversion. The option can be complemented by changing
location 3651 from SZA CLA to SNA CLA (7650). 1If form feed
terminals are standard, changing 3652 to S255 will cause the
program to alwvays output 214 codes, T option or not. Changing
3654 to 7200 would cause tabs to be always converted.

Special Micro Instructions: The STM2 and similsr combined
micro-instructions are included to {mprove interpretation. They
can be deleted by replacing thier operation codes by 4000. <(Zero
would terminate the table.) The new DEC symbols cannot be
implemented as they are too long for the operation output routine.

Alteration of the floating point MRI instructions
requires only changing the neomonics {n the table. Changing
FEXT would require reassembly (get the listing and use
DISASM to disassemble DISASM).

Suppressing literal recognition does not require a patch.
Prefix the literal with o.

-

Patch to correct internal buffer overflow problem:

LOC 00127 Change to 7601 (was vacant)
LOC 00226 Change to 1127 (was 1173)

