A

This is a USER program. Other than requiring that it conform to submittal and review standards,
no wuality control has been imposed upon this program by DECUS,

The DECUS Program Library is a clearing house only; it does not generate or test programs. No
warranty, express or implied, is made by the contributor, Digital Equipment Computer Users
Society or Digital Equipment Corporation as to the accuracy or functioning of the program or
related material, and no responsibility is assumed by these parties in connection therewith.

FOCAL

HOW TO WRITE
NEW SUBROUTINES
AND
USE INTERNAL ROUTINES

Doug Wrege, Engineering Experiment Station,
Georgia Institute of Technology, Atlanta, Georgia 30318

DECUS NO. FOCAL 8-17

SUPPORTED IN PART BY THE U.S. ATOMIC ENERGY COMMISSION.

TABLE OF CONTENTS

FOCAL: HOW TO WRITE NEW SUBROUTINES AND USE INTERNAL ROUTINES

ABSTRACT

I. INTRODUCTION

II. ASSEMBLERS, COMPILERS, AND INTERPRETERS
{1l. THE PHILOSOPHY OF FOCAL

A. Text Editing

B. The Multiple Branch Routine
C. Recursion

D. Conclusion

V. TECHNICAL DETAILS; GENERAL

A. Arithmetic Manipulation
B. Storage - (Core Layout)
C. Holes

D. Moving Bottom

V. TECHNICAL DATA - FOCAL SUBROUTINES

Page Zero Reference Locations
Text Handling Routines

. Utility

Pushdown List Controllers
Other Subroutines

moN®w>

VI. LINKS TO FOCAL

A. Functions
B. Links to FOCAL - The LIBRARY Command
C. Debugging

VIil. ACKNOWLEDGMENTS
VIll. APPENDIX A
A. A Prescription
IX. APPENDIX B
A. A Few Useful Routines
1. Argument Evaluator

2, LIBRARY Expansion

3. Function-command Extention

X. APPENDIX C

A. Example of a Recursive Subroutine - EVAL
B. Simplified Flowchart of Subroutine EVAL

Xl. APPENDIX D

A. Field One Variable Array
1. Abstract
2. Requirements
3. Usage
a. Loading
b. Calling sequence
4. Discription

X1l. APPENDIX E
A. Disk Variable Storage

1. Abstract
2. Comments

X11l. APPENDIX F

A. Hints and Kinks Department

FOCAL: HOW TO WRITE NEW SUBROUTINES
AND USE INTERNAL ROUTINES*

DECUS Program Library Write-up FOCAL8S-17

ABSTRACT

It is the aim of this paper to help the user to code specific routines in FOCAL so that his
dialect of FOCAL can be applied to his application (without being forced to understand in
detail all the workings of FOCAL). In this way, perhaps, each and every user can make
his particular dialect of FOCAL 'perfect’.

I. INTRODUCTION

Many users have found FOCAL ** to be the answer to their real-time and computational
problems. The language is extremely powerful and flexible with unique text editing and
debugging features. Although FOCAL is slow in execution compared to machine language
coding, for most real-time problems or one-time calculations, lack of speed is not a serious
handicap. Most users will agree that a program can be written, debugged, and executed in
"FOCAL" before the equivalent could even be coded (and/or punched) in any other language.
Additions or changes are easily made.

It will be assumed that the reader has a basic knowledge of PDP-8 processor instructions, PAL
mnemonics (see Digital's Small Computer Handbook or Introduction to Programming), as well
as o familiarity with the Floating Point Package (DEC-08-YQYA-D). In addition, he should
be familiar with the "FOCAL"** |anguage.

As many users have discovered, the internal workings of FOCAL are an incredibly complex
piece of programming. With the need to interface the computer to specialized equipment for
individual applications, there is the corresponding need for appropriate software, If FOCAL
could communicate with this equipment, one would have an extremely powerful and flexible
computation and control package. This paper is an attempt to explain how user developed
software can be interfaced to the basic FOCAL package, without requiring the user to spend
valuable time trying to understand all of its detailed workings.

Section Il will deal with a general discussion of how FOCAL works, in a descriptive fashion.
Section Il will be concerned with the philosophy of the language. The last few sections will
be more technically oriented toward helping the user actually code his additions. Finally,
several examples and ready coded routines, which may be used to simplify the user's problems,
are included.

*Supported in part by the U. S. Atomic Energy Commission.
**Throughout this paper a "FOCAL" program written in the "FOCAL" language will be

enclosed in quotes. The machine language coding of the FOCAL interpreter will be referenced
by the word FOCAL without quotes.

Il. ASSEMBLERS, COMPILERS, AND INTERPRETERS

In general, there are three routes that the programmer can follow for machine execution. Programs
that perform translations are assemblers, compilers, or inferpreters; each operate from conceptually
different vantage points.

In a compiler level language, such as FORTRAN, ALGOL, and BASIC, coding is written in a syntax
close to the way a human thinks. A compiler interprets this and generates an object code which is
close to machine language. This, in turn, is translated info actual machine language instructions.
Finally these machine language instructions must be read into core before execution. If any
corrections are to be made to the program (debugging, additions, or corrections), one must recompile
the source coding, read the new object coding in, and finally execute it.

An assembly level language is inherently closer to machine language than a compiler level language.
The user's coding is indeed remote from the way he thinks about formulating a problem (he is even
forced to think in binary or octal, the machine's way of formulationg problems). About all an
assembler lets the programmer do is use mnemonics (words) and symbols instead of binary numbers.

For example, in the PAL language, the instruction TAD | TEMP is assembled as follows from the
definitions:

TAD =]Q’ﬂ,@é /in the assembler's internal symbol table
| = 534@38 /internal symbol table
TEMP= ﬁ]ﬂﬁg /user defined in coding

The assembler masks out the first 5 bits from the last mnemonic
if there are more than one (in this case TEMP); it then ORS the
result with the other mnemonics:

1009
& PAg0
& giga
1500 This is the machine equivalent.

The PAL assembler is a little more sophisticated than this, of course, and performs functions a
little more complicated, but generally an assembler is incredibly stupid for what it can do. Note
the similarity between PAL mnemonics and machine language. Throughout the following sections

various mnemonics will be defined so that the PAL assembler can generate instructions compatible
with FOCAL (e.g. GETC = 4506 causes the assembler to add this to its symbol table).

In an interpretive level language, no machine language coding is generated for execution. An
interpreter is essentially a subroutine caller. It contains a subroutine for every conceivable
operation it thinks the user wishes to perform. If it cannot understand what the user wants, it
prints an error message and waits for the user to make himself clear. Every character that the
user inputs is stored in core. Upon execution the interpreter "interprets" the program character
by character and calls the subroutine indicated.

FOCAL is an interpretive level language. In particular, it is a recursive interpreter (see
Section Ill). That is, unlike FORTRAN, one may call a function from within itself.
Nevertheless, it is basically a subroutine caller, even though these subroutines may be
incredibly interlocked. It has a subroutine to evaluate arithmetic expressions (EVAL),
subroutines to make it recursive (PUSHJ, PUSHA, etc.), branching routines (SORTJ),

a subroutine to find a certain line (GETLN), one to get a character (GETC), etc. Once
the user understands what all these routines do, he can add his own coding in a highly
efficient and powerful manner. Descriptions of these subroutines will be given in later
sections.

1. THE PHILISOPHY OF FOCAL
A. Text Editing

Since FOCAL is an interpretive language, it must have facilities for manipulation of user

written text. In order to facilitate these manipulations, there are a number of text formatting
and editing features, such as WRITE, MODIFY, TYPE, and the "trace" (" ?") function. One

of the main features of the FOCAL interpreter is the simplicity of concept and power of operation
of the format controlling statements. The user finds a convenient, easily understood way of
controlling the format of his output, regardless of his level of programming experience and
sphistication.

Since much of FOCAL execution is involved in various text decoding routines, FOCAL is slow

in execution of programs (compared to assembly or compiler language coding). The text handling
routines may be called from the user written assembly language subroutines, and thus are listed
with a short description of their function, in Table 1.

FOCAL is concerned with interpreting what the user's text means by specific combinations of
characters, so it must have a flexible means of decoding these characters according to type.
The most efficient way this can be done is to use a subroutine (SORTC) that compares the
present character with a list. [t is necessary to have the address of the list as an argument for
this subroutine. For example, suppose that it is desired to find a text terminator. To do this,
a list is made of all legal terminators (;, carriage return, space comma, etc.), and the value
of the present character (stored in location CHAR) is compared to the list: if a match is found,
an index is set to the list element number, and a normal return is taken. [If a match is not
found, then another return is taken.

B. The Multiple Branch Routine

FOCAL is in many ways similar to JOSS2, All of the JOSS-like languages incorporate a
"command" in addition to the arithmetic statements available in other languages (ALGOL,
FORTRAN). One of the advantages of the command is that, using only the first symbol of a

new statement, the interpreter (or compiler, inthe case of BASIC) can decode the action
required, and thus need not "understand" the whole line before proceeding. This is an advantage
in a small machine such as the PDP-8, where the paucity of core demands highly efficient coding.

2Joss - An Introduction to a Helpful Assistant, Rand Memos 5058-PR July 1966.

A Unique feature of FOCAL is the ability to operate with single-letter abbreviations of the
command. As an example, consider the subroutine that actually selects the command branches
(and is used for other operations within FOCAL, as well). This routine (SORTJ) is called with
an argument pointing to the list of characters to be compared and another argument containing
a pointer to a list of associated addresses. FORTRAN programmers might recognize the result
as a sort of character-driven computed GOTO. The calling sequence is:

SORTJ /Sort and Branch Routine

TABLE1-1 /pointer to character list
TABLE2-TABLE. /difference in addresses of the tables
XXX /return if not in table

Absolute addresses are specified in the arguments; hence, tables may be stored between pages.

Since FOCAL refers to lists for its decoding operations, it is often referred to as a table driven
interpreter. A table driven interpreter is especially suited to addition of new coding, since only one
or two addresses need to be added to a table (list) for a new branch.

C. Recursion

One of the features of FOCAL which makes it so powerful is that of recursion. Recursion is the
ability of a subroutine to call itself, e.g. FSQT (1 - FSQT(X)). In most compiler level languages
this operation is carried out by repeating the machine language (FSQT) coding so that one version
of the subroutine can call the other. In these cases the subroutine never really calls itself, rather
it calls a separate identical piece of coding. An interpretive level language cannot afford multiple
identical subroutines for every possiblity, since it would take too much core.

Consider how a 'normal', nonrecursive subroutine works. Schematically we may divide the sub-
routine into a segment in which the logical operations are coded and a segment where temporary
values in the calculation are stored. We can consider the subroutine return to be stored in this
temporary storage area also. VIZ,

SQT, return addr. CODING
Intermediate <
Variable
Storage —»| _(eval. argument) |

(take SQT of arg.)

If this hypothetical subroutine were to call another subroutine (as is normally done in assembly
language), there would be no difficulties provided that the intermediate storage of the two
subroutines are separate.

If the subroutine was to call itself from within its own coding, the original intermediate values of
the variables and the return pointer would be overwritten (as the program executes the coding the
second time). If there was a way to use a different intermediate storage area, the original values
would not be lost.

The Push-Down List (PDL) concept involves an intermediate storage area which is "pushed-down"
(making a new intermediate storage area available) whenever a subroutine is called and "popped-
up" whenever a return occurs. VIZ,

STORAGE CODING
AREA
> e SQT may be in
: ; o, oy [+ 33T 2y
(storage ¢ {take SQTof arg.)
PDL l‘

To continue the example, the steps in the evaluation of FSQT 1-FQST(X)) would proceed as
follows:

1. The main program calls the FSQT subroutine. Storage area 1 is now pushed-
down into the push-down list making area 2 available.

2. The argument "1-" is evaluated up to the next FSQT(X).
In order to evaluate this, the FSQT subroutine is called again !

3. On second entry to the subroutine, storage area 2 (containing the main
program return and the intermediate value of the argument) is pushed-down.

4. X is evaluated and then the square root is taken.

5. The subroutine returns (to the middle of itself) with the answer FSQT(X).
When #his return is effected, storage area 2 is popped-back-up (with the
old intermediate values).

6. The answer FSQT(X) is subtracted from 1 to form the argument 1-FSQT(X).

The square root of this is taken and the function returns to the main program.

Obviously, by using the PDL concept, subroutines may call themselves to any level (as long as
_there is PDL space available).

For most efficient core utilization, FOCAL uses the same PDL intermediate storage for all sub-
routines. To do this, one value (PDP-8 word) is pushed-down at a time. Values are 'popped’
in the reverse order that they are 'pushed’.

An additional feature of a PDL is that it can be used for temporary storage of variables in non-
recursive routines. One may consider the PDL as an extension of page zero since it can be accessed
from any page. Section V will describe PDL handlers available in FOCAL.

D. Conclusion

The concepts outlined above will introduce the experienced programmer to the internal working
of FOCAL. In the sections that follow, a more technical exposition of these routines will be given.

MNEMONIC

GETC
SORTC
TESTN
TESTC
TESTLPR
READC
PRINTC
PACKC
PRINTLN
FINDLN

SPNOR

TABLE 1

FOCAL TEXT HANDLERS

DESCRIPTION

Get the next character from the text

Sort the present character against the table

Sort the present character into one of three types
Sort the present character into one of four other types
Test CHAR from left parenthesis

Read a character from the Teletype

Print CHAR on Teletype

Pack a character into buffer (store it)

Print the current line number

Find a given line

Ignore spaces

The Appendices contain examples elucidating the principles outlined in this report.
IV. TECHNICAL DETAILS - GENERAL
A. Arithmetic Menipulations

Arithmetic is done using the three word floating point format. Input and output of numbers
are handled via the Flcating Point Package (FPP) 1/O controller (with modifications to run
with the interrupt enabled). For details, see FPP documentation (DEC-08-YQYA-D).

B. Storage - (Core Layout)

The FOCAL interpreter occupies locations 1 - 3220 (see Figure 1). The FPP occupies
approximately 4600 - 7577, depending on how many functions are kept. The initial dialogue
sets BOTTOM, the end of storage space, depending on the number of functions kept. The
remaining storage is used for text, varioble storage, and push-down lists.

3220 - 4577 with all functions
3220 - 5177 FEXP, FLOG, FATN deleted
3220 - 5232 FSIN, FCOS and dbove deleted

The text is built up from focation 3220 occupying approximately two characters per location.
Variables are built upward from the top of the text. They occupy 5 locations per variable
and are created as they are found in execution. Whenever the indirect program is changed,
(modified, appended, or collapsed), a new starting point for variables is indicated; hence,
old variables are erased. The push-down list (explained more fully later) is built from the
FPP down toward the variable storage area. Error messages occur with termination of the
program whenever these lists overlap.

Instructions are stored in the command/input buffer when in the command mode; the buffer
has sufficient locations for one line of characters.

C. Holes

The following locations are free for the user:

PAGE ZERO 16 (Auto Index Register)
162 - 175 (Free in 4K FOCAL)
171 - 175 (Free in 8K FOCAL)
FPP 5571 - 5577
5754 - 5777
6171 - 6177
7154 - 7177
7346 - 7377
7554 - 7577
6317 - 6377 is used by the high-speed
reader control -- if you do

not have one, this is available

0000

PAGE ZERO
FOCAL
INTERPRETER
3232
TEXT AREA
'\ NDT
VARI ABLES FIRSTV
LASTV
BOTTOM
52007
EXT. FUNCTIONS
6400 FLOATING
POINT
PACKAGE
7600
LLOADERS-MONITORS
7777
TEXT STORAGE FORMAT VARIABLES FORMAT
LINE NA | mE
SUBSCRIPT
c D hd EXP
: MAN-
ASCII CHAR
TISSA
77 15
etc.
C.R.

Figure 1

D. Moving Bottom

For additional user coding room, BOTTOM may be changed at the sacrifice of text storage
To move BOTTOM, set the contents of location 27 (C(27)) to the last location available for
text (PDL) storage; e.g. in order to free locations 4420-4577 for user additions to the inter-
preter, change C(27) to 4417,

V. TECHNICAL DATA - FOCAL SUBROUTINES

With the use of subroutines available in the FOCAL interpreter and a listing, a must, it is
relatively simple to write powerful user coded additions.

Unless otherwise stated, these subroutines must be entered with the AC = {; they return with the

AC=0.
A. Page Zero Reference Locations

CHAR - The contents of this location (142) contains the current character (in ASCll code)
from the text buffer.

SORTCN - This register contains references used by sorting routines (see below).

FLAC - This is the first word of the floating accumulator (contains the exponent). The floating

accumulator occupies locations 44 - 46.
FLAC is defined as 44.

B. Text Handling Routines

GETC = 4506
Gets next character from the text; exits with next character is CHAR.
SORTC= 4511
Calling sequence: SORTC /call
LIST-1 /address of LIST-1
XXX /return if in LIST
XXX /return if not in LIST
Description: If the accumulator is nonzero, its contents are used;
otherwise the contents of CHAR are used to sort against
the LIST. If it is in the LIST, return to call + 2; if not,
return to call + 3. SORTCN is set to how far down in the
list the match occurred.
Example: If we are testing for one of the following:
LIST =,
254/,
273 /;

215 /carriage return
7777 /list is terminated by a negative

0 number

Assuming it is an error for CHAR not to be in the list,
the following coding applies:

SORTC /sort against LIST

LIST-1 /address of LIST

SKP

ERROR /do an error exit as not in LIST

If a match were found, SORTCN would have the values:

Com‘en’rs_if CHAR SORTCN Value

, g
; 1
carriage return 2
NOTE: Lists are terminated by negative numbers.

PRINTC = 4512
Print the accumulator; if the AC = @ print the contents of CHAR.

READC = 4513
Read and echo a character from the keyboard. Put it into CHAR.

SPNOR = 4521
Ignore spaces in text; exit with the first character that is not a space in CHAR.

ERROR = 4526

Used to exit upon error detection; transfers control to the command mode and terminates
executfion; prints error message. (In the FOCAL listing there are ERROR2, ERROR3, and
ERROR4. All of these are identical.)

TESTN
This subroutine is actually a series of SORTC's with various returns:
CALL: TESTN /call
returnl /return if o period
retum?2 /return if not a period or a number
return3 /return if a number; SORTCN is set to the

binary equivalent.
This routine tests only CHAR. AC must be @.

TESTC (4525)
This subroutine is actually a series of SORTC's with various returns:

10

CALL: TESTC /call

return] /terminator; SORTCN set according to TERMS
return2 /number; SORTCN set as in TESTN

return3 /function; (CHAR=F)

refurn4 /alphabetic character

SORTJ (4510)

This subroutine is used as a multiple sort and branch routine. CHAR (or the AC if nonzero)
is compared to a list. [f it is in the list, an address is looked up and an effective JMP
ADDRESS is executed. If a match is not in the list, then return is to call+3.

CALL: SORTJ
LIST1-1 /ADDRESS of character list
LIST2-LIST1 /difference in the addresses of lists
RETURN /return here if not in LIST1

An example of this is the FOCAL branch to a library command:

POPA /get command CHAR
SORTJ /branch
COMLIST-1
COMGO-COMLIST
ERROR2 /invalid command
where
COMLIST =, COMGO=
323 /S (ASCID) SET /ADDRESS OF SET CODING
306 /F FOR /ADDRESS OF FOR
311 /1 IF
304 /D DO
307 /G GO
303 /C COMMENTS
301 /A ASK
324 /T TYPE
314 /L LIBRARY

7777 /list is terminated by a negative number

NOTE: Lists are terminated by a negative number.

11

C. Utility

RTL6= 4520
Rotate the AC six places to the left.

D. Pushdown List Controllers

For those unfamiliar with more powerful processors than the PDP-8, the ideas of recursion
and pushdown lists are explained in Section II. These subroutines appear to simulate hardware
commands on more sophisticated machines like the PDP-10 and even use the same mnemonics |

PUSHA = 4503

Puts the contents of the AC on the PDL; clears the accumulator.

POPA = 1413
Get the top entry on the PDL and put it in the AC. (Note: auto-index register 13 is the pointer
to the pushdown list; thus 'POPA' is actually TAD [13.)

PUSHF = 4504
This is essentially three PUSHA's and is used for storage of floating point data.
Call: PUSHF
ADRESS /address of first location of three word floating point number.
POPF= 4505

The inverse of the PUSHF routine.

Call: POPF
ADDRESS /address of where to put data.

PUSHJ = 4501
This is the recursive subroutine call. The subroutine return is put on the PDL and a JMP to the
subroutine address is executed.

Call: PUSHJ
SUBROUTINE /address of SUBROUTINE
XXX /address of this location is
/stored on the PDL
POPJ =5502

Recursive subroutine return; the top element of the PDL is used as the effective address of the
return.

12

E. Other Subroutines

INTEGER

Enter via a JMS | INTEGER. This routine makes an integer out of the FLAC. The low order
part is in FLAC + 2, the high order part is in FLAC+ 1. Also, returns with the low order part
in the accumulator.

EFUN3I
This routine is the refurn from a function routine. It checks for a right bracket in CHAR (')")
ond normalizes the floating accumulator. Enter via o JMP | EFUN3I.

EVAL

This subroutine evaluates arithmetic expressions; because it is recursive, it must be called via:
PUSHJ
EVAL
XXX /return

The subroutine return is to call + 2 with the floating point value of the expression it evaluated
in the FLAC. (How EVAL works is discussed in Appendix A.)

NOTE: All temporary storage must be in the PDL before calling EVAL. This data must be
restored after the return. (see Appendix for examples.)

VI. LINKS TO FOCAL
A. Functions

The general form of a function in "FOCAL" is FUNC(ARG1,ARG2, ---). The function coding
is entered via a SORTJ where the address in designated in the table:

FNTABF = . /(376) in FOCAL-W 8/68
XABS /address of FABS coding
XSCN /FSGN
XINT /etc.

XDIS
XRAN
XDXS
XADC
ATN
EXP
LOG
SIN
COS
SQT
NEW /user defined function

To add a user coded function put the entry point of the function coding in the appropriate
location in the above table. FOCAL will branch to that location after the function name is
decoded, and ARG1 is evaluated in the floating accumulator (FLAC). To delete = function
from the list, replace the current contents with 2725,

13

When the function evaluction is complete, the answer must be left in the FLAC, and a JMP |
EFUN3I executed. The EFUNS3I routine will check to see if there is a right parenthesis ("*)")
in CHAR, and normalize the FLAC, before returning to the appropriate place in FOCAL. (See
Hints and Kinks, Section X1l A, if the answer is an integer.)

B. Links to FOCAL - the LIBRARY Command

FOCAL hes an unimplemented command, the LIBRARY command (SET, ASK, TYPE, etc. are
commands). The general form of a command is:

X _ (any syntax allowable by coding).
For example the SET command's allowable syntax is:

SET _ (variable)= (arithmetic expression).
To generate the link to the user's LIBRARY command, put the entry address in 1201, FOCAL
will enter via a JMPwith CHAR containing 24ffg (a space). The following coding may be used

at the end of a LIBRARY command to space over exiraneous characters to a semicolon or carriage
return, which must be in CHAR before doing an effective JMP PROC to return to FOCAL:

SKP [entry

GETC /fetch the next character
SORTC /sort for a ; or c.r.
GLIST-1

JMP PROC /FOUND IT .
JMP . -4 /not yet

C. Debugging
It has always been a problem to debug FOCAL programs, as FOCAL runs with the interrupt on.

Recently, a DECUS program XOD (DECUS #8-89) became available. This program may be used
in field 1 to debug FOCAL in field @ with the following patches made by J. C. Alderman.

FIX UP XOD
Patch FOCAL 0001 5575
(field 9) 0175 2603
6761 5002
Patch XOD 6762 0002
(field 1) 6763 5404
6764 0003
6765 6613
6766 0004

14

Vil. ACKNOWLEDGEMENTS

The author wishes to express his thanks to J. C. Alderman for his help in formulation of ideas

and text editing. Also, an emphatic "thank you" to Rick Merrill for the most beautiful program
in the world, FOCAL!

15

Vill. APPENDIX A
A. A Prescription
To add a function:
1. Put the function address in FNTABF.
2. Do coding.
a. Use PDL for temporary storage

b. If more than one argument is needed:

PUSHJ
ARG

where ARG is a supplied subroutine (See Appendix B). ARG is
a subroutine which moves past commas and evaluates arithmetic
statements, leaving the result in the FLAC,
3. Put the functional result in the FLAC.
4. Return to FOCAL via JMP | EFUN3I.
To add the LIBRARY command:

1. Put the initial address in the contents of 1201
(for expansion of commands see Appendix B).

2. Exit from coding via an effective JMP PROC. Note: the contents of CHAR
must be either ; or a carriage return.

16

X. APPENDIX C
A. Example of a Recursive Subroutine - EVAL

The subroutine EVAL is an example of a recursive subroutine. The PDL is used to defer
evaluation so that the arithmetic operations are performed according to operand priority.

In order to take care of bracketed quantities EVAL does the following:
if a left bracket occurs - PUSHJ

EVAL
if a right bracket occurs - POPJ.

Given that EVAL evalueates arithmetic expressions, the above operations have the effect of
changing all bracketed quantities to evaluated numbers. Hence, all bracketed quantities
have now "gone away" and we are left with expressions like:

A+B*C-D/EAF,

Operand priority is assigned as follows:

opperation priority level
+ 1
- 2
* 3
/ 4
+ 5

A flow diagram approximating this subroutine is given in Figure 2.

17

IX. APPENDIX B
A. A Few Useful Routines

1. Argument evaluator

A common requirement, expecially in function additions, is a routine which test for and
evaluates additional arguments. The subroutine ARG (coded below), checks if the contents
of CHAR is a comma (,), moves past the comma, evaluates the argument, and returns to
call+ 3. If the contents of CHAR is anything other than a comma, return is to call 4 2.

Call: PUSHJ
ARG
XXX /CHAR was not a comma
XXX /return with ARG(next) in FLAC
ARG, TAD CHAR /get CHAR
TAD MCOMMA

SZA CLA /A comma?
JMP +4 /yes: exit via POPJ

PUSHJ /move past comma and evaluate next arg.
EVAL-1

IAC /increment return

POPJ

2. LIBRARY expansion

As FOCAL has only one 'extra' command character, LIBRARY, a routine to expand the number
of commands is useful. In this way the normal format:

L _ (stafement)
which allows only one command branch, may be extended into the syntax:
L X _(statement)

where X represents another command. A listing of this routine follows.

3. Function-command extention

The user may desire to perform a branch within a function, e.g. ARG2 in the function call
FNEW (ARG1,ARG2,ARG3, ---) may be used as a command letter to specify a branch to
perform different operations. An example of a subroutine to do this follows. (see next page)

NOTE: The return to FOCAL from each branch must be via a JMP | EFUN3I.

With the use of the last two routines, the number of commands and/or functions may be extended
to any level. 18

/

*COMCO+10
LIFPAY
/
x T346
/CHMMAND PROCFEEDF
/
LIEFAFs» SPNOF /IGNOFF SPACES
TAD CHAF /CFT COMMANL CHAF
PUSHA /S5TASH IT
CFTC /CET NEXT
SAFTC /¥MOUE TO TERMINATOY
CLIET~1
EKP
JVP =&
SPNOT /IGNORF SPACES
POP4& /CGFT COMMANL CHAF
S0L.TJ /GO THEFE
CLicr-1
COLIST-CLIST
FEFOF /NJT IN LIST
/
/
x* 5571
CLJI.C‘T=0
373 / SV AR
32¢ /FFSTOF
320 /PUT
T777 /COMMANT LIST TEFRMINATOF
/
/
*F171
CIALIST=.
SUAP
FESTOF
BOT
/
/
*

19

/

/FICAL COMMAND DECODFY

/
FELCa

v COMMAS
/

*

JMS 1 INTFCEF
PUSHA
TAL CHAF
TAD MCIOMMA
S7Za CLA
EFEQF4
GFTC
SPNOP
TAC CHAF
PUSH#
SAFPTC
TEPMSE=1
JMP ++3
GETC
JMP .4
SPNOF
POFA
SOFTJ
COMMANDSE=-1

ADDS=-COMMANLS

EREOF4
-254

/MAKFE APGUMENT AN INTFGEF
/SAVE IT

/COMMA SHOULD BE NEXT

/MOVE PAST COMMA
/ICGNORE SPACES
/GET COMMANL CHAF.
/S5TASH IT

/1GNORE REST OF NAMVE
/IN LIST

/CET NEXT AND IGNOFE

/1 GNORE SPACES
/GET COMMAND CHAER

/GO TO APPEOFPFIATF FOUTINE
/NOT IN LIST

20

SIMPLIFIED FLOWCHART OF SUBROUTINE EVAL

set LASTOP=0

Evaluate a variable
(possible link to
functions)

(check for brackets)
(check for terminators)

answer_in FLAC

get THISOP
SORTC for priority

do LASTOP
between FLAC &
var. on top of PD

POP-up

new LASTOP

put THISOP
IN LASTOP

push-down
variable(FLAC)

push-down
LASTOP

Figure 2

Two locations, LASTOP and THISOP, contain the priority assignment of the present and last
operands respectively. The steps in the evaluation of

A+ B*C-D/ERF
would be:
THISOP LASTOP FLAC PDL EXPLANATION
N.A. g A evaluate A into FLAC; lastop
starts out @,
1 g A plus has priority 1
1 A THISOP higher than LASTOP;
) put LASTOP and FLAC in PDL
1 B A evaluate B info FLAC; put THISOP
g into LASTOP
3 1 B A THISOP has priority 3 - *
g
3 B THISOP higher than LASTOP;
1 put LASTOP ond FLAC in PDL
A put THISOP into LASTOP
g
3 C B evaluate C into FLAC
1
A
g
2 3 C B - has priority 2
1
A
g
2 C*B 1 do the last operation between
A FLAC and top of PDL.
g
2 i C*B A get new LASTOP from PDL
g

22

THISOP

LASTOP

FLAC

PoL

C*B

C*B

>

C*B

ar—-Qvo wr—-Qvo wr—

wr—-0Qvoarm
(v~

(same as
above)

23

EXPLANATION

THISOP higher than LASTOP
put LASTOP and FLAC in PDL
put THISOP in LASTOP

evaluate D

/ hos priority 4

THISOP higher than LASTOP
put LASTOP and FLAC in PDL
put THISOP into LASTOP

M has priority 5
evaluate E

THISOP higher thon LASTOP
put LASTOP and FLAC in PDL
put THISOP into LASTOP

evaluate F
no more operations so this
operation has priority @

THISOP LASTOP FLAC
g 4 ETF
d 2 D/EAF
1]] C*B-D/EMF
d a A+B*C-D/EAF
THISOP LASTOP @ hence we are done: do POPJ exit

24

PDL

B

a»—-Gno

C*B

= w» -

EXPLANATION

THISOP lower than LASTOP
do LASTOP with top of PDL
get new LASTOP from PDL

THISOP lower than LASTOP
do LASTOP with top of PDL
get new LASTOP from PDL

(same as above)

(same as above)

Xl. APPENDIX D

A. Field One Variable Array

1. Abstract

A new form of 8K FOCAL W. (DEC-08AJAD-PB), is available which uses field one to store
data arrays in three word floating=point form. This facility is added to 4K FOCAL W via the
function call FNEW. The function may be called recursively to any level, and all of the
features of FOCAL are retained. In addition, an ERASE or ERASE ALL command will not wipe
out the array. Hence, variables may be stored for use in successive programs.

2. Requirements

Fits into unused locations in the Floating=-Point Package (DEC-08-YQYA-PB)

7154-7177
6572-6576
5755-5764
7554-7577
3. Usage
Loading

Load after FOCAL W. has been loaded into the machine (before or after initial dialogue). Restart
FOCAL W. at 200g.

Calling sequence

To store a variable Z as array element J:

* S X =FNEW(J,Z)

or

* 4.3 S X=FNEW(J,Z)

In addition X will be set equal to Z.
To get the data from array element K and set Z equal to this element:
* S Z=FNEW(K)
i.e. If there is only one argument the instruction is interpreted as a 'GET'. If there are two

arguments it is interpreted as a 'PUT'. In the above examples the arguments may be any
arithmetical expression that can be evaluated.

25

C. Recursive calling
The function FNEW may be called recursively at any level. VIZ,
¥ S Z= FNEW(J,FNEW(J™10))
sets Z FNEW(J+10) and stores FNEW(+10) in. array element J.
*3.2S Z=FDXS(J*1000) + FDIS(FNEW(J)*NORM)
The arguments may be any arithmetical expression. The following are valid:
*S Z = FNEW(J*M-3, FEXP(X*2)*Y)
*S Z = FNEW(J,FNEW(J)*FEXP(FNEW(L)))
4. Description

The function FNEW protects the binary loader in upper core. The user, of course, may subdivide
his array into any number of smaller arrays, keeping track of his own indecies.

26

AFCG
EOTTOM
CHAF
EFUN3I
FNL
ENT
EFEOF
FVAL
FENT
FEXT
FLAC
FLIESTI
FMUL
FNEW
FNTABF
CET
GLIST
ICNOF
ILIST
INTEGF
ITETN
MCOMMA
MCR
POPA
POPJ
PUSEA
PUSHJ
PUT
P7600
FEADC
SETUP
SOPTC
SOFTJ
SPNOF
STAFTV
THFEE
TLIEST
T2

5755
0027
Claz
c100
7273
0077
L8526
1603
4407
0000
004
603
3000
7154
0376
7554
1406
0217
Q0761
0052
0231
01¢3
00é8
1413
5502
4503
4501
7564
0024
4513
€572
4511
4510
4521
0134
7173
1407
0157

27

C163

0413

7154
7155
7156
7157
7160

7161
7162
7163
7164
7165
7166
T1€7
7170
7171
7172
7173
7172
7175

T17¢
7177

7524

7154

4407
3373
0000
a45g
7500

536¢
1056
7700
4526
1046
4503
4501
5755
57717
5776
0002
3000
0000

7564
7554

NN N

FIELL O
/
/PAGE ZERO CONSTANTS
/
*163
MCOvMMA, =254
/
/
*FNTAHABF+15
FNEV /PUT ADDFEESS IN FNTAEBF
/
/
*7154
/FIFLLT ONF FNEV VARIABLES
/CALL: FNFUWCAFGL) /CET AFPRAY ELEMENT AEG1
/ FNEWCARG1, ARG2) /PUT VALUF OF AFGl IN AREAY ELEMENT
A
/
/
FNEV, FENT /ENTER FPP
FMUL. THPEE /MULTe ADDFESS EY THREF FOFE THPFF
FEXT /FP STOFAGE
JME 1 INTEGEE /MAKE 1T AN INTEGEF ADDEFSS
SMA /EEGIN CHFCK FOF OVEEWFITING LOADE?
JMP e+5 /0eKe
TAD S¢ /+ 2K
Sva CLaA
FFFOF /MUET PROTECT LOADER
TAD FLAC+?2 /CET ALLFESS OF AFEAY
PUSHA /STOFE IN PDL
PUSHJ /EVALUATE APC2
AP G
JMP GET /APG2 EXISTS; GET DATA
JMP PUT /PUT DATA AVAY
THFFES 2 /CHANGE THIS FOF TWO WOFRD
3000 /70F INTEGEE STOFAGE
0000
/
/
/

28

*5755

/EUALUATFE AN ARCUMENT: IF NOT
/THFRE FFTURN TO CALL+2 VIA POPJ
/IF THEFF TO0 CALL+3

/
5755 1142 ARG, TAL CHAF
5756 1163 TAL MCOMMA
8757 7640 S7Z8 CLA /IS IT A COMMA?R
S7¢0 5364 JMP e+ 4 /NO: ARG2 MISSING
S7¢61 4501 PUSHJ
576¢ 1602 FUAL-1
57/~3 7001 IaC /INCFEMENT FETUFN
5764 5502 POPJ /D0 SUEFOUTINE PEFTURN
/
/
*7554
7554 4777 GFTs JUE SETUP /SET U'r POINTEF TO LATA
7558 1416 TAD 1 1¢é /GET EXPONENT
7556 3044 DCA FLAC
7557 liLlrf TAL I 16 /GET HIGH OJFDEL MANTISSA
7560 3045 LCA FLAC+1
7561 1416 TAD I 16 /CET LOV ORDEF
7562 304¢ DCaA FLAC+Z
7563 5373 JY.P END
7564 4777 PUT, JuS SETUF
7565 1024 TAL FLAC
7566 3416 DCA I 16 /PUT AVAY EXPONENT
7567 1045 TAD FLAC+!
7570 3416 LCA I 14
7571 1046 TED FLAC+2
7572 3416 DCA I 16
7573 €201 ENL» CLF /EESTOFF DATE FIFLD
7574 5500 JMF I EFUN3I /D0 FUNCTION FETUEN
/
/
7577 €572
* 6572
/SET UP POINTEE TO AFFAY IN XE-1¢
/CHANCE TO DATA FIELL 1
/
£57¢ €000 SETUP, O
6573 1413 POPA /GET ALCDFESS
#5774 3016 DCA 16
6575 €211 CLF 10
576 5772 JvMr I BFETUP
/
/

29

XIl. APPENDIX E
A. Disk Variable Storage

1. Abstract

This FOCAL overlay is equivalent to the FIELD ONE variable addition to FOCAL described in
Appendix D. In this case, however, variables are stored on the Disk.

2. Comments

The contents of location 167 (BASE) must be set for the user's machine configuration. Disk

variables are written on the disk from BASE upward. BASE is the disk extended address of the
lowest used location.

e.g.
last 4K of one disk system C(167) = 708
last 8K of two disk system C(167) = 169¢
last 16K of two disk system C(167) = 1499

The present listing is for the last 4K on a two disk system, i.e. C(167)= 17ﬂ¢8.

30

LFC
LASFE
EJTTOM
ca
CHAF
FFUN3I
ENT
F}r1O0F
FVAL
FENT
FEXT
FLAC
FLISTI1
FMUL
FNFV
FNTALF
CLIST
ICGNOY
iLiev
INETF
INTECE
ITFETN
viCovMM e
vCF
VIO ¥
POEA
FOrd
PUCHA
PUICHJ
FLg
¥70C
FT7600
MR
FFALC
FTL6
EIFTC
EDFTJ
SPNOT
STAYTVY
THTEE
TLIST

< v

RS IR ® B

-
-3
m

S978%5
0167
ooeT7
Clée
Ctag
0160
Q077
L5CF
1603
HHa07
ooco
Q044
0603
3000
7154
Cl7F
1406
0ce17
0761
7565
00c&?
0231
Cleg
0065
1554
1413
55¢2
4503
4501
7574
7172
0024
165
4513
4520
4511
4510
4521
G134
7173
1407
0157
C163
0166

31

/DEFINIDIONC* FQOCAL

/

CHAaFP=142
FTL6=4520
FPUSHA=£4503
PIOPA=1£13
PUISHJ=4501
POPJ=5502
FVAL=1A03
INTECFY=52
FEFPOF=4526
FL&C=44
SOFTJ=£4510
SOFTC=4511
EFUNRI=100
STAYTU=134
IFFTN=0221
ViCr=¢F&
TLIEST=1407
FLIST1=A03
EOTTNOVM=27
ENT=77
T2=187
P7600=24
TFFADC=4513
CGLIST=140+
SPNOF=4521
IGNDF=217
FENT=24407
F¥MUL=3000
FEXT=0
ILIST=761
FNTAEF=376
/

/

/

FIFLE G

32

O016F
0163
0le4
0165
0166
0167

0413

5755
5756
5757
5760
57¢1
57€2
5763
5764

7154
7185
7156
7157
7160
7161
T16¢
T1R3
7164
7165
T1€6
7167
7170
7TL71
7172
7173
717

7524
7750
7751
6603
6605
1700

1142
116
7640
£E364
4501
1602
7001
5502

4407
3373
CCOO0
4L4u5¢
4503
1045
4520
0372
1167
4503
4501
5755
7344
ST777
0700
000¢2

/
/
FIELL ©
/

/PACE ZEPN CONSTANTS

/
*¥162
MCOMMAS
wCos
Chs
FEALS
WP 1.
PASE,
/

/

/

-254
7750
7751
D¥AR

1700

/LINK TO FOCAL
*ENTALE+15

NN N

/
*575%8

FNEV

/EVALUATE AN AFGUNMENTS

/THEFIFF FETUEN TO CALL+2

/iy
/
A¥C,

/
/
*x7154

dideocimm

e UBRLLTYS

TAL CHAFR
TALD MCOMMA
sza CLA
JYF e+ 4
PUSHJ
FvaL-1
I1AC
POPJ

/DI SK FNEL

/
FNFLs

P700,
THFFE,

FENT

FYMUL THFEE
FEXT

JMS I INTEGEF
PUSHA

TAD FLAC+1
FTL6

ANT P700
TAD BASFK
PUSHA

PUSHJ

AFC

STA CLL TFAL
JYFP MOFRE
700

2

33

IF NOT

/ENAELF 3-WOFD FP NUMEFE

/Y AKE AN INTEGEF

/PUSH LISK MEM. ADL.

/CET HICH ORDEF FAIT

/SHIFT FOF FXTENLCEL ALDKESS
/MASK FOF EXTENLED EITS
/ACL DISK BASF ALDRESE
/SAVE LEA
/FUALUATE ALGE
/=2 FOI. LEAL
/SAVE DATA

7173
7174
7175

71717

7554
7555
7556
7587
7560
75€1
7566
7563
7564
7565
7566
7267
7570
7571
757¢
7573
7574

0COg
30CC
0000

116
3365
1412
ARL15
734¢€
35623
137¢
35€4
1413
00006
(002
6622
53€7
€£6C 1
~001
5500
0043

THFEE,

* 7554
MOTEs

INSTI,

P43,

2
3000

TAD VWIFITE
CCA INSTF
POPA

DEFAL

sTA CLL FTL
pCa I wC
TAL P43

LCA I Ca
POFR

0

IDF

LF&C

LJ‘/.‘P 0-1
LCvA
I0N
JME 1
43

FFUN3I

/MAKE DISK INSTRUCTION
/GET DEA

/TRANSFEF 3 WOFDS
/INTO FLAC

/GET DMa

/UCISAELF INTEIFe
/DONE?

/N0 UAIT

/MASH FLAGS

/CO0 A FUNCTION TETUERN

Xlil. APPENDIX F
A. Hints and Kinks Department
For the experienced programmer the following may be helpful.

1. Location EVAL-1 contains the subroutine call GETC. Hence, to move past a character
and evaluate an argument one may:

PUSHJ
EVAL-1

2. The first instruction in the POPJ subroutine is TAD | 13. Hence, for multiple returns
from a subroutine one may POPJ with the AC nonzero, e.g. if the AC is 1, return is to
call +3 instead of call +2 (as in a normal POPJ return). VIZ,

PUSHJ /call
SUB
XX /normal return
XX /POPJ return if AC= 1 when POPJ
called
XX /return if AC= 2
/etc.

In all cases the subroutine will return with the AC=4.

3. When using signed and unsigned integers core must be taken that minus zero is not in the
FLAC since EFUNSI normalizes the FLAC. (FOCAL will 'hang' in that event.) The following
coding will apply for unsigned integers.

CLL RAR /make sure sign bit is @
DCA FLAC +1

RAR

DCA FLAC+ 2 /put carry bit away
TAD P14

DCA FLAC /put exponent in

JMP [EFUNSI

for signed integers:

CLL RAL

SNA

CLL /make sure positive g
RAR

DCA FLAC + 1

DCA FLAC + 2

TAD DCA FLAC

JMP | EFUN3|

35

4. There is a« BUG in FOCAL. The RMF in the interrupt routine must be moved to just
prior to the ION. This will not give trouble until field one coding is added.

5. For hardware initialization when FOCAL recovers (Control-C) one may use location
2775.

6. For machines without a high-speed reader, additional coding room of 6320-6377 may
be gained by overwriting the HRS routine. To remove the * command deposit 2725 in
location 1207.

36

FOCAL-17, Change Notice (for FOCAL, 1969) (Please note that all cor-
rected material is underlined.)

Pg. 2, line #7 from bottom, should read: ...with FOCAL (e.g. GETC=4545. .

Pg. 7, line #'s 8,9: the FOCAL interpreter occupies 1-3217 (see fig. 1}
The FPP occupies approx. 4617-7577,...

Pg. 7, delete section C. HOLES

Pg. 9, line #3: To move BOTTOM, set the contents of location 35

Pg. 9, line #5: ..., change C(35) to 4417.

Pg. 9, line #12: CHAR-The contents of this location (66)...

Pg.9, line #19: GETC=4545 e

Pg. 9, line #21: SORTC=455

Pg. 10, line #13: PRINTC=4551

Pg. 10, line #15: READC=4552

Pg. 10, line #17: SPNOR=456

Pg. 10, line #19: ERROR=4566

Pg. 10, line #22 should read: ERROR4. All of these are identical ana

indicate an excess, miscellaneous, or format error respectively.)

Pg. 10, line #23: TESTN=4561

Pg. 10, line #2 from bottom: TESTC=4564

Pg. 12, line #2: RTL6=4557

Pg. 12, line #8: PUSHA=4542

Pg. 12, line #10: POPA=1413
Pg. 12, line #13: PUSHF=4543
Pg. 12, line #17: POPF=4544
Pg. 12, line #21: PUSHJI=454
Pg. 12, line #27: POPJ=5541

Pg. 13, line #2: INTEGER=53

Pg. 13, line #6: EFUN3I=136

Pg. 13, line #9: EVAL=1613

Pg. 13, line #22 should read: FNTABF=, /(376) in FOCAL

Pg. 13, last line: ...replace the current contents with ERRORS (2725)
Pg. 14, append to end of page: BAssemble ODT at either 364¢ or 469d
Pg. 16, line #4, from the bottom: 1. Put the initial address in the
contents of COMGO+1d

Pg. 19, delete the entire page

Pg. 25, line #4, should read: A new form of 8K overlay (DEC-08-AJ9E-Fi.. ...
Pg. 25, line #5, should read: ... This facility is added to 4K FOCAL via. .,

Pg. 25, line 9 through 14: delete

Py, 25, line #17-18, should read: Load after FOCAL has been loaded.. Ré&-
start FOCAL at 2008,

Pg. 27, add note to bottom of the page: NOTE: Ignore the octal numbers
from here on, if using FOCAL 7/9/69.

Pg. 29, last line should read: JMP I SETUP

Pg. 36, line #3: DELETE Item #5.

Pg. 36, line #5-7, item 6 should read:
6, For machines without a high speed reader, additional coding from
6320-6377 may be gained by over-reading the HRS routine.

37

